1
|
Liu X, Luo D, Dai S, Cai Y, Chen T, Bao X, Hu M, Liu Z. Artificial Bacteriophages for Treating Oral Infectious Disease via Localized Bacterial Capture and Enhanced Catalytic Sterilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400394. [PMID: 39159066 PMCID: PMC11538703 DOI: 10.1002/advs.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/30/2024] [Indexed: 08/21/2024]
Abstract
With the rapid emergence of antibiotic-resistant pathogens, nanomaterial-assisted catalytic sterilization has been well developed to combat pathogenic bacteria by elevating the level of reactive oxygen species including hydroxyl radical (·OH). Although promising, the ultra-short lifetime and limited diffusion distance of ·OH severely limit their practical antibacterial usage. Herein, the rational design and preparation of novel virus-like copper silicate hollow spheres (CSHSs) are reported, as well as their applications as robust artificial bacteriophages for localized bacterial capture and enhanced catalytic sterilization in the treatment of oral infectious diseases. During the whole process of capture and killing, CSHSs can efficiently capture bacteria via shortening the distance between bacteria and CSHSs, produce massive ·OH around bacteria, and further iinducing the admirable effect of bacterial inhibition. By using mucosal infection and periodontitis as typical oral infectious diseases, it is easily found that the bacterial populations around lesions in animals after antibacterial treatment fall sharply, as well as the well-developed nanosystem can decrease the inflammatory reaction and promote the hard or soft tissue repair. Together, the high Fenton-like catalytic activity, strong bacterial affinity, excellent antibacterial activity, and overall safety of the nanoplatform promise its great therapeutic potential for further catalytic bacterial disinfection.
Collapse
Affiliation(s)
- Xiaocan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Danfeng Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Shuang Dai
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yanting Cai
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Tianyan Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
| | - Min Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
- Key Laboratory of PathobiologyMinistry of EducationJilin UniversityChangchun130021China
| | - Zhen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingSchool and Hospital of StomatologyJilin UniversityChangchun130021China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
2
|
Lee HHC, Latzer IT, Bertoldi M, Gao G, Pearl PL, Sahin M, Rotenberg A. Gene replacement therapies for inherited disorders of neurotransmission: Current progress in succinic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis 2024; 47:476-493. [PMID: 38581234 PMCID: PMC11096052 DOI: 10.1002/jimd.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.
Collapse
Affiliation(s)
- Henry HC Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Itay Tokatly Latzer
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Tel-Aviv University Faculty of Medicine, Tel-Aviv, Israel
| | - Mariarita Bertoldi
- Dept. of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Guangping Gao
- The Horae Gene Therapy Center, UMass Medical School, MA 01605, USA
| | - Phillip L Pearl
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Daci R, Flotte TR. Delivery of Adeno-Associated Virus Vectors to the Central Nervous System for Correction of Single Gene Disorders. Int J Mol Sci 2024; 25:1050. [PMID: 38256124 PMCID: PMC10816966 DOI: 10.3390/ijms25021050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Genetic disorders of the central nervous system (CNS) comprise a significant portion of disability in both children and adults. Several preclinical animal models have shown effective adeno-associated virus (AAV) mediated gene transfer for either treatment or prevention of autosomal recessive genetic disorders. Owing to the intricacy of the human CNS and the blood-brain barrier, it is difficult to deliver genes, particularly since the expression of any given gene may be required in a particular CNS structure or cell type at a specific time during development. In this review, we analyzed delivery methods for AAV-mediated gene therapy in past and current clinical trials. The delivery routes analyzed were direct intraparenchymal (IP), intracerebroventricular (ICV), intra-cisterna magna (CM), lumbar intrathecal (IT), and intravenous (IV). The results demonstrated that the dose used in these routes varies dramatically. The average total doses used were calculated and were 1.03 × 1013 for IP, 5.00 × 1013 for ICV, 1.26 × 1014 for CM, and 3.14 × 1014 for IT delivery. The dose for IV delivery varies by patient weight and is 1.13 × 1015 IV for a 10 kg infant. Ultimately, the choice of intervention must weigh the risk of an invasive surgical procedure to the toxicity and immune response associated with a high dose vector.
Collapse
Affiliation(s)
- Rrita Daci
- Department of Neurosurgery, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester, MA 01655, USA;
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Terence R. Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester, MA 01655, USA
| |
Collapse
|
4
|
Mao J, Li J, Chen J, Wen Q, Cao M, Zhang F, Li B, Zhang Q, Wang Z, Zhang J, Shen J. CXCL10 and Nrf2-upregulated mesenchymal stem cells reinvigorate T lymphocytes for combating glioblastoma. J Immunother Cancer 2023; 11:e007481. [PMID: 38056897 PMCID: PMC10711923 DOI: 10.1136/jitc-2023-007481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Lack of tumor-infiltrating T lymphocytes and concurrent T-cell dysfunction have been identified as major contributors to glioblastoma (GBM) immunotherapy resistance. Upregulating CXCL10 in the tumor microenvironment (TME) is a promising immunotherapeutic approach that potentially increases tumor-infiltrating T cells and boosts T-cell activity but is lacking effective delivery methods. METHODS In this study, mesenchymal stem cells (MSCs) were transduced with a recombinant lentivirus encoding Cxcl10, Nrf2 (an anti-apoptosis gene), and a ferritin heavy chain (Fth) reporter gene in order to increase their CXCL10 secretion, TME survival, and MRI visibility. Using FTH-MRI guidance, these cells were injected into the tumor periphery of orthotopic GL261 and CT2A GBMs in mice. Combination therapy consisting of CXCL10-Nrf2-FTH-MSC transplantation together with immune checkpoint blockade (ICB) was also performed for CT2A GBMs. Thereafter, in vivo and serial MRI, survival analysis, and histology examinations were conducted to assess the treatments' efficacy and mechanism. RESULTS CXCL10-Nrf2-FTH-MSCs exhibit enhanced T lymphocyte recruitment, oxidative stress tolerance, and iron accumulation. Under in vivo FTH-MRI guidance and monitoring, peritumoral transplantation of CXCL10-Nrf2-FTH-MSCs remarkably inhibited orthotopic GL261 and CT2A tumor growth in C57BL6 mice and prolonged animal survival. While ICB alone demonstrated no therapeutic impact, CXCL10-Nrf2-FTH-MSC transplantation combined with ICB demonstrated an enhanced anticancer effect for CT2A GBMs compared with transplanting it alone. Histology revealed that peritumorally injected CXCL10-Nrf2-FTH-MSCs survived longer in the TME, increased CXCL10 production, and ultimately remodeled the TME by increasing CD8+ T cells, interferon-γ+ cytotoxic T lymphocytes (CTLs), GzmB+ CTLs, and Th1 cells while reducing regulatory T cells (Tregs), exhausted CD8+ and exhausted CD4+ T cells. CONCLUSIONS MRI-guided peritumoral administration of CXCL10 and Nrf2-overexpressed MSCs can significantly limit GBM growth by revitalizing T lymphocytes within TME. The combination application of CXCL10-Nrf2-FTH-MSC transplantation and ICB therapy presents a potentially effective approach to treating GBM.
Collapse
Affiliation(s)
- Jiaji Mao
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianing Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junwei Chen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qin Wen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Minghui Cao
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Baoxun Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qinyuan Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhe Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingzhong Zhang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Suzhou, Jiangsu, China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Sang Z, Xu L, Ding R, Wang M, Yang X, Li X, Zhou B, Gou K, Han Y, Liu T, Chen X, Cheng Y, Yang H, Li H. Nanoparticles exhibiting virus-mimic surface topology for enhanced oral delivery. Nat Commun 2023; 14:7694. [PMID: 38001086 PMCID: PMC10673925 DOI: 10.1038/s41467-023-43465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The oral delivery of nano-drug delivery systems (Nano-DDS) remains a challenge. Taking inspirations from viruses, here we construct core-shell mesoporous silica nanoparticles (NPs, ~80 nm) with virus-like nanospikes (VSN) to simulate viral morphology, and further modified VSN with L-alanine (CVSN) to enable chiral recognition for functional bionics. By comparing with the solid silica NPs, mesoporous silica NPs and VSN, we demonstrate the delivery advantages of CVSN on overcoming intestinal sequential barriers in both animals and human via multiple biological processes. Subsequently, we encapsulate indomethacin (IMC) into the nanopores of NPs to mimic gene package, wherein the payloads are isolated from bio-environments and exist in an amorphous form to increase their stability and solubility, while the chiral nanospikes multi-sited anchor and chiral recognize on the intestinal mucosa to enhance the penetrability and ultimately improve the oral adsorption of IMC. Encouragingly, we also prove the versatility of CVSN as oral Nano-DDS.
Collapse
Affiliation(s)
- Zhentao Sang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Minjun Wang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xiaoran Yang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xitan Li
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Bingxin Zhou
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kaijun Gou
- Department of Pathology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yang Han
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Tingting Liu
- Department of Organ Transplantation and Hepatobiliary, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xuchun Chen
- Department of Organ Transplantation and Hepatobiliary, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Cheng
- Department of Organ Transplantation and Hepatobiliary, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
6
|
Tian G, Cao C, Li S, Wang W, Zhang Y, Lv Y. rAAV2-Mediated Restoration of GALC in Neural Stem Cells from Krabbe Patient-Derived iPSCs. Pharmaceuticals (Basel) 2023; 16:ph16040624. [PMID: 37111381 PMCID: PMC10143348 DOI: 10.3390/ph16040624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Krabbe disease is a rare neurodegenerative fatal disease. It is caused by deficiency of the lysosomal enzyme galactocerebrosidase (GALC), which results in progressive accumulation of galactolipid substrates in myelin-forming cells. However, there is still a lack of appropriate neural models and effective approaches for Krabbe disease. We generated induced pluripotent stem cells (iPSCs) from a Krabbe patient previously. Here, Krabbe patient-derived neural stem cells (K-NSCs) were induced from these iPSCs. By using nine kinds of recombinant adeno-associated virus (rAAV) vectors to infect K-NSCs, we found that the rAAV2 vector has high transduction efficiency for K-NSCs. Most importantly, rAAV2-GALC rescued GALC enzymatic activity in K-NSCs. Our findings not only establish a novel patient NSC model for Krabbe disease, but also firstly indicate the potential of rAAV2-mediated gene therapy for this devastating disease.
Collapse
Affiliation(s)
- Guoshuai Tian
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Chunyu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443000, China
| | - Shuyue Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443000, China
| | - Wei Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yafeng Lv
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443000, China
| |
Collapse
|
7
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
8
|
Chuapoco MR, Flytzanis NC, Goeden N, Octeau JC, Roxas KM, Chan KY, Scherrer J, Winchester J, Blackburn RJ, Campos LJ, Man KNM, Sun J, Chen X, Lefevre A, Singh VP, Arokiaraj CM, Shaya TF, Vendemiatti J, Jang MJ, Mich J, Bishaw Y, Gore B, Omstead V, Taskin N, Weed N, Ting J, Miller CT, Deverman BE, Pickel J, Tian L, Fox AS, Gradinaru V. Intravenous functional gene transfer throughout the brain of non-human primates using AAV. RESEARCH SQUARE 2023:rs.3.rs-1370972. [PMID: 36789432 PMCID: PMC9928057 DOI: 10.21203/rs.3.rs-1370972/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Adeno-associated viruses (AAVs) promise robust gene delivery to the brain through non-invasive, intravenous delivery. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates (NHPs). Here we describe AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques with improved efficiency in the brain of multiple NHP species: marmoset, rhesus macaque, and green monkey. CAP-Mac is neuron-biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques, and is vasculature-biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver (1) functional GCaMP for ex vivo calcium imaging across multiple brain areas, and (2) a cocktail of fluorescent reporters for Brainbow-like labeling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. Given its capabilities for systemic gene transfer in NHPs, CAP-Mac promises to help unlock non-invasive access to the brain.
Collapse
Affiliation(s)
- Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nicholas C. Flytzanis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA 91320, USA
- Present address: Capsida Biotherapeutics, Thousand Oaks, CA 91320, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA 91320, USA
- Present address: Capsida Biotherapeutics, Thousand Oaks, CA 91320, USA
| | | | | | - Ken Y. Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jon Scherrer
- Capsida Biotherapeutics, Thousand Oaks, CA 91320, USA
| | | | | | - Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California-Davis, Davis, CA 95616, USA
| | - Kwun Nok Mimi Man
- Department of Psychology and the California National Primate Research Center, University of California-Davis, Davis, CA 95616, USA
| | - Junqing Sun
- Department of Psychology and the California National Primate Research Center, University of California-Davis, Davis, CA 95616, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arthur Lefevre
- Cortical Systems and Behavior Laboratory, University of California-San Diego, La Jolla, CA 92039, USA
| | - Vikram Pal Singh
- Cortical Systems and Behavior Laboratory, University of California-San Diego, La Jolla, CA 92039, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Timothy F. Shaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Julia Vendemiatti
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Min J. Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John Mich
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
| | - Yeme Bishaw
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
| | - Bryan Gore
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
| | | | - Naz Taskin
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
| | - Natalie Weed
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
| | - Jonathan Ting
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
| | - Cory T. Miller
- Cortical Systems and Behavior Laboratory, University of California-San Diego, La Jolla, CA 92039, USA
| | - Benjamin E. Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - James Pickel
- Cortical Systems and Behavior Laboratory, University of California-San Diego, La Jolla, CA 92039, USA
| | - Lin Tian
- Department of Psychology and the California National Primate Research Center, University of California-Davis, Davis, CA 95616, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California-Davis, Davis, CA 95616, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| |
Collapse
|
9
|
Lonser RR, Akhter AS, Zabek M, Elder JB, Bankiewicz KS. Direct convective delivery of adeno-associated virus gene therapy for treatment of neurological disorders. J Neurosurg 2021; 134:1751-1763. [PMID: 32915526 DOI: 10.3171/2020.4.jns20701] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/16/2020] [Indexed: 11/06/2022]
Abstract
Molecular biological insights have led to a fundamental understanding of the underlying genomic mechanisms of nervous system disease. These findings have resulted in the identification of therapeutic genes that can be packaged in viral capsids for the treatment of a variety of neurological conditions, including neurodegenerative, metabolic, and enzyme deficiency disorders. Recent data have demonstrated that gene-carrying viral vectors (most often adeno-associated viruses) can be effectively distributed by convection-enhanced delivery (CED) in a safe, reliable, targeted, and homogeneous manner across the blood-brain barrier. Critically, these vectors can be monitored using real-time MRI of a co-infused surrogate tracer to accurately predict vector distribution and transgene expression at the perfused site. The unique properties of CED of adeno-associated virus vectors allow for cell-specific transgene manipulation of the infused anatomical site and/or widespread interconnected sites via antero- and/or retrograde transport. The authors review the convective properties of viral vectors, associated technology, and clinical applications.
Collapse
Affiliation(s)
- Russell R Lonser
- 1Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Asad S Akhter
- 1Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Mirosław Zabek
- 2Department of Neurological Surgery, Bródno Hospital, Warsaw, Poland
| | - J Bradley Elder
- 1Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Krystof S Bankiewicz
- 1Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| |
Collapse
|
10
|
Lerchner W, Adil AA, Mumuney S, Wang W, Falcone R, Turchi J, Richmond BJ. RNAi and chemogenetic reporter co-regulation in primate striatal interneurons. Gene Ther 2021; 29:69-80. [PMID: 34012109 PMCID: PMC8856958 DOI: 10.1038/s41434-021-00260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 11/09/2022]
Abstract
Using genetic tools to study the functional roles of molecularly specified neuronal populations in the primate brain is challenging, primarily because of specificity and verification of virus-mediated targeting. Here, we report a lentivirus-based system that helps improve specificity and verification by (a) targeting a selected molecular mechanism, (b) in vivo reporting of expression, and (c) allowing the option to independently silence all regional neural activity. Specifically, we modulate cholinergic signaling of striatal interneurons by shRNAmir and pair it with hM4Di_CFP, a chemogenetic receptor that can function as an in vivo and in situ reporter. Quantitative analyses by visual and deep-learning assisted methods show an inverse linear relation between hM4Di_CFP and ChAT protein expression for several shRNAmir constructs. This approach successfully applies shRNAmir to modulating gene expression in the primate brain and shows that hM4Di_CFP can act as a readout for this modulation.
Collapse
Affiliation(s)
- Walter Lerchner
- Laboratory of Neuropsychology, NIMH, NIH, Bethesda, MD, USA.
| | | | | | - Wenliang Wang
- Laboratory of Neuropsychology, NIMH, NIH, Bethesda, MD, USA
| | | | - Janita Turchi
- Laboratory of Neuropsychology, NIMH, NIH, Bethesda, MD, USA
| | | |
Collapse
|
11
|
Martier R, Konstantinova P. Gene Therapy for Neurodegenerative Diseases: Slowing Down the Ticking Clock. Front Neurosci 2020; 14:580179. [PMID: 33071748 PMCID: PMC7530328 DOI: 10.3389/fnins.2020.580179] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is an emerging and powerful therapeutic tool to deliver functional genetic material to cells in order to correct a defective gene. During the past decades, several studies have demonstrated the potential of AAV-based gene therapies for the treatment of neurodegenerative diseases. While some clinical studies have failed to demonstrate therapeutic efficacy, the use of AAV as a delivery tool has demonstrated to be safe. Here, we discuss the past, current and future perspectives of gene therapies for neurodegenerative diseases. We also discuss the current advances on the newly emerging RNAi-based gene therapies which has been widely studied in preclinical model and recently also made it to the clinic.
Collapse
Affiliation(s)
- Raygene Martier
- Department of Research and Development, uniQure Biopharma B.V., Amsterdam, Netherlands
| | - Pavlina Konstantinova
- Department of Research and Development, uniQure Biopharma B.V., Amsterdam, Netherlands
| |
Collapse
|
12
|
Hocquemiller M, Hemsley KM, Douglass ML, Tamang SJ, Neumann D, King BM, Beard H, Trim PJ, Winner LK, Lau AA, Snel MF, Gomila C, Ausseil J, Mei X, Giersch L, Plavsic M, Laufer R. AAVrh10 Vector Corrects Disease Pathology in MPS IIIA Mice and Achieves Widespread Distribution of SGSH in Large Animal Brains. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:174-187. [PMID: 31909089 PMCID: PMC6940615 DOI: 10.1016/j.omtm.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022]
Abstract
Patients with mucopolysaccharidosis type IIIA (MPS IIIA) lack the lysosomal enzyme sulfamidase (SGSH), which is responsible for the degradation of heparan sulfate (HS). Build-up of undegraded HS results in severe progressive neurodegeneration for which there is currently no treatment. The ability of the vector adeno-associated virus (AAV)rh.10-CAG-SGSH (LYS-SAF302) to correct disease pathology was evaluated in a mouse model for MPS IIIA. LYS-SAF302 was administered to 5-week-old MPS IIIA mice at three different doses (8.6E+08, 4.1E+10, and 9.0E+10 vector genomes [vg]/animal) injected into the caudate putamen/striatum and thalamus. LYS-SAF302 was able to dose-dependently correct or significantly reduce HS storage, secondary accumulation of GM2 and GM3 gangliosides, ubiquitin-reactive axonal spheroid lesions, lysosomal expansion, and neuroinflammation at 12 weeks and 25 weeks post-dosing. To study SGSH distribution in the brain of large animals, LYS-SAF302 was injected into the subcortical white matter of dogs (1.0E+12 or 2.0E+12 vg/animal) and cynomolgus monkeys (7.2E+11 vg/animal). Increases of SGSH enzyme activity of at least 20% above endogenous levels were detected in 78% (dogs 4 weeks after injection) and 97% (monkeys 6 weeks after injection) of the total brain volume. Taken together, these data validate intraparenchymal AAV administration as a promising method to achieve widespread enzyme distribution and correction of disease pathology in MPS IIIA.
Collapse
Affiliation(s)
| | - Kim M Hemsley
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Meghan L Douglass
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Sarah J Tamang
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Daniel Neumann
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Barbara M King
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Helen Beard
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Paul J Trim
- Mass Spectrometry Core Facility, SAHMRI, Adelaide, SA 5000, Australia
| | - Leanne K Winner
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Adeline A Lau
- Childhood Dementia Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Marten F Snel
- Mass Spectrometry Core Facility, SAHMRI, Adelaide, SA 5000, Australia
| | - Cathy Gomila
- Laboratoire de Biochimie Métabolique, CHU Amiens Picardie, 80054 Amiens, France
| | - Jérôme Ausseil
- Unité INSERM U1043, Centre de Physiopathologie Toulouse Purpan (CPTP), Université Paul Sabatier, 31024 Toulouse, France
| | - Xin Mei
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Laura Giersch
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Mark Plavsic
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| | - Ralph Laufer
- Lysogene, 18-20 rue Jacques Dulud, 92200 Neuilly-sur-Seine, France
| |
Collapse
|
13
|
Durcanova B, Appleton J, Gurijala N, Belov V, Giffenig P, Moeller E, Hogan M, Lee F, Papisov M. The Configuration of the Perivascular System Transporting Macromolecules in the CNS. Front Neurosci 2019; 13:511. [PMID: 31191221 PMCID: PMC6547014 DOI: 10.3389/fnins.2019.00511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/03/2019] [Indexed: 12/26/2022] Open
Abstract
Large blood vessels entering the CNS are surrounded by perivascular spaces that communicate with the cerebrospinal fluid and, at their termini, with the interstitial space. Solutes and particles can translocate along these perivascular conduits, reportedly in both directions. Recently, this prompted a renewed interest in the intrathecal therapy delivery route for CNS-targeted therapeutics. However, the extent of the CNS coverage by the perivascular system is unknown, making the outcome of drug administration to the CSF uncertain. We traced the translocation of model macromolecules from the CSF into the CNS of rats and non-human primates. Conduits transporting macromolecules were found to extend throughout the parenchyma from both external and internal (fissures) CNS boundaries, excluding ventricles, in large numbers, on average ca. 40 channels per mm2 in rats and non-human primates. The high density and depth of extension of the perivascular channels suggest that the perivascular route can be suitable for delivery of therapeutics to parenchymal targets throughout the CNS.
Collapse
Affiliation(s)
| | | | | | - Vasily Belov
- Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Shriners Hospitals for Children - Boston, Boston, MA, United States
| | - Pilar Giffenig
- Massachusetts General Hospital, Boston, MA, United States
| | | | - Matthew Hogan
- Massachusetts General Hospital, Boston, MA, United States
| | - Fredella Lee
- Massachusetts General Hospital, Boston, MA, United States
| | - Mikhail Papisov
- Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Shriners Hospitals for Children - Boston, Boston, MA, United States
| |
Collapse
|
14
|
Stavarache MA, Petersen N, Jurgens EM, Milstein ER, Rosenfeld ZB, Ballon DJ, Kaplitt MG. Safe and stable noninvasive focal gene delivery to the mammalian brain following focused ultrasound. J Neurosurg 2019; 130:989-998. [PMID: 29701544 DOI: 10.3171/2017.8.jns17790] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/28/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Surgical infusion of gene therapy vectors has provided opportunities for biological manipulation of specific brain circuits in both animal models and human patients. Transient focal opening of the blood-brain barrier (BBB) by MR-guided focused ultrasound (MRgFUS) raises the possibility of noninvasive CNS gene therapy to target precise brain regions. However, variable efficiency and short follow-up of studies to date, along with recent suggestions of the potential for immune reactions following MRgFUS BBB disruption, all raise questions regarding the viability of this approach for clinical translation. The objective of the current study was to evaluate the efficiency, safety, and long-term stability of MRgFUS-mediated noninvasive gene therapy in the mammalian brain. METHODS Focused ultrasound under the control of MRI, in combination with microbubbles consisting of albumin-coated gas microspheres, was applied to rat striatum, followed by intravenous infusion of an adeno-associated virus serotype 1/2 (AAV1/2) vector expressing green fluorescent protein (GFP) as a marker. Following recovery, animals were followed from several hours up to 15 months. Immunostaining for GFP quantified transduction efficiency and stability of expression. Quantification of neuronal markers was used to determine histological safety over time, while inflammatory markers were examined for evidence of immune responses. RESULTS Transitory disruption of the BBB by MRgFUS resulted in efficient delivery of the AAV1/2 vector to the targeted rodent striatum, with 50%-75% of striatal neurons transduced on average. GFP transgene expression appeared to be stable over extended periods of time, from 2 weeks to 6 months, with evidence of ongoing stable expression as long as 16 months in a smaller cohort of animals. No evidence of substantial toxicity, tissue injury, or neuronal loss was observed. While transient inflammation from BBB disruption alone was noted for the first few days, consistent with prior observations, no evidence of brain inflammation was observed from 2 weeks to 6 months following MRgFUS BBB opening, despite delivery of a virus and expression of a foreign protein in target neurons. CONCLUSIONS This study demonstrates that transitory BBB disruption using MRgFUS can be a safe and efficient method for site-specific delivery of viral vectors to the brain, raising the potential for noninvasive focal human gene therapy for neurological disorders.
Collapse
Affiliation(s)
| | - Nicholas Petersen
- 1Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, and
| | - Eric M Jurgens
- 1Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, and
| | | | - Zachary B Rosenfeld
- 1Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, and
| | - Douglas J Ballon
- 2Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Michael G Kaplitt
- 1Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, and
| |
Collapse
|
15
|
Ohno K, Samaranch L, Hadaczek P, Bringas JR, Allen PC, Sudhakar V, Stockinger DE, Snieckus C, Campagna MV, San Sebastian W, Naidoo J, Chen H, Forsayeth J, Salegio EA, Hwa GGC, Bankiewicz KS. Kinetics and MR-Based Monitoring of AAV9 Vector Delivery into Cerebrospinal Fluid of Nonhuman Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:47-54. [PMID: 30666308 PMCID: PMC6330508 DOI: 10.1016/j.omtm.2018.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022]
Abstract
Here we evaluated the utility of MRI to monitor intrathecal infusions in nonhuman primates. Adeno-associated virus (AAV) spiked with gadoteridol, a gadolinium-based MRI contrast agent, enabled real-time visualization of infusions delivered either via cerebromedullary cistern, lumbar, cerebromedullary and lumbar, or intracerebroventricular infusion. The kinetics of vector clearance from the cerebrospinal fluid (CSF) were analyzed. Our results highlight the value of MRI in optimizing the delivery of infusate into CSF. In particular, MRI revealed differential patterns of infusate distribution depending on the route of delivery. Gadoteridol coverage analysis showed that cerebellomedullary cistern delivery was a reliable and effective route of injection, achieving broad infusate distribution in the brain and spinal cord, and was even greater when combined with lumbar injection. In contrast, intracerebroventricular injection resulted in strong cortical coverage but little spinal distribution. Lumbar injection alone led to the distribution of MRI contrast agent mainly in the spinal cord with little cortical coverage, but this delivery route was unreliable. Similarly, vector clearance analysis showed differences between different routes of delivery. Overall, our data support the value of monitoring CSF injections to dissect different patterns of gadoteridol distribution based on the route of intrathecal administration.
Collapse
Affiliation(s)
- Kousaku Ohno
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | - Lluis Samaranch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | - Piotr Hadaczek
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | - John R Bringas
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | | | - Vivek Sudhakar
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | | | - Christopher Snieckus
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | | | - Waldy San Sebastian
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | - Jerusha Naidoo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | | | - John Forsayeth
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| | | | | | - Krystof S Bankiewicz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94103, USA
| |
Collapse
|
16
|
Salegio EA, Campagna MV, Allen PC, Stockinger DE, Song Y, Hwa GGC. Targeted Delivery and Tolerability of MRI-Guided CED Infusion into the Cerebellum of Nonhuman Primates. Hum Gene Ther Methods 2018; 29:169-176. [PMID: 29953257 DOI: 10.1089/hgtb.2018.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study explored the feasibility of intraparenchymal delivery (gadoteridol and/or Serotype 5 Adeno-Associated Viral Vector-enhanced Green Fluorescent Protein [AAV5-eGFP]) into the cerebellum of nonhuman primates using real-time magnetic resonance imaging-guided convection enhanced delivery (MRI-CED) technology. All animals tolerated the neurosurgical procedure without any clinical sequela. Gene expression was detected within the cerebellar parenchyma at the site of infusion and resulted in transduction of neuronal cell bodies and fibers. Histopathology indicated localized damage along the stem of the cannula tract. These findings demonstrate the potential of real-time MRI-CED to deliver therapeutics into the cerebellum, which has extensive reciprocal connections and may be used as a target for the treatment of neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | - Yuanquan Song
- 2 Raymond G. Perelman Center for Cellular and Molecular Therapeutics , The Children's Hospital of Philadelphia, Philadelphia, PA.,3 Department of Pathology and Laboratory Medicine, University of Pennsylvania , Philadelphia, PA
| | | |
Collapse
|
17
|
Targeted shRNA-loaded liposome complex combined with focused ultrasound for blood brain barrier disruption and suppressing glioma growth. Cancer Lett 2018; 418:147-158. [DOI: 10.1016/j.canlet.2018.01.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/23/2017] [Accepted: 01/09/2018] [Indexed: 01/05/2023]
|
18
|
Blits B, Petry H. Perspective on the Road toward Gene Therapy for Parkinson's Disease. Front Neuroanat 2017; 10:128. [PMID: 28119578 PMCID: PMC5220060 DOI: 10.3389/fnana.2016.00128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022] Open
Abstract
Many therapeutic strategies aimed at relieving symptoms of Parkinson’s disease (PD) are currently used for treatment of this disease. With a hallmark of progressive degeneration of dopaminergic neurons, the absence of properly operational dopaminergic circuitry becomes a therapeutic target. Following diagnosis, dopamine replacement can be given in the form of L-DOPA (L-3,4-dihydroxyphenylalanine). Even though it is recognized as standard of care, this treatment strategy does not prevent the affected neurons from degenerating. Therefore, studies have been performed using gene therapy (GT) to make dopamine (DA) available from within the brain using an artificial DA circuitry. One approach is to administer a GT aimed at delivering the key enzymes for DA synthesis using a lentiviral vector system (Palfi et al., 2014). A similar approach has been investigated with adeno-associated virus (AAV) expressing aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP-cyclohydrolase I (Bankiewicz et al., 2000), which are downregulated in PD. Another GT approach to mitigate symptoms of PD used AAV-mediated delivery of GAD-67 (glutamate decarboxylase) (Kaplitt et al., 2007). This approach mimics the inhibitory effect of DA neurons on their targets, in reducing motor abnormalities. Finally, disease modifying strategies have been undertaken using neurotrophic factors such as neurturin (NTN) (Marks et al., 2008; Bartus et al., 2013a) or are ongoing with the closely related Glial cell line-derived neurotrophic factor. Those approaches are aiming at rescuing the degenerating neurons. All of the above mentioned strategies have their own merits, but also some disadvantages. So far, none of clinical applied GT studies has resulted in significant clinical benefit, although some clinical studies are ongoing and results are expected over the next few years.
Collapse
Affiliation(s)
- Bas Blits
- Neurobiology Research, uniQure BV Amsterdam, Netherlands
| | - Harald Petry
- Neurobiology Research, uniQure BV Amsterdam, Netherlands
| |
Collapse
|
19
|
Nash KR, Gordon MN. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain. Methods Mol Biol 2016; 1382:285-95. [PMID: 26611595 DOI: 10.1007/978-1-4939-3271-9_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.
Collapse
Affiliation(s)
- Kevin R Nash
- Molecular Pharmacology and Physiology Department, Byrd Alzheimer Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL, 33613, USA.
| | - Marcia N Gordon
- Molecular Pharmacology and Physiology Department, Byrd Alzheimer Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL, 33613, USA
| |
Collapse
|
20
|
Reversal of Aging-Related Neuronal Ca2+ Dysregulation and Cognitive Impairment by Delivery of a Transgene Encoding FK506-Binding Protein 12.6/1b to the Hippocampus. J Neurosci 2015. [PMID: 26224869 DOI: 10.1523/jneurosci.1248-15.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Brain Ca2+ regulatory processes are altered during aging, disrupting neuronal, and cognitive functions. In hippocampal pyramidal neurons, the Ca2+ -dependent slow afterhyperpolarization (sAHP) exhibits an increase with aging, which correlates with memory impairment. The increased sAHP results from elevated L-type Ca2+ channel activity and ryanodine receptor (RyR)-mediated Ca2+ release, but underlying molecular mechanisms are poorly understood. Previously, we found that expression of the gene encoding FK506-binding protein 12.6/1b (FKBP1b), a small immunophilin that stabilizes RyR-mediated Ca2+ release in cardiomyocytes, declines in hippocampus of aged rats and Alzheimer's disease subjects. Additionally, knockdown/disruption of hippocampal FKBP1b in young rats augments neuronal Ca2+ responses. Here, we test the hypothesis that declining FKBP1b underlies aging-related hippocampal Ca2+ dysregulation. Using microinjection of adeno-associated viral vector bearing a transgene encoding FKBP1b into the hippocampus of aged male rats, we assessed the critical prediction that overexpressing FKBP1b should reverse Ca2+ -mediated manifestations of brain aging. Immunohistochemistry and qRT-PCR confirmed hippocampal FKBP1b overexpression 4-6 weeks after injection. Compared to aged vector controls, aged rats overexpressing FKBP1b showed dramatic enhancement of spatial memory, which correlated with marked reduction of sAHP magnitude. Furthermore, simultaneous electrophysiological recording and Ca2+ imaging in hippocampal neurons revealed that the sAHP reduction was associated with a decrease in parallel RyR-mediated Ca2+ transients. Thus, hippocampal FKBP1b overexpression reversed key aspects of Ca2+ dysregulation and cognitive impairment in aging rats, supporting the novel hypothesis that declining FKBP1b is a molecular mechanism underlying aging-related Ca2+ dysregulation and unhealthy brain aging and pointing to FKBP1b as a potential therapeutic target. SIGNIFICANCE STATEMENT This paper reports critical tests of a novel hypothesis that proposes a molecular mechanism of unhealthy brain aging and possibly, Alzheimer's disease. For more than 30 years, evidence has been accumulating that brain aging is associated with dysregulation of calcium in neurons. Recently, we found that FK506-binding protein 12.6/1b (FKBP1b), a small protein that regulates calcium, declines with aging in the hippocampus, a brain region important for memory. Here we used gene therapy approaches and found that raising FKBP1b reversed calcium dysregulation and memory impairment in aging rats, allowing them to perform a memory task as well as young rats. These studies identify a potential molecular mechanism of brain aging and may also have implications for treatment of Alzheimer's disease.
Collapse
|
21
|
Viral vector delivery of neurotrophic factors for Parkinson's disease therapy. Expert Rev Mol Med 2015; 17:e8. [DOI: 10.1017/erm.2015.6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the progressive loss of midbrain dopaminergic neurons, which causes motor impairments. Current treatments involve dopamine replacement to address the disease symptoms rather than its cause. Factors that promote the survival of dopaminergic neurons have been proposed as novel therapies for PD. Several dopaminergic neurotrophic factors (NTFs) have been examined for their ability to protect and/or restore degenerating dopaminergic neurons, both in animal models and in clinical trials. These include glial cell line-derived neurotrophic factor, neurturin, cerebral dopamine neurotrophic factor and growth/differentiation factor 5. Delivery of these NTFs via injection or infusion to the brain raises several practical problems. A new delivery approach for NTFs involves the use of recombinant viral vectors to enable long-term expression of these factors in brain cells. Vectors used include those based on adenoviruses, adeno-associated viruses and lentiviruses. Here we review progress to date on the potential of each of these four NTFs as novel therapeutic strategies for PD, as well as the challenges that have arisen, from pre-clinical analysis to clinical trials. We conclude by discussing recently-developed approaches to optimise the delivery of NTF-carrying viral vectors to the brain.
Collapse
|
22
|
Grosios K, Petry H, Lubelski J. Adeno-Associated Virus Gene Therapy and Its Application to the Prevention and Personalised Treatment of Rare Diseases. Rare Dis 2015. [DOI: 10.1007/978-94-017-9214-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Lerchner W, Corgiat B, Der Minassian V, Saunders RC, Richmond BJ. Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain. Gene Ther 2014; 21:233-41. [PMID: 24401836 DOI: 10.1038/gt.2013.75] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/01/2013] [Accepted: 11/04/2013] [Indexed: 01/06/2023]
Abstract
We, like many others, wish to use modern molecular methods to alter neuronal functionality in primates. For us, this requires expression in a large proportion of the targeted cell population. Long generation times make germline modification of limited use. The size and intricate primate brain anatomy poses additional challenges. We surved methods using lentiviruses and serotypes of adeno-associated viruses (AAVs) to introduce active molecular material into cortical and subcortical regions of old-world monkey brains. Slow injections of AAV2 give well-defined expression of neurons in the cortex surrounding the injection site. Somewhat surprisingly we find that in the monkey the use of cytomegalovirus promoter in lentivirus primarily targets glial cells but few neurons. In contrast, with a synapsin promoter fragment the lentivirus expression is neuron specific at high transduction levels in all cortical layers. We also achieve specific targeting of tyrosine hydroxlase (TH)- rich neurons in the locus coeruleus and substantia nigra with a lentvirus carrying a fragment of the TH promoter. Lentiviruses carrying neuron specific promoters are suitable for both cortical and subcortical injections even when injected quickly.
Collapse
Affiliation(s)
- W Lerchner
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - B Corgiat
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - V Der Minassian
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - R C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| | - B J Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health/NIMH/DHHS, Bethesda, MD, USA
| |
Collapse
|
24
|
Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors. J Neurosci 2013; 33:15195-206. [PMID: 24048849 DOI: 10.1523/jneurosci.1618-13.2013] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors--in particular, recombinant adeno-associated viral vectors (rAAVs)--have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested--in particular, though not exclusively, Cre-dependent vectors--showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal.
Collapse
|
25
|
Chtarto A, Bockstael O, Tshibangu T, Dewitte O, Levivier M, Tenenbaum L. A next step in adeno-associated virus-mediated gene therapy for neurological diseases: regulation and targeting. Br J Clin Pharmacol 2013; 76:217-32. [PMID: 23331189 DOI: 10.1111/bcp.12065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/07/2012] [Indexed: 02/04/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors mediating long term transgene expression are excellent gene therapy tools for chronic neurological diseases. While rAAV2 was the first serotype tested in the clinics, more efficient vectors derived from the rh10 serotype are currently being evaluated and other serotypes are likely to be tested in the near future. In addition, aside from the currently used stereotaxy-guided intraparenchymal delivery, new techniques for global brain transduction (by intravenous or intra-cerebrospinal injections) are very promising. Various strategies for therapeutic gene delivery to the central nervous system have been explored in human clinical trials in the past decade. Canavan disease, a genetic disease caused by an enzymatic deficiency, was the first to be approved. Three gene transfer paradigms for Parkinson's disease have been explored: converting L-dopa into dopamine through AADC gene delivery in the putamen; synthesizing GABA through GAD gene delivery in the overactive subthalamic nucleus and providing neurotrophic support through neurturin gene delivery in the nigro-striatal pathway. These pioneer clinical trials demonstrated the safety and tolerability of rAAV delivery in the human brain at moderate doses. Therapeutic effects however, were modest, emphasizing the need for higher doses of the therapeutic transgene product which could be achieved using more efficient vectors or expression cassettes. This will require re-addressing pharmacological aspects, with attention to which cases require either localized and cell-type specific expression or efficient brain-wide transgene expression, and when it is necessary to modulate or terminate the administration of transgene product. The ongoing development of targeted and regulated rAAV vectors is described.
Collapse
Affiliation(s)
- Abdelwahed Chtarto
- Laboratory of Experimental Neurosurgery, Free University of Brussels (ULB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
San Sebastian W, Samaranch L, Heller G, Kells AP, Bringas J, Pivirotto P, Forsayeth J, Bankiewicz KS. Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain. Gene Ther 2013; 20:1178-83. [PMID: 24067867 PMCID: PMC3855617 DOI: 10.1038/gt.2013.48] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/30/2013] [Accepted: 08/21/2013] [Indexed: 12/17/2022]
Abstract
We recently demonstrated that axonal transport of adeno-associated virus (AAV) is serotype-dependent. Thus, AAV2 is anterogradely transported (e.g., from cell bodies to nerve terminals) in both rat and non-human primate (NHP) brain. In contrast, AAV6 is retrogradely transported from terminals to neuronal cells bodies in the rat brain. However, the directionality of axonal transport of AAV6 in the NHP brain has not been determined. In this study, two Cynomolgus macaques received an infusion of AAV6 harboring green fluorescent protein (GFP) into the striatum (caudate and putamen) by magnetic resonance (MR)-guided convection-enhanced delivery. One month after infusion, immunohistochemical staining of brain sections revealed a striatal GFP expression that corresponded well with MR signal observed during gene delivery. As shown previously in rats, GFP expression was detected throughout the prefrontal, frontal, and parietal cortex, as well as substantia nigra pars compacta and thalamus, indicating retrograde transport of the vector in NHP. AAV6-GFP preferentially transduced neurons, although a few astrocytes were also transduced. Transduction of non-neuronal cells in the brain was associated with upregulation of the major histocompatibility complex-II (MHC-II) and lymphocytic infiltration as previously observed with AAV1 and AAV9. This contrasts with highly specific neuronal transduction in the rat brain. Retrograde axonal transport of AAV6 from a single striatal infusion permits efficient transduction of cortical neurons in significant tissue volumes that otherwise would difficult to achieve.
Collapse
Affiliation(s)
- W San Sebastian
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Thévenot E, Jordão JF, O'Reilly MA, Markham K, Weng YQ, Foust KD, Kaspar BK, Hynynen K, Aubert I. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum Gene Ther 2012; 23:1144-55. [PMID: 22838844 PMCID: PMC3498907 DOI: 10.1089/hum.2012.013] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/21/2012] [Indexed: 01/27/2023] Open
Abstract
Noninvasive drug delivery to the brain remains a major challenge for the treatment of neurological disorders. Transcranial focused ultrasound combined with lipid-coated gas microspheres injected into the bloodstream has been shown to increase the permeability of the blood-brain barrier locally and transiently. Coupled with magnetic resonance imaging, ultrasound can be guided to allow therapeutics administered in the blood to reach brain regions of interest. Using this approach, we perform gene transfer from the blood to specific regions of the mouse brain. Focused ultrasound was targeted to the right hemisphere, at multiple foci, or restricted to one focal point of the hippocampus or the striatum. Doses from 5 × 10(8) to 1.25 × 10(10) vector genomes per gram (VG/g) of self-complementary adeno-associated virus serotype 9 carrying the green fluorescent protein were injected into the tail vein. A dose of 2.5 × 10(9) VG/g was optimal to express the transgene, 12 days later, in neurons, astrocytes, and oligodendrocytes in brain regions targeted with ultrasound, while minimizing the infection of peripheral organs. In the hippocampus and striatum, predominantly neurons and astrocytes were infected, respectively. Transcranial focused ultrasound applications could fulfill a long-term goal of gene therapy: delivering vectors to diseased brain areas directly from the circulation, in a noninvasive manner.
Collapse
Affiliation(s)
- Emmanuel Thévenot
- Brain Sciences Sunnybrook Research Institute, Toronto, ON, M4N 3M5 Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - Jessica F. Jordão
- Brain Sciences Sunnybrook Research Institute, Toronto, ON, M4N 3M5 Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| | - Meaghan A. O'Reilly
- Imaging Research, Sunnybrook Research Institute, Toronto, ON, M4N 3M5 Canada
| | - Kelly Markham
- Brain Sciences Sunnybrook Research Institute, Toronto, ON, M4N 3M5 Canada
| | - Ying-Qi Weng
- Brain Sciences Sunnybrook Research Institute, Toronto, ON, M4N 3M5 Canada
| | - Kevin D. Foust
- Department of Neuroscience, Ohio State University, Columbus, OH 43205
| | - Brian K. Kaspar
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Kullervo Hynynen
- Imaging Research, Sunnybrook Research Institute, Toronto, ON, M4N 3M5 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9 Canada
| | - Isabelle Aubert
- Brain Sciences Sunnybrook Research Institute, Toronto, ON, M4N 3M5 Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8 Canada
| |
Collapse
|
28
|
Nielsen KJ, Callaway EM, Krauzlis RJ. Viral vector-based reversible neuronal inactivation and behavioral manipulation in the macaque monkey. Front Syst Neurosci 2012; 6:48. [PMID: 22723770 PMCID: PMC3378014 DOI: 10.3389/fnsys.2012.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/26/2012] [Indexed: 12/01/2022] Open
Abstract
Viral vectors are promising tools for the dissection of neural circuits. In principle, they can manipulate neurons at a level of specificity not otherwise achievable. While many studies have used viral vector-based approaches in the rodent brain, only a few have employed this technique in the non-human primate, despite the importance of this animal model for neuroscience research. Here, we report evidence that a viral vector-based approach can be used to manipulate a monkey's behavior in a task. For this purpose, we used the allatostatin receptor/allatostatin (AlstR/AL) system, which has previously been shown to allow inactivation of neurons in vivo. The AlstR was expressed in neurons in monkey V1 by injection of an adeno-associated virus 1 (AAV1) vector. Two monkeys were trained in a detection task, in which they had to make a saccade to a faint peripheral target. Injection of AL caused a retinotopic deficit in the detection task in one monkey. Specifically, the monkey showed marked impairment for detection targets placed at the visual field location represented at the virus injection site, but not for targets shown elsewhere. We confirmed that these deficits indeed were due to the interaction of AlstR and AL by injecting saline, or AL at a V1 location without AlstR expression. Post-mortem histology confirmed AlstR expression in this monkey. We failed to replicate the behavioral results in a second monkey, as AL injection did not impair the second monkey's performance in the detection task. However, post-mortem histology revealed a very low level of AlstR expression in this monkey. Our results demonstrate that viral vector-based approaches can produce effects strong enough to influence a monkey's performance in a behavioral task, supporting the further development of this approach for studying how neuronal circuits control complex behaviors in non-human primates.
Collapse
Affiliation(s)
- Kristina J Nielsen
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla CA, USA
| | | | | |
Collapse
|