1
|
Wang Z, Zhang D, Liu N, Wang J, Zhang Q, Zheng S, Zhang Z, Zhang W. A review on recent advances in polymeric microneedle loading cells: Design strategies, fabrication technologies, transdermal application and challenges. Int J Biol Macromol 2025; 297:138885. [PMID: 39719236 DOI: 10.1016/j.ijbiomac.2024.138885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Microneedle systems (MNs) loading living cells are a powerful platform to treat various previously incurable diseases in the era of precision medicine. Herein, an overview of recent advances in MN-based strategies for cell delivery is summarized, including material selection, design of morphological structures, and processing methods. We also systematically outlined the law of microstructural design relative to the structure-effective/function relationship in transdermal delivery or precision medicine and the design principles of cell microneedle (CMN). Furthermore, the representative works of precision treatments focusing on inflammatory skin diseases were tracked and discussed using CMN. Indeed, it highlights a practical path to solving the dilemma of cell therapy and raising the hope of precision medicine. However, there are still some challenges in developing CMN since they need multi-dimensional comprehensive properties, including mechanical properties, cell viability preservation, release, therapeutic effect, etc. The manuscript could provide insights into developing an innovative fit-to-purpose vehicle in cell therapy for interested researchers.
Collapse
Affiliation(s)
- Zixin Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Dongmei Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Ningning Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiayi Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qianjie Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shilian Zheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zijia Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wanping Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
2
|
Wynendaele E, Urlaub J, Xu X, Holzgrabe U, De Spiegeleer B. Quality Control of L-Ascorbic Acid 2-Phosphate Magnesium Using Reversed-Phase Liquid Chromatography. J Chromatogr Sci 2025; 63:bmae031. [PMID: 38796178 DOI: 10.1093/chromsci/bmae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/08/2024] [Indexed: 05/28/2024]
Abstract
L-Ascorbic acid 2-phosphate magnesium (AP-Mg) salt is a Vitamin C derivative frequently used as a raw material in cell culture media for research purposes as well as for Good Manufacturing Practice (GMP)-manufacturing of cell and tissue advanced therapy medicinal products. A selective reversed-phase HPLC (RP-LC) method was developed and validated. Commercially available AP-Mg products from different suppliers were analyzed. Various new impurities were found using this newly developed RP-LC method. Using quantitative nuclear magnetic resonance spectroscopy, a mass balance of roughly 99.9% was obtained; the total numbers of impurities detected in both methods are also identical. The values of the relative ultraviolet (UV) response factors at λ = 210 nm of the impurities in this RP-LC method were discussed. When equaling the overall mean relative response factor of the impurities to 0.6 (estimated central value), the mass balance in the RP-LC method was nearly 100%. The structures of the new impurities are proposed as ethylation derivatives of open-ring AP-Mg products as well as phosphorylated derivatives of ascorbic acid.
Collapse
Affiliation(s)
- Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Jonas Urlaub
- Institute of Pharmacy and Food Chemistry, Faculty of Chemistry and Pharmacy, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Xiaolong Xu
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, Faculty of Chemistry and Pharmacy, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
3
|
Racaniello GF, Silvestri T, Pistone M, D'Amico V, Arduino I, Denora N, Lopedota AA. Innovative Pharmaceutical Techniques for Paediatric Dosage Forms: A Systematic Review on 3D Printing, Prilling/Vibration and Microfluidic Platform. J Pharm Sci 2024; 113:1726-1748. [PMID: 38582283 DOI: 10.1016/j.xphs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
The production of paediatric pharmaceutical forms represents a unique challenge within the pharmaceutical industry. The primary goal of these formulations is to ensure therapeutic efficacy, safety, and tolerability in paediatric patients, who have specific physiological needs and characteristics. In recent years, there has been a significant increase in attention towards this area, driven by the need to improve drug administration to children and ensure optimal and specific treatments. Technological innovation has played a crucial role in meeting these requirements, opening new frontiers in the design and production of paediatric pharmaceutical forms. In particular, three emerging technologies have garnered considerable interest and attention within the scientific and industrial community: 3D printing, prilling/vibration, and microfluidics. These technologies offer advanced approaches for the design, production, and customization of paediatric pharmaceutical forms, allowing for more precise dosage modulation, improved solubility, and greater drug acceptability. In this review, we delve into these cutting-edge technologies and their impact on the production of paediatric pharmaceutical forms. We analyse their potential, associated challenges, and recent developments, providing a comprehensive overview of the opportunities that these innovative methodologies offer to the pharmaceutical sector. We examine different pharmaceutical forms generated using these techniques, evaluating their advantages and disadvantages.
Collapse
Affiliation(s)
| | - Teresa Silvestri
- Department of Pharmacy, University of Naples Federico II, D. Montesano St. 49, 80131 Naples, Italy
| | - Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Vita D'Amico
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy.
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
4
|
Allahham N, Colic I, Rayner MLD, Gurnani P, Phillips JB, Rahim AA, Williams GR. Advanced Formulation Approaches for Emerging Therapeutic Technologies. Handb Exp Pharmacol 2024; 284:343-365. [PMID: 37733107 DOI: 10.1007/164_2023_695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In addition to proteins, discussed in the Chapter "Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules", there are a wide range of alternatives to small molecule active ingredients. Cells, extracellular vesicles, and nucleic acids in particular have attracted increasing research attention in recent years. There are now a number of products on the market based on these emerging technologies, the most famous of which are the mRNA-based vaccines against SARS-COV-2. These advanced therapeutic moieties are challenging to formulate however, and there remain significant challenges for their more widespread use. In this chapter, we consider the potential and bottlenecks for developing further medical products based on these systems. Cells, extracellular vesicles, and nucleic acids will be discussed in terms of their mechanism of action, the key requirements for translation, and how advanced formulation approaches can aid their future development. These points will be presented with selected examples from the literature, and with a focus on the formulations which have made the transition to clinical trials and clinical products.
Collapse
Affiliation(s)
- Nour Allahham
- UCL School of Pharmacy, University College London, London, UK
| | - Ines Colic
- UCL School of Pharmacy, University College London, London, UK
| | | | - Pratik Gurnani
- UCL School of Pharmacy, University College London, London, UK
| | | | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | | |
Collapse
|
5
|
Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics 2023; 15:2431. [PMID: 37896191 PMCID: PMC10610377 DOI: 10.3390/pharmaceutics15102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The paradigm of pediatric drug development has been evolving in a "carrot-and-stick"-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- Institute for Health Research and Innovation (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
6
|
Dimitri P. Precision diagnostics in children. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e17. [PMID: 38550930 PMCID: PMC10953773 DOI: 10.1017/pcm.2023.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 11/06/2024]
Abstract
Medical practice is transforming from a reactive to a pro-active and preventive discipline that is underpinned by precision medicine. The advances in technologies in such fields as genomics, proteomics, metabolomics, transcriptomics and artificial intelligence have resulted in a paradigm shift in our understanding of specific diseases in childhood, greatly enhanced by our ability to combine data from changes within cells to the impact of environmental and population changes. Diseases in children have been reclassified as we understand more about their genomic origin and their evolution. Genomic discoveries, additional 'omics' data and advances such as optical genome mapping have driven rapid improvements in the precision and speed of diagnoses of diseases in children and are now being incorporated into newborn screening, have improved targeted therapies in childhood and have supported the development of predictive biomarkers to assess therapeutic impact and determine prognosis in congenital and acquired diseases of childhood. New medical device technologies are facilitating data capture at a population level to support higher diagnostic accuracy and tailored therapies in children according to predicted population outcome, and digital ecosystems now tailor therapies and provide support for their specific needs. By capturing biological and environmental data as early as possible in childhood, we can understand factors that predict disease or maintain health and track changes across a more extensive longitudinal path. Data from multiple health and external sources over long-time periods starting from birth or even in the in utero environment will provide further clarity about how to sustain health and prevent or predict disease. In this respect, we will not only use data to diagnose disease, but precision diagnostics will aid the 'diagnosis of good health'. The principle of 'start early and change more' will thus underpin the value of applying a personalised medicine approach early in life.
Collapse
Affiliation(s)
- Paul Dimitri
- Department of Paediatric Endocrinology, Sheffield Children’s NHS Foundation Trust, Sheffield, UK
- The College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
7
|
Calcaterra V, Zuccotti G. New therapeutic approaches in children's medicine towards solving critical issues in pediatrics. Pharmacol Res 2022; 183:106394. [PMID: 35963499 DOI: 10.1016/j.phrs.2022.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Valeria Calcaterra
- Pediatric Department, "Vittore Buzzi" Children's Hospital, 20154 Milan, Italy; Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, "Vittore Buzzi" Children's Hospital, 20154 Milan, Italy; Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy
| |
Collapse
|
8
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
9
|
Ten Ham RMT, Frederix GWJ, Wu O, Goettsch W, Leufkens HGM, Klungel OH, Hoekman J. Key Considerations in the Health Technology Assessment of Advanced Therapy Medicinal Products in Scotland, The Netherlands, and England. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2022; 25:390-399. [PMID: 35227451 DOI: 10.1016/j.jval.2021.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Advanced therapy medicinal products (ATMPs) are highly innovative therapies. Their costs and uncertain value claims have raised concerns among health technology assessment (HTA) bodies and payers. Little is known about how underlying considerations in HTA of ATMPs shape assessment and reimbursement recommendations. We aim to identify and assess key considerations that played a role in HTA of ATMPs underlying reimbursement recommendations. METHODS A review of HTA reports was conducted of all authorized ATMPs in Scotland, The Netherlands, and England. Considerations were extracted and categorized into EUnetHTA Core Model domains. Per jurisdiction, considerations were aggregated and key considerations identified (defined as occurring in >1/assessment per jurisdiction). A narrative analysis was conducted comparing key considerations between jurisdictions and different reimbursement recommendations. RESULTS We identified 15 ATMPs and 18 HTA reports. In The Netherlands and England most key considerations were identified in clinical effectiveness (EFF) and cost- and economic effectiveness (ECO) domains. In Scotland, the social aspects domain yielded most key considerations, followed by ECO and EFF. More uncertainty in evidence and assessment outcomes was accepted when orphan or end-of-life criteria were applied. A higher percentage of considerations supporting recommendations were identified for products with positive recommendations compared with restricted and negative recommendations. CONCLUSIONS This is the first empirical review of HTA's using the EUnetHTA Core Model to identify and structure key considerations retrospectively. It provides insights in supporting and opposing considerations for reimbursement of individual products and differences between jurisdictions. Besides the EFF and ECO domain, the social, ethical, and legal domains seem to bear considerable weight in assessment of ATMPs.
Collapse
Affiliation(s)
- Renske M T Ten Ham
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands; Health Economics and Health Technology Assessment, Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, UK.
| | - Geert W J Frederix
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands; Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Olivia Wu
- Health Economics and Health Technology Assessment, Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, UK
| | - Wim Goettsch
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands; National Health Care Institute, Diemen, The Netherlands
| | - Hubert G M Leufkens
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands; Lygature, Utrecht, The Netherlands
| | - Olaf H Klungel
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Jarno Hoekman
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands; Innovation Studies, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep (Hoboken) 2021; 4:e1340. [PMID: 33599076 PMCID: PMC8551995 DOI: 10.1002/cnr2.1340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African Americans (AAs) in the United States are known to have a higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemiological disparity are multifactorial, including socioeconomic factors leading to lifestyle and dietary issues, healthcare access problems, and potentially tumor biology. RECENT FINDINGS Although recent evidence suggests once access is equal, AA men have equal outcomes to Caucasian American (CA) men, differences in PCa incidence remain, and there is much to do to reverse disparities in mortality across the USA. A deeper understanding of these issues, both at the clinical and molecular level, can facilitate improved outcomes in the AA population. This review first discusses PCa oncogenesis in the context of its diverse hallmarks before benchmarking key molecular and genomic differences for PCa in AA men that have emerged in the recent literature. Studies have emphasized the importance of tumor microenvironment that contributes to both the unequal cancer burden and differences in clinical outcome between the races. Management of comorbidities like obesity, hypertension, and diabetes will provide an essential means of reducing prostate cancer incidence in AA men. Although requiring further AA specific research, several new treatment strategies such as immune checkpoint inhibitors used in combination PARP inhibitors and other emerging vaccines, including Sipuleucel-T, have demonstrated some proven efficacy. CONCLUSION Genomic profiling to integrate clinical and genomic data for diagnosis, prognosis, and treatment will allow physicians to plan a "Precision Medicine" approach to AA men. There is a pressing need for further research for risk stratification, which may allow early identification of AA men with higher risk disease based on their unique clinical, genomic, and immunological profiles, which can then be mapped to appropriate clinical trials. Treatment options are outlined, with a concise description of recent work in AA specific populations, detailing several targeted therapies, including immunotherapy. Also, a summary of current clinical trials involving AA men is presented, and it is important that policies are adopted to ensure that AA men are actively recruited. Although it is encouraging that many of these explore the lifestyle and educational initiatives and therapeutic interventions, there is much still work to be done to reduce incidence and mortality in AA men and equalize current racial disparities.
Collapse
Affiliation(s)
- Zachary S. Dovey
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sujit S. Nair
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dimple Chakravarty
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
11
|
Sam R, Ryan E, Daykin E, Sidransky E. Current and emerging pharmacotherapy for Gaucher disease in pediatric populations. Expert Opin Pharmacother 2021; 22:1489-1503. [PMID: 33711910 PMCID: PMC8373623 DOI: 10.1080/14656566.2021.1902989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The past decades have witnessed a remarkable improvement in the health of patients with Gaucher disease, the inherited deficiency of the lysosomal enzyme glucocerebrosidase, resulting from the availability of enzyme replacement and substrate reduction therapies. Especially in pediatric populations, early diagnosis and initiation of treatment is essential to achieving optimal outcomes. AREAS COVERED The authors review the literature pertaining to the effectiveness of currently available therapies and describe new pharmacotherapies under development, especially for young patients. EXPERT OPINION For pediatric patients with non-neuronopathic Gaucher disease, there may be new therapeutic options on the horizon in the form of gene therapy or small molecule glucocerebrosidase chaperones. These have the potential to result in a cure for systemic disease manifestations and/or to reduce the cost and convenience of treatment. For children with neuronopathic Gaucher disease, the challenge of targeting therapy to the central nervous system is being explored through new modalities including brain-targeted gene therapy, in-utero therapy, brain-penetrant small molecule chaperones, and other methods that convey enzyme across the blood-brain barrier. Indeed, these are exciting times for both pediatric patients with Gaucher disease and those with other lysosomal storage disorders.
Collapse
Affiliation(s)
- Richard Sam
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| | - Emory Ryan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| | - Emily Daykin
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| |
Collapse
|
12
|
Khair K, Steadman L, Chaplin S, Holland M, Jenner K, Fletcher S. Parental perspectives on gene therapy for children with haemophilia: The Exigency study. Haemophilia 2020; 27:120-128. [PMID: 33216422 DOI: 10.1111/hae.14188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Gene therapy is used in life-limiting conditions of childhood. While not a current therapeutic option for children with haemophilia, it may be considered in the future especially for those where access to treatment is limited. AIM To assess the attitudes and opinions of parents of children with haemophilia about gene therapy as a potential future treatment, by understanding their awareness about gene therapy and what they need to know now and in the future; gauging levels of interest in gene therapy for their children; and exploring perceived current motivations and barriers. METHODS A mixed methods study with an online questionnaire and in-depth qualitative interviews in focus groups which were analysed using thematic analysis. RESULTS One hundred and fifty-eight participants commenced the online survey; 63 were fully completed (39%). 60 had heard of gene therapy but few (17/60 [28.3%]) felt they had a good understanding. 38/60 (63.3%) respondents did not know that gene therapy is not available for children. However, most held positive views: 53/60 (88.3%) saying they would consider it for their child. In the interviews, participants (N = 10, all mothers) discussed their awareness and understanding of gene therapy and opinions about it for children, including how this should be communicated to the child and parents. CONCLUSION A coherent, community-wide strategy for communicating information and news about gene therapy should now be provided for children and families living with haemophilia. This should come primarily from trusted haemophilia nursing teams, who can give tailored, age-appropriate, factual advice.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon Fletcher
- Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
13
|
Xu X, Sun M, Wang D, Bu W, Wang Z, Shen Y, Zhang K, Zhou D, Yang B, Sun H. Bone formation promoted by bone morphogenetic protein-2 plasmid-loaded porous silica nanoparticles with the involvement of autophagy. NANOSCALE 2019; 11:21953-21963. [PMID: 31709429 DOI: 10.1039/c9nr07017f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gene therapy is one of the most common and effective ways for the regeneration of defective bone tissue, but even highly efficient gene delivery vectors are insufficient. In this study, bone morphogenetic protein-2 plasmid (pBMP-2) was encapsulated by polyethylenimine-modified porous silica nanoparticles (PPSNs), which were synthesized via an ethyl ether emulsion method. Owing to the high specific surface area and high absorption characteristics, low cytotoxicy PPSNs can efficiently load and protect pBMP-2. The resulting PPSN/pBMP-2 can transfect MC3T3-E1 cells effectively to promote osteogenic differentiation and increase calcium deposition in vitro. Interestingly, the mass of calcium deposition nodules decreased dur to the presence of an autophagy inhibitor, demonstrating that PPSNs stimulated the autophagy pathway. Because of their excellent biocompatibility, high transfection efficiency, and ability to stimulate autophagy, the as-prepared PPSN/pBMP-2 could efficiently transfect local cells in a defect area in vivo. Micro-computed tomography and histological images demonstrated that PPSN/pBMP-2 could efficiently promote new bone formation in a 5 mm sized rat calvarial defect model. Taken together, our newly synthesized PPSNs could efficiently carry pBMP-2 and deliver it to the target cells as well as stimulating the autophagy pathway, resulting in significant osteogenic differentiation and bone regeneration.
Collapse
Affiliation(s)
- Xiaowei Xu
- School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wagner M, Samaha D, Casciano R, Brougham M, Abrishami P, Petrie C, Avouac B, Mantovani L, Sarría-Santamera A, Kind P, Schlander M, Tringali M. Moving Towards Accountability for Reasonableness - A Systematic Exploration of the Features of Legitimate Healthcare Coverage Decision-Making Processes Using Rare Diseases and Regenerative Therapies as a Case Study. Int J Health Policy Manag 2019; 8:424-443. [PMID: 31441279 PMCID: PMC6706971 DOI: 10.15171/ijhpm.2019.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/17/2019] [Indexed: 12/26/2022] Open
Abstract
Background: The accountability for reasonableness (A4R) framework defines 4 conditions for legitimate healthcare coverage decision processes: Relevance, Publicity, Appeals, and Enforcement. The aim of this study was to reflect on how the diverse features of decision-making processes can be aligned with A4R conditions to guide decision-making towards legitimacy. Rare disease and regenerative therapies (RDRTs) pose special decision-making challenges and offer therefore a useful case study.
Methods: Features operationalizing each A4R condition as well as three different approaches to address these features (cost-per-QALY-focused and multicriteria-based) were defined and organized into a matrix. Seven experts explored these features during a panel run under the Chatham House Rule and provided general and RDRT-specific recommendations. Responses were analyzed to identify converging and diverging recommendations.
Results: Regarding Relevance, recommendations included supporting deliberation, stakeholder participation and grounding coverage decision criteria in normative and societal objectives. Thirteen of 17 proposed decision criteria were recommended by a majority of panelists. The usefulness of universal cost-effectiveness thresholds to inform allocative efficiency was challenged, particularly in the RDRT context. RDRTs raise specific issues that need to be considered; however, rarity should be viewed in relation to other aspects, such as disease severity and budget impact. Regarding Publicity, panelists recommended transparency about the values underlying a decision and value judgements used in selecting evidence. For Appeals, recommendations included a life-cycle approach with clear provisions for re-evaluations. For Enforcement, external quality reviews of decisions were recommended.
Conclusion: Moving coverage decision-making processes towards enhanced legitimacy in general and in the RDRT context involves designing and refining approaches to support participation and deliberation, enhancing transparency, and allowing explicit consideration of multiple decision criteria that reflect normative and societal objectives.
Collapse
Affiliation(s)
| | | | | | | | - Payam Abrishami
- National Health Care Institute (ZIN), Diemen, The Netherlands
| | | | | | - Lorenzo Mantovani
- Center for Public Health Research, University of Milan-Bicocca, Milan, Italy
| | - Antonio Sarría-Santamera
- National School of Public Health IMIENS-UNED, Madrid, Spain.,Department of Public Health, University of Alcalá, Alcalá de Henares, Spain
| | | | - Michael Schlander
- Division of Health Economics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,University of Heidelberg, Heidelberg, Germany
| | - Michele Tringali
- ASST Niguarda and Regione Lombardia, Welfare Directorate, Milano, Italy
| |
Collapse
|
15
|
Abraham E, Ahmadian BB, Holderness K, Levinson Y, McAfee E. Platforms for Manufacturing Allogeneic, Autologous and iPSC Cell Therapy Products: An Industry Perspective. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:323-350. [PMID: 28534167 DOI: 10.1007/10_2017_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As cell therapy processes mature from benchtop research protocols to industrial processes capable of manufacturing market-relevant numbers of doses, new cell manufacturing platforms are required. Here we give an overview of the platforms and technologies currently available to manufacture allogeneic cell products, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), and technologies for mass production of autologous cell therapies via scale-out. These technologies include bioreactors, microcarriers, cell separation and cryopreservation equipment, molecular biology tools for iPSC generation, and single-use controlled-environment systems for autologous cell production. These platforms address the challenges of manufacturing cell products in greater numbers while maintaining process robustness and product quality.
Collapse
Affiliation(s)
- Eytan Abraham
- Research and Technology, Lonza, Walkersville, MD, USA.
| | | | | | | | - Erika McAfee
- Research and Technology, Lonza, Walkersville, MD, USA
| |
Collapse
|
16
|
Zwitterionic-hydrophilic interaction liquid chromatography for l-ascorbic acid 2-phosphate magnesium, a raw material in cell therapy. J Pharm Biomed Anal 2019; 165:338-345. [PMID: 30579234 DOI: 10.1016/j.jpba.2018.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 11/21/2022]
Abstract
l-ascorbic acid 2-phosphate magnesium (APMg) salt is a vitamin C derivative frequently used in cell culture media for research purposes. It is also used as a raw material in the GMP-manufacturing of gene-, cell- and tissue advanced therapy medicinal products (ATMPs). However, quality methods are currently lacking. Therefore, a LC method was developed, based on hydrophilic interaction (HILIC)-ion exchange (IE) mixed-mode liquid chromatography. The final method consisted of an isocratic system with 15 mM KH2PO4 buffer (pH 2.5 with HCl) acetonitrile (30:70, v/v) mobile phase on a zwitterionic HILIC column, containing an hydrophilic ligand embedded cation-exchange functionality and a surface anion-exchange group. A flow rate of 0.4 mL/min and UV detection at 240 nm was applied. The assay method of APMg was validated, obtaining adequate linearity (R2 = 0.999), precision (RSD of 0.49%) and accuracy (overall recovery of 100.4%). The developed method was successfully applied on five currently marketed products from different suppliers, showing different related substance impurity profiles. Using atomic absorption spectroscopy (AAS), magnesium was found to be bound on the stationary phase, requiring a strong mobile phase to rinse the column. Finally, related impurities were identified using MS/MS and high resolution MS, and found to be ascorbic acid as well as ethyl derivatives, which was further confirmed by NMR.
Collapse
|
17
|
Meinert E, Alturkistani A, Osama T, Halioua-Haubold CL, Car J, Majeed A, Wells G, MacLaren RE, Brindley D. Digital Technology in Somatic and Gene Therapy Trials of Pediatric Patients With Ocular Diseases: Protocol for a Scoping Review. JMIR Res Protoc 2019; 8:e10705. [PMID: 30730295 PMCID: PMC6383115 DOI: 10.2196/10705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/26/2018] [Accepted: 08/26/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pharmacogenomics suggests that diseases with similar symptomatic presentations often have varying genetic causes, affecting an individual patient's response to a specific therapeutic strategy. Gene therapies and somatic cell therapies offer unique therapeutic pathways for ocular diseases and often depend on increased understanding of the genotype-phenotype relationship in disease presentation and progression. While demand for personalized medicine is increasing and the required molecular tools are available, its adoption within pediatric ophthalmology remains to be maximized in the postgenomic era. OBJECTIVE The objective of our study was to address the individual hurdles encountered in the field of genomic-related clinical trials and facilitate the uptake of personalized medicine, we propose to conduct a review that will examine and identify the digital technologies used to facilitate data analysis in somatic and gene therapy trials in pediatric patients with ocular diseases. METHODS This paper aims to present an outline for Healthcare Information Technology and Information and Communication Technology resources used in somatic and gene therapy clinical trials in children with ocular diseases. This review will enable authors to identify challenges and provide recommendations, facilitating the uptake of genetic and somatic therapies as therapeutic tools in pediatric ophthalmology. The review will also determine whether conducting a systematic review will be beneficial. RESULTS Database searches will be initiated in September 2018. We expect to complete the review in December 2019. CONCLUSIONS Based on review findings, the authors will summarize methods used for facilitating IT integration in personalized medicine. Additionally, it will identify further research gaps and determine whether conducting further reviews will be beneficial. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/10705.
Collapse
Affiliation(s)
- Edward Meinert
- Global Digital Health Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
- Healthcare Translation Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Abrar Alturkistani
- Global Digital Health Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Tasnime Osama
- Global Digital Health Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Celine-Lea Halioua-Haubold
- Clinical Ophthalmology Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Josip Car
- Global Digital Health Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Azeem Majeed
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Glenn Wells
- Oxford Academic Health Science Centre, Oxford, United Kingdom
| | - Robert E MacLaren
- Clinical Ophthalmology Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David Brindley
- Healthcare Translation Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Feng Y, Yin Z, Zhang D, Srivastava A, Ling C. Chinese Medicine Protein and Peptide in Gene and Cell Therapy. Curr Protein Pept Sci 2018; 20:251-264. [PMID: 29895243 DOI: 10.2174/1389203719666180612082432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/22/2018] [Indexed: 01/05/2023]
Abstract
The success of gene and cell therapy in clinic during the past two decades as well as our expanding ability to manipulate these biomaterials are leading to new therapeutic options for a wide range of inherited and acquired diseases. Combining conventional therapies with this emerging field is a promising strategy to treat those previously-thought untreatable diseases. Traditional Chinese medicine (TCM) has evolved for thousands of years in China and still plays an important role in human health. As part of the active ingredients of TCM, proteins and peptides have attracted long-term enthusiasm of researchers. More recently, they have been utilized in gene and cell therapy, resulting in promising novel strategies to treat both cancer and non-cancer diseases. This manuscript presents a critical review on this field, accompanied with perspectives on the challenges and new directions for future research in this emerging frontier.
Collapse
Affiliation(s)
- Yinlu Feng
- Department of Traditional Chinese Medicine, 401 Hospital of the Chinese People's Liberation Army, Qingdao, Shandong 266071, China.,Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Zifei Yin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Daniel Zhang
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| |
Collapse
|
19
|
Levinson Y, Beri RG, Holderness K, Ben-Nun IF, Shi Y, Abraham E. Bespoke cell therapy manufacturing platforms. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Nelson CE, Robinson-Hamm JN, Gersbach CA. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 2017; 13:647-661. [DOI: 10.1038/nrneurol.2017.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Pierson CR. Long-term effects of systemic gene therapy On gait in a canine model of myotubular myopathy. Muscle Nerve 2017; 56:839-840. [PMID: 28470668 DOI: 10.1002/mus.25681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher R Pierson
- Nationwide Children's Hospital, Department of Pathology and Laboratory Medicine, The Ohio State University College of Medicine, J0359, 700 Children's Drive, Columbus, Ohio, 43205, USA
| |
Collapse
|
22
|
Ho Y, Zhou L, Tam KC, Too H. Enhanced non-viral gene delivery by coordinated endosomal release and inhibition of β-tubulin deactylase. Nucleic Acids Res 2017; 45:e38. [PMID: 27899629 PMCID: PMC5389648 DOI: 10.1093/nar/gkw1143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
Efficient non-viral gene delivery is highly desirable but often unattainable with some cell-types. We report here that non-viral DNA polyplexes can efficiently transfect differentiated neuronal and stem cells. Polyplex transfection centrifugation protocols was enhanced by including a simultaneous treatment with a DOPE/CHEMS lipid suspension and a microtubule inhibitor, Tubastatin A. Lipoplex transfection protocols were not improved by this treatment. This mechanism of action was unravelled by systematically identifying and rationally mitigating barriers limiting high transfection efficiency, allowing unexpected improvements in the transfection of mesenchymal stem cells (MSC), primary neuron and several hard-to-transfect cell types beyond what are currently achievable using cationic polymers. The optimized formulation and method achieved high transfection efficiency with no adverse effects on cell viability, cell proliferation or differentiation. High efficiency modification of MSC for cytokine overexpression, efficient generation of dopaminergic neuron using neural stem cells and enhanced genome editing with CRISPR-Cas9 were demonstrated. In summary, this study described a cost-effective method for efficient, rapid and scalable workflow for ex vivo gene delivery using a myriad of nucleic acids including plasmid DNA, mRNA, siRNA and shRNA.
Collapse
Affiliation(s)
- Yoon Khei Ho
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 138668 Singapore
| | - Li Han Zhou
- MiRXES, 10 Biopolis Road, Chromos 03-01, 138670 Singapore
| | - Kam C. Tam
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Heng Phon Too
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 138668 Singapore
- Department of Biochemistry, National University of Singapore, 119260 Singapore
| |
Collapse
|
23
|
Prospects of Pluripotent and Adult Stem Cells for Rare Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1031:371-386. [PMID: 29214583 DOI: 10.1007/978-3-319-67144-4_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rare diseases are highly diverse and complex regarding molecular underpinning and clinical manifestation and afflict millions of patients worldwide. The lack of appropriate model systems with face and construct validity and the limited availability of live tissues and cells from patients has largely hampered the understanding of underlying disease mechanisms. As a consequence, there are no adequate treatment options available for the vast majority of rare diseases. Over the last decade, remarkable progress in pluripotent and adult stem cell biology and the advent of powerful genomic technologies opened up exciting new avenues for the investigation, diagnosis, and personalized therapy of intractable human diseases. Utilizing the entire range of available stem cell types will continue to cross-fertilize different research areas and leverage the investigation of rare diseases based on evidence-based medicine. Standardized cell engineering and manufacturing from inexhaustible stem cell sources should lay the foundation for next-generation drug discovery and cell therapies that are broadly applicable in regenerative medicine. In this chapter we discuss how patient- and disease-specific iPS cells as well as adult stem cells are changing the pace of biomedical research and the translational landscape.
Collapse
|
24
|
Xu X, Gevaert B, Bracke N, Yao H, Wynendaele E, De Spiegeleer B. Hydrophilic interaction liquid chromatography method development and validation for the assay of HEPES zwitterionic buffer. J Pharm Biomed Anal 2016; 135:227-233. [PMID: 27993432 DOI: 10.1016/j.jpba.2016.11.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022]
Abstract
HEPES is a zwitterionic buffer component used as a raw material in the GMP-manufacturing of advanced therapy medicinal products (ATMPs), hence requiring an adequate assay method with sufficient selectivity toward related impurities. Therefore, a hydrophilic interaction chromatography (HILIC) method was developed. Different factors were investigated towards the retention behavior of HEPES, its analogue EPPS and its starting material isethionate: pH, ion concentration and organic solvent ratio of the mobile phase, as well as column temperature. Moreover, stress testing resulted in the N-oxide degradant, identified by high resolution MS. The final method consisted of an isocratic system with an aqueous (pH 2.0 with H3PO4) acetonitrile (35:65, v/v) mobile phase on a zwitterionic HILIC (Obelisc N) column with a flow rate of 0.5mL/min and UV detection at 195nm. The assay method of HEPES was validated, obtaining adequate linearity (R2=0.999), precision (RSD of 0.5%) and accuracy (recovery of 100.08%). Finally, the applicability of the validated method was demonstrated by analysis of samples from different suppliers.
Collapse
Affiliation(s)
- Xiaolong Xu
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Bert Gevaert
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Nathalie Bracke
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Han Yao
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
25
|
Liu J, Hennink WE, van Steenbergen MJ, Zhuo R, Jiang X. Versatile Supramolecular Gene Vector Based on Host–Guest Interaction. Bioconjug Chem 2016; 27:1143-52. [DOI: 10.1021/acs.bioconjchem.6b00094] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jia Liu
- Key
Laboratory of Biomedical Polymers of Ministry of Education and Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Research
Center for Tissue Engineering and Regenerative Medicine, Union Hospital,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mies J. van Steenbergen
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Renxi Zhuo
- Key
Laboratory of Biomedical Polymers of Ministry of Education and Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xulin Jiang
- Key
Laboratory of Biomedical Polymers of Ministry of Education and Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
26
|
Miao W, Roohi Ahangarani R, Carlier V, Vander Elst L, Saint-Remy JM. Suppression of Immune Response to Adenovirus Serotype 5 Vector by Immunization with Peptides Containing an MHC Class II Epitope and a Thio-Oxidoreductase Motif. Hum Gene Ther 2016; 27:230-43. [PMID: 26711172 DOI: 10.1089/hum.2015.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The main obstacle to viral vector-mediated gene therapy remains the elicitation of an immune response to the vector, resulting in clearance of transgene and resistance to further transgenesis. Specific antibody production contributes to such immune responses. A single class II-restricted epitope of adenovirus serotype 5 (Ad5) vector hexon-6 capsid protein containing a thiol-oxidoreductase motif was used in an attempt to prevent specific antibody production in response to Ad5 vectors. We demonstrate here that such immunization carried out before intravenous administration of Ad5 vectors prevents antibody production to the ensemble of Ad5 vector proteins in both BALB/c and C57BL/6 mice. The antibody response to Ad5 is dependent on innate immune activation, seemingly involving natural killer T (NKT) cells. We observed that immunization with a class II-restricted Ad5 peptide prevents such NKT cell activation. Increased transgenesis and prolonged transgene expression result from such immunization, providing a simple protocol for improving gene therapy.
Collapse
Affiliation(s)
- Wei Miao
- 1 Center for Molecular and Vascular Biology, University of Leuven , Leuven, Belgium.,2 Imcyse SA, Leuven, Belgium
| | | | | | | | - Jean-Marie Saint-Remy
- 1 Center for Molecular and Vascular Biology, University of Leuven , Leuven, Belgium.,2 Imcyse SA, Leuven, Belgium
| |
Collapse
|
27
|
Cherng JY, Lin CH. Covalent attachment of an influenza hemagglutinin-derived peptide to urethane-based cationic polymers affects their transfection efficiency in DNA delivery and their course in cell entry. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2015.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Dzhoyashvili NA, Shen S, Rochev YA. Natural and Synthetic Materials for Self-Renewal, Long-Term Maintenance, and Differentiation of Induced Pluripotent Stem Cells. Adv Healthc Mater 2015; 4:2342-59. [PMID: 25867178 DOI: 10.1002/adhm.201400798] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/02/2015] [Indexed: 12/13/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have attracted considerable attention from the public, clinicians, and scientists since their discovery in 2006, and raised huge expectations for regenerative medicine. One of the distinctive features of iPSCs is their propensity to differentiate into the cells of three germ lines in vitro and in vivo. The human iPSCs can be used to study the mechanisms underlying a disease and to monitor the disease progression, for testing drugs in vitro, and for cell therapy, avoiding many ethical and immunologic concerns. This technology offers the potential to take an individual approach to each patient and allows a more accurate diagnosis and specific treatment. However, there are several obstacles that impede the use of iPSCs. The derivation of fully reprogrammed iPSCs is expensive, time-consuming, and demands meticulous attention to many details. The use of biomaterials could increase the efficacy and safety while decreasing the cost of tissue engineering. The choice of a substrate utilized for iPSC culture is also important because cell-substrate contacts influence cellular behavior such as self-renewal, expansion, and differentiation. This Progress Report aims to summarize the advantages and drawbacks of natural and synthetic biomaterials, and to evaluate their role for maintenance and differentiation of iPSCs.
Collapse
Affiliation(s)
- Nina A. Dzhoyashvili
- School of Chemistry; National University of Ireland; Galway (NUIG), University Road Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building, Newcastle Road Dangan Galway Ireland
| | - Sanbing Shen
- School of Medicine; National University of Ireland Galway (NUIG); University Road Galway Ireland
- Regenerative Medicine Institute (REMEDI); Biosciences Research Building; Newcastle Road Dangan Galway Ireland
| | - Yury A. Rochev
- School of Chemistry; National University of Ireland; Galway (NUIG), University Road Galway Ireland
- Network of Excellence for Functional Biomaterials (NFB); Biosciences Research Building, Newcastle Road Dangan Galway Ireland
| |
Collapse
|
29
|
Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 2015; 8:337-50. [PMID: 26035842 PMCID: PMC4381333 DOI: 10.1242/dmm.018036] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-like recognition in chimeric antigen receptors (CARs) have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies.
Collapse
Affiliation(s)
- Michaela Sharpe
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Natalie Mount
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
30
|
Quantitative T2 combined with texture analysis of nuclear magnetic resonance images identify different degrees of muscle involvement in three mouse models of muscle dystrophy: mdx, Largemyd and mdx/Largemyd. PLoS One 2015; 10:e0117835. [PMID: 25710816 PMCID: PMC4339395 DOI: 10.1371/journal.pone.0117835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/01/2015] [Indexed: 11/19/2022] Open
Abstract
Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant—T2—measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research.
Collapse
|