1
|
Phiri K, Hagstrom C, Lungu E, Balakasi K, Songo J, Makwaya A, Smith D, Worku A, Hoffman R, Phiri S, Dovel K, van Oosterhout JJ. Barriers to viral suppression in children aged 9 years or younger on dolutegravir-based antiretroviral therapy in Malawi, a mixed-methods study. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004510. [PMID: 40445885 PMCID: PMC12124501 DOI: 10.1371/journal.pgph.0004510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025]
Abstract
After the transition to pediatric dolutegravir-based regimens, viral load (VL) suppression among children with HIV (CWH) in Malawi has remained suboptimal. This mixed-methods study assessed factors associated with high VL among young CWH on dolutegravir-based antiretroviral therapy (ART) and explored adherence barriers from primary-caregiver and healthcare worker perspectives. Between April-July 2023, we performed an unmatched case-control study at 49 Malawian health facilities. We included CWH aged ≤9 years, on dolutegravir-based ART, with a routine VL test-result that was high (≥1,000 copies/mL) for cases, or suppressed (<200 copies/mL) for controls. Using mixed-effect modified Poisson regression, we determined factors associated with high VL, adjusting for sex, site and district. To assess adherence barriers, we conducted in-depth interviews (IDIs) with randomly selected caregivers of CWH with high VL and with healthcare workers providing pediatric HIV care. Data were analyzed using a hybrid thematic approach that combined deductive and inductive coding strategies. We enrolled 538 CWH: 222 cases, with high VL and 316 controls, with suppressed VL. Duration on ART > 4 years (aRR = 0.86, 95% CI: 0.77-0.95) and ≥2 interruption in treatment episodes (≥28 days late for clinic appointment) in the 12 months before VL sample collection (aRR = 1.47, 95% CI: 1.28-1.68) were significantly associated with high VL. Through 54 IDIs (30-caregivers, 24-healthcare workers), five key adherence challenges were identified and affected the children ≤5 years the most: resistance to daily medication, difficulties taking multiple pills, food insecurity, fear of unintentional disclosure, and inability to attend clinic appointments consistently. This study highlights that behavioral, socio-economic and psychosocial factors influences ART adherence among CWH. Duration on ART and recent interruptions in treatment were associated with high VL, stressing the need for targeted interventions that will require health-system and client-level approaches to improve VL suppression among CWH in Malawi and similar settings.
Collapse
Affiliation(s)
| | - Christine Hagstrom
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | | | | | | | | | - Deanna Smith
- Partners in Hope, Lilongwe, Malawi
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Anteneh Worku
- Department of Health, Nutrition and Population, USAID Malawi, Lilongwe, Malawi
| | - Risa Hoffman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Sam Phiri
- Partners in Hope, Lilongwe, Malawi
- School of Global and Public Health, Kamuzu University of Health Sciences, Lilongwe, Malawi
| | - Kathryn Dovel
- Partners in Hope, Lilongwe, Malawi
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Joep J. van Oosterhout
- Partners in Hope, Lilongwe, Malawi
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Stoops M, Do B, Ramos S, Tan BX, Sheng Chua NY, Mazet R, Guiblin N, Michelet A, Flynn S, Abbou S, Goyanes A, Rieutord A, Legrand FX, Annereau M. Clinical implementation of a paediatric 3D-printed combination of Sulfamethoxazole and Trimethoprim. Int J Pharm 2025; 676:125581. [PMID: 40252867 DOI: 10.1016/j.ijpharm.2025.125581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
Adherence to treatment is one of the major challenges in chronic diseases. Inappropriate dosage forms or bad taste are the main factor for non-adherence, especially in paediatric patients. 3D printed medicines could be tailored to specific patients to make medicines more acceptable, however the clinical implementation in hospitals is still limited. This study addresses the challenge of developing pharma-inks (mixtures of drugs and excipients) for semi-solid extrusion (SSE) to produce chewable tablets of Sulfamethoxazole (SMX) and Trimethoprim (TMP) for paediatric oncology patients in a hospital setting. SMX and TMP pharma-inks were stable and printable on demand for more than 3 months. The chewable tablets were also stable, and the drug dissolution profiles were comparable to those of the commercial formulations, indicating potential bioequivalence. Human sensory evaluations confirmed that the formulation improved palatability compared to traditional suspensions. 3D-printed SMX/TMP formulations are an alternative to traditional formulations for paediatric patients in hospital settings, enhancing acceptability and adherence while enabling personalized dosing.
Collapse
Affiliation(s)
- Maxime Stoops
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France.
| | - Bernard Do
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Stéphanie Ramos
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Bing Xun Tan
- Roquette Asia Pacific Pte. Ltd., 11 Biopolis Way, #05-06 Helios 138667, Singapore
| | | | - Roseline Mazet
- CHU Grenoble Alpes, Department of Pharmacy, University Grenoble Alpes, 38700 Grenoble, France
| | - Nicolas Guiblin
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Alexandre Michelet
- Applications Development Lab France, PerkinElmer, Les Algorithmes - Bâtiment Esope, route de l'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Stephen Flynn
- Roquette Frères, 101 Av. de la République, 59110 La Madeleine, France
| | - Samuel Abbou
- Children and Adolescent Oncology Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie anti-tumorale et immunothérapie des cancers, 94805 Villejuif, France
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - André Rieutord
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | | | - Maxime Annereau
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France.
| |
Collapse
|
3
|
Cavelier M, Gondé H, Costa D, Lamoureux F, Pereira T, Varin R, Hervouët C. Physicochemical and microbiological stability of 40 mg/mL amiodarone hydrochloride oral suspension. Am J Health Syst Pharm 2025; 82:e274-e284. [PMID: 39412306 DOI: 10.1093/ajhp/zxae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
PURPOSE Amiodarone hydrochloride is an antiarrhythmic drug used to treat supraventricular tachycardia. However, there are currently no commercial pediatric forms available to treat young patients. Various oral formulations were previously reported in the literature, but the concentration was lower than the doses prescribed in clinical practice (a loading dose of 500 mg/m2/day for 7-10 days followed by a maintenance dose of 250 mg/m2/day). The objective of this study was to develop an oral liquid formulation of amiodarone hydrochloride at an optimal concentration for use in children and to evaluate its physicochemical and microbiological stability. METHODS No commercial suspension vehicle was used, allowing the choice of excipients. Compounding was performed using hydroxypropylmethylcellulose as thickener, potassium sorbate preservative, citric acid/sodium citrate buffer, sodium saccharin as sweetener, and a strawberry flavoring agent. A concentration of 40 mg/mL was selected based on a 5-year compilation of prescribed doses. Analyses performed were the following: visual and microscopic inspection, testing for antimicrobial preservation, osmolality and pH measurements, quantification of amiodarone hydrochloride by a stability-indicating liquid chromatography method, and a microbiological count. RESULTS At least 95% of the initial amiodarone hydrochloride remained stable during the 60-day study period under refrigeration. All other tested parameters remained stable at 5 °C. A targeted log reduction of the microorganism inoculum by day 14 and no microbial growth by day 28 were demonstrated in the test for antimicrobial preservation. CONCLUSION The stability of 40 mg/mL amiodarone hydrochloride oral suspension was maintained under refrigeration for 60 days before opening bottles and for 1 month after opening bottles.
Collapse
Affiliation(s)
- Marine Cavelier
- Department of Pharmacy, CHU Rouen, Normandie University, UNIROUEN, EA7510 ESCAPE, Rouen, France
| | - Henri Gondé
- Department of Pharmacy, CHU Rouen, Normandie University, Rouen, France
| | - Damien Costa
- Department of Parasitology-Mycology, CHU Rouen, Normandie University, Rouen, France
| | | | - Tony Pereira
- Department of Pharmacology, CHU Rouen, Rouen, France
| | - Rémi Varin
- Department of Pharmacology, CHU Rouen, Normandie University, Rouen, France
| | | |
Collapse
|
4
|
Nguyen H, Lin C, Bell K, Huang A, Hannum M, Ramirez V, Christensen C, Rawson NE, Colquitt L, Domanico P, Sasimovich I, Herriman R, Joseph P, Braimah O, Reed DR. Worldwide study of the taste of bitter medicines and their modifiers. Chem Senses 2025; 50:bjaf003. [PMID: 39902731 PMCID: PMC12010088 DOI: 10.1093/chemse/bjaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 02/06/2025] Open
Abstract
The bitter taste of medicines hinders patient compliance, but not everyone experiences these difficulties because people worldwide differ in their bitterness perception. To better understand how people from diverse ancestries perceive medicines and taste modifiers, 338 adults, European and recent US and Canadian immigrants from Asia, South Asia, and Africa, rated the bitterness intensity of taste solutions on a 100-point generalized visual analog scale and provided a saliva sample for genotyping. The taste solutions were 5 medicines, tenofovir alafenamide (TAF), moxifloxacin, praziquantel, amodiaquine, and propylthiouracil (PROP), and 4 other solutions, TAF mixed with sucralose (sweet, reduces bitterness) or 6-methylflavone (tasteless, reduces bitterness), sucralose alone, and sodium chloride alone. Bitterness ratings differed by ancestry for 2 of the 5 drugs (amodiaquine and PROP) and for TAF mixed with sucralose. Genetic analysis showed that people with variants in 1 bitter receptor variant gene (TAS2R38) reported PROP was more bitter than did those with a different variant (P = 7.6e-19) and that people with either an RIMS2 or a THSD4 genotype found sucralose more bitter than did others (P = 2.6e-8, P = 7.9e-11, respectively). Our findings may help guide the formulation of bad-tasting medicines to meet the needs of those most sensitive to them.
Collapse
Affiliation(s)
- Ha Nguyen
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Katherine Bell
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Amy Huang
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | | | - Vicente Ramirez
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | | | - Nancy E Rawson
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Lauren Colquitt
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Paul Domanico
- Clinton Health Access Initiative, Boston, MA, United States
| | | | - Riley Herriman
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Paule Joseph
- National Institute of Alcohol Abuse and Alcoholism and National Institute of Nursing Research, Bethesda, MD, United States
| | | | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, PA, United States
| |
Collapse
|
5
|
Annereau M, Secretan PH, Vignes M, Ramos S, Grill J, Bizien T, Sizun C, Michelet A, Rieutord A, Legrand FX, Do B. Development of a pediatric oral solution of ONC201 using nicotinamide to enhance solubility and stability. Int J Pharm 2024; 667:124965. [PMID: 39603434 DOI: 10.1016/j.ijpharm.2024.124965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) poses a significant treatment challenge in pediatric patients due to its aggressive nature and difficulty in crossing the blood-brain barrier with effective therapies. ONC201 (dordaviprone) shows promises in inducing apoptosis in cancer cells but suffers from poor water solubility and stability issues. Moreover, conventional solubilizing agents acceptable in formulations intended for adult patients are not suitable for pediatric use. So, this study aims to develop a stable, concentrated oral solution of ONC201 suitable for pediatric dosing without harmful excipients and efficient taste masking. Based on Molecular Dynamics simulations, a first screening among a selection of hydrotropes was carried out and, from the results obtained, nicotinamide was selected for experimental study. Given ONC201's challenges of poor solubility and stability, the formulation's physical and chemical properties were meticulously optimized. Extensive analyses, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), and nuclear magnetic resonance (NMR) spectroscopy, confirmed the solution's stability across various storage conditions, with no evidence of precipitation or significant degradation. This newly formulated solution is now used inside daily practice in the French compassionate Use Program to give access to ONC201 allowing treating patients who suffer from swallowing disorders.
Collapse
Affiliation(s)
- Maxime Annereau
- Department of clinical pharmacy, Gustave Roussy Cancer Campus, Villejuif 94800, France; Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay 91405, France
| | | | - Marina Vignes
- Department of clinical pharmacy, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Stéphanie Ramos
- Department of clinical pharmacy, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and INSERM Unit 981, Gustave Roussy Institute and University of Paris Saclay, Villejuif, France
| | - Thomas Bizien
- Université Paris-Saclay, Synchrotron Soleil, Saint-Aubin 91190, France
| | - Christina Sizun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Alexandre Michelet
- Applications Developement Lab, PekinElmer, Villebon-sur-Yvette 91140, France
| | - André Rieutord
- Department of clinical pharmacy, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | | | - Bernard Do
- Department of clinical pharmacy, Gustave Roussy Cancer Campus, Villejuif 94800, France; Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, Orsay 91405, France
| |
Collapse
|
6
|
Loke G, Chandrapala J, Besnard A, Kantono K, Brennan C, Newman L, Low J. Food odour perception and affective response in Virtual spacecraft and microgravity body posture (1-G) - Potential ground-based simulations. Food Res Int 2024; 197:115260. [PMID: 39577930 DOI: 10.1016/j.foodres.2024.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
This study investigates food odour perception and affective response within a virtually simulated spacecraft environment, with links to the volatile composition of odours. Healthy participants (n = 44) between the ages of 18-39 years rated the intensity of eight food odours in two simulated space environments for comparison, a 'microgravity' posture (MicroG Posture; physical) and Virtual Reality (VR; visual-spatial cues) simulation of a spacecraft. Results indicate that these methods yield different outcomes. Particularly, odour intensity perception was significantly higher in VR compared to the MicroG Posture for all odours (p < 0.05), except lemongrass. Moreover, individual differences in odour sensitivity were observed, with low-sensitive individuals (n = 14) perceiving stronger almond odour (p < 0.001) and highly sensitive individuals (n = 29) perceiving stronger vinegar odour (p = 0.003) in VR. Emotional dimensions of valence and arousal were also significantly higher (p < 0.001) in VR, while stress response remained low across contexts (all p > 0.05). While emotional and stress responses did not generally affect odour intensity perception, valence was positively correlated with almond and vinegar odour perception, while stress was negatively correlated with vinegar odour perception. These findings suggest that odour perception and affective response may vary in virtual space contexts, with certain individuals exhibiting sensitivity to specific odours due to their unique flavour profiles. This highlights how confined, cluttered environments, reminiscent of space conditions, affect sensory responses to food, with implications for personalised dietary interventions and improved well-being in similar populations.
Collapse
Affiliation(s)
- Grace Loke
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Jayani Chandrapala
- School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Anne Besnard
- International Flavors and Fragrances (IFF), Hilversum, Netherlands
| | - Kevin Kantono
- International Flavors and Fragrances (IFF), Hilversum, Netherlands
| | - Charles Brennan
- School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Lisa Newman
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Julia Low
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia.
| |
Collapse
|
7
|
Chen MM, Lin S, Wang ZH, Zhang SX, Chen FY, Chen J, Guo DS, Meng Q. Sulfonated Azocalix[4]arene: A Universal and Effective Taste-Masking Agent. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53591-53598. [PMID: 39316639 DOI: 10.1021/acsami.4c13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Many active pharmaceutical ingredients have a specific bitter taste. To enhance patient compliance and treatment efficacy, taste-masking agents are crucial in oral drug formulations. Confronting numerous bitter drug molecules with varied structures, the pharmaceutical field strives to explore and develop universal and effective masking approaches. Here, we reported sulfonated azocalix[4]arene (SAC4A), a universal supramolecular masking agent with deep cavity that provides stronger hydrophobic effect and larger interaction area during recognition, allowing high binding affinity to bitter drug molecules. Moreover, bitter drugs could deeply buried in the cavity, with the bitterness effectively masked. As a result, SAC4A can bind to 16 different bitter drugs with high affinities, encompassing alkaloids, flavonoids, terpenoids, and more, while maintaining high biocompatibility. As anticipated, SAC4A effectively masks the unpalatable bitter taste associated with these drugs. Consequently, SAC4A is a promising universal and effective supramolecular masking agent.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shujie Lin
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ze-Han Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shu-Xin Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Junyi Chen
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Qingbin Meng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
8
|
Buchanan AM, Bekker A, Chandasana H, DeMasi R, Lulic Z, Ernest T, Brothers C, Min S, Ruel T, Tan LK. Advancing research and development of anti-infectives for children with a focus on antiretroviral therapy: A clinical development perspective. Int J Antimicrob Agents 2024; 64:107306. [PMID: 39146996 DOI: 10.1016/j.ijantimicag.2024.107306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/17/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The HIV treatment landscape for adults has progressed dramatically in recent decades; however, paediatric populations continue to experience delayed and limited access to effective and safe antiretroviral therapy options. Despite current incentive programmes, formulation research and development and approved drug dosing for children have been limited, particularly for neonates (aged <4 wk). Regulatory approval of drug formulations and dosing in children may lag behind adult approvals by years. Formulation and trial design adjustments complicate paediatric drug development, all of which are vital to accommodate for physiological differences, organ maturation, and rapid weight gain, which are most significant in the youngest children. To facilitate more rapid anti-infective drug development for paediatric populations, regulatory agencies provide guidelines that include extrapolating efficacy and safety data from relevant populations; using pharmacokinetic (PK) bridging and modelling to reduce sample sizes and limit the number of PK studies needed before efficacy analyses; and enrolling age- or weight-based cohorts in parallel rather than sequentially for clinical trials. Ensuring access to approved drugs poses an additional challenge, as uncertainty in demand leads to manufacturing and supply complexity with potentially higher costs that can be a barrier to uptake. Here we summarise challenges in drug development for children living with HIV, which are not unique to antiretrovirals. We aim to propose strategies for how model-based approaches and global partnerships can overcome some of these barriers to accelerate paediatric drug development, with particular reference to HIV, and how lessons learnt from HIV could be extended to other anti-infectives.
Collapse
Affiliation(s)
| | - Adrie Bekker
- Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | | | | | | | | | | | | | - Theodore Ruel
- Division of Pediatric Infectious Diseases and Global Health, Department of Pediatrics, University of California, San Francisco, CA, USA
| | | |
Collapse
|
9
|
Felton LA, Binzet G, Wiley C, McChesney D, McConville J, Ҫelik M, Muttil P. Spray drying Eudragit® E-PO with acetaminophen using 2- and 3-fluid nozzles for taste masking. Int J Pharm 2024; 658:124191. [PMID: 38701909 PMCID: PMC11139551 DOI: 10.1016/j.ijpharm.2024.124191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Conventional spray drying using a 2-fluid nozzle forms matrix microparticles, where drug is distributed throughout the particle and may not effectively mask taste. In contrast, spray drying using a 3-fluid nozzle has been reported to encapsulate material. The objective of this study was to spray dry Eudragit® E-PO (EE) with acetaminophen (APAP), a water-soluble model drug with a bitter taste, using 2- and 3-fluid nozzles for taste masking. Spray drying EE with APAP, however, resulted in yields of ≤ 13 %, irrespective of nozzle configuration. Yields improved when Eudragit® L 100-55 (EL) or Methocel® E6 (HPMC) was used in the inner fluid stream of the 3-fluid nozzle or in place of EE for the 2-fluid nozzle. Drug release from microparticles prepared with the 2-fluid nozzle was relatively rapid. Using EE in the outer fluid stream of the 3-fluid nozzle resulted in comparatively slower drug release, although drug release was observed, indicating that encapsulation was incomplete. Results from these studies also show that miscible polymers used in the two fluid streams mix during the spray drying process. In addition, findings from this study indicate that the polymer used in the inner fluid stream can impact drug release.
Collapse
Affiliation(s)
- Linda A Felton
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Gülşilan Binzet
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA; Altınbaş University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Bakırköy 34147 İstanbul, Turkey.
| | - Cody Wiley
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - David McChesney
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Jason McConville
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Metin Ҫelik
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA; Pharmaceutical Technologies International, Inc., 22 Durham Rd, Skillman, NJ 08558, USA.
| | - Pavan Muttil
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
10
|
Simšič T, Planinšek O, Baumgartner A. Taste-masking methods in multiparticulate dosage forms with a focus on poorly soluble drugs. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:177-199. [PMID: 38815202 DOI: 10.2478/acph-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 06/01/2024]
Abstract
In the past, the administration of medicines for children mainly involved changes to adult dosage forms, such as crushing tablets or opening capsules. However, these methods often led to inconsistent dosing, resulting in under- or overdosing. To address this problem and promote adherence, numerous initiatives, and regulatory frameworks have been developed to develop more child-friendly dosage forms. In recent years, multiparticulate dosage forms such as mini-tablets, pellets, and granules have gained popularity. However, a major challenge that persists is effectively masking the bitter taste of drugs in such formulations. This review therefore provides a brief overview of the current state of the art in taste masking techniques, with a particular focus on taste masking by film coating. Methods for evaluating the effectiveness of taste masking are also discussed and commented on. Another important issue that arises frequently in this area is achieving sufficient dissolution of poorly water-soluble drugs. Since the simultaneous combination of sufficient dissolution and taste masking is particularly challenging, the second objective of this review is to provide a critical summary of studies dealing with multiparticulate formulations that are tackling both of these issues.
Collapse
Affiliation(s)
- Tilen Simšič
- 1Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
- 2Alterno Labs d.o.o. 1231 Ljubljana-Črnuče Slovenia
| | - Odon Planinšek
- 1Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ana Baumgartner
- 1Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Garra R, Piersanti A, Del Vicario M, Pizzo CM, Festa R, Tosi F, Sbaraglia F, Spano MM, Della Sala F, Rossi M. Clinical Evaluation of Oral Midazolam Containing Cyclodextrin in Pediatric Magnetic Resonance: A Retrospective Cohort Study. J Pers Med 2024; 14:472. [PMID: 38793054 PMCID: PMC11122387 DOI: 10.3390/jpm14050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Reducing a child's level of anxiety before magnetic resonance imaging (MRI) procedures allows for better behavioral outcomes. The aim of this retrospective study was to evaluate anxiolytic efficacy of Midazolam/γ-cyclodextrin oral formulation. METHODS We retrospectively reviewed 100 medical charts of children who, between 1 February and 31 July 2022, underwent MRI under general anesthesia with or without premedication with midazolam/γ-cyclodextrin. Primary outcome was comparison of behavior to facemask positioning, while secondary endpoints were degree of drugs acceptance, anxiolytic effect evaluation, child's behavior on separation, and sevoflurane need. RESULTS Facemask positioning was accepted by 58% of the midazolam/γ-cyclodextrin group compared to 22% of children in the control group. The rate of acceptance was >90%. At the moment of separation from parent, none of the premedicated children needed to be restrained compared to 18% in the control group. A lower percentage of sevoflurane was needed for eye-closure at induction of anesthesia and for anesthesia maintenance. At emergence from anesthesia, 46% of children in the premedicated group compared to 66% of children in the control group showed transient agitation. CONCLUSIONS Midazolam/γ-cyclodextrin showed a good profile of acceptance, satisfactory anxiolytic properties, and reduced need for anesthetics when administered to children before MRI under general anesthesia.
Collapse
Affiliation(s)
- Rossella Garra
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Alessandra Piersanti
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Miryam Del Vicario
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Cecilia Maria Pizzo
- Department of Anesthesia and Critical Care, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy;
| | - Rossano Festa
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Federica Tosi
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Fabio Sbaraglia
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Michelangelo Mario Spano
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Filomena Della Sala
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Marco Rossi
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| |
Collapse
|
12
|
Nguyen H, Lin C, Sasimovich I, Bell K, Huang A, Leszkowicz E, Rawson NE, Reed DR. Thiazolidinediones are Partially Effective Bitter Blockers. Clin Ther 2024; 46:345-353. [PMID: 38462427 PMCID: PMC11116052 DOI: 10.1016/j.clinthera.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/14/2023] [Accepted: 02/11/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE The bad bitter taste of some medicines is a barrier to overcoming noncompliance with medication use, especially life-saving drugs given to children and the elderly. Here, we evaluated a new class of bitter blockers (thiazolidinediones, TZDs). METHODS In this study, 2 TZDs were tested, rosiglitazone (ROSI) and a simpler form of TZD, using a high-potency sweetener as a positive control (neohesperidin dihydrochalcone, NHDC). We tested bitter-blocking effects using the bitter drugs tenofovir alafenamide fumarate (TAF), a treatment for HIV and hepatitis B infection, and praziquantel (PRAZ), a treatment for schistosomiasis, by conducting taste testing with 2 separate taste panels: a general panel (N = 97, 20-23 years, 82.5% female, all Eastern European) and a genetically informative panel (N = 158, including 68 twin pairs, 18-82 years, 76% female, 87% European ancestry). Participants rated the bitterness intensity of the solutions on a 100-point generalized visual analog scale. FINDINGS Person-to-person differences in drug bitterness were striking; TAF and PRAZ were weakly or not bitter for some people but moderately to highly bitter for others. Participants in both taste panels rated the bitter drugs TAF and PRAZ as less bitter on average when mixed with NHDC than when sampled alone. ROSI partially suppressed the bitterness of TAF and PRAZ, but effectiveness differed between the 2 panels: bitterness was significantly reduced for PRAZ but not TAF in the general panel and for TAF but not PRAZ in the genetically informative panel. ROSI was a more effective blocker than the other TZD. IMPLICATIONS These results suggest that TZDs are partially effective bitter blockers and the suppression efficacy differs from drug to drug, from person to person, and from panel to panel, suggesting other TZDs should be designed and tested with more drugs and on diverse populations to define which ones work best with which drugs and for whom. The discovery of bitter receptor blockers can improve compliance with medication use.
Collapse
Affiliation(s)
- Ha Nguyen
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | | | - Katherine Bell
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | - Amy Huang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | - Emilia Leszkowicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Nancy E Rawson
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | | |
Collapse
|
13
|
Chacko IA, Ramachandran G, Sudheesh MS. Unmet technological demands in orodispersible films for age-appropriate paediatric drug delivery. Drug Deliv Transl Res 2024; 14:841-857. [PMID: 37957474 DOI: 10.1007/s13346-023-01451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
Age-appropriateness of a formulation is the ability to deliver variable but accurate doses to the paediatric population in a safe and acceptable manner to improve medical adherence and reduce medication errors. Paediatric drug delivery is a challenging area of formulation research due to the existing gap in knowledge. This includes the unknown safety of excipients in the paediatric population, the need for an age-appropriate formulation, the lack of an effective taste-masking method and the lack of paediatric pharmacokinetic data and patient acceptability. It is equally important to establish methods for predicting the biopharmaceutical performance of a paediatric formulation as a function of age. Overcoming the challenges of existing technologies and providing custom-made solutions for the development of age-appropriate formulation is, therefore, a daunting task. Orodispersible films (ODF) are promising as age-appropriate formulations, an unmet need in paediatric drug delivery. New technological improvements in taste masking, improving solubility and rate of dissolution of insoluble drugs, the flexibility of dosing and extemporaneous preparation of these films in a hospital good manufacturing practises (GMP) setup using 3D printing can increase its acceptance among clinicians, patients and caregivers. The current review discusses the problems and possibilities in ODF technology to address the outstanding issues of age-appropriateness, which is the hallmark of patient acceptance and medical adherence in paediatrics.
Collapse
Affiliation(s)
- Indhu Annie Chacko
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India
| | - Gayathri Ramachandran
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India.
| |
Collapse
|
14
|
Commey KL, Enaka A, Nakamura R, Yamamoto A, Tsukigawa K, Nishi K, Iohara D, Hirayama F, Otagiri M, Yamasaki K. Development of α-Cyclodextrin-Based Orally Disintegrating Tablets for 4-Phenylbutyrate. Pharmaceutics 2024; 16:82. [PMID: 38258093 PMCID: PMC10818935 DOI: 10.3390/pharmaceutics16010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Despite major improvements brought about by the introduction of taste-masked formulations of 4-phenylbutyrate (PB), poor compliance remains a significant drawback to treatment for some pediatric and dysphagic patients with urea cycle disorders (UCDs). This study reports on the development of a cyclodextrin (CD)-based orally disintegrating tablet (ODT) formulation for PB as an alternative to existing formulations. This is based on previous reports of the PB taste-masking potential of CDs and the suitability of ODTs for improving compliance in pediatric and dysphagic populations. In preliminary studies, the interactions of PB with α and βCD in the solid state were characterized using X-ray diffraction, scanning electron microscopy, dissolution, and accelerated stability studies. Based on these studies, lyophilized PB-CD solid systems were formulated into ODTs after wet granulation. Evaluation of the ODTs showed that they had adequate physical characteristics, including hardness and friability and good storage stability. Notably, the developed αCD-based ODT for PB had a disintegration time of 28 s and achieved a slightly acidic and agreeable pH (≈5.5) in solution, which is suitable for effective PB-CD complexation and taste masking. The developed formulation could be helpful as an alternative to existing PB formulations, especially for pediatric and dysphagic UCD patients.
Collapse
Affiliation(s)
- Kindness L. Commey
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Airi Enaka
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
| | - Ryota Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
| | - Asami Yamamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (D.I.); (F.H.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| |
Collapse
|
15
|
Liu N, Zang LH, Liu DC. Enteric Microcapsules Encapsulation of Roxithromycin-PVP Composite Core Particles to Inhibit Drug Crystallization upon Fluidized Bed Method for Oral Administration. Chem Pharm Bull (Tokyo) 2024; 72:1065-1072. [PMID: 39710375 DOI: 10.1248/cpb.c24-00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Enteric-coated microcapsules can protect roxithromycin (ROX) from acid hydrolysis enhancing efficacy, solubility, and dissolution rate, representing a promising oral formulation for children and patients with swallowing difficulties. ROX-layered core particles were obtained with polyvinylpyrrolidone (PVP) K30 as the binder and Eudragit L30 D-55 as the coating material using the Wurster process in a fluidized bed processor. The enteric-coated microcapsules were characterized using powder X-ray diffraction, differential scanning calorimetry, and polarized optical microscopy. Enteric microcapsules with appropriate coating levels and particle sizes underwent dissolution tests, acid resistance tests. The weight ratio of PVP K30 to ROX was 1/2, and the average particle size of ROX-layered core particles was 130 µm. ROX molecule crystallinity in the layered core particles was inhibited. ROX was dispersed in PVP K30 with small particle size and high wettability. The average particle size of ROX enteric microcapsules with 60% coating level was approximately 155 µm. The acid resistance test showed that enteric microcapsules with a coating level of >50% and plasticizer contents of 20-25% can effectively protect ROX stability in simulated gastric fluid within 2 h. The dissolution experiment showed that the enteric microcapsules could protect ROX under acidic conditions of pH 1.2 and released >75% of ROX in the simulated intestinal fluid at pH 6.8 in 45 min. The enteric microcapsule of ROX using Wurster fluidized bed method can protect ROX from acid hydrolysis to ensure the efficacy, and has potential application in pharmaceutical industries, owing to its favorable dissolution.
Collapse
Affiliation(s)
- Nan Liu
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Ling-He Zang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University
| | - Dong-Chun Liu
- School of Traditional Chinese Medicines, Shenyang Pharmaceutical University
| |
Collapse
|
16
|
Al-Kabariti AY, Arafat BT, Oriquat GA, Možná P, Jaidy H, Rehmani A, Patel K, Al-Qinna N, Alhnan MA. In Vitro and In Vivo Evaluation of Dark Chocolate as Age-appropriate Oral Matrix. Eur J Pharm Sci 2024; 192:106646. [PMID: 37989467 DOI: 10.1016/j.ejps.2023.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Swallowing difficulties encountered by geriatric patients who undergo polypharmacy represent a significant challenge that hampers patient compliance and therapeutic management. As an appealing and sensory-pleasing, chocolate-based formulations have emerged as a potential alternative oral dosage form suitable for both the elderly and paediatric populations. However, the extent to which the incorporation of drugs into a chocolate matrix affects their oral availability remains unclear. Therefore, the objective of this investigation was to explore the in vitro and in vivo performance of an ibuprofen-based chocolate dosage form. A matrix based on dark chocolate and the model drug was prepared at two distinct temperatures: 50 and 80 °C. In vitro release studies revealed that ibuprofen formulated through co-melting at 80 °C exhibited a statistically significant slower drug release (p < 0.05) compared to formulations prepared at 50 °C in both FaSSGF (fasted-state simulated gastric fluid) and lipolysis media. The enzymatic degradation of chocolate in the presence of lipase accelerated in vitro ibuprofen release from chocolate matrices. To delve deeper into the bioavailability of ibuprofen within the chocolate formulations, we conducted an in vivo assessment, comparing the pharmacokinetic profiles of ibuprofen in its conventional suspension form with our chocolate-based dosage forms. A notable drop (p < 0.05) in the maximum serum concentration of ibuprofen when incorporated into co-melted or solid-suspension chocolate matrices. However, no significant differences in plasma exposure were observed between the two formulations. These findings shed a light on the potential of chocolate to extend of ibuprofen when integrated into various chocolate matrices, showcasing the potential held by these innovative formulations.
Collapse
Affiliation(s)
- Aya Y Al-Kabariti
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Basel T Arafat
- Faculty of Medical Sciences and Public Health, Anglia Ruskin University, Chelmsford, UK
| | - Ghaleb Ali Oriquat
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan; Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Petra Možná
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Hadeal Jaidy
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Asma Rehmani
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Kausar Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Nidal Al-Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
17
|
Mu Y, Zhao L, Shen L. Medication adherence and pharmaceutical design strategies for pediatric patients: An overview. Drug Discov Today 2023; 28:103766. [PMID: 37708932 DOI: 10.1016/j.drudis.2023.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Medication adherence in pediatric patients is a key factor in drug development and dosage form design. High medication adherence is not only important to achieve the expected treatment effects but can also effectively reduce medical costs. It is an ongoing task to accurately identify differences in medication adherence between children and adults and analyze the factors related to pediatric medication adherence. This is necessary to guide the development of pediatric drugs. This review focuses on factors that influence pediatric medication adherence as well as pharmaceutical design strategies to improve adherence. Current new dosage forms, new technologies, and new devices are comprehensively summarized in terms of their advantages and limitations.
Collapse
Affiliation(s)
- Yingying Mu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China.
| |
Collapse
|
18
|
Peng WC, Lei Z, Lin QH, Wu Y, Yang JY, Wang H, Zhou W, Zhang DW, Li ZT, Ma D. Acyclic Cucurbit[n]urils: Effective Taste Masking Nanocontainers for Cationic Bitter Compounds. Chempluschem 2023; 88:e202300465. [PMID: 37752086 DOI: 10.1002/cplu.202300465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
New acyclic cucurbit[n]urils (ACBs) with eight carboxylate groups were synthesized. These hosts are highly soluble in water, and can form stable inclusion complexes with cationic bitter compounds. ACBs are confirmed to be non-toxic and biocompatible. Two-bottle preference (TBP) tests on mice show that all ACBs are tasteless to mammals. ACBs are discovered to mask the bitterness of berberine and denatonium benzoate, but not quinine hydrochloride, due to different binding modes.
Collapse
Affiliation(s)
- Wen-Chang Peng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Zhuo Lei
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Qi-Han Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Jing-Yu Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Shifu Avenue 1139 Jiaojiang, Zhejiang, 318000, P. R. China
| |
Collapse
|
19
|
Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics 2023; 15:2431. [PMID: 37896191 PMCID: PMC10610377 DOI: 10.3390/pharmaceutics15102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The paradigm of pediatric drug development has been evolving in a "carrot-and-stick"-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- Institute for Health Research and Innovation (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
20
|
Tzanova MM, Nguyen L, Moretti F, Grassi M, Magnano GC, Voinovich D, Stein PC, Hiorth M, di Cagno MP. Interpreting permeability as a function of free drug fraction: The case studies of cyclodextrins and liposomes. Eur J Pharm Sci 2023; 189:106559. [PMID: 37544334 DOI: 10.1016/j.ejps.2023.106559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
In order to solubilize poorly soluble active pharmaceutical ingredients, various strategies have been implemented over the years, including the use of nanocarriers, such as cyclodextrins and liposomes. However, improving a drug's apparent solubility does not always translate to enhanced bioavailability. This work aimed to investigate to which extent complexation with cyclodextrins and incorporation into liposomes influence drug in vitro permeability and to find a mechanistic description of the permeation process. For this purpose, we investigated hydroxypropyl-β-cyclodextrin (HP-β-CD) and phosphatidylcholine liposomes formulations of three chemically diverse compounds (atenolol, ketoprofen and hydrocortisone). We studied drug diffusion of the formulations by UV-localized spectroscopy and advanced data fitting to extract parameters such as diffusivity and bound-/free drug fractions. We then correlated this information with in vitro drug permeability obtained with the novel PermeaPadⓇ barrier. The results showed that increased concentration of HP-β-CD leads to increased solubilization of the poorly soluble unionized ketoprofen, as well as hydrocortisone. However, this net increment of apparent solubility was not proportional to the increased flux measured. On the other hand, normalising the flux over the empirical free drug concentration, i.e., the free fraction, gave a meaningful absolute permeability coefficient. The results achieved for the liposomal formulation were consistent with the finding on cyclodextrins. In conclusion, we proved the adequacy and usefulness of our method for calculating free drug fractions in the examined enabling formulations, supporting the validity of the established drug diffusion/permeation theory that the unbounded drug fraction is the main driver for drug permeation across a membrane.
Collapse
Affiliation(s)
- Martina M Tzanova
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Lisa Nguyen
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Federica Moretti
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Greta Camilla Magnano
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Paul C Stein
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Marianne Hiorth
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway.
| |
Collapse
|
21
|
Cirri M, Mura P, Benedetti S, Buratti S. Development of a Hydroxypropyl-β-Cyclodextrin-Based Liquid Formulation for the Oral Administration of Propranolol in Pediatric Therapy. Pharmaceutics 2023; 15:2217. [PMID: 37765186 PMCID: PMC10534794 DOI: 10.3390/pharmaceutics15092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Propranolol (PPN) is widely used in children to treat various cardiovascular diseases. The availability of a suitable PPN solution should avoid recourse to extemporaneous preparations of unknown/limited stability, as commonly made in hospital pharmacies. However, the development of pediatric PPN solutions is hindered by their instability to light and stability at pH ≈ 3, bitter taste, and the need to improve palatability and avoid co-solvents, flavoring agents, or preservatives that are potentially toxic. In this study, cyclodextrin (CD) complexation has been exploited to develop a safe, stable, and palatable oral pediatric solution of PPN. An initial screening among various CDs allowed us to select HPβCD for its good complexing ability and no toxicity. Drug-HPβCD physical mixtures or co-ground systems (1:1 or 1:2 mol:mol) were used to prepare 0.2% w/v drug solutions. Photo stability studies evidenced the protective effect of HPβCD, revealing a reduction of up to 75% in the drug degradation rate after 1 h of exposure to UV radiation. Storage stability studies showed unchanged physical-chemical properties and almost constant drug concentration after 6 months and under accelerated conditions (40 °C), despite the less aggressive pH (≈5.5) of the solution. The electronic tongue test proved that the HPβCD taste-masking properties improved the formulation palatability, with a 30% reduction in drug bitterness.
Collapse
Affiliation(s)
- Marzia Cirri
- Department of Chemistry Ugo Schiff (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Paola Mura
- Department of Chemistry Ugo Schiff (DICUS), University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Simona Benedetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (S.B.); (S.B.)
| | - Susanna Buratti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (S.B.); (S.B.)
| |
Collapse
|
22
|
Nguyen H, Lin C, Sasimovich I, Bell K, Huang A, Leszkowicz E, Rawson NE, Reed DR. Thiazolidinediones are partially effective bitter blockers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552460. [PMID: 37609224 PMCID: PMC10441302 DOI: 10.1101/2023.08.08.552460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Purpose The bad bitter taste of some medicines is a barrier to overcoming non-compliance with medication use, especially life-saving drugs given to children and the elderly. Here we evaluated a new class of bitter blockers (thiazolidinediones; TZDs). Methods In this study, two TZDs were tested, rosiglitazone (ROSI) and a simpler form of TZD, using a high-potency sweetener as a positive control (neohesperidin dihydrochalcone, NHDC). We tested bitter-blocking effects using the bitter drugs tenofovir alafenamide fumarate (TAF), a treatment for HIV and hepatitis B infection, and praziquantel (PRAZ), a treatment for schistosomiasis, by conducting taste testing with two separate taste panels: a general panel (N=97, 20-23 yrs, 82.5% female, all Eastern European) and a genetically informative panel (N=158, including 68 twin pairs, 18-82 yrs, 76% female, 87% European ancestry). Participants rated the bitterness intensity of the solutions on a 100-point generalized visual analog scale. Findings Participants in both taste panels rated the bitter drugs TAF and PRAZ as less bitter on average when mixed with NHDC than when sampled alone. ROSI partially suppressed the bitterness of TAF and PRAZ, but effectiveness differed between the two panels: bitterness was significantly reduced for PRAZ but not TAF in the general panel and for TAF but not PRAZ in the genetically informative panel. ROSI was a more effective blocker than the other TZD. Implications These results suggest that TZDs are partially effective bitter blockers, suggesting other TZDs should be designed and tested with more drugs and on diverse populations to define which ones work best with which drugs and for whom. The discovery of bitter receptor blockers can improve compliance with medication use.
Collapse
Affiliation(s)
- Ha Nguyen
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | | | - Katherine Bell
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | - Amy Huang
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | - Emilia Leszkowicz
- Dept. Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | | | | |
Collapse
|
23
|
Bedogni G, Garcia P, Seremeta K, Okulik N, Salomon C. Preformulation and Long-Term Stability Studies of an Optimized Palatable Praziquantel Ethanol-Free Solution for Pediatric Delivery. Pharmaceutics 2023; 15:2050. [PMID: 37631264 PMCID: PMC10458622 DOI: 10.3390/pharmaceutics15082050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
To date, the treatment for cysticercosis and neurocysticercosis consists of a single oral intake of praziquantel (5-10 mg/kg), which since it is only available as tablets, hinders its administration to pediatric patients. Praziquantel is a poorly water-soluble drug which represents a challenge for its formulation in solution, particularly for the pediatric population. Thus, this study aimed to develop a palatable solution for praziquantel using pharmaceutical-accepted co-solvent systems. A design of experiments approach was applied to identify the optimal conditions for achieving a suitable amount of praziquantel in solution using co-solvent mixtures. Thus, praziquantel solubility increased from 0.38 up to 43.50 mg/mL in the optimized system. A taste masking assay in healthy human volunteers confirmed a successful reduction of drug bitterness after the addition of selected flavors and a sweetener. Stability studies were also conducted at different temperatures (4, 25, and 40 °C) for 12 months Even though the presence of the three known impurities of praziquantel was observed, their amounts never exceeded the acceptance criteria of the USP. Thus, this novel approach should be considered a valuable alternative for further preclinical studies considering the high prevalence of this infection worldwide.
Collapse
Affiliation(s)
- Giselle Bedogni
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario 2000, Argentina;
| | - Paula Garcia
- Planta Piloto de Producción de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, Rosario 2000, Argentina;
| | - Katia Seremeta
- Instituto de Investigaciones en Procesos Tecnológicos Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Chaco Austral (INIPTA-CONICET-UNCAUS), Cte. Fernández 755, Presidencia Roque Sáenz Peña 3700, Argentina; (K.S.); (N.O.)
| | - Nora Okulik
- Instituto de Investigaciones en Procesos Tecnológicos Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Chaco Austral (INIPTA-CONICET-UNCAUS), Cte. Fernández 755, Presidencia Roque Sáenz Peña 3700, Argentina; (K.S.); (N.O.)
| | - Claudio Salomon
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario 2000, Argentina;
- Área Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
24
|
Ranmal SR, Lavarde M, Wallon E, Issa S, Taylor WR, Nguyen Ngoc Pouplin JLA, Tuleu C, Pensé-Lhéritier AM. Responsive Sensory Evaluation to Develop Flexible Taste-Masked Paediatric Primaquine Tablets against Malaria for Low-Resource Settings. Pharmaceutics 2023; 15:1879. [PMID: 37514065 PMCID: PMC10385610 DOI: 10.3390/pharmaceutics15071879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Primaquine is an important antimalarial drug for malaria transmission blocking and radical cure, but it is not currently available in child-friendly formulations in appropriate doses. Adult-strength tablets are often crushed and dissolved in water to obtain the required dose, which exposes the drug's bitter taste. As part of the developing paediatric primaquine (DPP) project, this study adopted a responsive sensory pharmaceutics approach by integrating real-time formulation development and pre-clinical taste assessment to develop palatable, flavour-infused primaquine tablets. A design of experiment (DoE) approach was used to screen different taste-masking agents and excipient blends with trained, expert sensory assessors, with quinine hydrochloride as a model bitter tastant. The taste-masking efficacy of selected prototype formulation blends was validated with naïve assessors using the highest 15 mg primaquine dose. The mean bitterness intensity rating, measured on a discrete 11-point scale, was halved from 7.04 for the unflavoured control to 2.74-3.70 for the formulation blends. Sucralose had the biggest impact on bitterness suppression and improving palatability. Two different flavouring systems have been developed, and their acceptability in paediatric patients will be assessed as part of upcoming validation field clinical trials in Africa.
Collapse
Affiliation(s)
- Sejal R Ranmal
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Marc Lavarde
- Ecole de Biologie Industrielle-EBI, UPR EBInnov®, 49 Avenue des Genottes CS90009, 95895 Cergy, France
| | - Elodie Wallon
- Ecole de Biologie Industrielle-EBI, UPR EBInnov®, 49 Avenue des Genottes CS90009, 95895 Cergy, France
| | - Samar Issa
- Ecole de Biologie Industrielle-EBI, UPR EBInnov®, 49 Avenue des Genottes CS90009, 95895 Cergy, France
| | - Walter R Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/60 Rajvithi Road, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | | | - Catherine Tuleu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | |
Collapse
|
25
|
Canitrot E, Turgeon AF, Moore L, Diendéré E, St-Onge M. Effect of Taste Additives on the Palatability of Activated Charcoal: a Systematic Review. J Med Toxicol 2023; 19:268-279. [PMID: 37000410 PMCID: PMC10293545 DOI: 10.1007/s13181-023-00934-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 04/01/2023] Open
Abstract
INTRODUCTION Activated charcoal is a decontaminating agent used for acute intoxication. It can be mixed with taste additives to overcome its poor palatability. Our purpose was to evaluate the taste additives used to improve activated charcoal's palatability. METHODS We conducted a systematic review of comparative studies on taste additives used to improve activated charcoal's palatability. We searched PubMed, Embase, Web of Science, Cochrane, and CINAHL. We included controlled trials and observational studies that evaluate the effect of at least one taste additive, compared with activated charcoal alone. Our primary outcome was palatability. Our secondary outcomes included treatment adherence, adsorption efficacy, and adverse events. The risk of bias was assessed using the Quality Assessment Tool for Quantitative Studies. RESULTS Among 38 eligible articles, seven observational studies and three crossover clinical trials met our inclusion criteria. The risk of bias was found to be high for seven studies and intermediate for three others. The preferred flavoring agents were cola and chocolate milk for children, and sweetening agents for adults. All taste additives studied seemed to improve activated charcoal's palatability, except for yogurt (n = 1). The addition of bentonite, sorbitol, carboxymethylcellulose, or yogurt showed no impact on the in-vivo adsorption capacity of activated charcoal, whereas the results were inconclusive for chocolate. No meta-analysis was performed due to insufficient data. CONCLUSION Strategies to improve activated charcoal's palatability seem to enhance the taste. Descriptive data are in favor of a limited impact on activated charcoal's adsorption capacity when adding binding agents or sweeteners. TRIAL REGISTRATION ON PROSPERO This review is registered as PROSPERO CRD42019135092.
Collapse
Affiliation(s)
- Elisabeth Canitrot
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada.
- CHU de Québec-Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma - Emergency - Critical Care Medicine), Québec City, Québec, Canada.
| | - Alexis F Turgeon
- CHU de Québec-Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma - Emergency - Critical Care Medicine), Québec City, Québec, Canada
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Lynne Moore
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
- CHU de Québec-Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma - Emergency - Critical Care Medicine), Québec City, Québec, Canada
| | - Ella Diendéré
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
- CHU de Québec-Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma - Emergency - Critical Care Medicine), Québec City, Québec, Canada
- VITAM, Research Center in Sustainable Health, CIUSSS de la Capitale-Nationale, Québec, Québec City, Canada
| | - Maude St-Onge
- CHU de Québec-Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma - Emergency - Critical Care Medicine), Québec City, Québec, Canada
- Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
- Centre Antipoison du Québec, CIUSSS de la Capitale Nationale, Québec, Québec City, Canada
| |
Collapse
|
26
|
Van Hove B, Kanagale P, Quinten T, Gaiki S, Collignon K, Swar Y, Shah J, Verheyen E, Preda FM, Samanta A, Fernandez E, Caporicci G, Ferreira T, Lequieu W, Masschelein J, Schaufelberger D. Development of a New Age-Appropriate, Chewable Tablet of Mebendazole 500 mg for Preventive Chemotherapy of Soil-Transmitted Helminth Infections in Pre-School and School-Age Children. Eur J Pharm Biopharm 2023:S0939-6411(23)00135-2. [PMID: 37207943 DOI: 10.1016/j.ejpb.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
The aim of this study was to develop an age-appropriate tablet of mebendazole 500 mg to be used in large donation programs by the World Health Organization (WHO) for preventive chemotherapy of soil-transmitted helminth (STH) infections in pre-school and school-age children living in tropical and subtropical endemic areas. To that end, a new oral tablet formulation was developed that can be either chewed or given to young (≥1 year old) children by spoon after rapid disintegration to a soft mass with the addition of a small amount of water directly on the spoon. Although the tablet was manufactured using conventional fluid bed granulation, screening, blending, and compression processes, one of the main challenges was to combine properties of a chewable, dispersible, and regular (solid) immediate release tablet to meet the predefined requirements. The tablet disintegration time was below 120 s, allowing for administration by the "spoon method". The tablet hardness was higher (160-220 N) than normally applicable for chewable tablets, permitting shipment along a lengthy supply chain in a primary 200-tablet count bottle packaging. In addition, the resulting tablets are stable for 48 months in all climatic zones (I-IV). In this article, several aspects of the development of this unique tablet are described, including formulation, process development, stability, clinical acceptability testing, and regulatory filing.
Collapse
Affiliation(s)
- Ben Van Hove
- Janssen R&D BE, Turnhoutseweg 30, Beerse, Antwerp 2340, BE.
| | - Pritam Kanagale
- Janssen India, Janssen, Higi House Johnson and Johnson LBS Marg, Mulund - W, Mumbai, Maharashtra 400080, IN
| | - Thomas Quinten
- Janssen R&D BE, Turnhoutseweg 30, Beerse, Antwerp 2340, BE
| | - Sheetal Gaiki
- Janssen R&D US, 1000 Route 202 South, Raritan, NJ 08869, US
| | | | - Yogesh Swar
- Janssen India, Janssen, Higi House Johnson and Johnson LBS Marg, Mulund - W, Mumbai, Maharashtra 400080, IN
| | - Jimit Shah
- Janssen India, Janssen, Higi House Johnson and Johnson LBS Marg, Mulund - W, Mumbai, Maharashtra 400080, IN
| | - Ellen Verheyen
- Janssen R&D BE, Turnhoutseweg 30, Beerse, Antwerp 2340, BE
| | | | - Asim Samanta
- Janssen India, Janssen, Higi House Johnson and Johnson LBS Marg, Mulund - W, Mumbai, Maharashtra 400080, IN
| | | | | | - Teresa Ferreira
- Lusomedicamenta/Recipharm Lisbon, Estrada Consiglieri Pedroso, 69-B, Queluz de Baixo, 2730-055 Barcarena, PT
| | - Wouter Lequieu
- Janssen R&D BE, Turnhoutseweg 30, Beerse, Antwerp 2340, BE
| | | | - Daniel Schaufelberger
- Schaufelberger Consulting LLC and Johns Hopkins University, School of Medicine, Neuroscience, All Children's Hospital, St. Petersburg, FL, USA
| |
Collapse
|
27
|
Wise K, Phan N, Selby-Pham J, Simovich T, Gill H. Utilisation of QSPR ODT modelling and odour vector modelling to predict Cannabis sativa odour. PLoS One 2023; 18:e0284842. [PMID: 37098051 PMCID: PMC10128932 DOI: 10.1371/journal.pone.0284842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023] Open
Abstract
Cannabis flower odour is an important aspect of product quality as it impacts the sensory experience when administered, which can affect therapeutic outcomes in paediatric patient populations who may reject unpalatable products. However, the cannabis industry has a reputation for having products with inconsistent odour descriptions and misattributed strain names due to the costly and laborious nature of sensory testing. Herein, we evaluate the potential of using odour vector modelling for predicting the odour intensity of cannabis products. Odour vector modelling is proposed as a process for transforming routinely produced volatile profiles into odour intensity (OI) profiles which are hypothesised to be more informative to the overall product odour (sensory descriptor; SD). However, the calculation of OI requires compound odour detection thresholds (ODT), which are not available for many of the compounds present in natural volatile profiles. Accordingly, to apply the odour vector modelling process to cannabis, a QSPR statistical model was first produced to predict ODT from physicochemical properties. The model presented herein was produced by polynomial regression with 10-fold cross-validation from 1,274 median ODT values to produce a model with R2 = 0.6892 and a 10-fold R2 = 0.6484. This model was then applied to terpenes which lacked experimentally determined ODT values to facilitate vector modelling of cannabis OI profiles. Logistic regression and k-means unsupervised cluster analysis was applied to both the raw terpene data and the transformed OI profiles to predict the SD of 265 cannabis samples and the accuracy of the predictions across the two datasets was compared. Out of the 13 SD categories modelled, OI profiles performed equally well or better than the volatile profiles for 11 of the SD, and across all SD the OI data was on average 21.9% more accurate (p = 0.031). The work herein is the first example of the application of odour vector modelling to complex volatile profiles of natural products and demonstrates the utility of OI profiles for the prediction of cannabis odour. These findings advance both the understanding of the odour modelling process which has previously only been applied to simple mixtures, and the cannabis industry which can utilise this process for more accurate prediction of cannabis odour and thereby reduce unpleasant patient experiences.
Collapse
Affiliation(s)
- Kimber Wise
- School of Science, RMIT University, Bundoora, Victoria, Australia
- Nutrifield, Sunshine West, Victoria, Australia
| | - Nicholas Phan
- Faculty of Science, Monash University, Clayton, Victoria, Australia
| | - Jamie Selby-Pham
- School of Science, RMIT University, Bundoora, Victoria, Australia
- Nutrifield, Sunshine West, Victoria, Australia
| | - Tomer Simovich
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
- PerkinElmer Inc., Glen Waverley, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
28
|
Niessen J, López Mármol Á, Ismail R, Schiele JT, Rau K, Wahl A, Sauer K, Heinzerling O, Breitkreutz J, Koziolek M. Application of biorelevant in vitro assays for the assessment and optimization of ASD-based formulations for pediatric patients. Eur J Pharm Biopharm 2023; 185:13-27. [PMID: 36813089 DOI: 10.1016/j.ejpb.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Amorphous solid dispersions (ASD) have been a successful formulation strategy to overcome the poor aqueous solubility of many novel drugs, but the development of pediatric formulations presents a special challenge due to variable gastrointestinal conditions in children. It was the aim of this work to design and apply a staged biopharmaceutical test protocol for the in vitro assessment of ASD-based pediatric formulations. Ritonavir was used as a model drug with poor aqueous solubility. Based on the commercial ASD powder formulation, a mini-tablet and a conventional tablet formulation were prepared. Drug release from the three formulations was studied in different biorelevant in vitro assays (i.e. MicroDiss, two-stage, transfer model, tiny-TIM) to consider different aspects of human GI physiology. Data from the two-stage and transfer model tests indicated that by controlled disintegration and dissolution excessive primary precipitation can be prevented. However, this advantage of the mini-tablet and tablet formulation did not translate into better performance in tiny-TIM. Here, the in vitro bioaccessibility was comparable for all three formulations. In the future, the staged biopharmaceutical action plan established herein will support the development of ASD-based pediatric formulations by improving the mechanistic understanding so that formulations are developed for which drug release is robust against variable physiological conditions.
Collapse
Affiliation(s)
- Janis Niessen
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Álvaro López Mármol
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Ruba Ismail
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Julia T Schiele
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Karola Rau
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Andrea Wahl
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Kerstin Sauer
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Oliver Heinzerling
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Germany
| | - Mirko Koziolek
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany.
| |
Collapse
|
29
|
Golhen K, Buettcher M, Kost J, Huwyler J, Pfister M. Meeting Challenges of Pediatric Drug Delivery: The Potential of Orally Fast Disintegrating Tablets for Infants and Children. Pharmaceutics 2023; 15:pharmaceutics15041033. [PMID: 37111519 PMCID: PMC10143173 DOI: 10.3390/pharmaceutics15041033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
A majority of therapeutics are not available as suitable dosage forms for administration to pediatric patients. The first part of this review provides an overview of clinical and technological challenges and opportunities in the development of child-friendly dosage forms such as taste masking, tablet size, flexibility of dose administration, excipient safety and acceptability. In this context, developmental pharmacology, rapid onset of action in pediatric emergency situations, regulatory and socioeconomic aspects are also reviewed and illustrated with clinical case studies. The second part of this work discusses the example of Orally Dispersible Tablets (ODTs) as a child-friendly drug delivery strategy. Inorganic particulate drug carriers can thereby be used as multifunctional excipients offering a potential solution to address unique medical needs in infants and children while maintaining a favorable excipient safety and acceptability profile in these vulnerable patient populations.
Collapse
Affiliation(s)
- Klervi Golhen
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland
| | - Michael Buettcher
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland
- Paediatric Infectious Diseases Unit, Paediatric Department, Children's Hospital Lucerne, Cantonal Hospital Lucerne, 6000 Luzern, Switzerland
- Faculty of Health Science and Medicine, University Lucerne, 6002 Lucerne, Switzerland
| | - Jonas Kost
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Marc Pfister
- Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
30
|
Bashir S, Fitaihi R, Abdelhakim HE. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur J Pharm Sci 2023; 182:106374. [PMID: 36623699 DOI: 10.1016/j.ejps.2023.106374] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
Therapeutic proteins and peptides (TPPs) are increasingly favoured above small drug molecules due to their high specificity to the site of action and reduced adverse effects resulting in increased use of these agents for medical treatments and therapies. Consequently, there is a need to formulate TPPs in dosage forms that are accessible and suitable for a wide range of patient groups as the use of TPPs becomes increasingly prevalent in healthcare settings worldwide. Orally disintegrating dosage forms (ODDF) are formulations that can ensure easy-to-administer medication to a wider patient population including paediatrics, geriatrics and people in low-resource countries. There are many challenges involved in developing suitable pharmaceutical strategies to protect TPPs during formulation and manufacturing, as well as storage, and maintenance of a cold-chain during transportation. This review will discuss advances being made in the research and development of pharmaceutical and manufacturing strategies used to incorporate various TPPs into ODDF systems.
Collapse
Affiliation(s)
- Shazia Bashir
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Rawan Fitaihi
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Department of Pharmaceutics, College of pharmacy, King Saud University, Riyadh, KSA
| | - Hend E Abdelhakim
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
31
|
Commey K, Nakatake A, Enaka A, Nishi K, Tsukigawa K, Yamaguchi K, Ikeda H, Iohara D, Hirayama F, Otagiri M, Yamasaki K. Study of the inclusion complexes formed between 4-phenylbutyrate and α-, β- and γ-cyclodextrin in solution and evaluation on their taste-masking properties. J Pharm Pharmacol 2023; 75:236-244. [PMID: 36548517 DOI: 10.1093/jpp/rgac090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES 4-Phenylbutyrate (PB), which is used in the management of urea cycle disorders, has an unpleasant taste leading to poor patient compliance. Existing PB formulations though helpful, have some limitations in their use. This study reports on attempts to mask this unpleasant taste by complexing PB with cyclodextrins (CDs) to improve patient compliance. METHODS α, β and γCD were used as CDs. Phase solubility studies, circular dichroism, 1H-NMR spectroscopy, including ROESY, and molecular modelling were used to investigate and characterize the PB-CD interactions in solution. The taste-masking effect of the CDs was evaluated using in vitro taste sensor measurements. KEY FINDINGS PB interacts with α, β and γCD in solution to form 1:1, 1:1 and 1:2 CD: PB inclusion complexes, respectively, with stability constants in the order αCD > βCD > γCD. Taste evaluation revealed that the CDs significantly mask the taste of PB through the formation of the inclusion complexes. Notably, αCD masked the bitter taste of PB to 30% of the initial taste at a 1:1 molar ratio. CONCLUSION αCD significantly masks the unpleasant taste of PB in solution and can be used to formulate PB to address the limitations of existing formulations and improve patient compliance and quality of life.
Collapse
Affiliation(s)
- Kindness Commey
- Faculty of Pharmaceutical Sciences, Sojo University, Nishi-ku, Kumamoto, Japan
| | - Akari Nakatake
- Faculty of Pharmaceutical Sciences, Sojo University, Nishi-ku, Kumamoto, Japan
| | - Airi Enaka
- Faculty of Pharmaceutical Sciences, Sojo University, Nishi-ku, Kumamoto, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, Nishi-ku, Kumamoto, Japan.,DDS Research Institute, Sojo University, Nishi-ku, Kumamoto, Japan
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, Nishi-ku, Kumamoto, Japan.,DDS Research Institute, Sojo University, Nishi-ku, Kumamoto, Japan
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Nishi-ku, Kumamoto, Japan.,DDS Research Institute, Sojo University, Nishi-ku, Kumamoto, Japan
| | - Hirohito Ikeda
- Faculty of Pharmaceutical Sciences, Fukuoka University, Jonan-ku, Fukuoka, Japan
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, Nishi-ku, Kumamoto, Japan.,DDS Research Institute, Sojo University, Nishi-ku, Kumamoto, Japan
| | - Fumitoshi Hirayama
- Faculty of Pharmaceutical Sciences, Sojo University, Nishi-ku, Kumamoto, Japan.,DDS Research Institute, Sojo University, Nishi-ku, Kumamoto, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Nishi-ku, Kumamoto, Japan.,DDS Research Institute, Sojo University, Nishi-ku, Kumamoto, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, Nishi-ku, Kumamoto, Japan.,DDS Research Institute, Sojo University, Nishi-ku, Kumamoto, Japan
| |
Collapse
|
32
|
Cavelier M, Gondé H, Costa D, Lamoureux F, Pereira T, Buchbinder N, Varin R, Hervouët C. Development of an Oral Liquid Formulation of Nicardipine Hydrochloride Compounded with Simple Excipients for the Treatment of Pediatric Hypertension. Pharmaceutics 2023; 15:pharmaceutics15020446. [PMID: 36839767 PMCID: PMC9963445 DOI: 10.3390/pharmaceutics15020446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Nicardipine hydrochloride is an anti-hypertensive drug that is used off-label to treat hypertension in children. A previous oral formulation of nicardipine hydrochloride was developed using a commercial vehicle as an excipient. However, ready-to-use vehicles are prone to supply shortages, and their composition may undergo substantial modifications. The aim of this study was to propose a new oral formulation of nicardipine hydrochloride 2 mg/mL using simple excipients. The formulation included hydroxypropylmethylcellulose, simple syrup, polysorbate 80, sodium saccharin, citrate buffer, strawberry flavor and 0.2% potassium sorbate. The uniformity of content was maintained before and after agitation. Nicardipine hydrochloride concentration assessed by HPLC-MS/MS remained above 90% for 365 days before opening and for 28 days after opening. pH and osmolality were maintained throughout the study, and no microbial contamination was observed. The uniformity of mass of the delivered doses was evaluated using four different devices. A new oral formulation of nicardipine hydrochloride 2 mg/mL was developed using simple and safe excipients. Pharmacological and clinical parameters remain to be assessed and compared with those of the previous formulation.
Collapse
Affiliation(s)
- Marine Cavelier
- CHU Rouen, Department of Pharmacy, F-76000 Rouen, France
- Correspondence:
| | - Henri Gondé
- CHU Rouen, Department of Pharmacy, Normandie University, UNIROUEN, U1234, F-76000 Rouen, France
| | - Damien Costa
- CHU Rouen, Department of Parasitology-Mycology, Normandie University, UNIROUEN, EA7510 ESCAPE, F-76000 Rouen, France
| | | | - Tony Pereira
- CHU Rouen, Department of Pharmacology, F-76000 Rouen, France
| | - Nimrod Buchbinder
- CHU Rouen, Department of Pediatric Oncology and Hematology, F-76000 Rouen, France
| | - Rémi Varin
- CHU Rouen, Department of Pharmacy, Normandie University, UNIROUEN, U1234, F-76000 Rouen, France
| | | |
Collapse
|
33
|
Korelc K, Larsen BS, Gašperlin M, Tho I. Water-soluble chitosan eases development of mucoadhesive buccal films and wafers for children. Int J Pharm 2023; 631:122544. [PMID: 36572261 DOI: 10.1016/j.ijpharm.2022.122544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Oromucosal films and wafers are user-friendly solid dosage forms offering easy and convenient administration, as well as rapid or controlled drug delivery. The aim of this study was to develop prednisolone containing child-friendly chitosan-based mucoadhesive films and wafers with a prolonged residence time on the buccal mucosa. Four different chitosan types (different molecular weights, degree of deacetylation (DDA), pattern of deacetylation) were studied for films prepared by solvent-cast-evaporation and wafers by freeze-drying. Mucoadhesive properties correlated with swelling abilities and were dependent on the chitosan type, the solvent, and the preparation method. Mucoadhesive forces were higher for formulations containing chitosan with higher DDA and for wafers compared to films. The drug release was relatively fast, especially for films (approx. 90 % in 15 minutes) and steadier for wafers (90 % in 45-120 minutes). Permeability was evaluated using artificial membranes and HT29-MTX cell-monolayers. The developed formulations exhibited good biocompatibility. Organoleptic properties can be improved by choosing a homogenously deacetylated chitosan type that provides a more neutral pH. Using hydroxypropyl-beta-cyclodextrin-complexation for taste masking of bitter drugs also reduced wafers' drug release rate. Mucoadhesive wafers are promising alternatives to films with a slower drug release rate and stronger mucoadhesion.
Collapse
Affiliation(s)
- Karin Korelc
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, 0316 Oslo, Norway.
| | - Bjarke Strøm Larsen
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, 0316 Oslo, Norway
| | - Mirjana Gašperlin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Ingunn Tho
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
34
|
Formulation development and optimization of taste-masked azithromycin oral suspension with ion exchange resins: Bioanalytical method development and validation, in vivo bioequivalence study, and in-silico PBPK modeling for the paediatric population. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Chen Y, Liu Y, Wu C, Pan X, Peng T. Dry Suspension Containing Coated Pellets with pH-Dependent Drug Release Behavior for the Taste-masking of Azithromycin. AAPS PharmSciTech 2022; 24:21. [DOI: 10.1208/s12249-022-02484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
|
36
|
Mogensen AKB, Christiansen H, De Bruin ML, Hallgreen CE. New Information on Old Medicinal Products: A Cross-Sectional Analysis of Guidance for Paediatric Use for Substances on the European Priority List of Off-Patent Medicinal Products. Paediatr Drugs 2022; 24:679-687. [PMID: 35962257 DOI: 10.1007/s40272-022-00530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND As part of the European Paediatric Regulation, the European Medicines Agency (former European Medicines Evaluation Agency) and the Paediatric Working Party (precursor for the Paediatric Committee) revised a priority list for studies on off-patent medicinal products in 2007 where a need for studies on paediatric medicinal products was emphasised. OBJECTIVES We aimed to evaluate the status of guidance for paediatric use in the Summary of Product Characteristics for medicinal products on the priority list as well as the presence and status of Paediatric Investigation Plans for these medicinal products. METHODS We included active pharmaceutical ingredients on the priority list authorised through the centralised procedure and/or marketed in Denmark. The status of guidance for paediatric use (indication, posology and/or contraindication) was reviewed from the most recent Summary of Product Characteristics uploaded on the European Medicines Agency or the Danish Medicines Agency website as of November 2020. Information on Paediatric Investigation Plans status (Paediatric Committee opinion, completion and waivers granted) was retrieved from the European Medicines Agency website. RESULTS A total of 121 active pharmaceutical ingredients were included in this study. Seventy-one percent had guidance for paediatric use in the Summary of Product Characteristics for at least one paediatric subpopulation, more often concerning adolescents (70%) and children (70%) as compared with neonates (41%) and infants (49%). The guidance included a paediatric indication in 46% of the cases, but less often a contraindication (13%). Thirty-three active pharmaceutical ingredients had an agreed Paediatric Investigation Plan, six of these were completed. CONCLUSIONS Most active pharmaceutical ingredients from the priority list had guidance for paediatric use in the Summary of Product Characteristics. However, there is still an unmet need in relation to guidance for use for the youngest paediatric subpopulation.
Collapse
Affiliation(s)
- Ann-Katrine Birkelund Mogensen
- Copenhagen Centre for Regulatory Science, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Christiansen
- Copenhagen Centre for Regulatory Science, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Louise De Bruin
- Copenhagen Centre for Regulatory Science, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Christine Erikstrup Hallgreen
- Copenhagen Centre for Regulatory Science, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Ogbonna JDN, Cunha E, Attama AA, Ofokansi KC, Ferreira H, Pinto S, Gomes J, Marx ÍMG, Peres AM, Lobo JMS, Almeida IF. Overcoming Challenges in Pediatric Formulation with a Patient-Centric Design Approach: A Proof-of-Concept Study on the Design of an Oral Solution of a Bitter Drug. Pharmaceuticals (Basel) 2022; 15:1331. [PMID: 36355503 PMCID: PMC9694284 DOI: 10.3390/ph15111331] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 09/16/2023] Open
Abstract
Designing oral formulations for children is very challenging, especially considering their peculiarities and preferences. The choice of excipients, dosing volume and palatability are key issues of pediatric oral liquid medicines. The purpose of the present study is to develop an oral pediatric solution of a model bitter drug (ranitidine) following a patient centric design process which includes the definition of a target product profile (TPP). To conclude on the matching of the developed solution to TPP, its chemical and microbiological stability was analyzed over 30 days (stored at 4 °C and room temperature). Simulation of use was accomplished by removing a sample with a syringe every day. Taste masking was assessed by an electronic tongue. The developed formulation relied on a simple taste masking strategy consisting in a mixture of sweeteners (sodium saccharine and aspartame) and 0.1% sodium chloride, which allowed a higher bitterness masking effectiveness in comparison with simple syrup. The ranitidine solution was stable for 30 days stored at 4 °C. However, differences were noted between the stability protocols (unopened recipient and in-use stability) showing the contribution of the simulation of use to the formation of degradation products. Stock solution was subjected to acid and alkali hydrolysis, chemical oxidation, heat degradation and a photo degradation stability assessment. The developed pediatric solution matched the TPP in all dimensions, namely composition suitable for children, preparation and handling adapted to hospital pharmaceutical compounding and adequate stability and quality. According to the results, in-use stability protocols should be preferred in the stability evaluation of pediatric formulations.
Collapse
Affiliation(s)
- John Dike N. Ogbonna
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka 410001, Nigeria
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Edite Cunha
- Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Anthony A. Attama
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka 410001, Nigeria
| | - Kenneth C. Ofokansi
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, University of Nigeria, Nsukka 410001, Nigeria
| | - Helena Ferreira
- UCIBIO, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Susana Pinto
- Pharmacy Department, Portuguese Oncology Institute of Porto—IPO Porto, 4200-072 Porto, Portugal
| | - Joana Gomes
- Pharmacy Department, Portuguese Oncology Institute of Porto—IPO Porto, 4200-072 Porto, Portugal
| | - Ítala M. G. Marx
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - António M. Peres
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Manuel Sousa Lobo
- UCIBIO, REQUIMTE, Med Tech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Isabel F. Almeida
- UCIBIO, REQUIMTE, Med Tech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
38
|
Pokharkar V, Sajith M, Vallet T, Akshantal S, Shah R, Ruiz F, Salunke S. Acceptability of different oral dosage forms in paediatric patients in hospital setting. Arch Dis Child 2022; 107:796-801. [PMID: 34799375 DOI: 10.1136/archdischild-2021-322604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/31/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The understanding of acceptability of existing dosage forms is limited in most of the world and hinders the development of acceptable, age-appropriate medicines. The attributes of paediatric medicine acceptability may differ from country to country based on culture, healthcare infrastructure and health policies. This study was designed to map the acceptability of oral medicines in paediatric patients treated in hospital in India. METHODS An observational, cross-sectional study was conducted in patients aged below 18 years and taking any form of oral medication. Acceptability scores were obtained using CAST-ClinSearch Acceptability Score Test tool. FINDINGS 490 patients were recruited and 193 evaluations of different pharmaceutical products available in 20 dosage forms and 7 routes of administration were studied. Oral liquids (50%) and tablets (35%) were the most commonly prescribed and administered forms. Regardless of the therapeutic class and age, the oral liquids were 'positively accepted' in infants and toddlers. Acceptability of tablets improved with age and appeared to be generally good from the age of 6. CONCLUSION This study indicates the limited progress towards adoption of age-appropriate dosage forms in India and thus impact on the acceptability of existing oral dosage forms. The key challenges posed by the adoption of age-appropriate formulations in India are (1) awareness of importance of appropriate administration and acceptability of medicines to children in India, (2) availability of age-appropriate dosage forms and (3) lack of child-appropriate medicine policies.
Collapse
Affiliation(s)
- Varsha Pokharkar
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University Poona College of Pharmacy, Pune, India
| | - Manjusha Sajith
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University Poona College of Pharmacy, Pune, India
| | | | - Shruti Akshantal
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University Poona College of Pharmacy, Pune, India
| | - Rathin Shah
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University Poona College of Pharmacy, Pune, India
| | | | - Smita Salunke
- School of Pharmacy, University College London, London, UK
| |
Collapse
|
39
|
Orodispersible films — Pharmaceutical development for improved performance: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
40
|
Cornilă A, Iurian S, Tomuță I, Porfire A. Orally Dispersible Dosage Forms for Paediatric Use: Current Knowledge and Development of Nanostructure-Based Formulations. Pharmaceutics 2022; 14:pharmaceutics14081621. [PMID: 36015247 PMCID: PMC9414456 DOI: 10.3390/pharmaceutics14081621] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
The paediatric population has always suffered from a lack of medicines tailored to their needs, especially in terms of accurate dosage, stability and acceptability. Orodispersible dosage forms have gone through a resurrection as an alternative to liquid formulations or fractioned solid formulations, although they are still subject to several inconveniences, among which the unpleasant taste and the low oral bioavailability of the API are the most significant hurdles in the way of achieving an optimal drug product. Nanostructures can address these inconveniences through their size and variety, owing to the plethora of materials that can be used in their manufacturing. Through the formation and functionalisation of nanostructures, followed by their inclusion in orodispersible dosage forms, safe, stable and acceptable medicines intended for paediatric use can be developed.
Collapse
|
41
|
Yu J, Xie J, Xie H, Hu Q, Wu Z, Cai X, Guo Z, Lin J, Han L, Zhang D. Strategies for Taste Masking of Orodispersible Dosage Forms: Time, Concentration, and Perception. Mol Pharm 2022; 19:3007-3025. [PMID: 35848076 DOI: 10.1021/acs.molpharmaceut.2c00199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Orodispersible dosage forms, characterized as quick dissolving and swallowing without water, have recently gained great attention from the pharmaceutical industry, as these forms can satisfy the needs of children, the elderly, and patients suffering from mental illnesses. However, poor taste by thorough exposure of the drugs' dissolution in the oral cavity hinders the effectiveness of the orodispersible dosage forms. To bridge this gap, we put forward three taste-masking strategies with respect to the intensity of time, concentration, and perception. We further investigated the raw material processing, the composition of auxiliary material, formulation techniques, and process control in each strategy and drew conclusions about their effects on taste masking.
Collapse
Affiliation(s)
- Ji Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huijuan Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Qi Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Xinfu Cai
- Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou 611930, PR China
| | - Zhiping Guo
- Sichuan Houde Pharmaceutical Technology Co., Ltd., Chengdu 610041, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| |
Collapse
|
42
|
Marques MS, Lima LA, Poletto F, Contri RV, Kulkamp Guerreiro IC. Nanotechnology for the treatment of paediatric diseases: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Development of a Hospital Compounded, Taste-Masked, Temozolomide Oral Suspension and 5-Year Real-Life Experience in Treating Paediatric Patients. Pharmaceuticals (Basel) 2022; 15:ph15050555. [PMID: 35631381 PMCID: PMC9146721 DOI: 10.3390/ph15050555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The development of oral pediatric forms by pharmaceutical companies is still insufficient. In fact, many drugs used in paediatric oncology, such as temozolomide, are not labeled and adapted for paediatric use. Temozolomide (TMZ) is an alkylating agent used as the standard of care for many adult and pediatric brain tumours, such as neuroblastoma, glioblastoma and medulloblastoma. The present study was carried out to propose a suitable and palatable formulation of the oral liquid preparation of TMZ. The suspension is composed of TMZ suspended in SyrSpend SF pH 4, as well as TMZ crystallization stabilizing agents and sweetening agents. To reach this formulation, several taste-masking agents were evaluated. Here, we describe the method of preparation of the formation as well as the monocentric population treated with the formulation over a 5–year period. A 20 mg/mL TMZ suspension was developed. TMZ suspension is stable for 6 weeks, stored between 2 and 8 degrees, protected from light, and compatible with nasogastric tubes. Thirty-eight patients participated in the palatability study and choose cola flavour, and 104 patients were treated in Gustave Roussy with the developed suspension; no unexpected event was reported. To conclude, we propose here a new TMZ liquid formulation which is stable for at least 6 weeks and well-tolerated with extensive feedback.
Collapse
|
44
|
Lopalco A, Manni A, Keeley A, Haider S, Li W, Lopedota A, Altomare CD, Denora N, Tuleu C. In Vivo Investigation of (2-Hydroxypropyl)-β-cyclodextrin-Based Formulation of Spironolactone in Aqueous Solution for Paediatric Use. Pharmaceutics 2022; 14:pharmaceutics14040780. [PMID: 35456614 PMCID: PMC9029429 DOI: 10.3390/pharmaceutics14040780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Spironolactone (SPL), a potent anti-aldosterone steroidal drug used to treat several diseases in paediatric patients (e.g., hypertension, primary aldosteronism, Bartter’s syndrome, and congestive heart failure), is not available in child-friendly dosage forms, and spironolactone liquids have been reported to be unpalatable. Aiming to enhance SPL solubility in aqueous solution and overcome palatability, herein, the effects of (2-hydroxypropyl)-β-cyclodextrin (HP-β-CyD) were thoroughly investigated on solubilisation in water and on masking the unpleasant taste of SPL in vivo. Although the complexation of SPL with HP-β-CyD was demonstrated through phase solubility studies, Job’s plot, NMR and computational docking studies, our in vivo tests did not show significant effects on taste aversion. Our findings, on the one hand, suggest that the formation of an inclusion complex of SPL with HP-β-CyD itself is not necessarily a good indicator for an acceptable degree of palatability, whereas, on the other hand, they constitute the basis for investigating other cyclodextrin-based formulations of the poorly water-soluble steroidal drug, including solid dosage forms, such as spray-dried powders and orodispersible tablets.
Collapse
Affiliation(s)
- Antonio Lopalco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.L.); (C.D.A.)
| | - Annachiara Manni
- School of Pharmacy, University College of London, 29/39 Brunswick Square, London WC1N 1AX, UK; (A.M.); (A.K.); (S.H.); (C.T.)
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/A, 43124 Parma, Italy
| | - Alexander Keeley
- School of Pharmacy, University College of London, 29/39 Brunswick Square, London WC1N 1AX, UK; (A.M.); (A.K.); (S.H.); (C.T.)
| | - Shozeb Haider
- School of Pharmacy, University College of London, 29/39 Brunswick Square, London WC1N 1AX, UK; (A.M.); (A.K.); (S.H.); (C.T.)
| | - Wenliang Li
- Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
- Cranfield Water Science Institute, School of Water, Environment and Energy, Cranfield University, Cranfield MK43 0AL, UK
| | - Angela Lopedota
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.L.); (C.D.A.)
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.L.); (C.D.A.)
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.L.); (C.D.A.)
- Correspondence: ; Tel.: +39-080-544-2767
| | - Catherine Tuleu
- School of Pharmacy, University College of London, 29/39 Brunswick Square, London WC1N 1AX, UK; (A.M.); (A.K.); (S.H.); (C.T.)
| |
Collapse
|
45
|
Saito J, Agrawal A, Patravale V, Pandya A, Orubu S, Zhao M, Andrews GP, Petit-Turcotte C, Landry H, Croker A, Nakamura H, Yamatani A, Salunke S. The Current States, Challenges, Ongoing Efforts, and Future Perspectives of Pharmaceutical Excipients in Pediatric Patients in Each Country and Region. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040453. [PMID: 35455497 PMCID: PMC9026161 DOI: 10.3390/children9040453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
A major hurdle in pediatric formulation development is the lack of safety and toxicity data on some of the commonly used excipients. While the maximum oral safe dose for several kinds of excipients is known in the adult population, the doses in pediatric patients, including preterm neonates, are not established yet due to the lack of evidence-based data. This paper consists of four parts: (1) country-specific perspectives in different parts of the world (current state, challenges in excipients, and ongoing efforts) for ensuring the use of safe excipients, (2) comparing and contrasting the country-specific perspectives, (3) past and ongoing collaborative efforts, and (4) future perspectives on excipients for pediatric formulation. The regulatory process for pharmaceutical excipients has been developed. However, there are gaps between each region where a lack of information and an insufficient regulation process was found. Ongoing efforts include raising issues on excipient exposure, building a region-specific database, and improving excipient regulation; however, there is a lack of evidence-based information on safety for the pediatric population. More progress on clear safety limits, quantitative information on excipients of concern in the pediatric population, and international harmonization of excipients’ regulatory processes for the pediatric population are required.
Collapse
Affiliation(s)
- Jumpei Saito
- Department of Pharmacy, National Center for Child Health and Development, Okura 2-10-1, Setagaya-ku, Tokyo 157-8535, Japan;
- Correspondence: ; Tel.: +81-3-3416-0181
| | - Anjali Agrawal
- Drug Product Development, Bristol Myers Squibb, 181 Passaic Avenue, Summit, NJ 07901, USA;
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India; (V.P.); (A.P.)
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India; (V.P.); (A.P.)
| | - Samuel Orubu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA;
- Department of Pharmaceutics and Pharmaceutical Technology, Niger Delta University, Amassama 560103, Nigeria
| | - Min Zhao
- Medical Biology Centre, School of Pharmacy, China Medical University-Queen’s University Belfast Joint College (CQC), Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (G.P.A.)
| | - Gavin P. Andrews
- Medical Biology Centre, School of Pharmacy, China Medical University-Queen’s University Belfast Joint College (CQC), Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (M.Z.); (G.P.A.)
| | - Caroline Petit-Turcotte
- Therapeutic Products Directorate, Health Canada, Government of Canada, Ottawa, ON K1A 0K9, Canada;
| | - Hannah Landry
- Office of Pediatrics and Patient Involvement, Health Canada, Government of Canada, Ottawa, ON K1A 0K9, Canada; (H.L.); (A.C.)
| | - Alysha Croker
- Office of Pediatrics and Patient Involvement, Health Canada, Government of Canada, Ottawa, ON K1A 0K9, Canada; (H.L.); (A.C.)
| | - Hidefumi Nakamura
- Department of Research and Development Supervision, National Center for Child Health and Development, Tokyo 157-8535, Japan;
| | - Akimasa Yamatani
- Department of Pharmacy, National Center for Child Health and Development, Okura 2-10-1, Setagaya-ku, Tokyo 157-8535, Japan;
| | - Smita Salunke
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK;
| |
Collapse
|
46
|
Abstract
Taste is the most crucial organoleptic parameter affecting patient compliance in the case of drugs with poor palatability. Taste masking is a major challenge for the development of orally ingested active pharmaceutical constituents in the pharmaceutical industry. Numerous conventional taste-masking techniques have been extensively studied. In parallel, affecting the drug solubility or release is a major concern of conventional taste-masking techniques. Recently, many nanocarrier systems have been introduced, claiming the advantage of effective taste masking without affecting either the drug solubility or its release. In this review, we will present new techniques for taste masking, including taste-masking techniques utilizing nanocarrier systems such as liposomes, polymeric and solid lipid nanoparticles, polymeric micelles, submicron lipid emulsions, and nanogels. We will chiefly highlight the composition of these systems and their applications in designing oral therapeutic delivery systems successful in masking the taste of bitter molecules.
Collapse
|
47
|
Walsh J, Masini T, Huttner BD, Moja L, Penazzato M, Cappello B. Assessing the Appropriateness of Formulations on the WHO Model List of Essential Medicines for Children: Development of a Paediatric Quality Target Product Profile Tool. Pharmaceutics 2022; 14:473. [PMID: 35335850 PMCID: PMC8950931 DOI: 10.3390/pharmaceutics14030473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
The World Health Organization's Model List of Essential Medicines for Children (EMLc) presents a list of the most efficacious, safe, and cost-effective medicines for priority conditions, intended for use in children up to 12 years of age. However, gaps in global availability and use of age-appropriate formulations of medicines for children still exist. To address these shortcomings, a comprehensive analysis of the appropriateness of formulations of essential medicines for children is being undertaken through the Global Accelerator for Paediatric Formulations (GAP-f) network, a WHO network launched in 2020 to respond to the paediatric treatment gap. This article describes the development and application of a paediatric Quality Target Product Profile (pQTPP) tool by WHO, to retrospectively evaluate the paediatric age-appropriateness of formulations on the EMLc and identify potential formulation gaps, to inform the review of the EMLc in 2023. A combination of paediatric-centric and global health-focused attributes and targets were defined, taking into consideration regulatory agency paediatric development guidelines and literature sources, and a qualitative scoring system was developed and tested. Example evaluations of paracetamol and clofazimine are provided, illustrating the tool's use. The assessment of EMLc formulations is ongoing and shortcomings and gaps in EMLc formulations have already been identified. The pQTTP tool may also be applied to national lists and prospectively when designing new paediatric formulations.
Collapse
Affiliation(s)
- Jennifer Walsh
- Jenny Walsh Consulting Ltd., BioCity Nottingham, Nottingham NG1 1GF, UK
| | | | - Benedikt D. Huttner
- WHO Department of Health Products, Policy and Standards, World Health Organization, 1211 Geneva, Switzerland; (B.D.H.); (L.M.); (B.C.)
| | - Lorenzo Moja
- WHO Department of Health Products, Policy and Standards, World Health Organization, 1211 Geneva, Switzerland; (B.D.H.); (L.M.); (B.C.)
| | - Martina Penazzato
- WHO Research for Health Department, World Health Organization, 1211 Geneva, Switzerland;
| | - Bernadette Cappello
- WHO Department of Health Products, Policy and Standards, World Health Organization, 1211 Geneva, Switzerland; (B.D.H.); (L.M.); (B.C.)
| |
Collapse
|
48
|
Evaluating the Taste Masking Ability of Two Novel Dispersible Tablet Platforms Containing Zinc Sulfate and Paracetamol Reconstituted in a Breast Milk Substitute. Pharmaceutics 2022; 14:pharmaceutics14020420. [PMID: 35214152 PMCID: PMC8878340 DOI: 10.3390/pharmaceutics14020420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Milk is often used as a dispersion medium for medicines administration in young children but its taste-masking ability is unknown. A human taste panel was conducted to assess the potential of infant formula milk (Aptamil® 1) to mask the taste of two model WHO priority medicines, zinc sulfate and paracetamol, manufactured as dispersible tablets. Simultaneously, the palatability of powder blends of the tablet platforms was assessed. Twenty healthy adult volunteers performed a swirl-and-spit assessment of placebos and API-containing blends in either a lactose-based or a mannitol-based dispersible tablet platform, reconstituted in 10 mL of either water or Aptamil® 1. Eighteen samples were rated for aversion using a 100-mm Visual Analogue Scale, grittiness using a 5-point Likert scale, and “acceptability-as-a-medicine” evaluated as: “Would you find this sample acceptable to swallow as a medicine?” with binary answers of Yes/No. The API-containing formulations were more aversive than the placebos; the paracetamol-containing samples being more aversive than zinc sulfate samples. The platforms themselves were not aversive. Non-gritty samples had four-fold greater odds of being acceptable as a medicine. Aptamil® 1 masked the taste of zinc sulfate in the mannitol-based formulation but did not mask the taste of paracetamol in either platform, suggesting a limited taste-masking ability, which may be API and formulation dependent.
Collapse
|
49
|
Zhang W, Li G, Xiao C, Chang X, Sun Y, Fan W, Tian B, Gao D, Xiao Y, Wu X, He S, Zhai G. Mesoporous Silica Carrier-Based Composites for Taste-Masking of Bitter Drug: Fabrication and Palatability Evaluation. AAPS PharmSciTech 2022; 23:75. [PMID: 35169970 DOI: 10.1208/s12249-022-02227-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Palatability is one of the most critical characteristics of oral preparations. Therefore, the exploration of new techniques to mask the aversive taste of drugs is in continuous demand. In this study, we fabricated and characterized composites based on mesoporous silica (MPS) that consisted of MPS, a bitter drug, and release regulators. We conducted a palatability evaluation to assess the taste-masking efficacy of the composites. The composites were prepared using the dry impregnation method combined with hot-melt extrusion. Morphology and components distribution in composites were characterized by scanning electron microscopy, confocal laser scanning microscopy, X-ray photoelectron spectroscopy, powder flow properties evaluation, and nitrogen-sorption measurement. The results demonstrated that drugs mainly existed in the inner pore of composites, and release regulators existed in the inner pore and covered the composites' surface. Interactions among the composite components were studied using powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The drug loaded into the composites was amorphous, and an intermolecular interaction occurred between the drug and the MPS. Taste-masked composites significantly reduced drug release levels under mouth conditions; thus, they prevented the interaction of the dissolved drug with taste receptors and improved palatability. An electronic tongue evaluation and a human taste panel assessment confirmed the better palatability of taste-masked composites. Moreover, the desired drug release behavior can be adjusted by choosing an appropriate release regulator, with stronger hydrophobicity of release regulators resulting in slower drug release. This work has provided new insights into taste-masking strategies for drugs with unpleasant tastes.
Collapse
|
50
|
Johannesson J, Hansson P, Bergström CAS, Paulsson M. Manipulations and age-appropriateness of oral medications in pediatric oncology patients in Sweden: Need for personalized dosage forms. Biomed Pharmacother 2022; 146:112576. [PMID: 35062056 DOI: 10.1016/j.biopha.2021.112576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Due to the lack of age-appropriate formulations for children, healthcare professionals and caregivers frequently manipulate dosage forms to facilitate oral administration and obtain the required dose. In this study, we investigated drug manipulation and age-appropriateness of oral medications for pediatric oncology patients with the aim of identifying the therapeutic needs for personalized dosage forms. An observational study at a pediatric oncology ward, combined with analysis of the age-appropriateness of the oral medications, was performed. Nurses frequently manipulated solid dosage forms to administer them via enteral feeding tubes. Of the active pharmaceutical ingredients (APIs) assessed for age-appropriateness, 74% (29 of 39) were identified to need personalization, either because of lack of child-friendly dosage form, suitable dosage strength, or both. Most APIs, due to limited solubility, were sensitive to formulation changes, such as drug manipulation. This study demonstrates problems and therapeutic needs regarding oral dosage forms in treatment of children with cancer. Expertise in formulation design, new manufacturing technologies, and patient-centered information are needed to address age-appropriate formulations for children.
Collapse
Affiliation(s)
- Jenny Johannesson
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | - Paula Hansson
- Department of Women's and Children's Health, Uppsala University, Akademiska sjukhuset, SE-751 85 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | - Mattias Paulsson
- Department of Women's and Children's Health, Uppsala University, Akademiska sjukhuset, SE-751 85 Uppsala, Sweden.
| |
Collapse
|