1
|
He A, Huang Y, Cao C, Li X. Advances in drug delivery systems utilizing blood cells and their membrane-derived microvesicles. Drug Deliv 2024; 31:2425156. [PMID: 39520082 PMCID: PMC11552282 DOI: 10.1080/10717544.2024.2425156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The advancement of drug delivery systems (DDSs) in recent decades has demonstrated significant potential in enhancing the efficacy of pharmacological agents. Despite the approval of certain DDSs for clinical use, challenges such as rapid clearance from circulation, toxic accumulation in the body, and ineffective targeted delivery persist as obstacles to successful clinical application. Blood cell-based DDSs have emerged as a popular strategy for drug administration, offering enhanced biocompatibility, stability, and prolonged circulation. These DDSs are well-suited for systemic drug delivery and have played a crucial role in formulating optimal drug combinations for treating a variety of diseases in both preclinical studies and clinical trials. This review focuses on recent advancements and applications of DDSs utilizing blood cells and their membrane-derived microvesicles. It addresses the current therapeutic applications of blood cell-based DDSs at the organ and tissue levels, highlighting their successful deployment at the cellular level. Furthermore, it explores the mechanisms of cellular uptake of drug delivery vectors at the subcellular level. Additionally, the review discusses the opportunities and challenges associated with these DDSs.
Collapse
Affiliation(s)
- Andong He
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Yuye Huang
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Li S, Wang Y, Liu Q, Tang F, Zhang X, Yang S, Wang Q, Yang Q, Li S, Liu J, Han L, Liao Y, Yin X, Fan J, Feng H. RBC-hitchhiking PLGA nanoparticles loading β-glucan as a delivery system to enhance in vitro and in vivo immune responses in mice. Front Vet Sci 2024; 11:1462518. [PMID: 39351151 PMCID: PMC11439874 DOI: 10.3389/fvets.2024.1462518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Red blood cells (RBCs) naturally trap some bacterial pathogens in the circulation and kill them by oxidative stress. Following neutralization, the bacteria are presented to antigen-presenting cells in the spleen by the RBCs. This ability of RBCs has been harnessed to develop a system where they play a crucial role in enhancing the immune response, offering a novel approach to enhance the body's immunity. In this work, a conjugate, G-OVA, was formed by connecting β-glucan and OVA through a disulfide bond. Poly (lactic-co-glycolic acid) (PLGA) was then employed to encapsulate G-OVA, yielding G-OVA-PLGA. Finally, the nanoparticles were adsorbed onto RBCs to develop G-OVA-PLGA@RBC. The results demonstrated that the delivery of nanoparticles by RBCs enhanced the antibody response to antigens both in vitro and in vivo. The objective of this study was to investigate the increased immune activity of G-OVA-PLGA nanoparticles facilitated by RBCs transportation and to elucidate some of its underlying mechanisms. These findings are anticipated to contribute valuable insights for the development of efficient and safe immune enhancers.
Collapse
Affiliation(s)
- Sheng Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yao Wang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Qianqian Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Feng Tang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xinnan Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shuyao Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Qiran Wang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Qian Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shanshan Li
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jie Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lu Han
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yi Liao
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xuemei Yin
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jing Fan
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Vasvani S, Vasukutty A, Bardhan R, Park IK, Uthaman S. Reactive oxygen species driven prodrug-based nanoscale carriers for transformative therapies. Biomater Sci 2024; 12:4335-4353. [PMID: 39041781 DOI: 10.1039/d4bm00647j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Reactive oxygen species (ROS) drive processes in various pathological conditions serving as an attractive target for therapeutic strategies. This review highlights the development and use of ROS-dependent prodrug-based nanoscale carriers that has transformed many biomedical applications. Incorporating prodrugs into nanoscale carriers not only improves their stability and solubility but also enables site-specific drug delivery ultimately enhancing the therapeutic effectiveness of the nanoscale carriers. We critically examine recent advances in ROS-responsive nanoparticulate platforms, encompassing liposomes, polymeric nanoparticles, and inorganic nanocarriers. These platforms facilitate precise control over drug release upon encountering elevated ROS levels at disease sites, thereby minimizing off-target effects and maximizing therapeutic efficiency. Furthermore, we investigate the potential of combination therapies in which ROS-activated prodrugs are combined with other therapeutic agents and underscore their synergistic potential for treating multifaceted diseases. This comprehensive review highlights the immense potential of ROS-dependent prodrug-based nanoparticulate systems in revolutionizing biomedical applications; such nanoparticulate systems can facilitate selective and controlled drug delivery, reduce toxicity, and improve therapeutic outcomes for ROS-associated diseases.
Collapse
Affiliation(s)
- Shyam Vasvani
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
- DR Cure Inc., Hwasun 58128, Republic of Korea
- Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Saji Uthaman
- Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
4
|
Lee JW, Yoon HY, Ko YJ, Kim EH, Song S, Hue S, Gupta N, Malin D, Kim J, Kong B, Kim S, Kim IS, Kwon IC, Yang Y, Kim SH. Dual-Action Protein-siRNA Conjugates for Targeted Disruption of CD47-Signal Regulatory Protein α Axis in Cancer Therapy. ACS NANO 2024; 18:22298-22315. [PMID: 39117621 DOI: 10.1021/acsnano.4c06471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A series of successes in RNA interference (RNAi) therapies for liver diseases using lipid nanoparticles and N-acetylgalactosamine have heralded a current era of RNA therapeutics. However, alternative delivery strategies are required to take RNAi out of the comfort zone of hepatocytes. Here we report SIRPα IgV/anti-CD47 siRNA (vS-siCD47) conjugates that selectively and persistently disrupt the antiphagocytic CD47/SIRPα axis in solid tumors. Conjugation of the SIRPα IgV domain protein to siRNAs enables tumor dash through CD47-mediated erythrocyte piggyback, primarily blocking the physical interaction between CD47 on cancer cells and SIRPα on phagocytes. After internalization of the vS-siCD47 conjugates within cancer cells, the detached free-standing anti-CD47 siRNAs subsequently attack CD47 through the RNAi mechanism. The dual-action approach of the vS-siCD47 conjugate effectively overcomes the "don't eat me" barrier and stimulates phagocyte-mediated tumor destruction, demonstrating a highly selective and potent CD47-blocking immunotherapy. This delivery strategy, employing IgV domain protein-siRNA conjugates with a dual mode of target suppression, holds promise for expanding RNAi applications beyond hepatocytes and advancing RNAi-based cancer immunotherapies for solid tumors.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Young Ji Ko
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Hye Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sukyung Song
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seungmi Hue
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Nilaksh Gupta
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Dmitry Malin
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Jay Kim
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Byoungjae Kong
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Sehoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
5
|
Hu S, Liang Y, Chen J, Gao X, Zheng Y, Wang L, Jiang J, Zeng M, Luo M. Mechanisms of hydrogel-based microRNA delivery systems and its application strategies in targeting inflammatory diseases. J Tissue Eng 2024; 15:20417314241265897. [PMID: 39092451 PMCID: PMC11292707 DOI: 10.1177/20417314241265897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Hydrogels, composed of three-dimensional polymer networks, are excellent delivery carriers and have been extensively employed in the biomedical field. Inflammation acts as a protective mechanism to prevent harmful substances from entering living organisms, but chronic, long-lasting inflammation can cause oxidative stress, which damages tissue and organs and adversely affects patients' quality of life. The aberrant expression of microRNAs (miRNAs) has been found to play a significant part in the etiology and progression of inflammatory diseases, as suggested by growing evidence. Numerous hydrogels that can act as gene carriers for the intracellular delivery of miRNA have been described during ongoing research into innovative hydrogel materials. MiRNA hydrogel delivery systems, which are loaded with exogenous miRNA inhibitors or mimics, enable targeted miRNA intervention in inflammatory diseases and effectively prevent environmental stressors from degrading or inactivating miRNA. In this review, we summarize the classification of miRNA hydrogel delivery systems, the basic strategies and mechanisms for loading miRNAs into hydrogels, highlight the biomedical applications of miRNA hydrogel delivery systems in inflammatory diseases, and share our viewpoints on potential opportunities and challenges in the promising region of miRNA delivery systems. These findings may provide a new theoretical basis for the prevention and treatment of inflammation-related diseases and lay the foundation for clinical translation.
Collapse
Affiliation(s)
- Shaorun Hu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Liqun Wang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Yu B, Liu Y, Zhang Y, Xu L, Jin K, Sun A, Zhao X, Wang Y, Liu H. An SS31-rapamycin conjugate via RBC hitchhiking for reversing acute kidney injury. Biomaterials 2023; 303:122383. [PMID: 37939640 DOI: 10.1016/j.biomaterials.2023.122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial dysfunction plays a major role in driving acute kidney injury (AKI) via alteration in energy and oxygen supply, which creates further ROS and inflammatory responses. However, mitochondrial targeting medicine in recovering AKI is challenging. Herein, we conjugated SS31, a mitochondria-targeted antioxidant tetrapeptide connecting a cleavable linker to rapamycin (Rapa), which provided specific interaction with FK506-binding protein (FKBP) in the RBCs. Once entering the bloodstream, SS31-Rapa could be directed to the intracellular space of RBCs, allowing the slow diffusion of the conjugate to tissues via the concentration gradient. The new RBC hitchhiking strategy enables the encapsulation of conjugate into RBC via a less traumatic and more natural and permissive manner, resulting in prolonging the t1/2 of SS31 by 6.9 folds. SS31-Rapa underwent the direct cellular uptake, instead of the lysosomal pathway, released SS31 in response to activated caspase-3 stimulation in apoptotic cells, favoring the mitochondrial accumulation of SS31. Combined with autophagy induction associated with Rapa, a single dose of SS31-Rapa can effectively reverse cisplatin and ischemia reperfusion-induced AKI. This work thus highlights a simple and effective RBC hitchhiking strategy and a clinically translatable platform technology to improve the outcome of other mitochondrial dysfunctional related diseases.
Collapse
Affiliation(s)
- Bohong Yu
- Collage of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Yubo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Yingxi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Linyi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Kai Jin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Andi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China
| | - Xiuli Zhao
- Collage of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang, People's Republic of China.
| |
Collapse
|
7
|
Xia D, Li J, Feng L, Gao Z, Liu J, Wang X, Hu Y. Advances in Targeting Drug Biological Carriers for Enhancing Tumor Therapy Efficacy. Macromol Biosci 2023; 23:e2300178. [PMID: 37466216 DOI: 10.1002/mabi.202300178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Chemotherapy drugs continue to be the main component of oncology treatment research and have been proven to be the main treatment modality in tumor therapy. However, the poor delivery efficiency of cancer therapeutic drugs and their potential off-target toxicity significantly limit their effectiveness and extensive application. The recent integration of biological carriers and functional agents is expected to camouflage synthetic biomimetic nanoparticles for targeted delivery. The promising candidates, including but not limited to red blood cells and their membranes, platelets, tumor cell membrane, bacteria, immune cell membrane, and hybrid membrane are typical representatives of biological carriers because of their excellent biocompatibility and biodegradability. Biological carriers are widely used to deliver chemotherapy drugs to improve the effectiveness of drug delivery and therapeutic efficacy in vivo, and tremendous progress is made in this field. This review summarizes recent developments in biological vectors as targeted drug delivery systems based on microenvironmental stimuli-responsive release, thus highlighting the potential applications of target drug biological carriers. The review also discusses the possibility of clinical translation, as well as the exploitation trend of these target drug biological carriers.
Collapse
Affiliation(s)
- Donglin Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Jia Li
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Lingzi Feng
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Ziqing Gao
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Jun Liu
- Department of Laboratory Medicine, Wuxi No. 5 People's Hospital Affiliated Jiangnan University, Wuxi, Jiangsu, 214005, P.R. China
| | - Xiangqian Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, 226361, P.R. China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| |
Collapse
|
8
|
De Castro F, Stefàno E, Fanizzi FP, Di Corato R, Abdalla P, Luchetti F, Nasoni MG, Rinaldi R, Magnani M, Benedetti M, Antonelli A. Compatibility of Nucleobases Containing Pt(II) Complexes with Red Blood Cells for Possible Drug Delivery Applications. Molecules 2023; 28:6760. [PMID: 37836603 PMCID: PMC10574024 DOI: 10.3390/molecules28196760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The therapeutic advantages of some platinum complexes as major anticancer chemotherapeutic agents and of nucleoside analogue-based compounds as essential antiviral/antitumor drugs are widely recognized. Red blood cells (RBCs) offer a potential new strategy for the targeted release of therapeutic agents due to their biocompatibility, which can protect loaded drugs from inactivation in the blood, thus improving biodistribution. In this study, we evaluated the feasibility of loading model nucleobase-containing Pt(II) complexes into human RBCs that were highly stabilized by four N-donors and susceptible to further modification for possible antitumor/antiviral applications. Specifically, platinum-based nucleoside derivatives [PtII(dien)(N7-Guo)]2+, [PtII(dien)(N7-dGuo)]2+, and [PtII(dien)(N7-dGTP)] (dien = diethylenetriamine; Guo = guanosine; dGuo = 2'-deoxy-guanosine; dGTP = 5'-(2'-deoxy)-guanosine-triphosphate) were investigated. These Pt(II) complexes were demonstrated to be stable species suitable for incorporation into RBCs. This result opens avenues for the possible incorporation of other metalated nucleobases analogues, with potential antitumor and/or antiviral activity, into RBCs.
Collapse
Affiliation(s)
- Federica De Castro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.D.C.); (E.S.)
| | - Erika Stefàno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.D.C.); (E.S.)
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.D.C.); (E.S.)
| | - Riccardo Di Corato
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy;
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
| | - Pasant Abdalla
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (P.A.); (F.L.); (M.G.N.); (M.M.)
| | - Francesca Luchetti
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (P.A.); (F.L.); (M.G.N.); (M.M.)
| | - Maria Gemma Nasoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (P.A.); (F.L.); (M.G.N.); (M.M.)
| | - Rosaria Rinaldi
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
- Mathematics and Physics “E. De Giorgi” Department, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Mauro Magnani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (P.A.); (F.L.); (M.G.N.); (M.M.)
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.D.C.); (E.S.)
| | - Antonella Antonelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (P.A.); (F.L.); (M.G.N.); (M.M.)
| |
Collapse
|
9
|
Bianchi M, Rossi L, Pierigè F, Biagiotti S, Bregalda A, Tasini F, Magnani M. Preclinical and clinical developments in enzyme-loaded red blood cells: an update. Expert Opin Drug Deliv 2023; 20:921-935. [PMID: 37249524 DOI: 10.1080/17425247.2023.2219890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION We have previously described the preclinical developments in enzyme-loaded red blood cells to be used in the treatment of several rare diseases, as well as in chronic conditions. AREA COVERED Since our previous publication we have seen further progress in the previously discussed approaches and, interestingly enough, in additional new studies that further strengthen the idea that red blood cell-based therapeutics may have unique advantages over conventional enzyme replacement therapies in terms of efficacy and safety. Here we highlight these investigations and compare, when possible, the reported results versus the current therapeutic approaches. EXPERT OPINION The continuous increase in the number of new potential applications and the progress from the encapsulation of a single enzyme to the engineering of an entire metabolic pathway open the field to unexpected developments and confirm the role of red blood cells as cellular bioreactors that can be conveniently manipulated to acquire useful therapeutic metabolic abilities. Positioning of these new approaches versus newly approved drugs is essential for the successful transition of this technology from the preclinical to the clinical stage and hopefully to final approval.
Collapse
Affiliation(s)
- Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- EryDel SpA, Bresso, MI, Italy
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Alessandro Bregalda
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Filippo Tasini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- EryDel SpA, Bresso, MI, Italy
| |
Collapse
|
10
|
Desai N, Rana D, Pande S, Salave S, Giri J, Benival D, Kommineni N. "Bioinspired" Membrane-Coated Nanosystems in Cancer Theranostics: A Comprehensive Review. Pharmaceutics 2023; 15:1677. [PMID: 37376125 DOI: 10.3390/pharmaceutics15061677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Achieving precise cancer theranostics necessitates the rational design of smart nanosystems that ensure high biological safety and minimize non-specific interactions with normal tissues. In this regard, "bioinspired" membrane-coated nanosystems have emerged as a promising approach, providing a versatile platform for the development of next-generation smart nanosystems. This review article presents an in-depth investigation into the potential of these nanosystems for targeted cancer theranostics, encompassing key aspects such as cell membrane sources, isolation techniques, nanoparticle core selection, approaches for coating nanoparticle cores with the cell membrane, and characterization methods. Moreover, this review underscores strategies employed to enhance the multi-functionality of these nanosystems, including lipid insertion, membrane hybridization, metabolic engineering, and genetic modification. Additionally, the applications of these bioinspired nanosystems in cancer diagnosis and therapeutics are discussed, along with the recent advances in this field. Through a comprehensive exploration of membrane-coated nanosystems, this review provides valuable insights into their potential for precise cancer theranostics.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
11
|
Wang L, Zhang Y, Ma Y, Zhai Y, Ji J, Yang X, Zhai G. Cellular Drug Delivery System for Disease Treatment. Int J Pharm 2023; 641:123069. [PMID: 37225024 DOI: 10.1016/j.ijpharm.2023.123069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The application of variable novel drug delivery system has shown a flowering trend in recent years. Among them, the cell-based drug delivery system (DDS) utilizes the unique physiological function of cells to deliver drugs to the lesion area, which is the most complex and intelligent DDS at present. Compared with the traditional DDS, the cell-based DDS has the potential of prolonged circulation in body. Cellular DDS is expected to be the best carrier to realize multifunctional drug delivery. This paper introduces and analyzes common cellular DDSs such as blood cells, immune cells, stem cells, tumor cells and bacteria as well as relevant research examples in recent years. We hope that this review can provide a reference for future research on cell vectors and promote the innovative development and clinical transformation of cell-based DDS.
Collapse
Affiliation(s)
- Luyue Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yukun Ma
- Department of Pharmacy, Jinan Stomatologic Hospital, Jinan, Shandong, 250001, P.R. China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84124, United States of America
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
12
|
Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances. Pharm Res 2022; 39:2673-2698. [PMID: 35794397 DOI: 10.1007/s11095-022-03328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022]
Abstract
In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.
Collapse
|
13
|
Marshall SK, Panrak Y, Makchuchit N, Jaroenpakdee P, Saelim B, Taweesap M, Pachana V. Anti-EpCAM Functionalized I-131 Radiolabeled Biomimetic Nanocarrier Sodium/Iodide-Symporter-Mediated Breast-Cancer Treatment. Bioengineering (Basel) 2022; 9:294. [PMID: 35877345 PMCID: PMC9311516 DOI: 10.3390/bioengineering9070294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023] Open
Abstract
Currently, breast-cancer treatment has a number of adverse side effects and is associated with poor rates of progression-free survival. Therefore, a radiolabeled anti-EpCAM targeted biomimetic coated nanocarrier (EINP) was developed in this study to overcome some of the treatment challenges. The double emulsion method synthesized the poly(lactic-co-glycolic acid) (PLGA) nanoparticle with Na131I entrapped in the core. The PLGA nanoparticle was coated in human red blood cell membranes and labeled with epithelial cell adhesion molecule (EpCAM) antibody to enable it to target EpCAM overexpression by breast-cancer cells. Characterization determined the EINP size as 295 nm, zeta potential as −35.9 mV, and polydispersity as 0.297. EINP radiochemical purity was >95%. Results determined the EINP efficacy against EpCAM positive MCF-7 breast cancer at 24, 48, and 72 h were 69.11%, 77.84%, and 74.6%, respectively, demonstrating that the EINPs achieved greater cytotoxic efficacy supported by NIS-mediated Na131I uptake than the non-targeted 131INPs and Na131I. In comparison, fibroblast (EpCAM negative) treated with EINPs had significantly lower cytotoxicity than Na131I and 131INPs (p < 0.05). Flow cytometry fluorescence imaging visually signified delivery by EINPs specifically to breast-cancer cells as a result of anti-EpCAM targeting. Additionally, the EINP had a favorable safety profile, as determined by hemolysis.
Collapse
Affiliation(s)
- Suphalak Khamruang Marshall
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Yada Panrak
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| | - Naritsara Makchuchit
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| | - Passara Jaroenpakdee
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| | - Boonyisa Saelim
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| | - Maneerat Taweesap
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| | - Verachai Pachana
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (Y.P.); (N.M.); (P.J.); (B.S.); (M.T.); (V.P.)
| |
Collapse
|
14
|
Malhotra S, Dumoga S, Singh N. Red blood cells membrane-derived nanoparticles: Applications and key challenges in their clinical translation. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1776. [PMID: 35106966 DOI: 10.1002/wnan.1776] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Cellular membrane-derived nanoparticles, particularly of red blood cells (RBCs), represent an emerging class of drug delivery systems. The lack of nucleus and organelles in these cells makes them easy to process and empty out intracellular contents. The empty vesicle membranes can then be either used as a coating on nanoparticles or can be reassembled into a nanovesicle. Engineered RBCs membrane has unique ability to retain its lipid bilayer architecture with host's proteins during top-down approach, thus allowing it to form stable nanoformulations mimicking RBCs stealth properties. In addition, its core-shell structure allows loading of different drug molecules, and its surface chemistry can be manipulated by facile conjugation with ligands on the shell. The remarkable ability of RBCs membrane to fuse with membranes of other cells enables the formation of hybrid nanovesicles. In this review, we highlight the biomedical applications of such vesicles and discuss the potential challenges related to its clinical translation. Although nano-RBCs retain much of the host's proteins, which may give an edge over synthetic nanoparticles in terms of lower immunogenicity, its production at industrial level is more challenging. This review gives the critical analysis of barriers involved in the translation of RBCs-derived nanoparticles from preclinical to clinical level. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Sahil Malhotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Shweta Dumoga
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.,Biomedical Engineering unit, All India Institute of Medical Sciences New Delhi, New Delhi, India
| |
Collapse
|
15
|
Wu Y, Liu Y, Wang T, Jiang Q, Xu F, Liu Z. Living Cell for Drug Delivery. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Hou K, Zhang Y, Bao M, Xin C, Wei Z, Lin G, Wang Z. A Multifunctional Magnetic Red Blood Cell-Mimetic Micromotor for Drug Delivery and Image-Guided Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3825-3837. [PMID: 35025195 DOI: 10.1021/acsami.1c21331] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inspired by nature, innovative devices have been made to imitate the morphology and functions of natural red blood cells (RBCs). Here, we report a red blood cell-mimetic micromotor (RBCM), which was fabricated based on a layer-by-layer assembly method and precisely controlled by an external rotating uniform magnetic field. The main framework of the RBCM was constructed by the natural protein zein and finally camouflaged with the RBC membrane. Functional cargos such as Fe3O4 nanoparticles and the chemotherapeutic agent doxorubicin were loaded within the wall part of the RBCM for tumor therapy. Due to the massive loading of Fe3O4 nanoparticles, the RBCM can be precisely navigated by an external rotating uniform magnetic field and be used as a magnetic resonance imaging contrast agent for tumor imaging. The RBCM has been proven to be biocompatible, biodegradable, magnetically manipulated, and imageable, which are key requisites to take micromotors from the chalkboard to clinics. We expect the RBC-inspired biohybrid device to achieve wide potential applications.
Collapse
Affiliation(s)
- Kexin Hou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Yandong Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Meili Bao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Chao Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Zengyan Wei
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Guochang Lin
- School of Astronautics, Harbin Institute of Technology, 150001 Harbin, China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| |
Collapse
|
17
|
Erythrocyte-enabled immunomodulation for vaccine delivery. J Control Release 2021; 341:314-328. [PMID: 34838929 DOI: 10.1016/j.jconrel.2021.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Erythrocytes capture pathogens in circulation and present them to antigen-presenting cells (APCs) in the spleen. Senescent or apoptotic erythrocytes are physiologically eliminated by splenic APCs in a non-inflammatory manner as to not induce an immune reaction, while damaged erythrocytes tend to induce immune activation. The distinct characteristics of erythrocytes in their lifespan or different states inspire the design of targeting splenic APCs for vaccine delivery. Specifically, normal or damaged erythrocyte-driven immune targeting can induce antigen-specific immune activation, whereas senescent or apoptotic erythrocytes can be tailored to achieve antigen-specific immune tolerance. Recent studies have revealed the potential of erythrocyte-based vaccine delivery; however, there is still no in-depth review to describe the latest progress. This review summarizes the characteristics, different immune functions, and diverse vaccine delivery behaviors and biomedical applications of erythrocytes in different states. This review aims to contribute to the rational design and development of erythrocyte-based vaccine delivery systems for treating various infections, tumors, inflammatory diseases, and autoimmune diseases.
Collapse
|
18
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2021; 341:227-246. [PMID: 34822909 DOI: 10.1016/j.jconrel.2021.11.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Nanocarriers have been widely employed in preclinical studies and clinical trials for the delivery of anticancer drugs. The most important causes of failure in clinical translation of nanocarriers is their inefficient accumulation and penetration which arises from special characteristics of tumor microenvironment such as insufficient blood supply, dense extracellular matrix, and elevated interstitial fluid pressure. Various strategies such as engineering extracellular matrix, optimizing the physicochemical properties of nanocarriers have been proposed to increase the depth of tumor penetration; however, these strategies have not been very successful so far. Novel strategies such as transformable nanocarriers, transcellular transport of peptide-modified nanocarriers, and bio-inspired carriers have recently been emerged as an advanced generation of drug carriers. In this study, the latest developments of nanocarrier-based drug delivery to solid tumor are presented with their possible limitations. Then, the prospects of advanced drug delivery systems are discussed in detail.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
19
|
Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev 2021; 178:113992. [PMID: 34597748 PMCID: PMC8556370 DOI: 10.1016/j.addr.2021.113992] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Drug delivery research pursues many types of carriers including proteins and other macromolecules, natural and synthetic polymeric structures, nanocarriers of diverse compositions and cells. In particular, liposomes and lipid nanoparticles represent arguably the most advanced and popular human-made nanocarriers, already in multiple clinical applications. On the other hand, red blood cells (RBCs) represent attractive natural carriers for the vascular route, featuring at least two distinct compartments for loading pharmacological cargoes, namely inner space enclosed by the plasma membrane and the outer surface of this membrane. Historically, studies of liposomal drug delivery systems (DDS) astronomically outnumbered and surpassed the RBC-based DDS. Nevertheless, these two types of carriers have different profile of advantages and disadvantages. Recent studies showed that RBC-based drug carriers indeed may feature unique pharmacokinetic and biodistribution characteristics favorably changing benefit/risk ratio of some cargo agents. Furthermore, RBC carriage cardinally alters behavior and effect of nanocarriers in the bloodstream, so called RBC hitchhiking (RBC-HH). This article represents an attempt for the comparative analysis of liposomal vs RBC drug delivery, culminating with design of hybrid DDSs enabling mutual collaborative advantages such as RBC-HH and camouflaging nanoparticles by RBC membrane. Finally, we discuss the key current challenges faced by these and other RBC-based DDSs including the issue of potential unintended and adverse effect and contingency measures to ameliorate this and other concerns.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Don L Siegel
- Department of Pathology & Laboratory Medicine, Division of Transfusion Medicine & Therapeutic Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02138, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
20
|
Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M, Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials 2021; 279:121202. [PMID: 34749072 DOI: 10.1016/j.biomaterials.2021.121202] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Red blood cells (RBCs) are biocompatible carriers that can be employed to deliver different bioactive substances. In the past few decades, many strategies have been developed to encapsulate or attach drugs to RBCs. Osmotic-based encapsulation methods have been industrialized recently, and some encapsulated RBC formulations have reached the clinical stage for treating tumors and neurological diseases. Inspired by the intrinsic properties of intact RBCs, some advanced delivery strategies have also been proposed. These delivery systems combine RBCs with other novel systems to further exploit and expand the application of RBCs. This review summarizes the clinical progress of drugs encapsulated into intact RBCs, focusing on the loading and clinical trials. It also introduces the latest advanced research based on developing prospects and limitations of intact RBCs drug delivery system (DDS), hoping to provide a reference for related research fields and further application potential of intact RBCs based drug delivery system.
Collapse
Affiliation(s)
- Yichen Li
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Faisal Raza
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Yuhao Liu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Yiqi Wei
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Ruonan Rong
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Mengyuan Zheng
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Weien Yuan
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Jing Su
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China.
| | - Mingfeng Qiu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China.
| | - Y Li
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - F Raza
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Y Liu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Y Wei
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - R Rong
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - M Zheng
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - W Yuan
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - J Su
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - M Qiu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
21
|
Chowdhury P, Ghosh U, Samanta K, Jaggi M, Chauhan SC, Yallapu MM. Bioactive nanotherapeutic trends to combat triple negative breast cancer. Bioact Mater 2021; 6:3269-3287. [PMID: 33778204 PMCID: PMC7970221 DOI: 10.1016/j.bioactmat.2021.02.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 02/09/2023] Open
Abstract
The management of aggressive breast cancer, particularly, triple negative breast cancer (TNBC) remains a formidable challenge, despite treatment advancement. Although newer therapies such as atezolizumab, olaparib, and sacituzumab can tackle the breast cancer prognosis and/or progression, but achieved limited survival benefit(s). The current research efforts are aimed to develop and implement strategies for improved bioavailability, targetability, reduce systemic toxicity, and enhance therapeutic outcome of FDA-approved treatment regimen. This review presents various nanoparticle technology mediated delivery of chemotherapeutic agent(s) for breast cancer treatment. This article also documents novel strategies to employ cellular and cell membrane cloaked (biomimetic) nanoparticles for effective clinical translation. These technologies offer a safe and active targeting nanomedicine for effective management of breast cancer, especially TNBC.
Collapse
Affiliation(s)
- Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Upasana Ghosh
- Department of Biomedical Engineering, School of Engineering, Rutgers University, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Kamalika Samanta
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C. Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M. Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| |
Collapse
|
22
|
Wu P, Jiang X, Yin S, Yang Y, Liu T, Wang K. Biomimetic recombinant of red blood cell membranes for improved photothermal therapy. J Nanobiotechnology 2021; 19:213. [PMID: 34275480 PMCID: PMC8286575 DOI: 10.1186/s12951-021-00949-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Background RBC membrane derived nanoparticles (NPs) represent an emerging platform with prolonged circulation capacity for the delivery of active substances. For functionalize derived RBCs NPs, various strategies, such as biomimetic rebuilding of RBCs, chemical modification or inserting ligands, have been carried out to improve their performance. However, one potential adverse effect for these methods is the structural failure of membrane proteins, consequently affecting its original immune escape function. Results In this study, we reported a green technology of “disassembly-reassembly” to prepare biomimetic reconstituted RBCs membrane (rRBCs) by separating the endogenous proteins and lipids from nature RBC membrane. IR780 iodide was used as a pattern drug to verify the property and feasibility of rRBCs by constructing IR780@rRBC NPs with IR780@RBC NPs and free IR780 as controls. The results demonstrated the superiority of IR780@rRBC NPs in toxicity, stability, pharmacokinetics and pharmacodynamics compared with IR780@rRBC and free IR780. Conclusions The reported “disassembly-reassembly” strategy shows great potential to produce controllable and versatile rRBC membrane-inspired delivery platform, which may be used to overcome the deficiency of functionalization in cell membrane coated nanoparticles . Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00949-7.
Collapse
Affiliation(s)
- Pengkai Wu
- School of Pharmacy, Nantong University, 226001, Nantong, China.,Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 210093, Nanjing, China
| | - Xing Jiang
- College of Nursing, Nanjing University of Chinese Medicine, 210029, Nanjing, China
| | - Shuai Yin
- School of Pharmacy, Nantong University, 226001, Nantong, China
| | - Ying Yang
- School of Pharmacy, Nantong University, 226001, Nantong, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, 2145, Westmead, Australia
| | - Kaikai Wang
- School of Pharmacy, Nantong University, 226001, Nantong, China. .,Nantong Municipal Hospital of Traditional Chinese Medicine, 226001, Nantong, China.
| |
Collapse
|
23
|
Brenner JS, Mitragotri S, Muzykantov VR. Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annu Rev Biomed Eng 2021; 23:225-248. [PMID: 33788581 PMCID: PMC8277719 DOI: 10.1146/annurev-bioeng-121219-024239] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Red blood cell (RBC) hitchhiking is a method of drug delivery that can increase drug concentration in target organs by orders of magnitude. In RBC hitchhiking, drug-loaded nanoparticles (NPs) are adsorbed onto red blood cells and then injected intravascularly, which causes the NPs to transfer to cells of the capillaries in the downstream organ. RBC hitchhiking has been demonstrated in multiple species and multiple organs. For example, RBC-hitchhiking NPs localized at unprecedented levels in the brain when using intra-arterial catheters, such as those in place immediately after mechanical thrombectomy for acute ischemic stroke. RBC hitchhiking has been successfully employed in numerous preclinical models of disease, ranging from pulmonary embolism to cancer metastasis. In addition to summarizing the versatility of RBC hitchhiking, we also describe studies into the surprisingly complex mechanisms of RBC hitchhiking as well as outline future studies to further improve RBC hitchhiking's clinical utility.
Collapse
Affiliation(s)
- Jacob S Brenner
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Vladimir R Muzykantov
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
24
|
Surface loading of nanoparticles on engineered or natural erythrocytes for prolonged circulation time: strategies and applications. Acta Pharmacol Sin 2021; 42:1040-1054. [PMID: 33772141 DOI: 10.1038/s41401-020-00606-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/27/2020] [Indexed: 12/12/2022]
Abstract
Nano drug-delivery systems (DDS) may significantly improve efficiency and reduce toxicity of loaded drugs, but a few nano-DDS are highly successful in clinical use. Unprotected nanoparticles in blood flow are often quickly cleared, which could limit their circulation time and drug delivery efficiency. Elongating their blood circulation time may improve their delivery efficiency or grant them new therapeutic possibilities. Erythrocytes are abundant endogenous cells in blood and are continuously renewed, with a long life span of 100-120 days. Hence, loading nanoparticles on the surface of erythrocytes to protect the nanoparticles could be highly effective for enhancing their in vivo circulation time. One of the key questions here is how to properly attach nanoparticles on erythrocytes for different purposes and different types of nanoparticles to achieve ideal results. In this review, we describe various methods to attach nanoparticles and drugs to the erythrocyte surface, and discuss the key factors that influence the stability and circulation properties of the erythrocytes-based delivery system in vivo. These data show that using erythrocytes as a host for nanoparticles possesses great potential for further development.
Collapse
|
25
|
Ren WW, Xu SH, Sun LP, Zhang K. Ultrasound-Based Drug Delivery System. Curr Med Chem 2021; 29:1342-1351. [PMID: 34139971 DOI: 10.2174/0929867328666210617103905] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/25/2021] [Accepted: 05/01/2021] [Indexed: 12/07/2022]
Abstract
Cancer still represents a leading threat to human health worldwide. The effective usage of anti-cancer drugs can reduce patients' clinical symptoms and extend the life span. Current anti-cancer strategies include chemotherapy, traditional Chinese medicine, biopharmaceuticals, and the latest targeted therapy. However, due to the complexity and heterogeneity of tumors, serious side effects may result from the direct use of anti-cancer drugs. Besides, the current therapeutic strategies failed to effectively alleviate metastasized tumors. Recently, an ultrasound-mediated nano-drug delivery system has become an increasingly important treatment strategy. Due to its ability to enhance efficacy and reduce toxic side effects, it has become a research hotspot in the field of biomedicine. In this review, we introduced the latest research progress of the ultrasound-responsive nano-drug delivery systems and the possible mechanisms of ultrasound acting on the carrier to change the structure or conformation as well as to realize the controlled release. In addition, the progress in ultrasound responsive nano-drug delivery systems will also be briefly summarized.
Collapse
Affiliation(s)
- Wei-Wei Ren
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai 200072, China
| | - Shi-Hao Xu
- Department of Ultrasound, The first affiliated hospital of Wenzhou Medical University, WenZhou, 325000, Zhejiang Province, China
| | - Li-Ping Sun
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai 200072, China
| | - Kun Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
26
|
Abstract
Engineered red blood cells (RBCs) appear to be a promising method for therapeutic drug and protein delivery. With a number of agents in clinical trials (e.g., dexamethasone 21-phosphate in ataxia telangiectasia, asparaginase in pancreatic cancer/acute lymphoblastic leukemia, thymidine phosphorylase in mitochondrial neurogastrointestinal encephalomyopathy, RTX-134 in phenylketonuria, etc.), this leading article summarizes the ongoing efforts in developing these agents, focuses on the clinical progress, and provides a brief background into engineered RBCs and the different ways in which they can be exploited for therapeutic/diagnostic purposes. References to available data on safety, efficacy, and tolerability are reported. Due to the continuous progress in this field, the information is updated as of January 2020 from databases, websites, and press releases of the involved companies and information that is in the public domain.
Collapse
|
27
|
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021; 50:945-985. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell primitive-based functional materials that combine the advantages of natural substances and nanotechnology have emerged as attractive therapeutic agents for cancer therapy. Cell primitives are characterized by distinctive biological functions, such as long-term circulation, tumor specific targeting, immune modulation etc. Moreover, synthetic nanomaterials featuring unique physical/chemical properties have been widely used as effective drug delivery vehicles or anticancer agents to treat cancer. The combination of these two kinds of materials will catalyze the generation of innovative biomaterials with multiple functions, high biocompatibility and negligible immunogenicity for precise cancer therapy. In this review, we summarize the most recent advances in the development of cell primitive-based functional materials for cancer therapy. Different cell primitives, including bacteria, phages, cells, cell membranes, and other bioactive substances are introduced with their unique bioactive functions, and strategies in combining with synthetic materials, especially nanoparticulate systems, for the construction of function-enhanced biomaterials are also summarized. Furthermore, foreseeable challenges and future perspectives are also included for the future research direction in this field.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
28
|
Rossi L, Pierigè F, Agostini M, Bigini N, Termopoli V, Cai Y, Zheng F, Zhan CG, Landry DW, Magnani M. Efficient Cocaine Degradation by Cocaine Esterase-Loaded Red Blood Cells. Front Physiol 2020; 11:573492. [PMID: 33013487 PMCID: PMC7511699 DOI: 10.3389/fphys.2020.573492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
Recombinant bacterial cocaine esterase (CocE) represents a potential protein therapeutic for cocaine use disorder treatment. Unfortunately, the native enzyme was highly unstable and the corresponding mutagenized derivatives, RBP-8000 and E196-301, although improving in vitro thermo-stability and in vivo half-life, were a partial solution to the problem. For cocaine use disorder treatment, an efficient cocaine-metabolizing enzyme with a longer residence time in circulation would be needed. We investigated in vitro the possibility of developing red blood cells (RBCs) loaded with RBP-8000 and E196-301 as a biocompatible system to metabolize cocaine for a longer period of time. RBP 8000 stability within human RBCs is limited (approximately 50% residual activity after 1 h at 37°C) and not different as for the free enzyme, while both free and encapsulated E196-301 showed a greater thermo-stability. By reducing cellular glutathione content during the loading procedure, in order to preserve the disulfide bonds opportunely created to stabilize the enzyme dimer structure, it was possible to produce an encapsulated protein maintaining 100% stability at least after 4 h at 37°C. Moreover, E196-301-loaded RBCs were efficiently able to degrade cocaine in a time- and concentration-dependent manner. The same stability results were obtained when murine RBCs were used paving the way to preclinical investigations. Thus, our in vitro data show that E196-301-loaded RBCs could act as efficient bioreactors in degrading cocaine to non-toxic metabolites to be possibly considered in substance-use disorder treatments. This approach should now be investigated in a preclinical model of cocaine use disorder to evaluate if further protein modifications are needed to further improve long term enzyme stability.
Collapse
Affiliation(s)
- Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.,EryDel S.p.A., Milan, Italy
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | | | - Noemi Bigini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Veronica Termopoli
- Department of Pure and Applied Sciences, University of Urbino, Urbino, Italy
| | - Yingting Cai
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, NY, United States
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.,EryDel S.p.A., Milan, Italy
| |
Collapse
|
29
|
Tang JC, Vankayala R, Mac JT, Anvari B. RBC-Derived Optical Nanoparticles Remain Stable After a Freeze-Thaw Cycle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10003-10011. [PMID: 32787036 PMCID: PMC9844156 DOI: 10.1021/acs.langmuir.0c00637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanosized carriers engineered from red blood cells (RBCs) provide a means for delivering various cargos, including drugs, biologics, and imaging agents. We have engineered nanosized particles from RBCs, doped with the near-infrared (NIR) fluorochrome, indocyanine green (ICG). An important issue related to clinical translation of RBC-derived nanocarriers, including these NIR nanoparticles, is their stability postfabrication. Freezing may provide a method for long-term storage of these and other RBC-derived nanoparticles. Herein, we have investigated the physical and optical stability of these particles in response to a single freeze-thaw cycle. Nanoparticles were frozen to -20 °C, stored frozen for up to 8 weeks, and then thawed at room temperature. Our results show that the hydrodynamic diameter, zeta potential, optical density, and NIR fluorescence emission of these nanoparticles are retained following the freeze-thaw cycle. The ability of these nanoparticles in NIR fluorescence imaging of ovarian cancer cells, as well as their biodistribution in reticuloendothelial organs of healthy Swiss Webster mice after the freeze-thaw cycle is similar to that for freshly prepared nanoparticles. These results indicate that a single cycle of freezing the RBC-derived nanoparticles to -20 °C followed by thawing at room temperature is an effective method to retain the physical and optical characteristics of the nanoparticles, and their interactions with biological systems without the need for use of cryoprotectants.
Collapse
Affiliation(s)
- Jack C Tang
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Jenny T Mac
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
30
|
Ninfali P, Antonelli A, Magnani M, Scarpa ES. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients 2020; 12:nu12092534. [PMID: 32825564 PMCID: PMC7551920 DOI: 10.3390/nu12092534] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
This review summarizes the latest advancements in phytochemicals as functional antiviral agents. We focused on flavonoids, like apigenin, vitexin, quercetin, rutin and naringenin, which have shown a wide range of biological effects including antiviral activities. The molecular mechanisms of their antiviral effects mainly consist in the inhibition of viral neuraminidase, proteases and DNA/RNA polymerases, as well as in the modification of various viral proteins. Mixtures of different flavonoids or combination of flavonoids with antiviral synthetic drugs provide an enhancement of their antiviral effects. Recent strategies in drug delivery significantly contribute to overcoming the low bioavailability of flavonoids. Frequent viral infections worldwide have led to the need for new effective antiviral agents, which can be identified among the various phytochemicals. In this light, screening the antiviral activities of a cocktail of flavonoids would be advantageous in order to prevent viral infections and improve current antiviral therapies.
Collapse
Affiliation(s)
| | | | - Mauro Magnani
- Correspondence: (M.M.); (E.S.S.); Tel.: +39-0722-305-211 (M.M.); +39-0722-305-252 (E.S.S.)
| | | |
Collapse
|
31
|
Combes F, Meyer E, Sanders NN. Immune cells as tumor drug delivery vehicles. J Control Release 2020; 327:70-87. [PMID: 32735878 DOI: 10.1016/j.jconrel.2020.07.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022]
Abstract
This review article describes the use of immune cells as potential candidates to deliver anti-cancer drugs deep within the tumor microenvironment. First, the rationale of using drug carriers to target tumors and potentially decrease drug-related side effects is discussed. We further explain some of the current limitations when using nanoparticles for this purpose. Next, a comprehensive step-by-step description of the migration cascade of immune cells is provided as well as arguments on why immune cells can be used to address some of the limitations associated with nanoparticle-mediated drug delivery. We then describe the benefits and drawbacks of using red blood cells, platelets, granulocytes, monocytes, macrophages, myeloid-derived suppressor cells, T cells and NK cells for tumor-targeted drug delivery. An additional section discusses the versatility of nanoparticles to load anti-cancer drugs into immune cells. Lastly, we propose increasing the circulatory half-life and development of conditional release strategies as the two main future pillars to improve the efficacy of immune cell-mediated drug delivery to tumors.
Collapse
Affiliation(s)
- Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Evelyne Meyer
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| |
Collapse
|
32
|
Antonelli A, Szwargulski P, Scarpa ES, Thieben F, Cordula G, Ambrosi G, Guidi L, Ludewig P, Knopp T, Magnani M. Development of long circulating magnetic particle imaging tracers: use of novel magnetic nanoparticles and entrapment into human erythrocytes. Nanomedicine (Lond) 2020; 15:739-753. [PMID: 32207374 DOI: 10.2217/nnm-2019-0449] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: Magnetic particle imaging (MPI) is highly promising for biomedical applications, but optimal tracers for MPI, namely superparamagnetic iron oxide-based contrast agents, are still lacking. Materials & methods: The encapsulation of commercially available nanoparticles, specifically synomag®-D and perimag®, into human red blood cells (RBCs) was performed by a hypotonic dialysis and isotonic resealing procedure. The amounts of superparamagnetic iron oxide incorporated into RBCs were determined by Fe quantification using nuclear magnetic resonance and magnetic particle spectroscopy. Results: Perimag-COOH nanoparticles were identified as the best nanomaterial for encapsulation in RBCs. Perimag-COOH-loaded RBCs proved to be viable cells showing a good magnetic particle spectroscopy performance, while the magnetic signal of synomag-D-COOH-loaded RBCs dropped sharply. Conclusion: Perimag-COOH-loaded RBCs could be a potential tool for MPI diagnostic applications.
Collapse
Affiliation(s)
- Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino (PU), Italy
| | - Patryk Szwargulski
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Lottestr. 55, 22529, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Emanuele-Salvatore Scarpa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino (PU), Italy
| | - Florian Thieben
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Lottestr. 55, 22529, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Grüttner Cordula
- Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4 D-18119, Rostock, Germany
| | - Gianluca Ambrosi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino (PU), Italy
| | - Loretta Guidi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino (PU), Italy
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Tobias Knopp
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Lottestr. 55, 22529, Hamburg, Germany.,Institute for Biomedical Imaging, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino (PU), Italy
| |
Collapse
|
33
|
Dong H, Xu X, Wang L, Mo R. Advances in living cell-based anticancer therapeutics. Biomater Sci 2020; 8:2344-2365. [DOI: 10.1039/d0bm00036a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the applications of living cells as drug carriers or active drugs for anticancer drug delivery and cancer therapy.
Collapse
Affiliation(s)
- He Dong
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Xiao Xu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Leikun Wang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Ran Mo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
34
|
Lu G, Zuo L, Zhang J, Zhu H, Zhuang W, Wei W, Xie HY. Two-step tumor-targeting therapy via integrating metabolic lipid-engineering with in situ click chemistry. Biomater Sci 2020; 8:2283-2288. [DOI: 10.1039/d0bm00088d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly efficient two-step targeting strategy integrating metabolic lipid-engineering with in situ click chemistry is developed, thus significantly improved the tumor theranostic performance of the red blood cells ghosts based drug delivery.
Collapse
Affiliation(s)
- Guihong Lu
- School of Life Science
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Liping Zuo
- School of Life Science
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Jinfeng Zhang
- School of Life Science
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Houshun Zhu
- School of Life Science
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Wanru Zhuang
- School of Life Science
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Hai-Yan Xie
- School of Life Science
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
35
|
Rossi L, Fraternale A, Bianchi M, Magnani M. Red Blood Cell Membrane Processing for Biomedical Applications. Front Physiol 2019; 10:1070. [PMID: 31481901 PMCID: PMC6710399 DOI: 10.3389/fphys.2019.01070] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023] Open
Abstract
Red blood cells (RBC) are actually exploited as innovative drug delivery systems with unconventional and convenient properties. Because of a long in vivo survival and a non-random removal from circulation, RBC can be loaded with drugs and/or contrasting agents without affecting these properties and maintaining the original immune competence. However, native or drug-loaded RBC, can be modified decorating the membrane with peptides, antibodies or small chemical entities so favoring the targeting of the processed RBC to specific cells or organs. Convenient modifications have been exploited to induce immune tolerance or immunogenicity, to deliver antibodies capable of targeting other cells, and to deliver a number of constructs that can recognize circulating pathogens or toxins. The methods used to induce membrane processing useful for biomedical applications include the use of crosslinking agents and bifunctional antibodies, biotinylation and membrane insertion. Another approach includes the expression of engineered membrane proteins upon ex vivo transfection of immature erythroid precursors with lentiviral vectors, followed by in vitro expansion and differentiation into mature erythrocytes before administration to a patient in need. Several applications have now reached the clinic and a couple of companies that take advantage from these properties of RBC are already in Phase 3 with selected applications. The peculiar properties of the RBC and the active research in this field by a number of qualified investigators, have opened new exciting perspectives on the use of RBC as carriers of drugs or as cellular therapeutics.
Collapse
Affiliation(s)
- Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,EryDel SpA, Bresso, Italy
| | | | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,EryDel SpA, Bresso, Italy
| |
Collapse
|
36
|
Philips GR, Gleich B, Paredes-Juarez GA, Antonelli A, Magnani M, Bulte JWM. Magnetic Manipulation of Blood Conductivity with Superparamagnetic Iron Oxide-Loaded Erythrocytes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11194-11201. [PMID: 30830737 PMCID: PMC6487860 DOI: 10.1021/acsami.9b00394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The active and passive electrophysiological properties of blood and tissue have been utilized in a vast array of clinical techniques to noninvasively characterize anatomy and physiology and to diagnose a wide variety of pathologies. However, the accuracy and spatial resolution of such techniques are limited by several factors, including an ill-posed inverse problem, which determines biological parameters and signal sources from surface potentials. Here, we propose a method to noninvasively modulate tissue conductivity by aligning superparamagnetic iron oxide-loaded erythrocytes with an oscillating magnetic field. A prototype device is presented, which incorporates a three-dimensional set of Helmholtz coil pairs and fluid-channel-embedded electrode arrays. Alignment of loaded cells (∼11 mM iron) within a field of 12 mT is demonstrated, and this directed reorientation is shown to alter the conductivity of blood by ∼5 and ∼0.5% for stationary and flowing blood, respectively, within fields as weak as 6-12 mT. Focal modulation of conductivity could drastically improve numerous bioimpedance-based detection modalities.
Collapse
Affiliation(s)
- Gavin R. Philips
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| | - Bernhard Gleich
- Sector Medical Imaging Systems, Philips Research Europe, Hamburg 22335, Germany
| | - Genaro A. Paredes-Juarez
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino, Urbino 61029, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino, Urbino 61029, Italy
| | - Jeff W. M. Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
37
|
Lu Y, Hu Q, Jiang C, Gu Z. Platelet for drug delivery. Curr Opin Biotechnol 2018; 58:81-91. [PMID: 30529814 DOI: 10.1016/j.copbio.2018.11.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/14/2018] [Indexed: 01/09/2023]
Abstract
Platelets play a vital physiological role in hemostasis, inflammation and tissue regeneration, which are associated with wound healing as well as cancer development and metastasis. These years, a variety of platelet-mediated drug delivery approaches have been developed due to their unique properties, such as quick replenishment and site-specific activation/adhesion. In this Current Opinion, focuses are put on strategies leveraging the physiological functions of platelets for the design of drug delivery systems, including platelet engineering, platelet hitchhiking, membrane coating, synthetic platelet fabrication and platelet-triggered drug release for different applications.
Collapse
Affiliation(s)
- Yifei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Quanyin Hu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, Jonsson Comprehensive Cancer Center, and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
38
|
Gautam M, Poudel K, Yong CS, Kim JO. Prussian blue nanoparticles: Synthesis, surface modification, and application in cancer treatment. Int J Pharm 2018; 549:31-49. [PMID: 30053487 DOI: 10.1016/j.ijpharm.2018.07.055] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
Abstract
This review outlines recently developed Prussian blue nanoparticle (PB NPs)-based multimodal imaging-guided chemo-photothermal strategies for cancer diagnosis and treatment in order to provide insight into the future of the field. The primary limitation of existing therapeutics is the lack of selectivity in drug delivery: they target healthy and cancerous cells alike. In this paper, we provide a thorough review of diverse synthetic and surface engineering techniques for PB NP fabrication. We have elucidated the various targeting approaches employed to deliver the therapeutic and imaging ligands into the tumor area, and outlined methods for enhancement of the tumor ablative ability of the NPS, including several important combinatorial approaches. In addition, we have summarized different in vitro and in vivo effects of PB NP-based therapies used to overcome both systemic and tumor-associated local barriers. An important new approach - PB NP-based immune drug delivery, which is an exciting and promising strategy to overcome cancer resistance and tumor recurrence - has been discussed. Finally, we have discussed the current understanding of the toxicological effects of PB NPs and PB NP-based therapeutics. We conclude that PB NP-based multimodal imaging-guided chemo-photothermal therapy offers new treatment strategies to overcome current hurdles in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Milan Gautam
- College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
39
|
Pascucci T, Rossi L, Colamartino M, Gabucci C, Carducci C, Valzania A, Sasso V, Bigini N, Pierigè F, Viscomi MT, Ventura R, Cabib S, Magnani M, Puglisi-Allegra S, Leuzzi V. A new therapy prevents intellectual disability in mouse with phenylketonuria. Mol Genet Metab 2018; 124:39-49. [PMID: 29661557 DOI: 10.1016/j.ymgme.2018.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 01/20/2023]
Abstract
Untreated phenylketonuria (PKU) results in severe neurodevelopmental disorders, which can be partially prevented by an early and rigorous limitation of phenylalanine (Phe) intake. Enzyme substitution therapy with recombinant Anabaena variabilis Phe Ammonia Lyase (rAvPAL) proved to be effective in reducing blood Phe levels in preclinical and clinical studies of adults with PKU. Aims of present study were: a) to gather proofs of clinical efficacy of rAvPAL treatment in preventing neurological impairment in an early treated murine model of PKU; b) to test the advantages of an alternative delivering system for rAvPAL such as autologous erythrocytes. BTBR-Pahenu2-/- mice were treated from 15 to 64 post-natal days with weekly infusions of erythrocytes loaded with rAvPAL. Behavioral, neurochemical, and brain histological markers denoting untreated PKU were examined in early treated adult mice in comparison with untreated and wild type animals. rAvPAL therapy normalized blood and brain Phe; prevented cognitive developmental failure, brain depletion of serotonin, dendritic spine abnormalities, and myelin basic protein reduction. No adverse events or inactivating immune reaction were observed. In conclusion present study testifies the clinical efficacy of rAvPAL treatment in a preclinical model of PKU and the advantages of erythrocytes as carrier of the enzyme in term of frequency of the administrations and prevention of immunological reactions.
Collapse
Affiliation(s)
- Tiziana Pascucci
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino (PU), Italy; EryDel SpA, via Sasso 36, 61029 Urbino (PU), Italy
| | - Marco Colamartino
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Claudia Gabucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino (PU), Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, viale del Policlinico 155, 00161 Rome, Italy
| | - Alessandro Valzania
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Valeria Sasso
- Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Noemi Bigini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino (PU), Italy
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino (PU), Italy
| | | | - Rossella Ventura
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Simona Cabib
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029 Urbino (PU), Italy; EryDel SpA, via Sasso 36, 61029 Urbino (PU), Italy
| | - Stefano Puglisi-Allegra
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy; Fondazione Santa Lucia, IRCCS, via Ardeatina 306, 00142 Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, via dei Sabelli 108, 00185 Rome, Italy.
| |
Collapse
|
40
|
Coker SA, Szczepiorkowski ZM, Siegel AH, Ferrari A, Mambrini G, Anand R, Hartman RD, Benatti L, Dumont LJ. A Study of the Pharmacokinetic Properties and the In Vivo Kinetics of Erythrocytes Loaded With Dexamethasone Sodium Phosphate in Healthy Volunteers. Transfus Med Rev 2018; 32:102-110. [DOI: 10.1016/j.tmrv.2017.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/24/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
41
|
Affiliation(s)
- Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
42
|
Ngandeu Neubi GM, Opoku-Damoah Y, Gu X, Han Y, Zhou J, Ding Y. Bio-inspired drug delivery systems: an emerging platform for targeted cancer therapy. Biomater Sci 2018; 6:958-973. [DOI: 10.1039/c8bm00175h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bio-inspired platforms directly derived from biological sources are becoming a rapidly emerging field in the development of future anticancer therapeutics. The various platforms discussed are bacteria-based, virus-inspired, cell-derived, nanostructured lipid nanoparticles, and biomacromolecular drug delivery systems.
Collapse
Affiliation(s)
- Gella Maelys Ngandeu Neubi
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yaw Opoku-Damoah
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaochen Gu
- Faculty of Pharmacy
- University of Manitoba
- Winnipeg
- Canada R3E 0T5
| | - Yue Han
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yang Ding
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
43
|
|
44
|
Magnani M. Engineered red blood cells as therapeutic agents. Am J Hematol 2017; 92:979-980. [PMID: 28762543 DOI: 10.1002/ajh.24874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Mauro Magnani
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; 61029 Urbino Italy
| |
Collapse
|
45
|
Tzounakas VL, Karadimas DG, Papassideri IS, Seghatchian J, Antonelou MH. Erythrocyte-based drug delivery in Transfusion Medicine: Wandering questions seeking answers. Transfus Apher Sci 2017; 56:626-634. [DOI: 10.1016/j.transci.2017.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Pierigè F, Bigini N, Rossi L, Magnani M. Reengineering red blood cells for cellular therapeutics and diagnostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Francesca Pierigè
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Noemi Bigini
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| |
Collapse
|
47
|
Banskota S, Yousefpour P, Chilkoti A. Cell-Based Biohybrid Drug Delivery Systems: The Best of the Synthetic and Natural Worlds. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600361] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/18/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Samagya Banskota
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| |
Collapse
|