1
|
Cao-Luu NH, Nguyen TV, Luong HVT, Dang HG, Pham HG. Engineered polyvinyl alcohol/chitosan/carrageenan nanofibrous membrane loaded with Aloe vera for accelerating third-degree burn wound healing. Int J Biol Macromol 2025; 311:143880. [PMID: 40324503 DOI: 10.1016/j.ijbiomac.2025.143880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
This study introduces an innovative nanofibrous membrane included polyvinyl alcohol (PVA), chitosan (CS), carrageenan (CG), and Aloe vera (AV), designed to enhance burn wound healing through a coaxial electrospinning technique. The PVA/AV@PVA/CS/CG membrane exhibited smooth surface, well-defined layered structure, and uniform nanofibers with a diameter of 180 ± 49 nm, as confirmed by SEM, TEM images. AV was efficiently incorporated into the membrane system, achieving encapsulation efficiency exceeding 80 % and loading efficiency of ∼3 %. The release profile of AV followed the Fickian diffusion mechanism, described by the Peppas-Sahlin model, with the membrane demonstrating ∼85 % delivery performance. The membrane exhibited favorable blood coagulation properties and a sufficient water vapor transmission rate. The membrane's balanced performance in boosting cell survival while also demonstrating antibacterial activity as well as anti-inflammatory effect, made it a suitable setting for wound healing. The synergistic interaction between the components significantly accelerated burn wound recovery and histological evaluation showed that less inflammation, fibroblast proliferation, and collagen deposition without formation of hypertrophic scars. The PVA/AV@PVA/CS/CG membrane showed statistically superior performance (p-values) in various experiments compared to the remaining samples. Conclusively, PVA/AV@PVA/CS/CG membrane exhibited numerous positive biochemical features, making it an excellent choice for third-degree burn wound dressing.
Collapse
Affiliation(s)
- Ngoc-Hanh Cao-Luu
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam; Composite Material Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam.
| | - Tuong-Vy Nguyen
- Composite Material Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| | - Huynh-Vu-Thanh Luong
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam; Applied Chemical Engineering Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| | - Huynh-Giao Dang
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| | - Hong-Gam Pham
- Composite Material Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| |
Collapse
|
2
|
Luo G, Li J, Chen S, Yuan Z, Sun Z, Lou T, Chen Z, Liu H, Zhou C, Fan C, Ruan H. Polylactic acid electrospun membranes coated with chiral hierarchical-structured hydroxyapatite nanoplates promote tendon healing based on a macrophage-homeostatic modulation strategy. Bioact Mater 2025; 47:460-480. [PMID: 40034408 PMCID: PMC11872693 DOI: 10.1016/j.bioactmat.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Tendon injury is a common and challenging problem in the motor system that lacks an effective treatment, affecting daily activities and lowering the quality of life. Limited tendon regenerative capability and immune microenvironment dyshomeostasis are considered the leading causes hindering tendon repair. The chirality of biomaterials was proved to dictate immune microenvironment and dramatically affect tissue repair. Herein, chiral hierarchical structure hydroxylapatite (CHAP) nanoplates are innovatively synthesized for immunomodulatory purposes and further coated onto polylactic acid electrospinning membranes to achieve long-term release for tendon regeneration adaption. Notably, levorotatory-chiral HAP (L-CHAP) nanoplates rather than dextral-chiral or racemic-chiral exhibit good biocompatibility and bioactivity. In vitro experiments demonstrate that L-CHAP induces macrophage M2 polarization by enhancing macrophage efferocytosis, which alleviates inflammatory damage to tendon stem cells (TDSCs) through downregulated IL-17-NF-κB signaling. Meanwhile, L-CHAP-mediated macrophage efferocytosis also promotes TDSCs proliferation and tenogenic differentiation. By establishing a rat model of Achilles tendon injury, L-CHAP was demonstrated to comprehensively promoting tendon repair by enhancing macrophage efferocytosis and M2 polarization in vivo, finally leading to improvement of tendon ultrastructural and mechanical properties and motor function. This novel strategy highlights the role of L-CHAP in tendon repair and thus provides a promising therapeutic strategy for tendon injury.
Collapse
Affiliation(s)
- Gang Luo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Shuai Chen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Zhengqiang Yuan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Ziyang Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Tengfei Lou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Zhenyu Chen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Hang Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Chao Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Hongjiang Ruan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| |
Collapse
|
3
|
Klonos PA, Ioannidis RO, Pitsavas A, Bikiaris ND, Makri SP, Koutsourea S, Grigoropoulos A, Deligkiozi I, Zoikis-Karathanasis A, Kyritsis A, Bikiaris DN. Segmental Mobility, Interfacial Polymer, Crystallization and Conductivity Study in Polylactides Filled with Hybrid Lignin-CNT Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:660. [PMID: 40358277 PMCID: PMC12073540 DOI: 10.3390/nano15090660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
A newly developed series of polylactide (PLA)-based composites filled with hybrid lignin-carbon nanotube (CNTs) particles were studied using thermal and dielectric techniques. The low CNT content (up to 3 wt%) aimed to create conductive networks while enhancing particle-polymer adhesion. For comparison, PLA composites based on lignin and CNTs were also examined. Although infrared spectroscopy showed no significant interactions, calorimetry and dielectric spectroscopy revealed a rigid interfacial PLA layer exhibiting restricted mobility. The interfacial polymer amount was found to increase monotonically with the particle content. The hybrid-filled PLA composites exhibited electrical conductivity, whereas PLA/Lignin and PLA/CNTs remained insulators. The result was indicative of a synergistic effect between lignin and CNTs, leading to lowering of the percolation threshold to 3 wt%, being almost ideal for sustainable conductive printing inks. Despite the addition of lignin and CNTs at different loadings, the glass transition temperature of PLA (60 °C) decreased slightly (softer composites) by 1-2 K in the composites, while the melting temperature remained stable at ~175 °C, favoring efficient processing. Regarding crystallization, which is typically slow in PLA, the hybrid lignin/CNT particles promoted crystal nucleation without increasing the total crystallizable fraction. Overall, these findings highlight the potential of eco-friendly conductive PLA composites for new-generation applications, such as printed electronics.
Collapse
Affiliation(s)
- Panagiotis A. Klonos
- Dielectrics Research Group, Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece;
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (R.O.I.); (A.P.); (N.D.B.); (D.N.B.)
| | - Rafail O. Ioannidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (R.O.I.); (A.P.); (N.D.B.); (D.N.B.)
| | - Andreas Pitsavas
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (R.O.I.); (A.P.); (N.D.B.); (D.N.B.)
| | - Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (R.O.I.); (A.P.); (N.D.B.); (D.N.B.)
| | - Sofia P. Makri
- Creative Nano PC, 43 Tatoiou, Metamorfosi, GR-14451 Athens, Greece; (S.P.M.); (S.K.); (A.G.); (A.Z.-K.)
| | - Stefania Koutsourea
- Creative Nano PC, 43 Tatoiou, Metamorfosi, GR-14451 Athens, Greece; (S.P.M.); (S.K.); (A.G.); (A.Z.-K.)
| | - Alexios Grigoropoulos
- Creative Nano PC, 43 Tatoiou, Metamorfosi, GR-14451 Athens, Greece; (S.P.M.); (S.K.); (A.G.); (A.Z.-K.)
| | | | | | - Apostolos Kyritsis
- Dielectrics Research Group, Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (R.O.I.); (A.P.); (N.D.B.); (D.N.B.)
| |
Collapse
|
4
|
Pan C, Gao Q, Chen Y, Wang Y, Tang Z. Recent progress in biosourced polylactic acid-based biocomposites for dentistry: A review. Int J Biol Macromol 2025; 310:143528. [PMID: 40288709 DOI: 10.1016/j.ijbiomac.2025.143528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/08/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Polylactic acid (PLA), a biodegradable polymer derived from renewable biological macromolecules such as corn starch and sugarcane, exhibits excellent biocompatibility, biodegradability, non-toxicity, and ease of functionalization, showing great potential in dental medicine applications. However, unmodified PLA has inherent drawbacks, such as poor mechanical ductility, slow degradation, and poor hydrophilicity, which limit its use in this field. This paper briefly introduces the structure and performance advantages of PLA and discusses various modification methods, including chemical and physical modifications. The properties of PLA composites are further elaborated on, with an emphasis on their latest advancements in dental implantation, restoration, orthodontics, maxillofacial surgery, and periodontal disease treatment. An outlook on the development trends of PLA-based composites in oral medicine is also provided, to enhance the role of PLA-based composites in this field and offer patients more treatment options and better outcomes.
Collapse
Affiliation(s)
- Chengxiao Pan
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China
| | - Qiong Gao
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Youli Chen
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yu Wang
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Zhenglong Tang
- College of Stomatology, Guizhou Medical University, Guiyang 550004, China; Department of Oral and Maxillofacial Surgery, Affiliated Stemmatological Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
5
|
Bikiaris N, Klonos PA, Christodoulou E, Barmpalexis P, Kyritsis A. Plasticization Effects of PEG of Low Molar Fraction and Molar Mass on the Molecular Dynamics and Crystallization of PLA- b-PEG- b-PLA Triblock Copolymers Envisaged for Medical Applications. J Phys Chem B 2025; 129:3514-3528. [PMID: 40108139 PMCID: PMC11973873 DOI: 10.1021/acs.jpcb.5c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
We prepared and studied a series of triblock copolymers based on poly(ethylene glycol) (PEG) and poly(lactic acid) (PLA). PLA blocks were in situ by ring-opening polymerization (ROP) of lactide (LA) onto the two sites of PEG. While in our recent work on similar copolymers with varying LA/PEG molar ratios and fixed PEG blocks [Bikiaris, N. D. Mater. Today Commun. 2024, 38, 107799], herein, we kept this ratio quite low, at 640/1, and employed different molecular weights, Mn, of the initial PEG at 1, 4, 6, and 8 kg/mol. The triblocks demonstrated high homogeneity, as manifested by the single thermal transition (glass transition, crystallization) with corresponding alternations in a systematic way with the Mn of PEG. With the increase of the latter Mn, accelerated segmental mobility and lowering of Tg by up to 15 K were recorded, accompanied by suppression in the chain fragility (cooperativity). Compared with linear PLAs of various Mns [Klonos, P. A. Polymer 2024, 305, 127177] and other PLA-based copolymers prepared by similar ROPs, with the overall Mn of our copolymers, PEG here sees to play the role of plasticizer on PLA, leading to increased free volume. Due to these effects, in general, the low crystalline fraction of PLA (∼3%) was significantly enhanced in the copolymers (20-26%), and the formed spherulites were mainly enlarged. Contrary to these, nucleation was barely affected; thus, the copolymers exhibited altered semicrystalline morphologies as compared to that in neat PLA. Both aspects of molecular dynamics, free volume and crystallization, were connected to the processability as well as the performance of these systems, considering the envisaged biomedical applications.
Collapse
Affiliation(s)
- Nikolaos
D. Bikiaris
- Department
of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Panagiotis A. Klonos
- Dielectrics
Group, Department of Physics, National Technical
University of Athens, Zografou Campus, GR-15780 Athens, Greece
- Department
of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Evi Christodoulou
- Department
of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Department
of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Apostolos Kyritsis
- Dielectrics
Group, Department of Physics, National Technical
University of Athens, Zografou Campus, GR-15780 Athens, Greece
| |
Collapse
|
6
|
Hu L, Zhang K, Zhang H, Dong X, Ding L, Qi Y, Tang M. Enhanced Endothelialization Using Resveratrol-Loaded Polylactic Acid-Coated Left Atrial Appendage Occluders in a Canine Model. ACS APPLIED BIO MATERIALS 2025; 8:199-207. [PMID: 39779462 PMCID: PMC11752505 DOI: 10.1021/acsabm.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Left atrial appendage occlusion (LAAO) is a well-established alternative to anticoagulation therapy for patients with atrial fibrillation who have a high bleeding risk. After occluder implantation, anticoagulation therapy is still required for at least 45 days until complete LAAO is achieved by neoendocardial coverage of the device. We applied a polylactic acid-resveratrol coating to the LAAO membrane to enhance endothelialization with the goal of shortening the anticoagulation therapy duration. Eighteen dogs were randomly divided into the experimental group (coated occluders) or the control group (noncoated occluders). The dogs were sacrificed in cohorts at days 14, 28, and 90 for anatomical and pathological examination to evaluate endothelialization and thrombus formation. Transesophageal echocardiography (TEE) was performed before sacrifice to evaluate device-related adverse events. According to the anatomical and pathological examinations, all except one LAAO cover exhibited larger or thicker tissue or neoendocardial coverage in the experimental group compared with the control group at the same sacrifice time points. All connection hubs were densely covered by endothelial cells at 90 days and completely covered at 28 days in the experimental group, while all connection hubs were thinly covered at 90 days and two connection hubs were exposed at 28 days in the control group. Pathological examination revealed no thrombus formation in the experimental group, while a small amount of thrombus was observed in one dog at 90 days and in two dogs at 28 days in the control group. Finally, TEE showed no peri-device leakage (PDL) in the experimental group, whereas a small amount of PDL was detected in one dog (3.2 mm) at 28 days and in one dog (3.7 mm) at 14 days in the control group. The resveratrol-loaded polylactic acid-covered LAAO device enhanced endothelialization and reduced thrombus formation and PDL. This effect could possibly reduce the anticoagulation therapy duration.
Collapse
Affiliation(s)
| | | | - Hongda Zhang
- State Key Laboratory
of Cardiovascular
Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College,
Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Xiaonan Dong
- State Key Laboratory
of Cardiovascular
Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College,
Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Lei Ding
- State Key Laboratory
of Cardiovascular
Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College,
Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Yingjie Qi
- State Key Laboratory
of Cardiovascular
Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College,
Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Min Tang
- State Key Laboratory
of Cardiovascular
Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College,
Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
7
|
Yang Z, Yin G, Sun S, Xu P. Medical applications and prospects of polylactic acid materials. iScience 2024; 27:111512. [PMID: 39759018 PMCID: PMC11699620 DOI: 10.1016/j.isci.2024.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Polylactic acid (PLA) is a biodegradable and bio-based polymer that has gained significant attention as an environmentally friendly alternative to traditional petroleum-based plastics. In clinical treatment, biocompatible and non-toxic PLA materials enhance safety and reduce tissue reactions, while the biodegradability allows it to breakdown over time naturally, avoiding a second surgery. With the emergence of nanotechnology and three-dimensional (3D) printing, medical utilized-PLA has been produced with more structural and biological properties at both micro and macro scales for clinical therapy. This review summarizes current applications of the PLA-based biomaterials in drug delivery systems, orthopedic treatment, tissue regenerative engineering, and surgery and medical devices, providing viewpoints regarding the prospective medical utilization.
Collapse
Affiliation(s)
- Zhenqi Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyang Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Asia Pacific Graduate Institute of Shanghai Jiao Tong University, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
8
|
Liu ZH, Huang YC, Kuo CY, Govindaraju DT, Chen NY, Yip PK, Chen JP. Docosahexaenoic Acid-Infused Core-Shell Fibrous Membranes for Prevention of Epidural Adhesions. Int J Mol Sci 2024; 25:13012. [PMID: 39684723 DOI: 10.3390/ijms252313012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Avoiding epidural adhesion following spinal surgery can reduce clinical discomfort and complications. As the severity of epidural adhesion is positively correlated with the inflammatory response, implanting a fibrous membrane after spinal surgery, which can act as a physical barrier to prevent adhesion formation while simultaneously modulates postoperative inflammation, is a promising approach to meet clinical needs. Toward this end, we fabricated an electrospun core-shell fibrous membrane (CSFM) based on polylactic acid (PLA) and infused the fiber core region with the potent natural anti-inflammatory compound docosahexaenoic acid (DHA). The PLA/DHA CSFM can continuously deliver DHA for up to 36 days in vitro and reduce the penetration and attachment of fibroblasts. The released DHA can downregulate the gene expression of inflammatory markers (IL-6, IL-1β, and TNF-α) in fibroblasts. Following an in vivo study that implanted a CSFM in rats subjected to lumbar laminectomy, the von Frey withdrawal test indicates the PLA/DHA CSFM treatment can successfully alleviate neuropathic pain-like behaviors in the treated rats, showing 3.60 ± 0.49 g threshold weight in comparison with 1.80 ± 0.75 g for the PLA CSFM treatment and 0.57 ± 0.37 g for the untreated control on day 21 post-implantation. The histological analysis also indicates that the PLA/DHA CSFM can significantly reduce proinflammatory cytokine (TNF-α and IL-1β) protein expression at the lesion and provide anti-adhesion effects, indicating its vital role in preventing epidural fibrosis by mitigating the inflammatory response.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | | | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Ping K Yip
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jyh-Ping Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
9
|
Biliuta G, Zhang S, Gradinaru LM, Bercea M, Baron RI, Bejan D, Coseri S. Advanced pullulan nanofibers reinforced by cellulose fibrils as drug carriers for salicylic acid. Int J Biol Macromol 2024; 283:137624. [PMID: 39547616 DOI: 10.1016/j.ijbiomac.2024.137624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/21/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The goal of the current work is to showcase the synthesis of homogeneous pullulan nanofibers that are strengthened by the addition of cellulose nanofibrils (CNF). One of the main difficulties this study faced was determining the ideal water/organic solvent ratio for the electrospinning process, which would allow for the maximum reduction in the amount of organic solvent (DMF or DMSO) needed. The rheological behavior of electrospinning solutions was modulated by varying both, the pullulan concentration and solvent system composition. The amount of CNF in the composition significantly affects the properties of the created nanofibers. When the CNF content increased from 1 % to 5 %, the diameter of the fibers decreases from 284 nm to 90 nm. This is attributed to the enhanced conductivity and surface charge density of the solution jet. The as prepared nanofibres can hold a variety of drugs and can be used to create novel formulations for various biomedical purposes. The nanofibres were tested for salicylic acid incorporation and release. Drug release exhibited zero-order kinetics, suggesting that the concentration remained unaffected by the rate of release. Furthermore, the nanofibres demonstrated remarkable antibacterial activity against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Gabriela Biliuta
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Raluca Ioana Baron
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Dana Bejan
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| |
Collapse
|
10
|
Xie Y, Tan J, Fang S, Li T, Chen Y, Li L, Chen N. A biodegradable, osteo-regenerative and biomechanically robust polylactide bone screw for clinical orthopedic surgery. Int J Biol Macromol 2024; 283:137477. [PMID: 39542295 DOI: 10.1016/j.ijbiomac.2024.137477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Poly (L-lactic acid) (PLLA) has emerged as a promising orthopedic implant material due to its favorable strength and biodegradability. However, challenges such as low toughness and limited osteoinductivity hinder its widespread use in bone fixation. This study focuses on enhancing the toughness and osteogenic activity of PLLA-based orthopedic implants. Inspired by reinforcement techniques in the construction industry, we designed a structure comprising flexible fibers enveloped by PLLA/hydroxyapatite (HA) crystalline phases. Initially, PLLA/poly (butylene succinate-co-adipate) (PBSA)/HA composites with "sea-island" morphology were prepared through melt-compounding. Subsequently, the highly oriented PBSA fibers were in situ formed during microinjection molding for bone screw fabrication. Comprehensive investigation into the structural-mechanical property relationship revealed a significant increase in elongation at break (from 5.4 % to 59.4 % with an optimal PBSA/HA ratio), while maintaining a high stiffness and a slight decrease in tensile strength (from 62.0 MPa to 56.0 MPa). The flexural tests of the resulting composite bone screws demonstrated a significant increase in toughness. Additionally, the in vivo studies corroborated the osteogenic potential of the microinjection molded bone screws by using hematoxylin and eosin (HE) and Masson staining. The methodology presented in this study offers a promising approach for advancing PLLA-based fixation devices in bone repair applications.
Collapse
Affiliation(s)
- Yeping Xie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Jiayu Tan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Shijian Fang
- Company XVI, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Tao Li
- Sports Medicine Center, West China Hospital, Department of Orthopedics and Orthopeidc Research Institute, Sichuan University, Chengdu, China.
| | - Yinghong Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China.
| | - Li Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Mazidi MM, Arezoumand S, Zare L. Research progress in fully biorenewable tough blends of polylactide and green plasticizers. Int J Biol Macromol 2024; 279:135345. [PMID: 39244110 DOI: 10.1016/j.ijbiomac.2024.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Plasticized PLA plastic films are being increasingly used in, among others, packaging and agriculture sectors in an attempt to address the rapid growth of municipal waste. The present paper aims to review the recent progress and the state-of-the-art in the field of fully bio-renewable tough blends of PLA with green plasticizers aimed at developing flexible packaging films. The different classes of green substances, derived from completely bio-renewable resources, used as potential plasticizers for PLA resins are reviewed. The effectiveness of these additives for PLA plasticization is discussed by describing their effects on different properties of PLA. The performance of these blends is primarily determined by the solvent power, compatibility, efficiency, and permanence of plasticizer present in the PLA matrix of resulting films. The various chemical modification strategies employed to tailor the phase interactions, dispersion level and morphology, plasticization efficiency, and permanence, including functionalization, oligomerization, polymerization and self-crosslinking, grafting and copolymerization, and dynamic vulcanization are demonstrated. Sometimes a third component has also been added to the plasticized binary blends as compatibilizer to further promote dispersion and interfacial adhesion. The impact of chemical structure, size and molecular weight, chemical functionalities, polarity, concentration, topology as well as molecular architectures of the plasticizers on the plasticizer performance and the overall characteristics of resulting plasticized PLA materials is discussed. The morphological features and toughening mechanisms for PLA/plasticizer blends are also presented. The different green liquids employed show varying degree of plasticization. Some are more useful for semi-rigid applications, while some others can be used for very flexible products. There is an optimum level of plasticizer in PLA matrices above which the tensile ductility deteriorates. Esters-derivatives of bio-based plasticizers have been shown to be very promising additives for PLA modification. Some plasticizers impart additional functions such as antioxidation and antibacterial activity to the resulting PLA materials, or compatibilization in PLA-based blends. While the primary objective of plasticization is to boost the processability, flexibility, and toughness over wider practical conditions, the bio-degradability, permeability and long-term stability of microstructure (and thereby properties) of the plasticized films against light, weathering, thermal aging, and oxidation deserve further investigations.
Collapse
Affiliation(s)
- Majid Mehrabi Mazidi
- Faculty of Polymer Engineering, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran.
| | - Sahar Arezoumand
- Department of Polymer Engineering, University of Tehran, Kish International Campus, Kish Island, Iran
| | - Leila Zare
- Faculty of Polymer and Chemistry Sciences, Islamic Azad University, Fasa 7461195531, Iran
| |
Collapse
|
12
|
Świerczyńska M, Kudzin MH, Chruściel JJ. Poly(lactide)-Based Materials Modified with Biomolecules: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5184. [PMID: 39517460 PMCID: PMC11546716 DOI: 10.3390/ma17215184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Poly(lactic acid) (PLA) is characterized by unique features, e.g., it is environmentally friendly, biocompatible, has good thermomechanical properties, and is readily available and biodegradable. Due to the increasing pollution of the environment, PLA is a promising alternative that can potentially replace petroleum-derived polymers. Different biodegradable polymers have numerous biomedical applications and are used as packaging materials. Because the pure form of PLA is delicate, brittle, and is characterized by a slow degradation rate and a low thermal resistance and crystallization rate, these disadvantages limit the range of applications of this polymer. However, the properties of PLA can be improved by chemical or physical modification, e.g., with biomolecules. The subject of this review is the modification of PLA properties with three classes of biomolecules: polysaccharides, proteins, and nucleic acids. A quite extensive description of the most promising strategies leading to improvement of the bioactivity of PLA, through modification with these biomolecules, is presented in this review. Thus, this article deals mainly with a presentation of the major developments and research results concerning PLA-based materials modified with different biomolecules (described in the world literature during the last decades), with a focus on such methods as blending, copolymerization, or composites fabrication. The biomedical and unique biological applications of PLA-based materials, especially modified with polysaccharides and proteins, are reviewed, taking into account the growing interest and great practical potential of these new biodegradable biomaterials.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Łódź, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
13
|
Čajková J, Trebuňová M, Modrák M, Ižaríková G, Bačenková D, Balint T, Živčák J. Influence of Oligomeric Lactic Acid and Structural Design on Biodegradation and Absorption of PLA-PHB Blends for Tissue Engineering. Polymers (Basel) 2024; 16:2969. [PMID: 39518179 PMCID: PMC11548507 DOI: 10.3390/polym16212969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The advancing development in biomaterials and biology has enabled the extension of 3D printing technology to the bioadditive manufacturing of degradable hard tissue substitutes. One of the key advantages of bioadditive manufacturing is that it has much smaller design limitations than conventional manufacturing and is therefore capable of producing implants with complex geometries. In this study, three distinct blends of polylactic acid (PLA) and polyhydroxybutyrate (PHB) were produced using Fused Deposition Modeling (FDM) technology. Two of these blends were plasticized with oligomeric lactic acid (OLA) at concentrations of 5 wt% and 10 wt%, while the third blend remained unplasticized. Each blend was fabricated in two structural modifications: solid and porous. The biodegradation behavior of the produced specimens was examined through an in vitro experiment using three different immersion solutions: saline solution, Hank's balanced salt solution (HBSS), and phosphate-buffered saline (PBS). All examined samples were also subjected to chemical analysis: atomic absorption spectroscopy (AAS), scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). The results of the degradation experiments indicated a predominantly better absorption capacity of the samples with a porous structure compared to the full structure. At the same time, the blend containing a higher concentration of OLA exhibited enhanced pH stability over the evaluation period, maintaining relatively constant pH values before experiencing a minor decline at the end of the study. This observation indicates that the increased presence of the plasticizer may provide a buffering effect, effectively mitigating the acidification associated with material degradation.
Collapse
Affiliation(s)
- Jana Čajková
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 042 00 Košice, Slovakia; (M.T.); (M.M.); (D.B.); (T.B.); (J.Ž.)
| | - Marianna Trebuňová
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 042 00 Košice, Slovakia; (M.T.); (M.M.); (D.B.); (T.B.); (J.Ž.)
| | - Marcel Modrák
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 042 00 Košice, Slovakia; (M.T.); (M.M.); (D.B.); (T.B.); (J.Ž.)
| | - Gabriela Ižaríková
- Department of Applied Mathematics and Informatics, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia;
| | - Darina Bačenková
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 042 00 Košice, Slovakia; (M.T.); (M.M.); (D.B.); (T.B.); (J.Ž.)
| | - Tomáš Balint
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 042 00 Košice, Slovakia; (M.T.); (M.M.); (D.B.); (T.B.); (J.Ž.)
| | - Jozef Živčák
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 042 00 Košice, Slovakia; (M.T.); (M.M.); (D.B.); (T.B.); (J.Ž.)
| |
Collapse
|
14
|
Fang Y, Liu Z, Jin Y, Huang Y, Zhou S, Tian H, Wu H. Electrospun high hydrophilicity antimicrobial poly (lactic acid)/silk fibroin nanofiber membrane for wound dressings. Int J Biol Macromol 2024; 277:133905. [PMID: 39079839 DOI: 10.1016/j.ijbiomac.2024.133905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/25/2024]
Abstract
Antimicrobial wound dressings can aid wound healing by preventing bacterial infection. This is particularly true of electrospun ones, which have a porous structure and can be easily loaded with antimicrobial drugs. Here, Poly lactic acid (PLA), Silk Fibroin (SF) and antimicrobial agents of Silver nanoparticles (Ag NPs) and Silver oxide (Ag2O) to prepare the PLA/SF composites antimicrobial nanofiber membrane by electrospinning. The PLA with 30 % SF nanofiber membrane show the water vapor permeability (WVP) and the liquid absorption of 36 g·mm/(m2·d·kPa) and 1721 %. With the increasing of SF contents, the degradation rate and surface hydrophilicity of the nanofiber membrane increase significantly. The nanofiber membrane exhibited excellent antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) with the inhibition circle reach at 18.2 mm. The resultant nanofiber membrane showed high cytosolic activity, good cytocompatibility and strong antimicrobial ability, which laid a theoretical foundation for the construction of a new PLA/SF composites antimicrobial fiber membrane.
Collapse
Affiliation(s)
- Yiqi Fang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zixuan Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yujuan Jin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yansong Huang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Sudan Zhou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Huafeng Tian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hua Wu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
15
|
Starcea IM, Lupu A, Nistor AM, Mocanu MA, Bogos RA, Azoicai A, Cira D, Beldie M, Lupu VV, Morariu ID, Munteanu V, Tepordei RT, Ioniuc I. A cutting-edge new framework for the pain management in children: nanotechnology. Front Mol Neurosci 2024; 17:1391092. [PMID: 39318422 PMCID: PMC11420925 DOI: 10.3389/fnmol.2024.1391092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Pain is a subjective concept which is ever-present in the medical field. Health professionals are confronted with a variety of pain types and sources, as well as the challenge of managing a patient with acute or chronic suffering. An even bigger challenge is presented in the pediatric population, which often cannot quantify pain in a numerical scale like adults. Infants and small children especially show their discomfort through behavioral and physiological indicators, leaving the health provider with the task of rating the pain. Depending on the pathophysiology of it, pain can be classified as neuropathic or nociceptive, with the first being defined by an irregular signal processing in the nervous system and the second appearing in cases of direct tissue damage or prolonged contact with a certain stimulant. The approach is generally either pharmacological or non-pharmacological and it can vary from using NSAIDs, local anesthetics, opiates to physical and psychological routes. Unfortunately, some pathologies involve either intense or chronic pain that cannot be managed with traditional methods. Recent studies have involved nanoparticles with special characteristics such as small dimension and large surface area that can facilitate carrying treatments to tissues and even offer intrinsic analgesic properties. Pediatrics has benefited significantly from the application of nanotechnology, which has enabled the development of novel strategies for drug delivery, disease diagnosis, and tissue engineering. This narrative review aims to evaluate the role of nanotechnology in current pain therapy, with emphasis on pain in children.
Collapse
Affiliation(s)
- Iuliana Magdalena Starcea
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ana Maria Nistor
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Maria Adriana Mocanu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Roxana Alexandra Bogos
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alice Azoicai
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Diana Cira
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Madalina Beldie
- Nephrology Division, St. Mary’s Emergency Children Hospital, Iasi, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Valentin Munteanu
- Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Razvan Tudor Tepordei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
16
|
Yoshikawa I, Hikima Y, Ohshima M. In-Line Chemical Composition Monitoring for the Injection Molding Process of Biodegradable Polymer Blends Using Simultaneous Measurement of Near-Infrared Diffuse Reflectance and Transmission Spectra. APPLIED SPECTROSCOPY 2024; 78:933-941. [PMID: 38651333 DOI: 10.1177/00037028241247823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In the processing of polymer blends and composites, in-line near-infrared (NIR) spectroscopy enables monitoring of the composition and its composite uniformity and contributes to rapid process development and quality control. However, in the injection molding process, the study of the composition of polymer materials has been delayed due to high-pressure conditions. Our research group developed NIR probes for transmission and diffuse reflectance measurements that can withstand high-pressure and temperature conditions up to 130 MPa and 200 °C. In this research, transmission and diffuse reflectance spectra were measured inline during the injection molding process of polymer blends of poly(lactic acid) and polybutylene succinate adipate. The intensity of each polymer band in the second-derivative spectra exhibited a monotonic increase or decrease in response to changes in the blend ratio. Using transmission and diffuse reflectance spectra as explanatory variables of the partial least squares regression model simultaneously, the model showed high estimation accuracy for the entire region of the blend ratio. Finally, this model was applied to monitor the polymer changeover operation, and the change in the blend ratio in the molded product was successfully estimated in line.
Collapse
Affiliation(s)
- Itsuki Yoshikawa
- Department of Chemical Engineering, Kyoto University, Kyoto, Japan
| | - Yuta Hikima
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Hiroshima, Japan
| | - Masahiro Ohshima
- Department of Chemical Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Chu H, Chen Z, Chen Y, Wei D, Liu Y, Zhao H. Mechanical Properties and Crystallinity of Specific PLA/Cellulose Composites by Surface Modification of Nanofibrillated Cellulose. Polymers (Basel) 2024; 16:2474. [PMID: 39274106 PMCID: PMC11397773 DOI: 10.3390/polym16172474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Polylactic acid (PLA) has inherent drawbacks, such as its amorphous structure, which affect its mechanical and barrier properties. The use of nanofibrillated cellulose (NFC) mixed with PLA for the production of composites has been chosen as a solution to the above problems. A PLA/NFC composite was produced by solution casting. Before use, the cellulose was modified using a silane coupling agent. The composite films were investigated via X-ray diffraction, as well as by mechanical, physical, thermal analyses and by differential scanning calorimeter. The crystallinity was four times that of pure PLA and the water vapor transmission rate decreased by 76.9% with the incorporation of 10 wt% of NFC. The tensile strength of PLA/NFC blend films increased by 98.8% with the incorporation of 5 wt% of NFC. The study demonstrates that the addition of NFC improved the properties of PLA. This provides a solid foundation for the enhancement of the performance of PLA products.
Collapse
Affiliation(s)
- Hongzhe Chu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zeyan Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongli Chen
- School of Environmental and Life Science, Nanning Normal University, Nanning 530100, China
| | - Deling Wei
- School of Environmental and Life Science, Nanning Normal University, Nanning 530100, China
| | - Yang Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hui Zhao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
18
|
Gholami R, Lawan I, Ebrahimi S, Pattulee A, Ahn CH, Rimdusit S. Toughening Polylactic Acid with Ultrafine Fully Vulcanized Powdered Natural Rubber Graft-Copolymerized with Poly(styrene-co-acrylonitrile): Tailoring the Styrene-Acrylonitrile Ratio for Enhanced Interfacial Interactions. Polymers (Basel) 2024; 16:2254. [PMID: 39204474 PMCID: PMC11359756 DOI: 10.3390/polym16162254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigated the sustainable toughening of polylactic acid (PLA) by incorporating ultrafine fully vulcanized powdered natural rubber graft-copolymerized with poly-styrene-co-acrylonitrile (UFPNR-SAN). We investigated the effect of the styrene-to-acrylonitrile ratio (ST:AN) used during the grafting process on the final UFPNR-SAN compatibility with PLA. The ST:AN ratio was systematically varied during the grafting reaction to prepare UFPNR-SAN with a range of different surface energies. The ST:AN ratio of 4:1 showed the highest compatibility with the PLA matrix, attributed to optimal interfacial interactions and improved dispersion, as indicated by contact angle measurements and SEM observations. This resulted in a remarkable toughening of the PLA/UFPNR-SAN composite. For instance, an obvious fully ductile behavior without crack formation and flexural strain of around 17.5% against 5% of the neat PLA was recorded. In addition, 3.5 times improvement in the impact strength of the composite at 25 wt% dosage of the UFPNR-SAN was also achieved without compromising thermal properties. Overall, this study established the suitable ST:AN ratio on the grafting onto natural rubber to enhance interfacial interactions with PLA and its effects on the properties of the resulting PLA/UFPNR-SAN bio-based composite.
Collapse
Affiliation(s)
- Reza Gholami
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (R.G.); (I.L.); (S.E.); (A.P.)
| | - Ibrahim Lawan
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (R.G.); (I.L.); (S.E.); (A.P.)
| | - Sahar Ebrahimi
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (R.G.); (I.L.); (S.E.); (A.P.)
| | - Achiraya Pattulee
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (R.G.); (I.L.); (S.E.); (A.P.)
| | - Cheol-Hee Ahn
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Sarawut Rimdusit
- Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (R.G.); (I.L.); (S.E.); (A.P.)
| |
Collapse
|
19
|
Shen W, Mao Y, Ge X, Xu J, Hu J, Ao F, Wu S, Yan P. PLA tissue-engineered scaffolds loaded with sustained-release active substance chitosan nanoparticles: Modeling BSA-bFGF as the active substance. Int J Biol Macromol 2024; 274:133120. [PMID: 38876244 DOI: 10.1016/j.ijbiomac.2024.133120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The utilization of basic fibroblast growth factor (bFGF) in the development of tissue-engineered scaffolds is both challenging and imperative. In our pursuit of creating a scaffold that aligns with the natural healing process, we initially fabricated chitosan-bFGF nanoparticles (CS-bFGF NPs) through electrostatic spraying. Subsequently, polylactic acid (PLA) fiber was prepared using electrospinning technique, and the CS-bFGF NPs were uniformly embedded within the pores of porous PLA fibers. Scanning electron micrographs illustrate the smooth surface of the nanoparticles, showing a porous structure intricately attached to PLA fibers. Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses provided conclusive evidence that the CS-bFGF NPs were uniformly distributed throughout the porous PLA fibers, forming a robust physical bond through electrostatic adsorption. The resultant scaffolds exhibited commendable mechanical properties and hydrophilicity, facilitating a sustained-release for 72 h. Furthermore, the biocompatibility and degradation performance of the scaffolds were substantiated by monitoring conductivity and pH changes in pure water over different time intervals, complemented by scanning electron microscopy (SEM) observations. Cell experiments confirmed the cytocompatibility of the scaffolds. In animal studies, the group treated with 16 % NPs/Scaffold demonstrated the highest epidermal reconstruction rate. In summary, our developed materials present a promising candidate for serving as a tissue engineering scaffold, showcasing exceptional biocompatibility, sustained-release characteristics, and substantial potential for promoting epidermal regeneration.
Collapse
Affiliation(s)
- Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing, Nan Jing 210037, China
| | - Jingwen Xu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaru Hu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pi Yan
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
20
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
21
|
Makri SP, Klonos PA, Marra G, Karathanasis AZ, Deligkiozi I, Valera MÁ, Mangas A, Nikolaidis N, Terzopoulou Z, Kyritsis A, Bikiaris DN. Structure-property relationships in renewable composites of poly(lactic acid) reinforced by low amounts of micro- and nano-kraft-lignin. SOFT MATTER 2024; 20:5014-5027. [PMID: 38885039 DOI: 10.1039/d4sm00622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We investigate the direct and indirect effects of micro- and nano-kraft lignin, kL and NkL, respectively, at a quite low amount of 0.5 wt%, in poly(lactic acid) (PLA)-based composites. These renewable composites were prepared via two routes, either simple melt compounding or in situ reactive extrusion. The materials are selected and prepared using targeted methods in order to vary two variables, i.e., the size of kL and the synthetic method, while maintaining constant polymer chain lengths, L-/D-lactide isomer ratio and filler amounts. The direct/indirect effects were respectively investigated in the amorphous/semicrystalline state, as crystallinity plays in general a dominant role in polymers. The investigation involves structural, thermal and molecular mobility aspects. Non-extensive polymer-lignin interactions were recorded here, whereas the presence of the fillers led to both enhancements and suppressions of properties, e.g., glass transition, crystallization, melting temperatures, etc. The local and segmental molecular dynamics map of the said systems was constructed and is shown here for the first time, demonstrating both expected and unexpected trends. An interesting discrepancy between the trends in the calorimetric measurement against the dielectric Tg is revealed, providing indications for 'dynamical heterogeneities' in the composites as compared to neat PLA. The reactive extrusion as compared to compounding-based systems was found to exhibit stronger effects on crystallizability and mobility, most, probably due to the severe enhancement of the chains' diffusion. In general, the effects are more pronounced when employing nano-lignin compared to micro-lignin, which is the expected beneficial behaviour of nanocomposites vs. conventional composites. Interestingly, the variety of these effects can be easily manipulated by the proper selection of the preparation method and/or the thermal treatment under relatively mild conditions. The latter capability is actually desirable for processing and targeted applications and is proved here, once again, as an advantage of biobased polyesters such as PLA.
Collapse
Affiliation(s)
- Sofia P Makri
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Creative Nano PC, 43 Tatoiou, Metamorfosi, 14451 Athens, Greece
| | - Panagiotis A Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Dielectrics Group, Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Giacomo Marra
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | | | | | - Miguel Ángel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Nikolaos Nikolaidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Dielectrics Group, Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
22
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
23
|
Osorio-Londoño D, Heras-Romero Y, Tovar-y-Romo LB, Olayo-González R, Morales-Guadarrama A. Improved Recovery of Complete Spinal Cord Transection by a Plasma-Modified Fibrillar Scaffold. Polymers (Basel) 2024; 16:1133. [PMID: 38675052 PMCID: PMC11054293 DOI: 10.3390/polym16081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Complete spinal cord injury causes an irreversible disruption in the central nervous system, leading to motor, sensory, and autonomic function loss, and a secondary injury that constitutes a physical barrier preventing tissue repair. Tissue engineering scaffolds are presented as a permissive platform for cell migration and the reconnection of spared tissue. Iodine-doped plasma pyrrole polymer (pPPy-I), a neuroprotective material, was applied to polylactic acid (PLA) fibers and implanted in a rat complete spinal cord transection injury model to evaluate whether the resulting composite implants provided structural and functional recovery, using magnetic resonance (MR) imaging, diffusion tensor imaging and tractography, magnetic resonance spectroscopy, locomotion analysis, histology, and immunofluorescence. In vivo, MR studies evidenced a tissue response to the implant, demonstrating that the fibrillar composite scaffold moderated the structural effects of secondary damage by providing mechanical stability to the lesion core, tissue reconstruction, and significant motor recovery. Histologic analyses demonstrated that the composite scaffold provided a permissive environment for cell attachment and neural tissue guidance over the fibers, reducing cyst formation. These results supply evidence that pPPy-I enhanced the properties of PLA fibrillar scaffolds as a promising treatment for spinal cord injury recovery.
Collapse
Affiliation(s)
- Diana Osorio-Londoño
- Electrical Engineering Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico;
| | - Yessica Heras-Romero
- Experimental Analysis of Behavior Department, Faculty of Psychology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Luis B. Tovar-y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | | | - Axayácatl Morales-Guadarrama
- Medical Imaging and Instrumentation Research National Center, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico
| |
Collapse
|
24
|
Ashkenazi S, Matsanov P, Nassar-Marjiya E, Farah S, Weitz IS. Study of PEG- b-PLA/Eudragit S100 Blends on the Nanoencapsulation of Indigo Carmine Dye and Application in Controlled Release. ACS OMEGA 2024; 9:13382-13390. [PMID: 38524501 PMCID: PMC10956112 DOI: 10.1021/acsomega.3c10447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
A nanocapsule shell of poly(ethylene glycol)-block-poly(d,l-lactic acid) (PEG-b-PLA) mixed with anionic Eudragit S100 (90/10% w/w) was previously used to entrap and define the self-assembly of indigo carmine (IC) within the hydrophilic cavity core. In the present work, binary blends were prepared by solution mixing at different PEG-b-PLA/Eudragit S100 ratios (namely, 100/0, 90/10, 75/25, and 50/50% w/w) to elucidate the role of the capsule shell in tuning the encapsulation of the anionic dye (i.e., IC). The results showed that the higher content of Eudragit S100 in the blend decreases the miscibility of the two polymers due to weak intermolecular interactions between PEG-b-PLA and Eudragit S100. Moreover, with an increase in the amount of Eudragit S100, a higher thermal stability was observed related to the mobility restriction of PEG-b-PLA chains imposed by Eudragit S100. Formulations containing 10 and 25% Eudragit S100 exhibited an optimal interplay of properties between the negative surface charge and the miscibility of the polymer blend. Therefore, the anionic character of the encapsulating agent provides sufficient accumulation of IC molecules in the nanocapsule core, leading to dye aggregates following the self-assembly. At the same time, the blending of the two polymers tunes the IC release properties in the initial stage, achieving slow and controlled release. These findings give important insights into the rational design of polymeric nanosystems containing organic dyes for biomedical applications.
Collapse
Affiliation(s)
- Shaked Ashkenazi
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Pnina Matsanov
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Eid Nassar-Marjiya
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shady Farah
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- The
Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Iris S. Weitz
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| |
Collapse
|
25
|
Dong J, Ding H, Wang Q, Wang L. A 3D-Printed Scaffold for Repairing Bone Defects. Polymers (Basel) 2024; 16:706. [PMID: 38475389 DOI: 10.3390/polym16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of bone defects has always posed challenges in the field of orthopedics. Scaffolds, as a vital component of bone tissue engineering, offer significant advantages in the research and treatment of clinical bone defects. This study aims to provide an overview of how 3D printing technology is applied in the production of bone repair scaffolds. Depending on the materials used, the 3D-printed scaffolds can be classified into two types: single-component scaffolds and composite scaffolds. We have conducted a comprehensive analysis of material composition, the characteristics of 3D printing, performance, advantages, disadvantages, and applications for each scaffold type. Furthermore, based on the current research status and progress, we offer suggestions for future research in this area. In conclusion, this review acts as a valuable reference for advancing the research in the field of bone repair scaffolds.
Collapse
Affiliation(s)
- Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Hangxing Ding
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Qin Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Liping Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
26
|
Broadwin M, Imarhia F, Oh A, Stone CR, Sellke FW, Bhowmick S, Abid MR. Exploring Electrospun Scaffold Innovations in Cardiovascular Therapy: A Review of Electrospinning in Cardiovascular Disease. Bioengineering (Basel) 2024; 11:218. [PMID: 38534492 DOI: 10.3390/bioengineering11030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. In particular, patients who suffer from ischemic heart disease (IHD) that is not amenable to surgical or percutaneous revascularization techniques have limited treatment options. Furthermore, after revascularization is successfully implemented, there are a number of pathophysiological changes to the myocardium, including but not limited to ischemia-reperfusion injury, necrosis, altered inflammation, tissue remodeling, and dyskinetic wall motion. Electrospinning, a nanofiber scaffold fabrication technique, has recently emerged as an attractive option as a potential therapeutic platform for the treatment of cardiovascular disease. Electrospun scaffolds made of biocompatible materials have the ability to mimic the native extracellular matrix and are compatible with drug delivery. These inherent properties, combined with ease of customization and a low cost of production, have made electrospun scaffolds an active area of research for the treatment of cardiovascular disease. In this review, we aim to discuss the current state of electrospinning from the fundamentals of scaffold creation to the current role of electrospun materials as both bioengineered extracellular matrices and drug delivery vehicles in the treatment of CVD, with a special emphasis on the potential clinical applications in myocardial ischemia.
Collapse
Affiliation(s)
- Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frances Imarhia
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Amy Oh
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Christopher R Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Sankha Bhowmick
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
27
|
Xu T, Gao S, Yang N, Zhao Q, Zhang Y, Li T, Liu Z, Han B. A personalized biomimetic dual-drug delivery system via controlled release of PTH 1-34 and simvastatin for in situ osteoporotic bone regeneration. Front Bioeng Biotechnol 2024; 12:1355019. [PMID: 38357710 PMCID: PMC10865375 DOI: 10.3389/fbioe.2024.1355019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Patients with osteoporosis often encounter clinical challenges of poor healing after bone transplantation due to their diminished bone formation capacity. The use of bone substitutes containing bioactive factors that increase the number and differentiation of osteoblasts is a strategy to improve poor bone healing. In this study, we developed an in situ dual-drug delivery system containing the bone growth factors PTH1-34 and simvastatin to increase the number and differentiation of osteoblasts for osteoporotic bone regeneration. Our system exhibited ideal physical properties similar to those of natural bone and allowed for customizations in shape through a 3D-printed scaffold and GelMA. The composite system regulated the sustained release of PTH1-34 and simvastatin, and exhibited good biocompatibility. Cell studies revealed that the composite system reduced osteoblast death, and promoted expression of osteoblast differentiation markers. Additionally, by radiographic analysis and histological observation, the dual-drug composite system demonstrated promising bone regeneration outcomes in an osteoporotic skull defect model. In summary, this composite delivery system, comprising dual-drug administration, holds considerable potential for bone repair and may serve as a safe and efficacious therapeutic approach for addressing bone defects in patients with osteoporosis.
Collapse
Affiliation(s)
- Tongtong Xu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, Jilin, China
| | - Shang Gao
- Department of Stomatology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Nan Yang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qi Zhao
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, Jilin, China
| | - Yutong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Tieshu Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Bing Han
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
28
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
29
|
Zhu J, Sun H, Yang B, Weng Y. Modified Biomass-Reinforced Polylactic Acid Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:336. [PMID: 38255504 PMCID: PMC10817700 DOI: 10.3390/ma17020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Polylactic acid (PLA), as a renewable and biodegradable green polymer material, is hailed as one of the most promising biopolymers capable of replacing petroleum-derived polymers for industrial applications. Nevertheless, its limited toughness, thermal stability, and barrier properties have restricted its extensive application. To address these drawbacks in PLA, research efforts have primarily focused on enhancing its properties through copolymerization, blending, and plasticization. Notably, the blending of modified biomass with PLA is expected not only to effectively improve its deficiencies but also to maintain its biodegradability, creating a fully green composite with substantial developmental prospects. This review provides a comprehensive overview of modified biomass-reinforced PLA, with an emphasis on the improvements in PLA's mechanical properties, thermal stability, and barrier properties achieved through modified cellulose, lignin, and starch. At the end of the article, a brief exploration of plasma modification of biomass is presented and provides a promising outlook for the application of reinforced PLA composite materials in the future. This review provides valuable insights regarding the path towards enhancing PLA.
Collapse
Affiliation(s)
- Junjie Zhu
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
| | - Hui Sun
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Yang
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
30
|
Yu H, Gao R, Liu Y, Fu L, Zhou J, Li L. Stimulus-Responsive Hydrogels as Drug Delivery Systems for Inflammation Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306152. [PMID: 37985923 PMCID: PMC10767459 DOI: 10.1002/advs.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Deregulated inflammations induced by various factors are one of the most common diseases in people's daily life, while severe inflammation can even lead to death. Thus, the efficient treatment of inflammation has always been the hot topic in the research of medicine. In the past decades, as a potential biomaterial, stimuli-responsive hydrogels have been a focus of attention for the inflammation treatment due to their excellent biocompatibility and design flexibility. Recently, thanks to the rapid development of nanotechnology and material science, more and more efforts have been made to develop safer, more personal and more effective hydrogels for the therapy of some frequent but tough inflammations such as sepsis, rheumatoid arthritis, osteoarthritis, periodontitis, and ulcerative colitis. Herein, from recent studies and articles, the conventional and emerging hydrogels in the delivery of anti-inflammatory drugs and the therapy for various inflammations are summarized. And their prospects of clinical translation and future development are also discussed in further detail.
Collapse
Affiliation(s)
- Haoyu Yu
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| | - Rongyao Gao
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Yuxin Liu
- Department of Biomolecular SystemsMax‐Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Limin Fu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jing Zhou
- Department of ChemistryCapital Normal UniversityBeijing100048P. R. China
| | - Luoyuan Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033P. R. China
| |
Collapse
|
31
|
Wang C, Qiao K, Ding Y, Liu Y, Niu J, Cao H. Enhanced control efficacy of spinosad on corn borer using polylactic acid encapsulated mesoporous silica nanoparticles as a smart delivery system. Int J Biol Macromol 2023; 253:126425. [PMID: 37607654 DOI: 10.1016/j.ijbiomac.2023.126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Asion corn borer (Ostrinia furnacalis (Guenee)) is one of the most important factors affecting the normal growth and yield of corn. However, chemical control methods currently in use cause severe pollution. In the present study, aminated mesoporous silica nanoparticles (MSNs-NH2) and polylactic acid (PLA) were used as the carrier and capping agent respectively to construct an insect gut microenvironment nano-response system that loaded spinosad, a biopesticide used to control O. furnacalis. The resulting spinosad@MSNs-PLA demonstrated high loading capacity (38.6 %) and improved photostability of spinosad. Moreover, this delivery system could intelligently respond to the intestinal microenvironment of the corn borer's gut and achieve the smart release of spinosad. Compared with the conventional pesticide, spinosad@MSNs-PLA exhibited superior efficacy in controlling the O. furnacalis and could uptake and transport in maize plants without adverse effects on their growth. Furthermore, the toxicity of spinosad@MSNs-PLA on zebrafish was reduced by over 50 times. The prepared spinosad@MSNs-PLA has great potential and could be widely applied in agricultural production in the future. This approach could improve the utilization of pesticide and reduce environmental pollution. In addition, MSNs-PLA nano vectors provide new ideas for the control of other borer pests.
Collapse
Affiliation(s)
- Chao Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ke Qiao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yi Ding
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Junfan Niu
- School of Plant Protection, Anhui Agricultural University, Hefei, China.
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
32
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
33
|
Mokrane N, Kaci M, Lopez-Cuesta JM, Dehouche N. Combined Effect of Poly(lactic acid)-Grafted Maleic Anhydride Compatibilizer and Halloysite Nanotubes on Morphology and Properties of Polylactide/Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Blends. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6438. [PMID: 37834577 PMCID: PMC10573863 DOI: 10.3390/ma16196438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Given the global challenge of plastic pollution, the development of new bioplastics to replace conventional polymers has become a priority. It is therefore essential to achieve a balance in the performances of biopolymers in order to improve their commercial availability. In this topic, this study aims to investigate the morphology and properties of poly(lactic acid) (PLA)/ poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) (at a ratio of 75/25 (w/w)) blends reinforced with halloysite nanotubes (HNTs) and compatibilized with poly(lactic acid)-grafted maleic anhydride (PLA-g-MA). HNTs and PLA-g-MA were added to the polymer blend at 5 and 10 wt.%, respectively, and everything was processed via melt compounding. A scanning electron microscopy (SEM) analysis shows that HNTs are preferentially localized in PHBHHx nodules rather than in the PLA matrix due to its higher wettability. When HNTs are combined with PLA-g-MA, a finer and a more homogeneous morphology is observed, resulting in a reduction in the size of PHBHHx nodules. The presence of HNTs in the polymer blend improves the impact strength from 12.7 to 20.9 kJ/mm2. Further, with the addition of PLA-g-MA to PLA/PHBHHX/HNT nanocomposites, the tensile strength, elongation at break, and impact strength all improve significantly, rising from roughly 42 MPa, 14.5%, and 20.9 kJ/mm2 to nearly 46 MPa, 18.2%, and 31.2 kJ/mm2, respectively. This is consistent with the data obtained via dynamic mechanical analysis (DMA). The thermal stability of the compatibilized blend reinforced with HNTs is also improved compared to the non-compatibilized one. Overall, this study highlights the effectiveness of combining HNTs and PLA-g-AM for the properties enhancement of PLA/PHBHHx blends.
Collapse
Affiliation(s)
- Nawel Mokrane
- Laboratoire des Matériaux Polymères Avancés, Faculté de Technologie, Université de Bejaia, Béjaïa 06000, Algeria; (N.M.); (M.K.); (N.D.)
- Polymères Composites et Hybrides (PCH), IMT Mines Ales, 6, Avenue de Clavières, 30319 Alès, France
| | - Mustapha Kaci
- Laboratoire des Matériaux Polymères Avancés, Faculté de Technologie, Université de Bejaia, Béjaïa 06000, Algeria; (N.M.); (M.K.); (N.D.)
| | - José-Marie Lopez-Cuesta
- Polymères Composites et Hybrides (PCH), IMT Mines Ales, 6, Avenue de Clavières, 30319 Alès, France
| | - Nadjet Dehouche
- Laboratoire des Matériaux Polymères Avancés, Faculté de Technologie, Université de Bejaia, Béjaïa 06000, Algeria; (N.M.); (M.K.); (N.D.)
| |
Collapse
|
34
|
Li Y, Meng Q, Chen S, Ling P, Kuss MA, Duan B, Wu S. Advances, challenges, and prospects for surgical suture materials. Acta Biomater 2023; 168:78-112. [PMID: 37516417 DOI: 10.1016/j.actbio.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
As one of the long-established and necessary medical devices, surgical sutures play an essentially important role in the closing and healing of damaged tissues and organs postoperatively. The recent advances in multiple disciplines, like materials science, engineering technology, and biomedicine, have facilitated the generation of various innovative surgical sutures with humanization and multi-functionalization. For instance, the application of numerous absorbable materials is assuredly a marvelous progression in terms of surgical sutures. Moreover, some fantastic results from recent laboratory research cannot be ignored either, ranging from the fiber generation to the suture structure, as well as the suture modification, functionalization, and even intellectualization. In this review, the suture materials, including natural or synthetic polymers, absorbable or non-absorbable polymers, and metal materials, were first introduced, and then their advantages and disadvantages were summarized. Then we introduced and discussed various fiber fabrication strategies for the production of surgical sutures. Noticeably, advanced nanofiber generation strategies were highlighted. This review further summarized a wide and diverse variety of suture structures and further discussed their different features. After that, we covered the advanced design and development of surgical sutures with multiple functionalizations, which mainly included surface coating technologies and direct drug-loading technologies. Meanwhile, the review highlighted some smart and intelligent sutures that can monitor the wound status in a real-time manner and provide on-demand therapies accordingly. Furthermore, some representative commercial sutures were also introduced and summarized. At the end of this review, we discussed the challenges and future prospects in the field of surgical sutures in depth. This review aims to provide a meaningful reference and guidance for the future design and fabrication of innovative surgical sutures. STATEMENT OF SIGNIFICANCE: This review article introduces the recent advances of surgical sutures, including material selection, fiber morphology, suture structure and construction, as well as suture modification, functionalization, and even intellectualization. Importantly, some innovative strategies for the construction of multifunctional sutures with predetermined biological properties are highlighted. Moreover, some important commercial suture products are systematically summarized and compared. This review also discusses the challenges and future prospects of advanced sutures in a deep manner. In all, this review is expected to arouse great interest from a broad group of readers in the fields of multifunctional biomaterials and regenerative medicine.
Collapse
Affiliation(s)
- Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Qi Meng
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China; Shandong Academy of Pharmaceutical Science, Jinan, 250101, China.
| |
Collapse
|
35
|
Kelpsiene E, Rydberg M, Ekvall MT, Lundqvist M, Cedervall T. Prolonged survival time of Daphnia magna exposed to polylactic acid breakdown nanoplastics. PLoS One 2023; 18:e0290748. [PMID: 37669271 PMCID: PMC10479899 DOI: 10.1371/journal.pone.0290748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
Polylactic acid nanoparticles (PLA NPs) according to food and drug administration are biodegradable and biocompatible polymers that have received a lot of attention due to their natural degradation mechanism. Although there is already available information concerning the effects of PLA microplastic to aquatic organisms, the knowledge about PLA NPs is still vague. In the present study, we analyzed the chemical composition of engineered PLA NPs, daily used PLA items and their breakdown products. We show that PLA breakdown products are oxidized and may contain aldehydes and/or ketones. The breakdown produces nanosized particles, nanoplastics, and possibly other small molecules as lactide or cyclic oligomers. Further, we show that all PLA breakdown nanoplastics extended the survival rate in Daphnia magna in an acute toxicity assay, however, only PLA plastic cup breakdown nanoplastics showed a significant difference compared to a control group.
Collapse
Affiliation(s)
- Egle Kelpsiene
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Melinda Rydberg
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
| | - Mikael T. Ekvall
- NanoLund, Lund University, Lund, Sweden
- Department of Biology, Ecology Building, Aquatic Ecology Unit, Lund University, Lund, Sweden
| | - Martin Lundqvist
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Tommy Cedervall
- Department of Biochemistry and Structural Biology, Lund University, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| |
Collapse
|
36
|
Liu S, He S, Chen C, Li C, Luo W, Zheng K, Wang J, Li Z, He H, Chen Q, Li Y. A Versatile Disorder-to-Order Technology to Upgrade Polymers into High-Performance Bioinspired Materials. Adv Healthc Mater 2023; 12:e2300068. [PMID: 37269485 DOI: 10.1002/adhm.202300068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Biodegradable polymer as traditional material has been widely used in the medical and tissue engineering fields, but there is a great limitation as to its inferior mechanical performance for repairing load-bearing tissues. Thus, it is highly desirable to develop a novel technology to fabricate high-performance biodegradable polymers. Herein, inspired by the bone's superstructure, a versatile disorder-to-order technology (VDOT) is proposed to manufacture a high-strength and high-elastic modulus stereo-composite self-reinforced polymer fiber. The mean tensile strength (336.1 MPa) and elastic modulus (4.1 GPa) of the self-reinforced polylactic acid (PLA) fiber are 5.2 and 2.1 times their counterparts of the traditional PLA fiber prepared by the existing spinning method. Moreover, the polymer fibers have the best ability of strength retention during degradation. Interestingly, the fiber tensile strength is even higher than those of bone (200 MPa) and some medical metals (e.g., Al and Mg). Based on all-polymeric raw materials, the VDOT endows bioinspired polymers with improved strength, elastic modulus, and degradation-controlled mechanical maintenance, making it a versatile update technology for the massive industrial production of high-performance biomedical polymers.
Collapse
Affiliation(s)
- Shengyang Liu
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science & Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Shicheng He
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Can Chen
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science & Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Chunwang Li
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science & Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Wei Luo
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China
| | - Kaikai Zheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jing Wang
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science & Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Zhiyong Li
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Hongyan He
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science & Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Qiang Chen
- Biomechanics Laboratory, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Yulin Li
- Engineering Research Centre for Biomedical Materials of Ministry of Education, The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science & Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
37
|
Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater Today Bio 2023; 21:100710. [PMID: 37545561 PMCID: PMC10401296 DOI: 10.1016/j.mtbio.2023.100710] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies with limited functional properties, which oftentimes fails to meet the ever-increasing requirements of biomedical applications. Thus, multi-material electrospinning referring to engineering two or more kinds of materials, has been recently developed to enable the fabrication of diversified complex fibrous structures with advanced performance for greatly promoting biomedical development. This review firstly gives an overview of multi-material electrospinning modalities, with a highlight on their features and accessibility for constructing different complex fibrous structures. A perspective of how multi-material electrospinning opens up new opportunities for specific biomedical applications, i.e., tissue engineering and drug delivery, is also offered.
Collapse
Affiliation(s)
- Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Nannan Xu
- School of Computer Science and Technology, Ocean University of China, Qingdao, 266000, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
38
|
Covelli V, Cozzolino A, Rizzo P, Rodriquez M, Vestuto V, Bertamino A, Daniel C, Guerra G. Salicylic Acid Release from Syndiotactic Polystyrene Staple Fibers. Molecules 2023; 28:5095. [PMID: 37446756 DOI: 10.3390/molecules28135095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Films and fibers of syndiotactic polystyrene (sPS), being amorphous or exhibiting nanoporous crystalline (NC) or dense crystalline phases, were loaded with salicylic acid (SA), a relevant non-volatile antimicrobial molecule. In the first section of the paper, sPS/SA co-crystalline (CC) δ form is characterized, mainly by wide angle X-ray diffraction (WAXD) patterns and polarized Fourier transform infrared (FTIR) spectra. The formation of sPS/SA δ CC phases allows the preparation of sPS fibers even with a high content of the antibacterial guest, which is also retained after repeated washing procedures at 65 °C. A preparation procedure starting from amorphous fibers is particularly appropriate because involves a direct formation of the CC δ form and a simultaneous axial orientation. The possibility of tuning drug amount and release kinetics, by simply selecting suitable crystalline phases of a commercially available polymer, makes sPS fibers possibly useful for many applications. In particular, fibers with δ CC forms, which retain SA molecules in their crystalline phases, could be useful for antimicrobial textiles and fabrics. Fibers with the dense γ form which easily release SA molecules, because they are only included in their amorphous phases, could be used for promising SA-based preparations for antibacterial purposes in food processing and preservation and public health. Finally, using a cell-based assay system and antibacterial tests, we investigated the cellular activity, toxicity and antimicrobial properties of amorphous, δ CC forms and dense γ form of sPS fibers loaded with different contents of SA.
Collapse
Affiliation(s)
- Verdiana Covelli
- Department of Chemistry and Biology "A. Zambelli" and INSTM Research Unit, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Antonietta Cozzolino
- Department of Chemistry and Biology "A. Zambelli" and INSTM Research Unit, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Paola Rizzo
- Department of Chemistry and Biology "A. Zambelli" and INSTM Research Unit, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Manuela Rodriquez
- Department of Pharmacy, University of Napoli, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Christophe Daniel
- Department of Chemistry and Biology "A. Zambelli" and INSTM Research Unit, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Gaetano Guerra
- Department of Chemistry and Biology "A. Zambelli" and INSTM Research Unit, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
39
|
Kong U, Mohammad Rawi NF, Tay GS. The Potential Applications of Reinforced Bioplastics in Various Industries: A Review. Polymers (Basel) 2023; 15:polym15102399. [PMID: 37242974 DOI: 10.3390/polym15102399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of bioplastics has been an evolution for plastic industry since conventional plastics have been claimed to cause several environmental issues. Apart from its biodegradability, one of the advantages can be identified of using bioplastic is that they are produced by renewal resources as the raw materials for synthesis. Nevertheless, bioplastics can be classified into two types, which are biodegradable and non-biodegradable, depending on the type of plastic that is produced. Although some of the bioplastics are non-biodegradable, the usage of biomass in synthesising the bioplastics helps in preserving non-renewable resources, which are petrochemical, in producing conventional plastics. However, the mechanical strength of bioplastic still has room for improvement as compared to conventional plastics, which is believed to limit its application. Ideally, bioplastics need to be reinforced for improving their performance and properties to serve their application. Before 21st century, synthetic reinforcement has been used to reinforce conventional plastic to achieve its desire properties to serve its application, such as glass fiber. Owing to several issues, the trend has been diversified to utilise natural resources as reinforcements. There are several industries that have started to use reinforced bioplastic, and this article focuses on the advantages of using reinforced bioplastic in various industries and its limitations. Therefore, this article aims to study the trend of reinforced bioplastic applications and the potential applications of reinforced bioplastics in various industries.
Collapse
Affiliation(s)
- Uwei Kong
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| | - Guan Seng Tay
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| |
Collapse
|
40
|
Chen X, Wu B, Perera HA, Yan M. Synthesis of Glycopolymer Micelles for Antibiotic Delivery. Molecules 2023; 28:molecules28104031. [PMID: 37241780 DOI: 10.3390/molecules28104031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In this work, we designed biodegradable glycopolymers consisting of a carbohydrate conjugated to a biodegradable polymer, poly(lactic acid) (PLA), through a poly(ethylene glycol) (PEG) linker. The glycopolymers were synthesized by coupling alkyne end-functionalized PEG-PLA with azide-derivatized mannose, trehalose, or maltoheptaose via the click reaction. The coupling yield was in the range of 40-50% and was independent of the size of the carbohydrate. The resulting glycopolymers were able to form micelles with the hydrophobic PLA in the core and the carbohydrates on the surface, as confirmed by binding with the lectin Concanavalin A. The glycomicelles were ~30 nm in diameter with low size dispersity. The glycomicelles were able to encapsulate both non-polar (rifampicin) and polar (ciprofloxacin) antibiotics. Rifampicin-encapsulated micelles were much smaller (27-32 nm) compared to the ciprofloxacin-encapsulated micelles (~417 nm). Moreover, more rifampicin was loaded into the glycomicelles (66-80 μg/mg, 7-8%) than ciprofloxacin (1.2-2.5 μg/mg, 0.1-0.2%). Despite the low loading, the antibiotic-encapsulated glycomicelles were at least as active or 2-4 times more active than the free antibiotics. For glycopolymers without the PEG linker, the antibiotics encapsulated in micelles were 2-6 times worse than the free antibiotics.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Bin Wu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Harini A Perera
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
41
|
Zhang X, Ji G, Gao M, Huang J, Li T, Wang Y, Wang S, Dong W. Designing Strong, Tough, Fluorescent, and UV-Shielding PLA Materials by Incorporating a Phenolic Compound-Based Multifunctional Modifier. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17268-17278. [PMID: 36961886 DOI: 10.1021/acsami.3c01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The realization of high stiffness, high extensibility, and multi-functions for polylactic acid (PLA) is a vital issue for its practical applications. Herein, hydroxyalkylated tannin acid (mTA), a phenolic compound-based modifier with plentiful flat aromatic structures and flexible isopropanol oligomers, is designed and fabricated to act as the multifunctional modifier for PLA. The mTA exhibits the capability of emitting fluorescence and blocking UV light due to the combination of flat aromatic structures and plentiful flexible chains. Besides, mTA with high grafting degree (h-mTA) shows an excellent compatibility to PLA due to the hydrogen bonding interface and the high affinity of grafted isopropanol oligomers to PLA. As a result, the as-prepared PLA/h-mTA20 composite exhibits a strikingly improved extensibility by 61.2 times while maintaining the high yield strength of PLA. Moreover, PLA/h-mTA can serve as a fluorescent material with multi-mode responsiveness as well as a UV-shielding material with high transparency. We envision that this work opens a novel yet facile way to prepare a strong, tough, and multifunctional PLA material with expanded application scopes and will promote the practical applications of phenolic compounds in polymers.
Collapse
Affiliation(s)
- Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guangyao Ji
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Mengying Gao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shibo Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
42
|
Zhao X, Yu J, Liang X, Huang Z, Li J, Peng S. Crystallization behaviors regulations and mechanical performances enhancement approaches of polylactic acid (PLA) biodegradable materials modified by organic nucleating agents. Int J Biol Macromol 2023; 233:123581. [PMID: 36758767 DOI: 10.1016/j.ijbiomac.2023.123581] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Polylactic acid (PLA) has attracted much attention because of its good biocompatibility, biodegradability, and mechanical properties. However, the slow crystallization rate of PLA during molding leads to its poor heat resistance, which limit its diffusion for many industrial applications. In this review, the relationship between PLA crystallization and its molecular structure and processing conditions is summarized. From the perspective of the regulation of PLA crystallization by organic nucleating agents, the research progress of organic micromolecule (e.g., esters, amides, and hydrazides), organic salt, supramolecular, and macromolecule nucleating agents on the crystallization behavior of PLA is mainly introduced. The nucleation mechanism of PLA is expounded by organic nucleating agents, and the effect of the interaction force between organic nucleating agents and PLA molecular chains on the crystallization behavior of PLA is analyzed. The effects of the crystallization behavior of PLA on its mechanical properties and heat resistance are discussed. It will provide a theoretical reference for the development and application of high-efficiency nucleating agents.
Collapse
Affiliation(s)
- Xipo Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China.
| | - Jiajie Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Xinyu Liang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Zepeng Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Juncheng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Shaoxian Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China; Hubei Longzhong Laboratory, Xiangyang 441000, China
| |
Collapse
|
43
|
Abdul Samat A, Abdul Hamid ZA, Jaafar M, Ong CC, Yahaya BH. Investigation of the In Vitro and In Vivo Biocompatibility of a Three-Dimensional Printed Thermoplastic Polyurethane/Polylactic Acid Blend for the Development of Tracheal Scaffolds. Bioengineering (Basel) 2023; 10:394. [PMID: 37106581 PMCID: PMC10136332 DOI: 10.3390/bioengineering10040394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue-engineered polymeric implants are preferable because they do not cause a significant inflammatory reaction in the surrounding tissue. Three-dimensional (3D) technology can be used to fabricate a customised scaffold, which is critical for implantation. This study aimed to investigate the biocompatibility of a mixture of thermoplastic polyurethane (TPU) and polylactic acid (PLA) and the effects of their extract in cell cultures and in animal models as potential tracheal replacement materials. The morphology of the 3D-printed scaffolds was investigated using scanning electron microscopy (SEM), while the degradability, pH, and effects of the 3D-printed TPU/PLA scaffolds and their extracts were investigated in cell culture studies. In addition, subcutaneous implantation of 3D-printed scaffold was performed to evaluate the biocompatibility of the scaffold in a rat model at different time points. A histopathological examination was performed to investigate the local inflammatory response and angiogenesis. The in vitro results showed that the composite and its extract were not toxic. Similarly, the pH of the extracts did not inhibit cell proliferation and migration. The analysis of biocompatibility of the scaffolds from the in vivo results suggests that porous TPU/PLA scaffolds may facilitate cell adhesion, migration, and proliferation and promote angiogenesis in host cells. The current results suggest that with 3D printing technology, TPU and PLA could be used as materials to construct scaffolds with suitable properties and provide a solution to the challenges of tracheal transplantation.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Sains@Bertam, Kepala Batas 13200, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Mariatti Jaafar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Chern Chung Ong
- Fabbxible Technology, 11a Jalan IKS Bukit Tengah, Tmn IKS Bukit Tengah, Bukit Mertajam 14000, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Sains@Bertam, Kepala Batas 13200, Malaysia
| |
Collapse
|
44
|
Mares-Bou S, Serrano MA, Gómez-Tejedor JA. Core-Shell Polyvinyl Alcohol (PVA) Base Electrospinning Microfibers for Drug Delivery. Polymers (Basel) 2023; 15:polym15061554. [PMID: 36987334 PMCID: PMC10056133 DOI: 10.3390/polym15061554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, electrospun membranes were developed for controlled drug release applications. Both uniaxial Polyvinyl alcohol (PVA) and coaxial fibers with a PVA core and a poly (L-lactic acid) (PLLA) and polycaprolactone (PCL) coating were produced with different coating structures. The best conditions for the manufacture of the fibers were also studied and their morphology was analyzed as a function of the electrospinning parameters. Special attention was paid to the fiber surface morphology of the coaxial fibers, obtaining both porous and non-porous coatings. Bovine serum albumin (BSA) was used as the model protein for the drug release studies and, as expected, the uncoated fibers were determined to have the fastest release kinetics. Different release rates were obtained for the coated fibers, which makes this drug release system suitable for different applications according to the release time required.
Collapse
Affiliation(s)
- Sofía Mares-Bou
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - María-Antonia Serrano
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - José Antonio Gómez-Tejedor
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- CIBER-BBN, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Instituto de Salud Carlos III, 46022 Valencia, Spain
| |
Collapse
|
45
|
Castañeda-Rodríguez S, González-Torres M, Ribas-Aparicio RM, Del Prado‑Audelo ML, Leyva‑Gómez G, Gürer ES, Sharifi‑Rad J. Recent advances in modified poly (lactic acid) as tissue engineering materials. J Biol Eng 2023; 17:21. [PMID: 36941601 PMCID: PMC10029204 DOI: 10.1186/s13036-023-00338-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
As an emerging science, tissue engineering and regenerative medicine focus on developing materials to replace, restore or improve organs or tissues and enhancing the cellular capacity to proliferate, migrate and differentiate into different cell types and specific tissues. Renewable resources have been used to develop new materials, resulting in attempts to produce various environmentally friendly biomaterials. Poly (lactic acid) (PLA) is a biopolymer known to be biodegradable and it is produced from the fermentation of carbohydrates. PLA can be combined with other polymers to produce new biomaterials with suitable physicochemical properties for tissue engineering applications. Here, the advances in modified PLA as tissue engineering materials are discussed in light of its drawbacks, such as biological inertness, low cell adhesion, and low degradation rate, and the efforts conducted to address these challenges toward the design of new enhanced alternative biomaterials.
Collapse
Affiliation(s)
- Samanta Castañeda-Rodríguez
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación, Ciudad de Mexico, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de Mexico, Mexico
| | - Maykel González-Torres
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación, Ciudad de Mexico, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de Mexico, Mexico
| | - Rosa María Ribas-Aparicio
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Ciudad de Mexico, Mexico
| | | | - Gerardo Leyva‑Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | | |
Collapse
|
46
|
Jiang P, Ali SN, Arada RB, Peta A, Brevik A, Ayad M, Shin A, Morgan KL, Larson K, Larson E, Gundogdu G, Tapiero S, Farzaneh T, Patel RM, Mauney J, Landman J, Clayman RV. Porcine Bladder Replacement with a Bilayer Silk Fibroin Enhanced Prosthetic Reservoir: A Feasibility Study. J Endourol 2023; 37:341-352. [PMID: 36301916 PMCID: PMC10081715 DOI: 10.1089/end.2022.0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The creation of synthetic reservoirs for bladder replacement has been limited by challenges of interfacing synthetic materials and native tissue. We sought to overcome this challenge by utilizing a novel bilayer silk fibroin scaffold (BLSF) as an intermediary toward the development of an acellular prosthetic reservoir. Methods: Under institutionally approved protocols, 3D-printed reservoirs were implanted in six juvenile female pigs after cystectomy. BLSF was attached to the in situ prosthetic reservoir serving as an intermediary to native ureteral and urethral tissue anastomoses. Our first protocol allowed four pigs to be survived up to 7 days, and the second protocol allowed two pigs to be survived for up to 1 year. At the first sign of functional decline or the end of the study period, the animals were euthanized, and kidneys, ureters, prosthetic bladder, and urethra were harvested en bloc for histopathology analysis. Results: The first two pigs had anastomotic urine leaks because of design flaws resulting in early termination. The third pig had acute renal failure resulting in early termination. The artificial bladder design was modified in subsequent iterations. The fourth pig survived for 7 days and, upon autopsy, had intact urethral and ureteral anastomoses. The fifth and sixth pigs survived for 11 and 12 weeks, respectively, before they were sacrificed because of failure to thrive. One animal developed an enteric fistula. The other animal had an intact anastomosis, and the BLFS was identified at the ureteral and urethral anastomoses on histopathologic analysis. Conclusions: Replacing the porcine bladder with a prosthetic bladder was achieved for up to 3 months, the second longest survival period for a nonbiologic bladder alternative. BLSF was used for the first time to create an interface between synthetic material and biologic tissue by allowing ingrowth of urothelium onto the acellular alloplastic bladder.
Collapse
Affiliation(s)
- Pengbo Jiang
- Department of Urology and University of California, Irvine, California, USA
| | - Sohrab N. Ali
- Department of Urology and University of California, Irvine, California, USA
| | - Raphael B. Arada
- Department of Urology and University of California, Irvine, California, USA
| | - Akhil Peta
- Department of Urology and University of California, Irvine, California, USA
| | - Andrew Brevik
- Department of Urology and University of California, Irvine, California, USA
| | - Maged Ayad
- Department of Urology and University of California, Irvine, California, USA
| | - Andrew Shin
- Department of Urology and University of California, Irvine, California, USA
| | - Kalon L. Morgan
- Department of Urology and University of California, Irvine, California, USA
| | - Krista Larson
- Department of Urology and University of California, Irvine, California, USA
| | - Erik Larson
- Department of Urology and University of California, Irvine, California, USA
| | - Gokhan Gundogdu
- Department of Urology and University of California, Irvine, California, USA
| | - Shlomi Tapiero
- Department of Urology and University of California, Irvine, California, USA
| | - Ted Farzaneh
- Department of Pathology, University of California, Irvine, California, USA
| | - Roshan M. Patel
- Department of Urology and University of California, Irvine, California, USA
| | - Joshua Mauney
- Department of Urology and University of California, Irvine, California, USA
| | - Jaime Landman
- Department of Urology and University of California, Irvine, California, USA
| | - Ralph V. Clayman
- Department of Urology and University of California, Irvine, California, USA
| |
Collapse
|
47
|
Li P, Jiang Y, Chen J, Min J, Fu Q, Zhang J. Preparation of high-performance PLA / PBAT blends with hierarchical structure by controlling distribution of oriented region. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
48
|
PEGylated and functionalized polylactide-based nanocapsules: An overview. Int J Pharm 2023; 636:122760. [PMID: 36858134 DOI: 10.1016/j.ijpharm.2023.122760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Polymeric nanocapsules (NC) are versatile mixed vesicular nanocarriers, generally containing a lipid core with a polymeric wall. They have been first developed over four decades ago with outstanding applicability in the cosmetic and pharmaceutical fields. Biodegradable polyesters are frequently used in nanocapsule preparation and among them, polylactic acid (PLA) derivatives and copolymers, such as PLGA and amphiphilic block copolymers, are widely used and considered safe for different administration routes. PLA functionalization strategies have been developed to obtain more versatile polymers and to allow the conjugation with bioactive ligands for cell-targeted NC. This review intends to provide steps in the evolution of NC since its first report and the recent literature on PLA-based NC applications. PLA-based polymer synthesis and surface modifications are included, as well as the use of NC as a novel tool for combined treatment, diagnostics, and imaging in one delivery system. Furthermore, the use of NC to carry therapeutic and/or imaging agents for different diseases, mainly cancer, inflammation, and infections is presented and reviewed. Constraints that impair translation to the clinic are discussed to provide safe and reproducible PLA-based nanocapsules on the market. We reviewed the entire period in the literature where the term "nanocapsules" appears for the first time until the present day, selecting original scientific publications and the most relevant patent literature related to PLA-based NC. We presented to readers a historical overview of these Sui generis nanostructures.
Collapse
|
49
|
Sugiaman VK, Jeffrey, Naliani S, Pranata N, Djuanda R, Saputri RI. Polymeric Scaffolds Used in Dental Pulp Regeneration by Tissue Engineering Approach. Polymers (Basel) 2023; 15:1082. [PMID: 36904323 PMCID: PMC10007583 DOI: 10.3390/polym15051082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Currently, the challenge in dentistry is to revitalize dental pulp by utilizing tissue engineering technology; thus, a biomaterial is needed to facilitate the process. One of the three essential elements in tissue engineering technology is a scaffold. A scaffold acts as a three-dimensional (3D) framework that provides structural and biological support and creates a good environment for cell activation, communication between cells, and inducing cell organization. Therefore, the selection of a scaffold represents a challenge in regenerative endodontics. A scaffold must be safe, biodegradable, and biocompatible, with low immunogenicity, and must be able to support cell growth. Moreover, it must be supported by adequate scaffold characteristics, which include the level of porosity, pore size, and interconnectivity; these factors ultimately play an essential role in cell behavior and tissue formation. The use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix in dental tissue engineering has recently received a lot of attention because it shows great potential with good biological characteristics for cell regeneration. This review describes the latest developments regarding the usage of natural or synthetic scaffold polymers that have the ideal biomaterial properties to facilitate tissue regeneration when combined with stem cells and growth factors in revitalizing dental pulp tissue. The utilization of polymer scaffolds in tissue engineering can help the pulp tissue regeneration process.
Collapse
Affiliation(s)
- Vinna K. Sugiaman
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Jeffrey
- Department of Pediatric Dentistry, Faculty of Dentistry, Jenderal Achmad Yani University, Cimahi 40531, West Java, Indonesia
| | - Silvia Naliani
- Department of Prosthodontics, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Natallia Pranata
- Department of Oral Biology, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Rudy Djuanda
- Department of Conservative Dentistry and Endodontic, Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| | - Rosalina Intan Saputri
- College of Medicine, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Faculty of Dentistry, Maranatha Christian University, Bandung 40164, West Java, Indonesia
| |
Collapse
|
50
|
Chakraborty R, Anoop AG, Thakur A, Mohanta GC, Kumar P. Strategies To Modify the Surface and Bulk Properties of 3D-Printed Solid Scaffolds for Tissue Engineering Applications. ACS OMEGA 2023; 8:5139-5156. [PMID: 36816674 PMCID: PMC9933196 DOI: 10.1021/acsomega.2c05984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 05/27/2023]
Abstract
3D printing is one of the effective scaffold fabrication techniques that emerged in the 21st century that has the potential to revolutionize the field of tissue engineering. The solid scaffolds developed by 3D printing are still one of the most sought-after approaches for developing hard-tissue regeneration and repair. However, applications of these solid scaffolds get limited due to their poor surface and bulk properties, which play a significant role in tissue integration, loadbearing, antimicrobial/antifouling properties, and others. As a result, several efforts have been directed to modify the surface and bulk of these solid scaffolds. These modifications have significantly improved the adoption of 3D-printed solid scaffolds and devices in the healthcare industry. Nevertheless, the in vivo implant applications of these 3D-printed solid scaffolds/devices are still under development. They require attention in terms of their surface/bulk properties, which dictate their functionality. Therefore, in the current review, we have discussed different 3D-printing parameters that facilitate the fabrication of solid scaffolds/devices with different properties. Further, changes in the bulk properties through material and microstructure modification are also being discussed. After that, we deliberated on the techniques that modify the surfaces through chemical and material modifications. The computational approaches for the bulk modification of these 3D-printed materials are also mentioned, focusing on tissue engineering. We have also briefly discussed the application of these solid scaffolds/devices in tissue engineering. Eventually, the review is concluded with an analysis of the choice of surface/bulk modification based on the intended application in tissue engineering.
Collapse
Affiliation(s)
- Ruchira Chakraborty
- Biodesign
and Medical Device Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology, Rourkela 769008, India
| | - Abhijeet Govind Anoop
- Biodesign
and Medical Device Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology, Rourkela 769008, India
| | - Abhay Thakur
- Biodesign
and Medical Device Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology, Rourkela 769008, India
| | - Girish Chandra Mohanta
- Materials
Science and Sensor Applications Division, CSIR−Central Scientific Instruments Organizations (CSIR-CSIO), Chandigarh 160030, India
| | - Prasoon Kumar
- Biodesign
and Medical Device Laboratory, Department of Biotechnology and Medical
Engineering, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|