1
|
Kong X, Liu H, Chen S, Liu Z, Chen Q, Li X, Hu H, Su J, Shi Y. Bioengineered bacterial extracellular vesicles for targeted delivery of an osteoclastogenesis-inhibitory peptide to alleviate osteoporosis. J Control Release 2025; 382:113751. [PMID: 40268198 DOI: 10.1016/j.jconrel.2025.113751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Osteoporosis (OP) is a systemic skeletal disease commonly found in women after 55 years old and men after 65 years old. With the worldwide aging of population, its prevalence rate is increasing rapidly, bringing huge financial burdens to all countries. As a potential alternative to the conventional OP therapeutics with limited efficacies and side effects, a linear peptide FRATtide capable of binding with phosphorylated GSK3β has been discovered by us to inhibit osteoclastogenesis thus reduce bone loss. While its poor proteolytic stability and osteoclast targetability hinder its effective in vivo treatment. As such, bacterial extracellular vesicles secreted by the rationally recombinant probiotics Escherichia coli Nissle 1917 that express pre-osteoclast fusion protein DC-STAMP (BEV-DCS) are engineered and exploited as delivery vehicles. The BEV-DCS not only protect FRAT from enzymatic degradation but also enable its targeted intracellular delivery into pre-osteoclasts. On the ovariectomy mouse model, the FRAT encapsulated BEV-DCS (FRAT@BEV-DCS) exhibit remarkable bone targeting capacity and osteoporosis ameliorating efficacy without any obvious toxicity. These results reveal the great potential of FRAT@BEV-DCS as a novel therapeutic option for the effective and safe OP treatment.
Collapse
Affiliation(s)
- Xiangxiang Kong
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Sumeng Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhinan Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Integration and Innovation Center of Marine Medical Engineering, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; Shanghai Integration and Innovation Center of Marine Medical Engineering, Shanghai 200444, China.
| |
Collapse
|
2
|
Zeng Y, Wang Y, Shi X, Zhao Y, Tang Y, Liu S, Zhu X. Porphyromonas gingivalis outer membrane vesicles augments proliferation and metastasis of oral squamous cell carcinoma cells. BMC Oral Health 2025; 25:701. [PMID: 40348995 PMCID: PMC12065146 DOI: 10.1186/s12903-025-05937-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Porphyromonas gingivalis (P. gingivalis) is closely related to Oral squamous cell carcinoma (OSCC), and P. gingivalis outer membrane vesicles (OMVs) is the main pathogenic factor, which is associated with periodontitis, atherosclerosis and other diseases. However, few studies have reported an association between P. gingivalis OMVs and OSCC. The purpose of this study was to establish the clinical relationship between P. gingivalis and OSCC based on clinical samples. Further, the effect of P. gingivalis OMVs on OSCC was observed with cell model in vitro, and the possible molecular mechanism was discussed. METHODS Immunohistochemistry was used to detect the abundance of P. gingivalis in OSCC and its paired paracancer tissues, and to analyze the correlation between P. gingivalis and clinicopathological parameters of patients. P. gingivalis OMVs were isolated to observe its effects on the proliferation and migration of OSCC cell lines. RNA-seq was performed and the expression of differentially expressed genes (DEGs) was detected by real-time quantitative PCR (RT-qPCR) to explore the potential mechnism of P. gingivalis OMVs on OSCC progression. RESULTS The abundance of P. gingivalis in OSCC was higher than that in para-cancerous tissues, and was positively correlated with the degree of tissue differentiation (P = 0.028), T stage (P < 0.001), and clinical stage (P = 0.011). P. gingivalis OMVs promoted the proliferation and migration of HN6 cells, and promoted the proliferation of CAL27 cells, but had no significant effect on its migration. P. gingivalis OMVs treatment attenuated the expressions of TNFSF15, ZNF292, ATRX, ASPM and KIF20B in CAL27 and HN6 cells. CONCLUSION This study suggests that P. gingivalis may be an indicator of poor prognosis for OSCC. P. gingivalis OMVs may down-regulate the expression of TNFSF15, ZNF292, ATRX, ASPM, KIF20B and participate in the occurrence and development of OSCC.
Collapse
Affiliation(s)
- Yanru Zeng
- Department of Oral Maxillo-Facial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yiyang Wang
- Department of Oral Maxillo-Facial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaona Shi
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuanhao Zhao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yue Tang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shanshan Liu
- Department of Oral Maxillo-Facial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Oral Maxillo-Facial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaofeng Zhu
- Department of Oral Maxillo-Facial Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Oral Maxillo-Facial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Moghaddam ZS, Dehghan A, Halimi S, Najafi F, Nokhostin A, Naeini AE, Akbarzadeh I, Ren Q. Bacterial Extracellular Vesicles: Bridging Pathogen Biology and Therapeutic Innovation. Acta Biomater 2025:S1742-7061(25)00352-6. [PMID: 40349898 DOI: 10.1016/j.actbio.2025.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
The main role of bacterial extracellular vesicles (BEVs) has been associated with various processes such as intercellular communication and host-pathogen interactions. This comprehensive review explores the multifaceted functions of BEVs across different biological domains, emphasizing their dual nature as contributors to disease and potential vehicles for therapeutic intervention. We examine the intricate interactions of BEVs within bacterial communities and between bacteria and hosts, their involvement in disease development through cargo delivery mechanisms, and their beneficial impact on microbial ecology. The review also highlights BEVs' applications in biomedical field, where they are revolutionizing vaccine development, targeted drug delivery, and cancer therapy. By utilizing the inherent properties of BEVs for controlled drug release, targeted antigen delivery, and immune modulation, they offer a promising frontier in precision medicine. In addition, the diagnostic potential of BEVs is explored through their utility as biomarkers, providing valuable insights into disease states and treatment efficacy. Looking forward, this review underscores the challenges and opportunities in translating BEV research to clinical practice, promoting the need of standardized methods in BEV characterization and scaling up production. The diverse abilities of BEVs, ranging from contributing to pathogen virulence to driving therapeutic innovation, highlight their potential as a cornerstone in the future of biomedical advancements. STATEMENT OF SIGNIFICANCE: Bacterial extracellular vesicles (BEVs) are emerging as pivotal players in both pathogenesis and therapeutic innovation. This review explores their dual nature as agents of disease and as promising biomaterials for biomedical applications, and provides a comprehensive survey on their involvement in disease mechanisms and microbial ecology, and their potential in biomedical applications such as vaccine development, targeted drug delivery, cancer therapy, and diagnosis. It highlights the complex interactions of BEVs within bacterial communities and between bacteria and hosts. This review also addresses current advancements, challenges, and opportunities in translating BEV research into clinical practice. The insights presented here position BEVs as a cornerstone in the future of biomedical advancements, advocating for standardized methods in BEV characterization and scalable production techniques.
Collapse
Affiliation(s)
| | - Ashkan Dehghan
- W Booth School of Engineering Practice and Technology Faculty of Engineering, McMaster University Hamilton, ON, Canada, L8S 0A3
| | - Saba Halimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Fatemeh Najafi
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-1503, United States
| | - Ali Nokhostin
- Medical Sciences & Technologies Faculty, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | | | - Iman Akbarzadeh
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| | - Qun Ren
- Laboratory for Biointerfaces, Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| |
Collapse
|
4
|
Ahmadishoar S, Mones Saeed S, Salih Mahdi M, Mohammed Taher W, Alwan M, Jasem Jawad M, Khdyair Hamad A, Gandomkar H. The potential use of bacteria and their derivatives as delivery systems for nanoparticles in the treatment of cancer. J Drug Target 2025:1-34. [PMID: 40186857 DOI: 10.1080/1061186x.2025.2489979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Nanomaterials, unique optical, magnetic, and electrical properties at the nanoscale (1-100 nm), have been engineered to improve drug capacity, bioavailability, and specificity in cancer treatment. These advancements address toxicity and lack of selectivity in conventional therapies, enabling precise targeting of cancer cells, the tumour microenvironment, and the immune system. Among emerging approaches, bacterial treatment shows promise due to its natural ability to target cancer and its diverse therapeutic mechanisms, which nanotechnology can further enhance. Bacteria-based drug delivery systems leverage bacteria's adaptability and survival strategies within the human body. Bacterial derivatives, such as bacterial ghosts (BGs), bacterial extracellular vesicles (BEVs), and dietary toxins, are recognised as effective biological nanomaterials capable of carrying nanoparticles (NPs). These systems have attracted increasing attention for their potential in targeted NP delivery for cancer treatment. This study explores the use of various bacteria and their byproducts as NP delivery vehicles, highlighting their potential in treating different types of cancer. By combining the strengths of nanotechnology and bacterial therapy, these innovative approaches aim to revolutionise cancer treatment with improved precision and efficacy.
Collapse
Affiliation(s)
- Shiva Ahmadishoar
- Department of Microbiology, Male.C., Islamic Azad University, Malekan, Iran
| | - Samaa Mones Saeed
- Dental Prosthetics Techniques Department, Health and Medical Techniques College/AlNoor University, Mosul, Iraq
| | | | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Hossein Gandomkar
- Department of Surgical Oncology, Tehran University of Medical Medicine, Tehran, Iran
| |
Collapse
|
5
|
Yang X, Wang J, Qi X, Hou M, Liu M, Xiao Y, Liu S, Zhou J, Yu J, Wang Y, Chen G, Yu L, Batchuluun K, Batsaikhan B, Damba T, Liang Y, Liang X, Ma J, Liang Y, Li Y, Zhou L. HLF and PPARα axis regulates metabolic-associated fatty liver disease through extracellular vesicles derived from the intestinal microbiota. IMETA 2025; 4:e70022. [PMID: 40236774 PMCID: PMC11995174 DOI: 10.1002/imt2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become increasingly widespread. The intestine is the primary site of lipid absorption and is important for the homeostasis of lipid metabolism. However, the mechanism underlying the participation of the intestinal tract in the development of MAFLD requires additional investigation. In this study, analysis of the single-cell transcriptome of intestinal tissue from cynomolgus monkeys found that hepatic leukemia factor (HLF) participated in the genetic regulation of intestinal lipid absorption. Results obtained from normal and intestine-specific Hlf-knockout mice confirmed that HLF alleviated intestinal barrier disorders by inhibiting peroxisome proliferator-activated receptor alpha (PPARα) expression. The HLF/PPARα axis alleviated MAFLD by mediating gut microbiota-derived extracellular vesicles (fEVs), thereby inhibiting hepatocyte ferroptosis. Lipidomics and functional experiments verified that taurochenodeoxycholic acid (TCDCA), a conjugated bile acid contained in the fEVs, had a key role in the process. In conclusion, intestinal HLF activity was mediated by fEVs and identified as a novel therapeutic target for MAFLD.
Collapse
Affiliation(s)
- Xingzhen Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Jiale Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Xinyu Qi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Menglong Hou
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Mengkuan Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Yang Xiao
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Siqi Liu
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jinfeng Zhou
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Jingsu Yu
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yang Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Guo Chen
- Wincon TheraCells Biotechnologies Co., Ltd.NanningChina
| | - Lin Yu
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Khongorzul Batchuluun
- Center for Research and Development of Institute of Biomedical SciencesMongolian National University of Medical SciencesUlaanbaatarMongolia
- Department of Health Research, Graduate SchoolMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Batbold Batsaikhan
- Department of Health Research, Graduate SchoolMongolian National University of Medical SciencesUlaanbaatarMongolia
- Department of Internal Medicine, Institute of Medical SciencesMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Turtushikh Damba
- School of PharmacyMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Yuehui Liang
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Xue Liang
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jie Ma
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Yunxiao Liang
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanningChina
| | - Lei Zhou
- Institute of Digestive DiseaseGuangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
6
|
Di Naro M, Petronio Petronio G, Mukhtar F, Cutuli MA, Magnifico I, Falcone M, Brancazio N, Guarnieri A, Di Marco R, Nicolosi D. Extracellular Vesicles in Bacteria, Archaea, and Eukaryotes: Mechanisms of Inter-Kingdom Communication and Clinical Implications. Microorganisms 2025; 13:636. [PMID: 40142528 PMCID: PMC11944275 DOI: 10.3390/microorganisms13030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Living organisms must adapt and communicate effectively in their environment to survive. Cells communicate through various mechanisms, including releasing growth factors, chemokines, small bioactive molecules, and cell-cell contact. In recent years, a new and sophisticated cell communication mechanism based on extracellular vesicles (EVs) has been described in all three domains of life: archaea, bacteria, and eukaryotes. EVs are small, bilayer proteolipid vesicles released by cells into the extracellular space. This review aims to analyze and compare the current literature on bacterial, archaeal, and eukaryotic EVs and their possible clinical applications. This framework will address three key points: (a) The role of EVs in bacteria, eukaryotes, and archaea. (b) What is the impact of EVs in archaea on disease?
Collapse
Affiliation(s)
- Maria Di Naro
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | - Giulio Petronio Petronio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | - Farwa Mukhtar
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | | | - Irene Magnifico
- Aileens Pharma S.r.l., 20834 Nova Milanese, Monza and Brianza, Italy
| | - Marilina Falcone
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | - Natasha Brancazio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | - Antonio Guarnieri
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Molise, Italy
| | - Roberto Di Marco
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Sicily, Italy
| | - Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Sicily, Italy
| |
Collapse
|
7
|
Angeles Flores G, Cusumano G, Venanzoni R, Angelini P. Advancements in Antibacterial Therapy: Feature Papers. Microorganisms 2025; 13:557. [PMID: 40142450 PMCID: PMC11945154 DOI: 10.3390/microorganisms13030557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Antimicrobial resistance (AMR) is a growing global health crisis that threatens the efficacy of antibiotics and modern medical interventions. The emergence of multidrug-resistant (MDR) pathogens, exacerbated by the misuse of antibiotics in healthcare and agriculture, underscores the urgent need for innovative solutions. (1) Background: AMR arises from complex interactions between human, animal, and environmental health, further aggravated by the overuse and inadequate regulation of antibiotics. Conventional treatments are increasingly ineffective, necessitating alternative strategies. Emerging approaches, including bacteriophage therapy, antimicrobial peptides (AMPs), nanotechnology, microbial extracellular vesicles (EVs), and CRISPR-based antimicrobials, provide novel mechanisms that complement traditional antibiotics in combating resistant pathogens. (2) Methods: This review critically analyzes advanced antibacterial strategies in conjunction with systemic reforms such as antimicrobial stewardship programs, the One Health framework, and advanced surveillance tools. These methods can enhance resistance detection, guide interventions, and promote sustainable practices. Additionally, economic, logistical, and regulatory challenges impeding their implementation are evaluated. (3) Results: Emerging technologies, such as CRISPR and nanotechnology, exhibit promising potential in targeting resistance mechanisms. However, disparities in resource distribution and regulatory barriers hinder widespread adoption. Public-private partnerships and sustainable agriculture practices are critical to overcoming these obstacles. (4) Conclusions: A holistic and integrated approach is essential for mitigating the impact of AMR. By aligning innovative therapeutic strategies with global health policies, fostering interdisciplinary collaboration, and ensuring equitable resource distribution, we can develop a sustainable response to this 21st-century challenge.
Collapse
Affiliation(s)
- Giancarlo Angeles Flores
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (G.A.F.); (G.C.); (R.V.)
- Centro di Ricerca per l’Innovazione, Digitalizzazione, Valorizzazione e Fruizione del Patrimonio Culturale e Ambientale (CE.D.I.PA.), Piazza San Gabriele dell’Addolorata, 4, 06049 Spoleto, Italy
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (G.A.F.); (G.C.); (R.V.)
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (G.A.F.); (G.C.); (R.V.)
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (G.A.F.); (G.C.); (R.V.)
- Centro di Ricerca per l’Innovazione, Digitalizzazione, Valorizzazione e Fruizione del Patrimonio Culturale e Ambientale (CE.D.I.PA.), Piazza San Gabriele dell’Addolorata, 4, 06049 Spoleto, Italy
| |
Collapse
|
8
|
Mishra S, Tejesvi MV, Hekkala J, Turunen J, Kandikanti N, Kaisanlahti A, Suokas M, Leppä S, Vihinen P, Kuitunen H, Sunela K, Koivunen J, Jukkola A, Kalashnikov I, Auvinen P, Kääriäinen OS, Peñate Medina T, Peñate Medina O, Saarnio J, Meriläinen S, Rautio T, Aro R, Häivälä R, Suojanen J, Laine M, Erawijattari PP, Lahti L, Karihtala P, Ruuska TS, Reunanen J. Gut microbiome-derived bacterial extracellular vesicles in patients with solid tumours. J Adv Res 2025; 68:375-386. [PMID: 38458256 PMCID: PMC11785572 DOI: 10.1016/j.jare.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Gut microbiome-derived nanoparticles, known as bacterial extracellular vesicles (bEVs), have garnered interest as promising tools for studying the link between the gut microbiome and human health. The diverse composition of bEVs, including their proteins, mRNAs, metabolites, and lipids, makes them useful for investigating diseases such as cancer. However, conventional approaches for studying gut microbiome composition alone may not be accurate in deciphering host-gut microbiome communication. In clinical microbiome research, there is a gap in the knowledge on the role of bEVs in solid tumor patients. OBJECTIVES Analyzing the functionality of bEVs using (meta)genomics and proteomics could highlight the unique aspects of host-gut microbiome interactions in solid tumor patients. Therefore, we performed a comparative analysis of the proteome and microbiota composition of gut microbiome-derived bEVs isolated from patients with solid tumors and healthy controls. METHODS After isolating bEVs from the feces of solid tumor patients and healthy controls, we performed spectrometry analysis of their proteomes and next-generation sequencing (NGS) of the 16S gene. We also investigated the gut microbiomes of feces from patients and controls using 16S sequencing and used machine learning to classify the samples into patients and controls based on their bEVs and fecal microbiomes. RESULTS Solid tumor patients showed decreased microbiota richness and diversity in both the bEVs and feces. However, the bEV proteomes were more diverse in patients than in the controls and were enriched with proteins associated with the metabolism of amino acids and carbohydrates, nucleotide binding, and oxidoreductase activity. Metadata classification of samples was more accurate using fecal bEVs (100%) compared with fecal samples (93%). CONCLUSION Our findings suggest that bEVs are unique functional entities. There is a need to explore bEVs together with conventional gut microbiome analysis in functional cancer research to decipher the potential of bEVs as cancer diagnostic or therapeutic biomarkers.
Collapse
Affiliation(s)
- Surbhi Mishra
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Mysore Vishakantegowda Tejesvi
- Biocenter Oulu, University of Oulu, Oulu, Finland; Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Jenni Hekkala
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jenni Turunen
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland; Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Niyati Kandikanti
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Anna Kaisanlahti
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Marko Suokas
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sirpa Leppä
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Pia Vihinen
- FICAN West Cancer Centre and Department of Oncology, Turku University Hospital and University of Turku, 20521 Turku, Finland
| | - Hanne Kuitunen
- Department of Oncology, Oulu University Hospital, Oulu, Finland
| | | | - Jussi Koivunen
- Department of Medical Oncology and Radiotherapy and Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arja Jukkola
- Tampere Cancer Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilja Kalashnikov
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland; Research Program Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Päivi Auvinen
- Cancer Center, Kuopio University Hospital, Northern Savonia Healthcare Municipality, Kuopio, Finland
| | - Okko-Sakari Kääriäinen
- Cancer Center, Kuopio University Hospital, Northern Savonia Healthcare Municipality, Kuopio, Finland
| | - T Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology and Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany
| | - O Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology and Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany; Lonza Netherlands B.V., 6167 RB Geleen, the Netherlands
| | - Juha Saarnio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Sanna Meriläinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Tero Rautio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Raila Aro
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Reetta Häivälä
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Juho Suojanen
- Päijät-Häme Joint Authority for Health and Wellbeing, Department of Oral and Maxillofacial Surgery, Lahti Central Hospital, 15850 Lahti, Finland; Cleft Palate and Craniofacial Centre, Department of Plastic Surgery, Helsinki University Hospital, 00029 Helsinki, Finland; Clinicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Mikael Laine
- Department of Abdominal Surgery, Porvoo Hospital, Hospital District of Helsinki and Uusimaa, Porvoo, Finland
| | | | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Peeter Karihtala
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland; Department of Oncology, Oulu University Hospital, Oulu, Finland
| | - Terhi S Ruuska
- Biocenter Oulu, University of Oulu, Oulu, Finland; Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland; Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Justus Reunanen
- Research Unit of Translational Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Qin J, Liu J, Wei Z, Li X, Chen Z, Li J, Zheng W, Liu H, Xu S, Yong T, Zhao B, Gou S, Ju S, Teng GJ, Yang X, Gan L. Targeted intervention in nerve-cancer crosstalk enhances pancreatic cancer chemotherapy. NATURE NANOTECHNOLOGY 2025; 20:311-324. [PMID: 39496914 DOI: 10.1038/s41565-024-01803-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/04/2024] [Indexed: 11/06/2024]
Abstract
Nerve-cancer crosstalk has gained substantial attention owing to its impact on tumour growth, metastasis and therapy resistance. Effective therapeutic strategies targeting tumour-associated nerves within the intricate tumour microenvironment remain a major challenge in pancreatic cancer. Here we develop Escherichia coli Nissle 1917-derived outer membrane vesicles conjugated with nerve-binding peptide NP41, loaded with the tropomyosin receptor kinase (Trk) inhibitor larotrectinib (Lar@NP-OMVs) for tumour-associated nerve targeting. Lar@NP-OMVs achieve efficient nerve intervention to diminish neurite growth by disrupting the neurotrophin/Trk signalling pathway. Moreover, OMV-mediated repolarization of M2-like tumour-associated macrophages to an M1-like phenotype results in nerve injury, further accentuating Lar@NP-OMV-induced nerve intervention to inhibit nerve-triggered proliferation and migration of pancreatic cancer cells and angiogenesis. Leveraging this strategy, Lar@NP-OMVs significantly reduce nerve infiltration and neurite growth promoted by gemcitabine within the tumour microenvironment, leading to augmented chemotherapy efficacy in pancreatic cancer. This study sheds light on a potential avenue for nerve-targeted therapeutic intervention for enhancing pancreatic cancer therapy.
Collapse
Affiliation(s)
- Jiaqi Qin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjie Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxia Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianye Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxia Zheng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haojie Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyi Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, China
| | - Ben Zhao
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shanmiao Gou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghong Ju
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Gao-Jun Teng
- Cultivation and Construction Site of the State Key Laboratory of Intelligent Imaging and Interventional Medicine, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, China.
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Sawant H, Bihl J, Borthakur A. A Simplified Method for the Isolation of Extracellular Vesicles from Probiotic Bacteria and Their Characterization. Int J Mol Sci 2025; 26:1058. [PMID: 39940832 PMCID: PMC11817318 DOI: 10.3390/ijms26031058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Probiotic bacteria are normal inhabitants of a healthy human gut, conferring multiple beneficial effects on the gut and beyond. Under various disease states, the abundance and diversity of beneficial bacteria are significantly decreased, a process called dysbiosis. Among the intra- and extracellular components of probiotics, the extracellular vesicles (EVs) secreted by them have recently garnered significant attention as potential mediators of probiotics' effects on host health. Further, these nanosized particles that encapsulate a wide range of bioactive molecules (proteins, lipids, RNA, and DNA) are standing out as key factors that could mediate gut microbiota-host communication and confer ameliorating effects in experimental inflammatory, metabolic, and cardiovascular disease models. However, a standard protocol of EV isolation from probiotic bacteria, not varying from lab to lab, must be established to achieve consistency in the experimental results in these pre-clinical models. Our current study compared two commonly used methods for EV isolation from biological samples, ultracentrifugation and precipitation, to develop a standard protocol for isolating EVs from the probiotics Lactobacillus acidophilus (LA), a Gram-positive bacterium, and Escherichia coli Nissle (EcN), a Gram-negative bacterium. The ultracentrifugation method gave ~1.5-fold higher EV yield for both LA and EcN compared to the precipitation method. Further, EcN released a higher level of EVs compared to LA. EVs were quantified and characterized by nanoparticle-tracking analysis (NTA) and by measuring the specific surface biomarkers using Western blot. Here, we describe our standardized step-by-step protocol for isolating EVs from probiotic bacteria and their characterization.
Collapse
Affiliation(s)
- Harshal Sawant
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.S.); (J.B.)
| | - Ji Bihl
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.S.); (J.B.)
| | - Alip Borthakur
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.S.); (J.B.)
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
11
|
Sharifpour MF, Sikder S, Wong Y, Koifman N, Thomas T, Courtney R, Seymour J, Loukas A. Characterization of Spirulina-derived extracellular vesicles and their potential as a vaccine adjuvant. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70025. [PMID: 39676887 PMCID: PMC11635480 DOI: 10.1002/jex2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Spirulina is an edible cyanobacterium that increasingly gaining recognition for it untapped potential in the biomanufacturing of pharmaceuticals. Despite the rapidly accumulating information on extracellular vesicles (EVs) from most other bacteria, nothing is known about Spirulina extracellular vesicles (SPEVs). This study reports the successful isolation, characterization and visualization of SPEVs for the first time and it further investigates the potential therapeutic benefits of SPEVs using a mouse model. SPEVs were isolated using ultracentrifugation and size-exclusion-chromatography. Cryo-Transmission Electron Microscopy revealed pleomorphic outer-membrane-vesicles and outer-inner-membrane-vesicles displaying diverse shapes, sizes and corona densities. To assess short- and long-term immune responses, mice were injected intraperitoneally with SPEVs, which demonstrated a significant increase in neutrophils and M1 macrophages at the injection site, indicating a pro-inflammatory effect induced by SPEVs without clinical signs of toxicity or hypersensitivity. Furthermore, SPEVs demonstrated potent adjuvanticity by enhancing antigen-specific IgG responses in mice by over 100-fold compared to an unadjuvanted model vaccine antigen. Mass-spectrometry identified 54 proteins within SPEVs, including three protein superfamily members linked to the observed pro-inflammatory effects. Our findings highlight the potential of SPEVs as a new class of vaccine adjuvant and warrant additional studies to further characterize the nature of the immune response.
Collapse
Affiliation(s)
| | - Suchandan Sikder
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Yide Wong
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Na'ama Koifman
- Centre for Microscopy and MicroanalysisThe University of QueenslandSt LuciaQueenslandAustralia
| | - Tamara Thomas
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Robert Courtney
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Jamie Seymour
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| | - Alex Loukas
- Australian Institute of Tropical Health and MedicineJames Cook UniversitySmithfieldQueenslandAustralia
| |
Collapse
|
12
|
Xiang S, Khan A, Yao Q, Wang D. Recent advances in bacterial outer membrane vesicles: Effects on the immune system, mechanisms and their usage for tumor treatment. J Pharm Anal 2024; 14:101049. [PMID: 39840399 PMCID: PMC11750273 DOI: 10.1016/j.jpha.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 01/23/2025] Open
Abstract
Tumor treatment remains a significant medical challenge, with many traditional therapies causing notable side effects. Recent research has led to the development of immunotherapy, which offers numerous advantages. Bacteria inherently possess motility, allowing them to preferentially colonize tumors and modulate the tumor immune microenvironment, thus influencing the efficacy of immunotherapy. Bacterial outer membrane vesicles (OMVs) secreted by gram-negative bacteria are nanoscale lipid bilayer structures rich in bacterial antigens, pathogen-associated molecular patterns (PAMPs), various proteins, and vesicle structures. These features allow OMVs to stimulate immune system activation, generate immune responses, and serve as efficient drug delivery vehicles. This dual capability enhances the effectiveness of immunotherapy combined with chemotherapy or phototherapy, thereby improving anticancer drug efficacy. Current research has concentrated on engineering OMVs to enhance production yield, minimize cytotoxicity, and improve the safety and efficacy of treatments. Consequently, OMVs hold great promise for applications in tumor immunotherapy, tumor vaccine development, and drug delivery. This article provides an overview of the structural composition and immune mechanisms of OMVs, details various OMVs modification strategies, and reviews the progress in using OMVs for tumor treatment and their anti-tumor mechanisms. Additionally, it discusses the challenges faced in translating OMV-based anti-tumor therapies into clinical practice, aiming to provide a comprehensive understanding of OMVs' potential for in-depth research and clinical application.
Collapse
Affiliation(s)
- Shuo Xiang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- College of Advanced Materials Engineering, Jiaxing Nanhu University, 572 Yuexiu Road, Jiaxing, Zhejiang, 314001, China
| | - Arshad Khan
- Nanomedicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Qiufang Yao
- College of Advanced Materials Engineering, Jiaxing Nanhu University, 572 Yuexiu Road, Jiaxing, Zhejiang, 314001, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
13
|
Cai C, Shen J. The roles of migrasomes in immunity, barriers, and diseases. Acta Biomater 2024; 189:88-102. [PMID: 39284502 DOI: 10.1016/j.actbio.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
Migrasomes are recently identified extracellular vesicles and organelles formed in conjunction with cell migration. They are situated at the rear of migrating cells, exhibit a circular or elliptical membrane-enclosed structure, and function as a new organelle. Migrasomes selectively sort intercellular components, mediating a cell migration-dependent release mechanism known as migracytosis and modulating cell-cell communication. Accumulated evidence clarifies migrasome formation processes and indicates their diverse functional roles. Migrasomes may also be potentially correlated with the occurrence, progression, and prognosis of certain diseases. Migrasomes' involvement in physiological and pathological processes highlights their potential for expanding our understanding of biological procedures and as a target in clinical therapy. However, the precise mechanisms and full extent of their involvement in immunity, barriers, and diseases remain unclear. This review aimed to provide a comprehensive overview of the roles of migrasomes in human immunity and barriers, in addition to providing insights into their impact on human diseases. STATEMENT OF SIGNIFICANCE: Migrasomes, newly identified extracellular vesicles and organelles, form during cell migration and are located at the rear of migrating cells. These circular or elliptical structures mediate migracytosis, selectively sorting intercellular components and modulating cell-cell communication. Evidence suggests diverse functional roles for migrasomes, including potential links to disease occurrence, progression, and prognosis. Their involvement in physiological and pathological processes highlights their significance in understanding biological procedures and potential clinical therapies. However, their exact mechanisms in immunity, barriers, and diseases remain unclear. This review provides an overview of migrasomes' roles in human immunity and barriers, and their impact on diseases.
Collapse
Affiliation(s)
- Changsheng Cai
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China.
| |
Collapse
|
14
|
Qi F, Xu Y, Zheng B, Li Y, Zhang J, Liu Z, Wang X, Zhou Z, Zeng D, Lu F, Zhang C, Gan Y, Hu Z, Wang G. The Core-Shell Microneedle with Probiotic Extracellular Vesicles for Infected Wound Healing and Microbial Homeostasis Restoration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401551. [PMID: 39109958 DOI: 10.1002/smll.202401551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/04/2024] [Indexed: 11/21/2024]
Abstract
Wound healing is a dynamic process involving the timely transition of organized phases. However, infected wounds often experience prolonged inflammation due to microbial overload. Thus, addressing the viable treatment needs across different healing stages is a critical challenge in wound management. Herein, a novel core-shell microneedle (CSMN) patch is designed for the sequential delivery of tannic acid-magnesium (TA-Mg) complexes and extracellular vesicles from Lactobacillus druckerii (LDEVs). Upon application to infected sites, CSMN@TA-Mg/LDEV releases TA-Mg first to counteract pathogenic overload and reduce reactive oxygen species (ROS), aiding the transition to proliferative phase. Subsequently, the sustained release of LDEVs enhances the activities of keratinocytes and fibroblasts, promotes vascularization, and modulates the collagen deposition. Notably, dynamic track of microbial composition demonstrates that CSMN@TA-Mg/LDEV can both inhibit the aggressive pathogen and increase the microbial diversity at wound sites. Functional analysis further highlights the potential of CSMN@TA-Mg/LDEV in facilitating wound healing and skin barrier restoration. Moreover, it is confirmed that CSMN@TA-Mg/LDEV can accelerate wound closure and improve post-recovery skin quality in the murine infected wound. Conclusively, this innovative CSMN patch offers a rapid and high-quality alternative treatment for infected wounds and emphasizes the significance of microbial homeostasis.
Collapse
Affiliation(s)
- Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yujie Xu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Bowen Zheng
- Center of Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, 314408, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhiyang Zhou
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Chunhua Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21210, USA
| |
Collapse
|
15
|
Jayathilaka EHTT, Hasitha Madhawa Dias MK, Tennakoon MSBWTMNS, Chulhong O, Nikapitiya C, Shin HJ, De Zoysa M. Mapping the proteomic landscape and anti-inflammatory role of Streptococcus parauberis extracellular vesicles. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109945. [PMID: 39378979 DOI: 10.1016/j.fsi.2024.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are nanoscale membrane-bound structures involved in intercellular communication and transport of bioactive molecules. In this study, we described the proteomic insight and anti-inflammatory activity of Streptococcus parauberis BEVs (SpEVs). Proteomics analysis of SpEVs identified 6209 distinct peptides and 1039 proteins. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated enrichment in pathways related to the biosynthesis of aminoacyl tRNA, amino acids, and secondary metabolites. Based on the predicted protein-protein interactions, we discovered key immunological proteins such as IL12A, IL12B, IL8, CD28, and NF-κB between SpEVs and human proteins. Functionally, SpEVs exhibit strong anti-inflammatory activity in LPS-stimulated Raw 264.7 cells by reducing the production of key inflammatory mediators. These include nitric oxide (NO), reactive oxygen species (ROS), inflammatory cytokines such as TNFα and IL6, as well as inflammation-related proteins like inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). qRT-PCR and immunoblotting results clearly indicate that SpEVs modulate the NF-κB and MAPK pathways to induce anti-inflammatory activity. Furthermore, in vivo experiments with zebrafish larvae demonstrated that SpEVs treatment reduced the NO and ROS production with minimal cell mortality. Finally, we validated the anti-inflammatory activity of SpEVs in vivo by systematically assessing the inhibition of NO production, reduction in ROS generation, prevention of cell death, and modulation of NF-κB and MAPK signaling pathways. In conclusion, SpEVs contain rich in unique proteins that play crucial roles in mediating anti-inflammatory effects.
Collapse
Affiliation(s)
- E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | | | - M S B W T M Nipuna Sudaraka Tennakoon
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Oh Chulhong
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology, Gujwa-eup, Jeju 2670, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
16
|
Qiao L, Du X, Wang H, Wang Z, Gao S, Zhao CQ. Research Progress on the Strategies for Crossing the Blood-Brain Barrier. Mol Pharm 2024; 21:4786-4803. [PMID: 39231367 DOI: 10.1021/acs.molpharmaceut.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Recently, the incidence of brain diseases, such as central nervous system degenerative diseases, brain tumors, and cerebrovascular diseases, has increased. However, the blood-brain barrier (BBB) limits the effective delivery of drugs to brain disease areas. Therefore, the mainstream direction of new drug development for these diseases is to engineer drugs that can better cross the BBB to exert their effects in the brain. This paper reviews the research progress and application of the main trans-BBB drug delivery strategies (receptor/transporter-mediated BBB crossing, focused ultrasound to open the BBB, adenosine agonist reversible opening of the BBB, aromatic resuscitation, transnasal administration, cell-mediated trans-BBB crossing, and viral vector system-mediated brain drug delivery). Meanwhile, the potential applications, advantages, and disadvantages of these strategies for crossing the BBB are analyzed. Finally, the future development prospects of strategies for crossing the BBB are also discussed. These strategies have potential value for treating brain diseases.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xiuwei Du
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Hua Wang
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Zhiyi Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Shijie Gao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chun-Qin Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| |
Collapse
|
17
|
Merali N, Chouari T, Sweeney C, Halle-Smith J, Jessel MD, Wang B, O’ Brien J, Suyama S, Jiménez JI, Roberts KJ, Velliou E, Sivakumar S, Rockall TA, Demirkan A, Pedicord V, Deng D, Giovannetti E, Annels NE, Frampton AE. The microbial composition of pancreatic ductal adenocarcinoma: a systematic review of 16S rRNA gene sequencing. Int J Surg 2024; 110:6771-6799. [PMID: 38874485 PMCID: PMC11487005 DOI: 10.1097/js9.0000000000001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), continues to pose a significant clinical and scientific challenge. The most significant finding of recent years is that PDAC tumours harbour their specific microbiome, which differs amongst tumour entities and is distinct from healthy tissue. This review aims to evaluate and summarise all PDAC studies that have used the next-generation technique, 16S rRNA gene amplicon sequencing within each bodily compartment. As well as establishing a causal relationship between PDAC and the microbiome. MATERIALS AND METHODS This systematic review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A comprehensive search strategy was designed, and 1727 studies were analysed. RESULTS In total, 38 studies were selected for qualitative analysis and summarised significant PDAC bacterial signatures. Despite the growing amount of data provided, we are not able to state a universal 16S rRNA gene microbial signature that can be used for PDAC screening. This is most certainly due to the heterogeneity of the presentation of results, lack of available datasets, and the intrinsic selection bias between studies. CONCLUSION Several key studies have begun to shed light on causality and the influence the microbiome constituents and their produced metabolites could play in tumorigenesis and influencing outcomes. The challenge in this field is to shape the available microbial data into targetable signatures. Making sequenced data readily available is critical, coupled with the coordinated standardisation of data and the need for consensus guidelines in studies investigating the microbiome in PDAC.
Collapse
Affiliation(s)
- Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Tarak Chouari
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Casie Sweeney
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - James Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Bing Wang
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
| | - James O’ Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Satoshi Suyama
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | | | - Keith J. Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), London
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Ayse Demirkan
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
- Surrey Institute for People-Centred AI, University of Surrey, Guildford, Surrey
| | - Virginia Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
- Fondazione Pisa per la Scienza, San Giuliano, Italy
| | - Nicola E. Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| |
Collapse
|
18
|
Humaira, Ahmad I, Shakir HA, Khan M, Franco M, Irfan M. Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects. J Basic Microbiol 2024; 64:e2400221. [PMID: 39148315 DOI: 10.1002/jobm.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
Almost all cell types naturally secret extracellular vesicles (EVs) in the extracellular space with variable metabolic cargo facilitating intracellular communication, posing immune-modulation capacity. Thus, "bacterial extracellular vesicles" (BEVs), with their great immunoregulatory, immune response stimulation and disease condition-altering potential, have gained importance in the medical and therapeutic industry. Various subtypes of BEVs were observed and reported in the literature, such as exosomes (30-150 nm), microvesicles (100-1000 nm), apoptotic bodies (1000-5000 nm), and oncosomes (1000-10,000 nm). As biological systems are complex entities, inserting BEVs requires extra high purity. Various techniques for BEV isolation have been employed alone or with other strategies, such as ultracentrifugation, precipitation, size-exclusion chromatography, affinity-based separation, ultrafiltration, and field-flow fractionation. But to date, no BEV isolation method is considered perfect as the lack of standard protocols limits their scale-up. Medical research has focused on BEVs to explore their diverse therapeutic potential. This review particularly focused on the recent advancements in the potential medical application of BEVs, current challenges, and prospects associated with their scale-up.
Collapse
Affiliation(s)
- Humaira
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hafiz Abdullah Shakir
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Khan
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Marcelo Franco
- Department of Exact Science, State University of Santa Cruz, Ilheus, Brazil
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
19
|
Lee S, Jung SY, Yoo D, Go D, Park JY, Lee JM, Um W. Alternatives of mesenchymal stem cell-derived exosomes as potential therapeutic platforms. Front Bioeng Biotechnol 2024; 12:1478517. [PMID: 39315312 PMCID: PMC11417005 DOI: 10.3389/fbioe.2024.1478517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
With outstanding therapeutic potential in the tissue regeneration and anti-inflammation, mesenchymal stem cell-derived exosomes (MSC-EXOs) have emerged as a prominent therapeutic in recent. However, poor production yield and reproducibility have remained as significant challenges of their practical applications. To surmount these challenges, various alternative materials with stem cell-like functions, have been recently investigated, however, there has been no comprehensive analysis in these alternatives so far. Here, we discuss the recent progress of alternatives of MSC-EXOs, including exosomes and exosome-like nanovesicles from various biological sources such as plants, milk, microbes, and body fluids. Moreover, we extensively compare each alternative by summarizing their unique functions and mode of actions to suggest the expected therapeutic target and future directions for developing alternatives for MSC-EXOs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jong Min Lee
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Wooram Um
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
20
|
Dias MKHM, Jayathilaka EHTT, De Zoysa M. Isolation, characterization, and immunomodulatory effects of extracellular vesicles isolated from fish pathogenic Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109787. [PMID: 39047924 DOI: 10.1016/j.fsi.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are natural nanocarriers that have shown great potential for biomedical applications such as biomarkers, cancer therapy, immunomodulators, vaccines, wound healing, tissue engineering, and drug carriers. In the present study, BEVs were isolated from the gram-negative bacterium, Aeromonas hydrophila using the ultracentrifugation method and denoted as AhEVs. Using transmission electron microscopy imaging, we confirmed the ultrastructure and spherical shape morphology of AhEVs. Nanoparticle-tracking analysis results showed a mean particle size of 105.5 ± 2.0 nm for AhEVs. Moreover, the particle concentration of AhEVs was 2.34 ± 0.12 × 1011 particles/mL of bacterial supernatant. AhEV-treated fathead minnow (FHM) cells did not show cytotoxicity effects up to 50 μg/mL with no significant decrease in cells. Moreover, no mortality was observed in larval zebrafish up to 50 μg/mL which indicates that the AhEVs are biocompatible at this concentration. Furthermore, fluorescent-labeled AhEVs were internalized into FHM cells. Results of qRT-PCR analysis in FHM cells revealed that cellular pro-inflammatory cytokines such as nuclear factor (NF)-κB, interferon (Ifn), Irf7, interleukin (Il) 8, and Il11 were upregulated while downregulating the expression of anti-inflammatory Il10 in a concentration-dependent manner. AhEV-treated adult zebrafish (5 μg/fish) induced toll-like receptor (tlr) 2 and tlr4; tumor necrosis factor-alpha (tnfα); heat shock protein (hsp) 70; and il10, il6, and il1β in kidney. Protein expression of NF-κB p65 and Tnfα presented amplified levels in the spleen of AhEVs-treated zebrafish. Based on the collective findings, we conclude that AhEVs exhibited morphological and physicochemical characteristics to known EVs of gram (-)ve bacteria. At biocompatible concentrations, the immunomodulatory activity of AhEVs was demonstrated by inducing different immune response genes in FHM cells and zebrafish. Hence, we suggest that AhEVs could be a novel vaccine candidate in fish medicine due to their ability to elicit strong immune responses.
Collapse
Affiliation(s)
| | - E H T Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
21
|
Meng Y, Kong C, Ma Y, Sun J, Zhang G. Bacterial outer membrane vesicles in the fight against cancer. Chin Med J (Engl) 2024:00029330-990000000-01174. [PMID: 39118214 PMCID: PMC11407815 DOI: 10.1097/cm9.0000000000003234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT Bacterial outer membrane vesicles (OMVs) are diminutive vesicles naturally released by Gram-negative bacteria. These vesicles possess distinctive characteristics that attract attention for their potential use in drug administration and immunotherapy in cancer treatment. Therapeutic medicines may be delivered via OMVs directly to the tumor sites, thereby minimizing exposure to healthy cells and lowering the risk of systemic toxicity. Furthermore, the activation of the immune system by OMVs has been demonstrated to facilitate the recognition and elimination of cancer cells, which makes them a desirable tool for immunotherapy. They can also be genetically modified to carry specific antigens, immunomodulatory compounds, and small interfering RNAs, enhancing the immune response to cancerous cells and silencing genes associated with disease progression. Combining OMVs with other cancer treatments like chemotherapy and radiation has shown promising synergistic effects. This review highlights the crucial role of bacterial OMVs in cancer, emphasizing their potential as vectors for novel cancer targeted therapies. As researchers delve deeper into the complexities of these vesicles and their interactions with tumors, there is a growing sense of optimism that this avenue of study will bring positive outcomes and renewed hope to cancer patients in the foreseeable future.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Cuicui Kong
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yushu Ma
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| |
Collapse
|
22
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
23
|
Gao P, Duan Z, Xu G, Gong Q, Wang J, Luo K, Chen J. Harnessing and Mimicking Bacterial Features to Combat Cancer: From Living Entities to Artificial Mimicking Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405075. [PMID: 39136067 DOI: 10.1002/adma.202405075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Bacterial-derived micro-/nanomedicine has garnered considerable attention in anticancer therapy, owing to the unique natural features of bacteria, including specific targeting ability, immunogenic benefits, physicochemical modifiability, and biotechnological editability. Besides, bacterial components have also been explored as promising drug delivery vehicles. Harnessing these bacterial features, cutting-edge physicochemical and biotechnologies have been applied to attenuated tumor-targeting bacteria with unique properties or functions for potent and effective cancer treatment, including strategies of gene-editing and genetic circuits. Further, the advent of bacteria-inspired micro-/nanorobots and mimicking artificial systems has furnished fresh perspectives for formulating strategies for developing highly efficient drug delivery systems. Focusing on the unique natural features and advantages of bacteria, this review delves into advances in bacteria-derived drug delivery systems for anticancer treatment in recent years, which has experienced a process from living entities to artificial mimicking systems. Meanwhile, a summary of relative clinical trials is provided and primary challenges impeding their clinical application are discussed. Furthermore, future directions are suggested for bacteria-derived systems to combat cancer.
Collapse
Affiliation(s)
- Peng Gao
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Gang Xu
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kui Luo
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Jie Chen
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
24
|
Ho MY, Liu S, Xing B. Bacteria extracellular vesicle as nanopharmaceuticals for versatile biomedical potential. NANO CONVERGENCE 2024; 11:28. [PMID: 38990415 PMCID: PMC11239649 DOI: 10.1186/s40580-024-00434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Bacteria extracellular vesicles (BEVs), characterized as the lipid bilayer membrane-surrounded nanoparticles filled with molecular cargo from parent cells, play fundamental roles in the bacteria growth and pathogenesis, as well as facilitating essential interaction between bacteria and host systems. Notably, benefiting from their unique biological functions, BEVs hold great promise as novel nanopharmaceuticals for diverse biomedical potential, attracting significant interest from both industry and academia. Typically, BEVs are evaluated as promising drug delivery platforms, on account of their intrinsic cell-targeting capability, ease of versatile cargo engineering, and capability to penetrate physiological barriers. Moreover, attributing to considerable intrinsic immunogenicity, BEVs are able to interact with the host immune system to boost immunotherapy as the novel nanovaccine against a wide range of diseases. Towards these significant directions, in this review, we elucidate the nature of BEVs and their role in activating host immune response for a better understanding of BEV-based nanopharmaceuticals' development. Additionally, we also systematically summarize recent advances in BEVs for achieving the target delivery of genetic material, therapeutic agents, and functional materials. Furthermore, vaccination strategies using BEVs are carefully covered, illustrating their flexible therapeutic potential in combating bacterial infections, viral infections, and cancer. Finally, the current hurdles and further outlook of these BEV-based nanopharmaceuticals will also be provided.
Collapse
Affiliation(s)
- Ming Yao Ho
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore.
| |
Collapse
|
25
|
Chen Q, Fang Z, Yang Z, Xv X, Yang M, Hou H, Li Z, Chen Y, Gong A. Lactobacillus plantarum-Derived Extracellular Vesicles Modulate Macrophage Polarization and Gut Homeostasis for Alleviating Ulcerative Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14713-14726. [PMID: 38885172 DOI: 10.1021/acs.jafc.4c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Extracellular vesicles released by probiotics have been demonstrated to effectively alleviate intestinal inflammation, yet the precise underlying mechanisms remain unclear. In this research, for the first time, Lactobacillus plantarum UJS001 (LP-UJS) was isolated from fermented sauerkraut in Zhenjiang, China. Thereafter, the therapeutic effect of LP-UJS-derived extracellular vesicles (LP-UJS-EVs) on dextran sulfate sodium-induced ulcerative colitis (UC) in mice was analyzed to elucidate the immune mechanisms. According to our findings, LP-UJS-EVs played a pivotal role in restoring the intestinal barrier and alleviating intestinal inflammation. Notably, LP-UJS-EVs induced M2 polarization of macrophages, promoted the release of IL-10 and TGF-β, inhibited the release of histamine, IL-6, and TNF-α, and exerted regulatory effects on intestinal microflora, as evidenced by the reduced abundances of Coprococcus, Parabacteroides, Staphylococcus, and Allobaculum, alongside the enhanced abundance of Prevotella. Furthermore, both LP-UJS and LP-UJS-EVs affected the lysine degradation pathway and significantly increased the abundance of related metabolites, especially oxoadipic acid. In summary, our results underscore the substantial therapeutic potential of LP-UJS and its secreted EVs in the treatment of UC.
Collapse
Affiliation(s)
- Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Zhengzou Fang
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
| | - Zhe Yang
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
| | - Xiao Xv
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Mengting Yang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Hanjin Hou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Zhangzuo Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
| | - Yanyan Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212003, China
| |
Collapse
|
26
|
Jain H, Kumar A, Almousa S, Mishra S, Langsten KL, Kim S, Sharma M, Su Y, Singh S, Kerr BA, Deep G. Characterisation of LPS+ bacterial extracellular vesicles along the gut-hepatic portal vein-liver axis. J Extracell Vesicles 2024; 13:e12474. [PMID: 39001704 PMCID: PMC11245684 DOI: 10.1002/jev2.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024] Open
Abstract
Gut microbiome dysbiosis is a major contributing factor to several pathological conditions. However, the mechanistic understanding of the communication between gut microbiota and extra-intestinal organs remains largely elusive. Extracellular vesicles (EVs), secreted by almost every form of life, including bacteria, could play a critical role in this inter-kingdom crosstalk and are the focus of present study. Here, we present a novel approach for isolating lipopolysaccharide (LPS)+ bacterial extracellular vesicles (bEVLPS) from complex biological samples, including faeces, plasma and the liver from lean and diet-induced obese (DIO) mice. bEVLPS were extensively characterised using nanoparticle tracking analyses, immunogold labelling coupled with transmission electron microscopy, flow cytometry, super-resolution microscopy and 16S sequencing. In liver tissues, the protein expressions of TLR4 and a few macrophage-specific biomarkers were assessed by immunohistochemistry, and the gene expressions of inflammation-related cytokines and their receptors (n = 89 genes) were measured using a PCR array. Faecal samples from DIO mice revealed a remarkably lower concentration of total EVs but a significantly higher percentage of LPS+ EVs. Interestingly, DIO faecal bEVLPS showed a higher abundance of Proteobacteria by 16S sequencing. Importantly, in DIO mice, a higher number of total EVs and bEVLPS consistently entered the hepatic portal vein and subsequently reached the liver, associated with increased expression of TLR4, macrophage markers (F4/80, CD86 and CD206), cytokines and receptors (Il1rn, Ccr1, Cxcl10, Il2rg and Ccr2). Furthermore, a portion of bEVLPS escaped liver and entered the peripheral circulation. In conclusion, bEV could be the key mediator orchestrating various well-established biological effects induced by gut bacteria on distant organs.
Collapse
Affiliation(s)
- Heetanshi Jain
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ashish Kumar
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sameh Almousa
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Shalini Mishra
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Kendall L. Langsten
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Susy Kim
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mitu Sharma
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Yixin Su
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sangeeta Singh
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Bethany A. Kerr
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWinston‐SalemNorth CarolinaUSA
| | - Gagan Deep
- Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWinston‐SalemNorth CarolinaUSA
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
27
|
Li X, Guo Q, Chen Q, Chu Y, Zhang Y, Chen H, Zhao Z, Wang Y, Luo Y, Li C, You H, Song H, Su B, Jalili K, Sun T, Jiang C. Reconciling the Cooperative-Competitive Patterns among Tumor and Immune Cells for Triple-Negative Breast Cancer Treatment Using Multimodule Nanocomplexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312219. [PMID: 38608672 DOI: 10.1002/adma.202312219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Indexed: 04/14/2024]
Abstract
Targeting the competitive-cooperative relationships among tumor cells and various immune cells can efficiently reverse the immune-dysfunction microenvironment to boost the immunotherapies for the triple-negative breast cancer treatment. Hence, a bacterial outer membrane vesicle-based nanocomplex is designed for specifically targeting malignant cells and immune cells to reconcile the relationships based on metabolic-immune crosstalk. By uniquely utilizing the property of charge-reversal polymers to realize function separation, the nanocomplexes could synergistically regulate tumor cells and immune cells. This approach could reshape the immunosuppressive competition-cooperation pattern into one that is immune-responsive, showcasing significant potential for inducing tumor remission in TNBC models.
Collapse
Affiliation(s)
- Xuwen Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Qin Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Yongchao Chu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Yiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Hongyi Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Zhenhao Zhao
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Yu Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Yifan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Chufeng Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Haoyu You
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Haolin Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Boyu Su
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Kiyumars Jalili
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O.Box 51317-11111, Iran
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai, 201203, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| |
Collapse
|
28
|
Su M, Yin M, Zhou Y, Xiao S, Yi J, Tang R. Freeze-Thaw Microfluidic System Produces "Themis" Nanocomplex for Cleaning Persisters-Infected Macrophages and Enhancing Uninfected Macrophages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311436. [PMID: 38181783 DOI: 10.1002/adma.202311436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Macrophages are the primary effectors against potential pathogen infections. They can be "parasitized" by intracellular bacteria, serving as "accomplices", protecting intracellular bacteria and even switching them to persisters. Here, using a freeze-thaw strategy-based microfluidic chip, a "Themis" nanocomplex (TNC) is created. The TNC consists of Lactobacillus reuteri-derived membrane vesicles, heme, and vancomycin, which cleaned infected macrophages and enhanced uninfected macrophages. In infected macrophages, TNC releases heme that led to the reconstruction of the respiratory chain complexes of intracellular persisters, forcing them to regrow. The revived bacteria produces virulence factors that destroyed host macrophages (accomplices), thereby being externalized and becoming vulnerable to immune responses. In uninfected macrophages, TNC upregulates the TCA cycle and oxidative phosphorylation (OXPHOS), contributing to immunoenhancement. The combined effect of TNC of cleaning the accomplice (infected macrophages) and reinforcing uninfected macrophages provides a promising strategy for intracellular bacterial therapy.
Collapse
Affiliation(s)
- Mingyue Su
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Mengying Yin
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Yifu Zhou
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Shuya Xiao
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Jundan Yi
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Rongbing Tang
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
29
|
Liu C, Yazdani N, Moran CS, Salomon C, Seneviratne CJ, Ivanovski S, Han P. Unveiling clinical applications of bacterial extracellular vesicles as natural nanomaterials in disease diagnosis and therapeutics. Acta Biomater 2024; 180:18-45. [PMID: 38641182 DOI: 10.1016/j.actbio.2024.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are naturally occurring bioactive membrane-bound nanoparticles released by both gram-negative and gram-positive bacterial species, exhibiting a multifaceted role in mediating host-microbe interactions across various physiological conditions. Increasing evidence supports BEVs as essential mediators of cell-to-cell communicaiton, influencing bacterial pathogenicity, disease mechanisms, and modulating the host immune response. However, the extent to which these BEV-mediated actions can be leveraged to predict disease onset, guide treatment strategies, and determine clinical outcomes remains uncertain, particularly in terms of their clinical translation potentials. This review briefly describes BEV biogenesis and their internalisation by recipient cells and summarises methods for isolation and characterization, essential for understanding their composition and cargo. Further, it discusses the potential of biofluid-associated BEVs as biomarkers for various diseases, spanning both cancer and non-cancerous conditions. Following this, we outline the ongoing human clinical trials of using BEVs for vaccine development. In addition to disease diagnostics, this review explores the emerging research of using natural or engineered BEVs as smart nanomaterials for applications in anti-cancer therapy and bone regeneration. This discussion extends to key factors for unlocking the clinical potential of BEVs, such as standardization of BEV isolation and characterisation, as well as other hurdles in translating these findings to the clinical setting. We propose that addressing these hurdles through collaborative research efforts and well-designed clinical trials holds the key to fully harnessing the clinical potential of BEVs. As this field advances, this review suggests that BEV-based nanomedicine has the potential to revolutionize disease management, paving the way for innovative diagnosis, therapeutics, and personalized medicine approaches. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) from both host cells and bacteria serve as multifunctional biomaterials and are emerging in the fields of biomedicine, bioengineering, and biomaterials. However, the majority of current studies focus on host-derived EVs, leaving a gap in comprehensive research on bacteria-derived EVs (BEVs). Although BEVs offer an attractive option as nanomaterials for drug delivery systems, their unique nanostructure and easy-to-modify functions make them a potential method for disease diagnosis and treatment as well as vaccine development. Our work among the pioneering studies investigating the potential of BEVs as natural nanobiomaterials plays a crucial role in both understanding the development of diseases and therapeutic interventions.
Collapse
Affiliation(s)
- Chun Liu
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Negar Yazdani
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Corey S Moran
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029 Australia
| | - Chaminda Jayampath Seneviratne
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia.
| | - Pingping Han
- The University of Queensland, School of Dentistry, Centre for Oralfacial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, Brisbane, QLD 4006, Australia.
| |
Collapse
|
30
|
Wang X, Xin C, Zhou Y, Sun T. Plant-Derived Vesicle-like Nanoparticles: The Next-Generation Drug Delivery Nanoplatforms. Pharmaceutics 2024; 16:588. [PMID: 38794248 PMCID: PMC11125130 DOI: 10.3390/pharmaceutics16050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
A wide variety of natural bioactive compounds derived from plants have demonstrated significant clinical relevance in the treatment of various diseases such as cancer, chronic disease, and inflammation. An increasing number of studies have surfaced that give credence to the potential of plant-derived vesicle-like nanoparticles (PDVLNs) as compelling candidates for a drug delivery system (DDS). PDVLNs are cost-effective production, non-toxicity and non-immunogenicity and fascinating bi-ocompatibility. In this review, we attempt to comprehensively review and consolidate the position of PDVLNs as next-generation drug delivery nanoplatforms. We aim to give a quick glance to readers of the current developments of PDVLNs, including their biogenesis, characteristic features, composition, administration routes, advantages, and application. Further, we discuss the advantages and limitations of PDVLNs. We expect that the role of PDVLNs in drug delivery will be significantly enhanced, thus positioning them as the next generation of therapeutic modalities in the foreseeable future.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Congling Xin
- Department of Gynecology, Fudan University Shanghai Cancer Center, Minhang District, Shanghai 200240, China
| | - Yu Zhou
- Department of Interventional Radiolagy, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| |
Collapse
|
31
|
Karaman I, Pathak A, Bayik D, Watson DC. Harnessing Bacterial Extracellular Vesicle Immune Effects for Cancer Therapy. Pathog Immun 2024; 9:56-90. [PMID: 38690563 PMCID: PMC11060327 DOI: 10.20411/pai.v9i1.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
There are a growing number of studies linking the composition of the human microbiome to disease states and treatment responses, especially in the context of cancer. This has raised significant interest in developing microbes and microbial products as cancer immunotherapeutics that mimic or recapitulate the beneficial effects of host-microbe interactions. Bacterial extracellular vesicles (bEVs) are nano-sized, membrane-bound particles secreted by essentially all bacteria species and contain a diverse bioactive cargo of the producing cell. They have a fundamental role in facilitating interactions among cells of the same species, different microbial species, and even with multicellular host organisms in the context of colonization (microbiome) and infection. The interaction of bEVs with the immune system has been studied extensively in the context of infection and suggests that bEV effects depend largely on the producing species. They thus provide functional diversity, while also being nonreplicative, having inherent cell-targeting qualities, and potentially overcoming natural barriers. These characteristics make them highly appealing for development as cancer immunotherapeutics. Both natively secreted and engineered bEVs are now being investigated for their application as immunotherapeutics, vaccines, drug delivery vehicles, and combinations of the above, with promising early results. This suggests that both the intrinsic immunomodulatory properties of bEVs and their ability to be modified could be harnessed for the development of next-generation microbe-inspired therapies. Nonetheless, there remain major outstanding questions regarding how the observed preclinical effectiveness will translate from murine models to primates, and humans in particular. Moreover, research into the pharmacology, toxicology, and mass manufacturing of this potential novel therapeutic platform is still at early stages. In this review, we highlight the breadth of bEV interactions with host cells, focusing on immunologic effects as the main mechanism of action of bEVs currently in preclinical development. We review the literature on ongoing efforts to develop natively secreted and engineered bEVs from a variety of bacterial species for cancer therapy and finally discuss efforts to overcome outstanding challenges that remain for clinical translation.
Collapse
Affiliation(s)
- Irem Karaman
- Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Asmita Pathak
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Dionysios C. Watson
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| |
Collapse
|
32
|
Muñoz-Echeverri LM, Benavides-López S, Geiger O, Trujillo-Roldán MA, Valdez-Cruz NA. Bacterial extracellular vesicles: biotechnological perspective for enhanced productivity. World J Microbiol Biotechnol 2024; 40:174. [PMID: 38642254 PMCID: PMC11032300 DOI: 10.1007/s11274-024-03963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 04/22/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are non-replicative nanostructures released by Gram-negative and Gram-positive bacteria as a survival mechanism and inter- and intraspecific communication mechanism. Due to BEVs physical, biochemical, and biofunctional characteristics, there is interest in producing and using them in developing new therapeutics, vaccines, or delivery systems. However, BEV release is typically low, limiting their application. Here, we provide a biotechnological perspective to enhance BEV production, highlighting current strategies. The strategies include the production of hypervesiculating strains through gene modification, bacteria culture under stress conditions, and artificial vesicles production. We discussed the effect of these production strategies on BEVs types, morphology, composition, and activity. Furthermore, we summarized general aspects of BEV biogenesis, functional capabilities, and applications, framing their current importance and the need to produce them in abundance. This review will expand the knowledge about the range of strategies associated with BEV bioprocesses to increase their productivity and extend their application possibilities.
Collapse
Affiliation(s)
- Laura M Muñoz-Echeverri
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán CDMX, C.P. 04510, México
| | - Santiago Benavides-López
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio B, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán CDMX, C.P. 04510, México
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, CP 62210, México
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, Tijuana-Ensenada, Baja California, 22860, México
| | - Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP. 70228, Ciudad de México, C.P. 04510, México.
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, Tijuana-Ensenada, Baja California, 22860, México.
| |
Collapse
|
33
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Bacterial extracellular vesicles: Modulation of biofilm and virulence properties. Acta Biomater 2024; 178:13-23. [PMID: 38417645 DOI: 10.1016/j.actbio.2024.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Microbial pathogens cause persistent infections by forming biofilms and producing numerous virulence factors. Bacterial extracellular vesicles (BEVs) are nanostructures produced by various bacterial species vital for molecular transport. BEVs include various components, including lipids (glycolipids, LPS, and phospholipids), nucleic acids (genomic DNA, plasmids, and short RNA), proteins (membrane proteins, enzymes, and toxins), and quorum-sensing signaling molecules. BEVs play a major role in forming extracellular polymeric substances (EPS) in biofilms by transporting EPS components such as extracellular polysaccharides, proteins, and extracellular DNA. BEVs have been observed to carry various secretory virulence factors. Thus, BEVs play critical roles in cell-to-cell communication, biofilm formation, virulence, disease progression, and resistance to antimicrobial treatment. In contrast, BEVs have been shown to impede early-stage biofilm formation, disseminate mature biofilms, and reduce virulence. This review summarizes the current status in the literature regarding the composition and role of BEVs in microbial infections. Furthermore, the dual functions of BEVs in eliciting and suppressing biofilm formation and virulence in various microbial pathogens are thoroughly discussed. This review is expected to improve our understanding of the use of BEVs in determining the mechanism of biofilm development in pathogenic bacteria and in developing drugs to inhibit biofilm formation by microbial pathogens. STATEMENT OF SIGNIFICANCE: Bacterial extracellular vesicles (BEVs) are nanostructures formed by membrane blebbing and explosive cell lysis. It is essential for transporting lipids, nucleic acids, proteins, and quorum-sensing signaling molecules. BEVs play an important role in the formation of the biofilm's extracellular polymeric substances (EPS) by transporting its components, such as extracellular polysaccharides, proteins, and extracellular DNA. Furthermore, BEVs shield genetic material from nucleases and thermodegradation by packaging it during horizontal gene transfer, contributing to the transmission of bacterial adaptation determinants like antibiotic resistance. Thus, BEVs play a critical role in cell-to-cell communication, biofilm formation, virulence enhancement, disease progression, and drug resistance. In contrast, BEVs have been shown to prevent early-stage biofilm, disperse mature biofilm, and reduce virulence characteristics.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
34
|
Guo Q, Wang S, Xu R, Tang Y, Xia X. Cancer cell membrane-coated nanoparticles: a promising anti-tumor bionic platform. RSC Adv 2024; 14:10608-10637. [PMID: 38567339 PMCID: PMC10985588 DOI: 10.1039/d4ra01026d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Nanoparticle (NP) drug delivery systems have shown promise in tumor therapy. However, limitations such as susceptibility to immune clearance and poor targeting in a complex intercellular environment still exist. Recently, cancer cell membrane-encapsulated nanoparticles (CCM-NPs) constructed using biomimetic nanotechnology have been developed to overcome these problems. Proteins on the membrane surface of cancer cells can provide a wide range of activities for CCM-NPs, including immune escape and homologous cell recognition properties. Meanwhile, the surface of the cancer cell membrane exhibits obvious antigen enrichment, so that CCM-NPs can transmit tumor-specific antigen, activate a downstream immune response, and produce an effective anti-tumor effect. In this review, we first provided an overview of the functions of cancer cell membranes and summarized the preparation techniques and characterization methods of CCM-NPs. Then, we focused on the application of CCM-NPs in tumor therapy. In addition, we summarized the functional modifications of cancer cell membranes and compiled the patent applications related to CCM-NPs in recent years. Finally, we proposed the future challenges and directions of this technology in order to provide guidance for researchers in this field.
Collapse
Affiliation(s)
- Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Shengmei Wang
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Rubing Xu
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| | - Yingnan Tang
- School of Pharmacy, Hunan Vocational College of Science and Technology Changsha Hunan 410208 China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine Changsha Hunan 410208 China
| |
Collapse
|
35
|
Meyer KJ, Nodwell JR. Streptomyces extracellular vesicles are a broad and permissive antimicrobial packaging and delivery system. J Bacteriol 2024; 206:e0032523. [PMID: 38353531 PMCID: PMC10955852 DOI: 10.1128/jb.00325-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024] Open
Abstract
Streptomyces are the primary source of bioactive specialized metabolites used in research and medicine, including many antimicrobials. These are presumed to be secreted and function as freely soluble compounds. However, increasing evidence suggests that extracellular vesicles are an alternative secretion system. We assessed environmental and lab-adapted Streptomyces (sporulating filamentous actinomycetes) and found frequent production of antimicrobial vesicles. The molecular cargo included actinomycins, anthracyclines, candicidin, and actinorhodin, reflecting both diverse chemical properties and diverse antibacterial and antifungal activity. The levels of packaged antimicrobials correlated with the level of inhibitory activity of the vesicles, and a strain knocked out for the production of anthracyclines produced vesicles that lacked antimicrobial activity. We demonstrated that antimicrobial containing vesicles achieve direct delivery of the cargo to other microbes. Notably, this delivery via membrane fusion occurred to a broad range of microbes, including pathogenic bacteria and yeast. Vesicle encapsulation offers a broad and permissive packaging and delivery system for antimicrobial specialized metabolites, with important implications for ecology and translation.IMPORTANCEExtracellular vesicle encapsulation changes our picture of how antimicrobial metabolites function in the environment and provides an alternative translational approach for the delivery of antimicrobials. We find many Streptomyces strains are capable of releasing antimicrobial vesicles, and at least four distinct classes of compounds can be packaged, suggesting this is widespread in nature. This is a striking departure from the primary paradigm of the secretion and action of specialized metabolites as soluble compounds. Importantly, the vesicles deliver antimicrobial metabolites directly to other microbes via membrane fusion, including pathogenic bacteria and yeast. This suggests future applications in which lipid-encapsulated natural product antibiotics and antifungals could be used to solve some of the most pressing problems in drug resistance.
Collapse
Affiliation(s)
- Kirsten J. Meyer
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Justin R. Nodwell
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Sangiorgio G, Nicitra E, Bivona D, Bonomo C, Bonacci P, Santagati M, Musso N, Bongiorno D, Stefani S. Interactions of Gram-Positive Bacterial Membrane Vesicles and Hosts: Updates and Future Directions. Int J Mol Sci 2024; 25:2904. [PMID: 38474151 DOI: 10.3390/ijms25052904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayers derived from cell membranes, released by both eukaryotic cells and bacteria into the extracellular environment. During production, EVs carry proteins, nucleic acids, and various compounds, which are then released. While Gram-positive bacteria were traditionally thought incapable of producing EVs due to their thick peptidoglycan cell walls, recent studies on membrane vesicles (MVs) in Gram-positive bacteria have revealed their significant role in bacterial physiology and disease progression. This review explores the current understanding of MVs in Gram-positive bacteria, including the characterization of their content and functions, as well as their interactions with host and bacterial cells. It offers a fresh perspective to enhance our comprehension of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
- Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dalida Bivona
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy
| |
Collapse
|
37
|
Mobarak H, Javid F, Narmi MT, Mardi N, Sadeghsoltani F, Khanicheragh P, Narimani S, Mahdipour M, Sokullu E, Valioglu F, Rahbarghazi R. Prokaryotic microvesicles Ortholog of eukaryotic extracellular vesicles in biomedical fields. Cell Commun Signal 2024; 22:80. [PMID: 38291458 PMCID: PMC10826215 DOI: 10.1186/s12964-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Every single cell can communicate with other cells in a paracrine manner via the production of nano-sized extracellular vesicles. This phenomenon is conserved between prokaryotic and eukaryotic cells. In eukaryotic cells, exosomes (Exos) are the main inter-cellular bioshuttles with the potential to carry different signaling molecules. Likewise, bacteria can produce and release Exo-like particles, namely microvesicles (MVs) into the extracellular matrix. Bacterial MVs function with diverse biological properties and are at the center of attention due to their inherent therapeutic properties. Here, in this review article, the comparable biological properties between the eukaryotic Exos and bacterial MVs were highlighted in terms of biomedical application. Video Abstract.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Javid
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Chen X, Li P, Luo B, Song C, Wu M, Yao Y, Wang D, Li X, Hu B, He S, Zhao Y, Wang C, Yang X, Hu J. Surface Mineralization of Engineered Bacterial Outer Membrane Vesicles to Enhance Tumor Photothermal/Immunotherapy. ACS NANO 2024; 18:1357-1370. [PMID: 38164903 DOI: 10.1021/acsnano.3c05714] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gram-negative bacteria can naturally produce nanosized spherical outer membrane vesicles (OMVs) with a lipid bilayer membrane, possessing immunostimulatory capabilities to be potentially applied in tumor therapy. However, the systemic toxicity induced by pathogen-associated molecular patterns (PAMPs) of OMVs is the main obstacle for their clinical translation. Herein, melanin-loaded OMVs were produced with a genetic engineering strategy and further coated with calcium phosphate (CaP) to reduce their toxicity to enhance tumor treatment effects. Wild-type bacterium Escherichia coli Nissle 1917 (EcN) was genetically engineered to highly express tyrosinase to catalyze the intracellular synthesis of melanin, giving melanin-loaded OMVs (OMVMel). To reduce the systemic toxicity in tumor therapy, OMVMel was coated with CaP by surface mineralization to obtain OMVMel@CaP. In comparison with OMVMel, OMVMel@CaP showed lower systemic inflammatory responses in healthy mice and less damage to the liver, spleen, lung, and kidney, so the administration dose could be increased to enhance the antitumor effect. In the acidic tumor microenvironment, the CaP shell disintegrated to release OMVMel to trigger antitumor immune responses. Under costimulation of OMVMel acting as immunoadjuvants and the damage-associated molecular patterns (DAMPs) released by the photothermal effect, the efficiency of tumor photothermal/immunotherapy was largely boosted through promoting the infiltration of matured DCs, M1 macrophages, and activated CD8+ T cells, decreasing the ratio of MDSCs in tumors.
Collapse
Affiliation(s)
| | | | - Ban Luo
- Department of Ophthalmology, Wenchang People's Hospital, Wenchang 571321, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | - Jun Hu
- Hubei Jiangxia Laboratory, Wuhan 430200, People's Republic of China
| |
Collapse
|
39
|
Steinman D, Kirian RD, Zierden HC. Multiple Particle Tracking: A Method for Probing Biologically Relevant Mobility of Bacterial Extracellular Vesicles. Methods Mol Biol 2024; 2843:137-152. [PMID: 39141298 DOI: 10.1007/978-1-0716-4055-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Bacterial extracellular vesicles (bEVs) are produced by both Gram-negative and Gram-positive bacteria. These biological nanoparticles transport small molecules, nucleic acids, and proteins, enabling communication with both bacterial and mammalian cells. bEVs can evade and disrupt biological barriers, and their lipid membranes protect their cargo from degradation, facilitating long-distance communication in vivo. Furthermore, bacteria are easily manipulated and easily cultured. These combined factors make bEVs an ideal candidate for drug delivery applications. Thus, the study of how bEVs interact with biological barriers is interesting from both a signaling and drug delivery perspective. Here we describe methods for tracking bEV motion in biological matrices ex vivo. We outline methods for growth, isolation, quantification, and labeling, as well as techniques for tracking bEV motion ex vivo and quantifying these data. The methods described here are relevant to bEV communication with host cells as well as drug delivery applications using bEVs.
Collapse
Affiliation(s)
- Darby Steinman
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Robert D Kirian
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Hannah C Zierden
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Kuhn T, Aljohmani A, Frank N, Zielke L, Mehanny M, Laschke MW, Koch M, Hoppstädter J, Kiemer AK, Yildiz D, Fuhrmann G. A cell-free, biomimetic hydrogel based on probiotic membrane vesicles ameliorates wound healing. J Control Release 2024; 365:969-980. [PMID: 38070602 DOI: 10.1016/j.jconrel.2023.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Probiotic bacteria, such as Lactobacilli, have been shown to elicit beneficial effects in various tissue regeneration applications. However, their formulation as living bacteria is challenging, and their therapeutic use as proliferating microorganisms is especially limited in immunocompromised patients. Here, we propose a new therapeutic avenue to circumvent these shortcomings by developing a bacteriomimetic hydrogel based on membrane vesicles (MVs) produced by Lactobacilli. We coupled MVs from Lactobacillus plantarum and Lactobacillus casei, respectively, to the surface of synthetic microparticles, and embedded those bacteriomimetics into a pharmaceutically applicable hydrogel matrix. The wound microenvironment changes during the wound healing process, including adaptions of the pH and changes of the oxygen supply. We thus performed proteomic characterization of the MVs harvested under different culture conditions and identified characteristic proteins related to the biological effect of the probiotics in every culture state. In addition, we highlight a number of unique proteins expressed and sorted into the MVs for every culture condition. Using different in vitro models, we demonstrated that increased cell migration and anti-inflammatory effects of the bacteriomimetic microparticles were dependent on the culture condition of the secreting bacteria. Finally, we demonstrated the bacteriomimetic hydrogel's ability to improve healing in an in vivo mouse full-thickness wound model. Our results create a solid basis for the future application of probiotic-derived vesicles in the treatment of inflammatory dispositions and stimulates the initiation of further preclinical trials.
Collapse
Affiliation(s)
- Thomas Kuhn
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Ahmad Aljohmani
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Nicolas Frank
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Lina Zielke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany
| | - Mina Mehanny
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany.
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
41
|
Pirolli NH, Reus LSC, Jay SM. Separation of Bacterial Extracellular Vesicles via High-Performance Anion Exchange Chromatography. Methods Mol Biol 2024; 2843:155-162. [PMID: 39141299 DOI: 10.1007/978-1-0716-4055-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Bacterial extracellular vesicles (BEVs) have extraordinary biotechnological potential, but traditional purification methods lack desirable scalability and commonly co-isolate protein impurities, limiting clinical translation. Anion exchange chromatography (AEC) separates molecules based on differences in net charge and is widely used for industrial biomanufacturing of protein therapeutics. Recently, AEC has recently been applied for purification of EVs from both mammalian and bacterial sources. Since most bacteria produce BEVs with a negative surface membrane change, AEC can potentially be widely used for BEV purification. Here, we describe a method utilizing high-performance AEC (HPAEC) in tandem with size-based tangential flow filtration for improved BEV purification. We have previously found this method can reduce co-isolated protein impurities and potentiate anti-inflammatory bioactivity of probiotic BEVs. Thus, this method holds promise as a scalable alternative for improved BEV purification.
Collapse
Affiliation(s)
- Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Laura Samantha C Reus
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
42
|
Fuhrmann G, Mehanny M. Spray Drying of Bacterial Membrane Vesicles for Vaccine Delivery. Methods Mol Biol 2024; 2843:163-175. [PMID: 39141300 DOI: 10.1007/978-1-0716-4055-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Extracellular vesicles are nanosized lipid-bilayered spheres secreted from every living cell and they serve physiological and pathophysiological functions. Bacterial membrane vesicles are shed from both Gram-negative and Gram-positive bacteria and harbor many virulence factors, nuclear material, polysaccharides, proteins, and antigenic determinants, which are essential for immune recognition and evasion. Hence, bacterial membrane vesicles are very promising vaccine candidates. Spray drying is a well-established pharmaceutical technique to produce inhalable dry powders with enhanced stability for formulations of vaccines. In this chapter, we illustrate general guidelines for spray drying of bacterial extracellular vesicles to improve their stability without compromising their immunogenic protective effect. We discuss some of the most important experiments to characterize the generated spray-dried bacterial membrane vesicle powder vaccine.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- FAU NeW-Research Center New Bioactive Compounds, Erlangen, Germany.
| | - Mina Mehanny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
43
|
Petersen AP, Zierden HC. Molecular Approaches to Measure Bacterial Extracellular Vesicles in Tissue Samples. Methods Mol Biol 2024; 2843:253-271. [PMID: 39141305 DOI: 10.1007/978-1-0716-4055-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Extracellular vesicles (EVs) are naturally occurring lipid-bound nanoparticles produced by all cell types. Growing work demonstrates the ability of EVs to facilitate long-distance and cross-kingdom communication. Their innate barrier crossing and cell targeting properties make them a uniquely useful starting ground for novel drug delivery platforms. To better understand the endogenous activity and therapeutic potential of EVs, recent work has measured particle circulation and distribution in vivo using several approaches. Here, we describe molecular-based methods for quantifying bacterial EV distribution in collected tissue samples for biodistribution studies. These methods are important for understanding cell-cell communication facilitated by bacterial EVs and for identifying opportunities for using bacterial EVs as a therapeutic platform.
Collapse
Affiliation(s)
- Alyssa P Petersen
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Hannah C Zierden
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Xie J, Li Q, Nie S. Bacterial extracellular vesicles: An emerging postbiotic. Trends Food Sci Technol 2024; 143:104275. [DOI: 10.1016/j.tifs.2023.104275] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
45
|
Pirolli NH, Reus LSC, Mamczarz Z, Khan S, Bentley WE, Jay SM. High performance anion exchange chromatography purification of probiotic bacterial extracellular vesicles enhances purity and anti-inflammatory efficacy. Biotechnol Bioeng 2023; 120:3368-3380. [PMID: 37555379 PMCID: PMC10592193 DOI: 10.1002/bit.28522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Bacterial extracellular vesicles (BEVs), including outer membrane vesicles, have emerged as a promising new class of vaccines and therapeutics to treat cancer and inflammatory diseases, among other applications. However, clinical translation of BEVs is hindered by a current lack of scalable and efficient purification methods. Here, we address downstream BEV biomanufacturing limitations by developing a method for orthogonal size- and charge-based BEV enrichment using tangential flow filtration (TFF) in tandem with high performance anion exchange chromatography (HPAEC). The data show that size-based separation coisolated protein contaminants, whereas size-based TFF with charged-based HPAEC dramatically improved purity of BEVs produced by probiotic Gram-negative Escherichia coli and Gram-positive lactic acid bacteria (LAB). Escherichia coli BEV purity was quantified using established biochemical markers while improved LAB BEV purity was assessed via observed potentiation of anti-inflammatory bioactivity. Overall, this work establishes orthogonal TFF + HPAEC as a scalable and efficient method for BEV purification that holds promise for future large-scale biomanufacturing of therapeutic BEV products.
Collapse
Affiliation(s)
- Nicholas H. Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Laura Samantha C. Reus
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Zuzanna Mamczarz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sulayman Khan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
46
|
Marinacci B, Krzyżek P, Pellegrini B, Turacchio G, Grande R. Latest Update on Outer Membrane Vesicles and Their Role in Horizontal Gene Transfer: A Mini-Review. MEMBRANES 2023; 13:860. [PMID: 37999346 PMCID: PMC10673008 DOI: 10.3390/membranes13110860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Outer membrane vesicles (OMVs) are spherical, lipid-based nano-structures, which are released by Gram-negative bacteria in both in vitro and in vivo conditions. The size and composition of OMVs depend on not only the producer bacterial species but also cells belonging to the same strain. The mechanism of vesicles' biogenesis has a key role in determining their cargo and the pattern of macromolecules exposed on their surface. Thus, the content of proteins, lipids, nucleic acids, and other biomolecules defines the properties of OMVs and their beneficial or harmful effects on human health. Many studies have provided evidence that OMVs can be involved in a plethora of biological processes, including cell-to-cell communication and bacteria-host interactions. Moreover, there is a growing body of literature supporting their role in horizontal gene transfer (HGT). During this process, OMVs can facilitate the spreading of genes involved in metabolic pathways, virulence, and antibiotic resistance, guaranteeing bacterial proliferation and survival. For this reason, a deeper understanding of this new mechanism of genetic transfer could improve the development of more efficient strategies to counteract infections sustained by Gram-negative bacteria. In line with this, the main aim of this mini-review is to summarize the latest evidence concerning the involvement of OMVs in HGT.
Collapse
Affiliation(s)
- Beatrice Marinacci
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (B.M.); (B.P.)
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Benedetta Pellegrini
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (B.M.); (B.P.)
| | - Gabriele Turacchio
- Institute of Endocrinology and Experimental Oncology “Gaetano Salvatore” (IEOS), National Research Council, 80131 Naples, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council, 67100 L’Aquila, Italy
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (B.M.); (B.P.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
47
|
Jiang Y, Zhou Z, Liu C, Wang L, Li C. Bacterial outer membrane vesicles as drug delivery carrier for photodynamic anticancer therapy. Front Chem 2023; 11:1284292. [PMID: 37915541 PMCID: PMC10616255 DOI: 10.3389/fchem.2023.1284292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Photodynamic Therapy (PDT) is an effective tumor treatment strategy that not only induces photocytotoxicity to kill tumor cells directly but also activates the immune system in the body to generate tumor-specific immunity, preventing cancer metastasis and recurrence. However, some limitations of PDT limit the therapeutic efficacy in deep tumors. Previous studies have used different types of nanoparticles (NPs) as drug carriers of photosensitizers (PSs) to overcome the shortcomings of PDT and improve therapeutic efficacy. Among them, bacterial outer membrane vesicles (OMVs) have natural advantages as carriers for PS delivery. In addition to the targeted delivery of PSs into tumor cells, their unique immunogenicity helps them to serve as immune adjuvants to enhance the PDT-induced immune effect, providing new ideas for photodynamic anticancer therapy. Therefore, in this review, we will introduce the biogenesis and anticancer functions of OMVs and the research on them as drug delivery carriers in PDT. Finally, we also discuss the challenges and prospects of OMVs as a versatile drug delivery carrier for photodynamic anticancer therapy.
Collapse
Affiliation(s)
- Yuan Jiang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - ZunZhen Zhou
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chongzhi Liu
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Limei Wang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chun Li
- Department of Rehabilitation Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
48
|
Nie X, Shi C, Chen X, Yu C, Jiang Z, Xu G, Lin Y, Tang M, Luan Y. A single-shot prophylactic tumor vaccine enabled by an injectable biomembrane hydrogel. Acta Biomater 2023; 169:306-316. [PMID: 37574158 DOI: 10.1016/j.actbio.2023.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Prophylactic tumor vaccines hold great promise against tumor occurrence. However, their clinical efficacy remains low due to inadequate activation of strong-sustainable immunity. Herein, a biomembrane hydrogel was designed as a powerful single-shot prophylactic tumor vaccine. Mannose-decorated hybrid biomembrane (MHCM) modified with oxidized sodium alginate (OSA) was designed as a gelator (O-MHCM), where the hybrid biomembrane (HCM) is a hybridization of bacterial outer membrane vesicles (OMV) and tumor cell membranes (TCM). The O-MHCM enables quick gelation subcutaneously where the cysteine protease inhibitor E64 is encapsulated in hydrogel micropores. After a single vaccination of E64@O-MHCM hydrogel, MHCM and E64 are released sustainably due to OSA moiety degradation. The MHCM enables active targeting to dendritic cells (DC) and effective DC maturation. Meanwhile, the E64 enables sufficient antigen availability for subsequent cross presentation. Ultimately, strong and sustainable T lymphocyte-mediated immunity was elicited, demonstrating a strong prophylactic effect against breast tumors. This study provides a long-lasting platform to prevent tumor occurrence, opening an innovative avenue for the design of a single-shot prophylactic tumor vaccine. STATEMENT OF SIGNIFICANCE: Developing a single-shot prophylactic tumor vaccine to elicit strong-sustainable immunity is of great interest clinically. Here, a prophylactic tumor vaccine was designed using an injectable biomembrane hydrogel for achieving strong-sustainable immunity. The mannose-tailored hybrid biomembrane was modified with oxidized sodium alginate to result in a gelator, which enabled the formation of the hydrogel after subcutaneous injection. Cysteine protease inhibitor E64 was incorporated into the micropores of the hydrogel. The hydrogel induced strong-sustainable immunity through the continuous release of active components. This was facilitated by the mannose moiety, which enabled active targeting, as well as the antigen and adjuvant function of biomembrane, and the E64-enabled suppression of antigen degradation. The biomembrane hydrogel demonstrated powerful prevention of 4T1 breast tumors. This study offers an attractive strategy for designing a single-shot prophylactic tumor vaccine.
Collapse
Affiliation(s)
- Xinxin Nie
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chunhuan Shi
- Department of Pharmacy, Dongying People's Hospital, Dongying, 257091, China
| | - Xiangwu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Cancan Yu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zeyu Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guixiang Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yang Lin
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mingtan Tang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
49
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
50
|
Cieślik M, Bryniarski K, Nazimek K. Biodelivery of therapeutic extracellular vesicles: should mononuclear phagocytes always be feared? Front Cell Dev Biol 2023; 11:1211833. [PMID: 37476156 PMCID: PMC10354279 DOI: 10.3389/fcell.2023.1211833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
At present, extracellular vesicles (EVs) are considered key candidates for cell-free therapies, including treatment of allergic and autoimmune diseases. However, their therapeutic effectiveness, dependent on proper targeting to the desired cells, is significantly limited due to the reduced bioavailability resulting from their rapid clearance by the cells of the mononuclear phagocyte system (MPS). Thus, developing strategies to avoid EV elimination is essential when applying them in clinical practice. On the other hand, malfunctioning MPS contributes to various immune-related pathologies. Therapeutic reversal of these effects with EVs would be beneficial and could be achieved, for example, by modulating the macrophage phenotype or regulating antigen presentation by dendritic cells. Additionally, intended targeting of EVs to MPS macrophages for replication and repackaging of their molecules into new vesicle subtype can allow for their specific targeting to appropriate populations of acceptor cells. Herein, we briefly discuss the under-explored aspects of the MPS-EV interactions that undoubtedly require further research in order to accelerate the therapeutic use of EVs.
Collapse
Affiliation(s)
| | | | - Katarzyna Nazimek
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|