1
|
Hou G, Xu C, Cheng K, Mei S, Kang Y, Zhang C, Shang L, Chen S. Metabolic mechanisms of Dihydromyricetin and strategies for enhancing its bioavailability: A recent review. Food Chem 2025; 485:144470. [PMID: 40306054 DOI: 10.1016/j.foodchem.2025.144470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/20/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
Dihydromyricetin, a flavonoid primarily found in vine tea, offers a range of health-promoting benefits, making it a promising functional food ingredient for improving nutrition and preventing diseases. However, its limited solubility, unstable physicochemical properties, short half-life, and rapid metabolism contribute to poor bioavailability, which restricts its broader application in food, pharmaceutical, and related industries. To overcome these challenges, extensive research has focused on strategies to enhance the bioavailability of dihydromyricetin. This paper reviews the digestion, absorption, tissue distribution, and metabolic mechanisms of dihydromyricetin in the human body. It examines the key factors influencing its bioavailability and highlights the design and construction of various bio-based delivery systems aimed at improving its bioavailability. Furthermore, the paper explores the potential applications of these delivery systems. The development of such systems can significantly enhance the stability and bioavailability of dihydromyricetin, providing a solid theoretical foundation for advancing its use in food and medicine.
Collapse
Affiliation(s)
- Guangqian Hou
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Chenfeng Xu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Kaixuan Cheng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Shengqi Mei
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Yu Kang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Chi Zhang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China.
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Zhang Z, Jin M, Yang X, Zhu H, Li H, Yang Q. Particulate platform for pulmonary drug delivery: Recent advances of formulation and fabricating strategies. Int J Pharm 2025; 676:125601. [PMID: 40250501 DOI: 10.1016/j.ijpharm.2025.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Pulmonary drug delivery for managing respiratory diseases has attained a significant maturity level and holds substantial potential for applications in treating systemic diseases. Advancements in pulmonary delivery techniques have driven the innovative development of dry powder inhalers (DPIs), specifically engineered to optimize the efficacy of pulmonary drug delivery. This review examines recent progress in formulation and manufacturing strategies of inhalable dry powder, focusing on prescription design and fabrication approaches for advanced particulate systems. These include the integration of cutting-edge excipients into conventional formulations, nano-based delivery system, composite particles, and a blend of traditional and next-generation processing techniques, all contributing to enhanced drug delivery efficiency and bioavailability. Additionally, this review discusses the latest advancements in DPI devices. This review aims to provide a clear perspective on emerging inhalable dry powder formulation and processing trends for pulmonary delivery, highlighting the critical role of novel particulate platform in advancing pulmonary drug delivery systems.
Collapse
Affiliation(s)
- Zijia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengya Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyu Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Heng Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijie Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
3
|
Gao X, Cheng H, Teng M, Zhang H, Chen H, Qu S, Liu G. Optimizing interventional therapy: A homogeneous lipiodol formulation of Tirapazamine and Sorafenib responsive to post-embolization microenvironment. J Control Release 2025; 379:879-889. [PMID: 39880038 DOI: 10.1016/j.jconrel.2025.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Transcatheter arterial chemoembolization (TACE) is the principal treatment option for patients with unresectable hepatocellular carcinoma (HCC). However, the hypoxic microenvironment following TACE can promote angiogenesis and suppress tumor ferroptosis, resulting in an unfavorable prognosis. Tirapazamine (TPZ), a hypoxia-activated prodrug with specific cytotoxicity for hypoxic cells, making it a potential candidate for TACE. To develop an effective hypoxia-responsive drug delivery platform for TACE, we propose a novel lipiodol embolic formulation that integrates TPZ and sorafenib (SFB) by super-stable homogeneous intermixed formulation technology (SHIFT). This approach achieves the manufacture of embolic agents with stable drug dispersion characteristics, fulfilling the need for sustained drug release in TACE. The prolonged tumor penetration of TPZ exhibited embolization-responsive tumor killing, and its combination with SFB can suppress hypoxia-induced angiogenesis and trigger tumor ferroptosis, maintaining low oxygen levels, thereby boosting the therapeutic efficacy of TPZ. Conversely, TPZ can combat the resistance to SFB in hypoxic tumor cells. In summary, this study developed a novel embolization drug formulation based on embolic hypoxic microenvironment. The synergistic mechanism of TPZ and SFB enhances the therapeutic effects of hypoxia-activated prodrugs and mitigates the adverse effects of hypoxia.
Collapse
Affiliation(s)
- Xing Gao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Zhuhai UM Science & Technology Research Institute, University of Macau, Macau 999078, China.
| | - Minglei Teng
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongrui Zhang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hu Chen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Songnan Qu
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau 999078, China; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Gang Liu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Wali AF, Sridhar SB, Talath S, Pillai JR, Shareef J, Bhupathyraaj M, Goud BKM, Hani U. Determination of the solubility of methyldopa in supercritical carbon dioxide for drug delivery applications: thermal analysis. Sci Rep 2025; 15:923. [PMID: 39762304 PMCID: PMC11704008 DOI: 10.1038/s41598-024-84263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
The production of fine particles by green technology like supercritical carbon dioxide requires the assessment of substantial solubility data at high pressures. This study represents the first determination of the solubility of methyldopa in carbon dioxide at pressures and temperatures ranging from 12 to 30 MPa and from 313.2 to 343.2 K, respectively. The mole fractions were obtained under the aforementioned conditions and ranged from 0.805 × 10⁻5 to 11.345 × 10⁻5. Four empirical models (Chrastil, Bartle et al., Mendez-Santiago, & Teja, and Kumar-Johnston) and two equations of state (Peng-Robinson and Soave-Redlich-Kwong) were used to correlate drug solubility. The K-J model demonstrated the highest accuracy, with an AARD of 8.38% and a R2 value of 0.988. Furthermore, the enthalpy values for the drug in SC-CO₂ were estimated using the Chrastil and Bartle models, resulting in values of 34.35 and 56.87 kJ·mol⁻¹, respectively. The results demonstrate that the SRK more pronounced results than the PR model, with an AARD% of 23.03 and a R2 value of 0.903 compared to 26.42 and 0.837. The article's conclusions provide a valuable reference for the application of green method in the production of fine particles of methyldopa.
Collapse
Affiliation(s)
- Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Sathvik Belagodu Sridhar
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Jayachithra Ramakrishna Pillai
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Javedh Shareef
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | | | - B K Manjunatha Goud
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| |
Collapse
|
5
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
6
|
Hao J, Zhu N, Song L, Hong H. Enhanced drug release through nitrendipine/hydroxypropyl methylcellulose solid dispersion via supercritical antisolvent technique. Int J Biol Macromol 2024; 281:136265. [PMID: 39366627 DOI: 10.1016/j.ijbiomac.2024.136265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The poor water solubility of nitrendipine (NT) results in low oral bioavailability, which hinders its practical application. Hydroxypropyl methylcellulose (HPMC) is a prominent drug carrier that has been applied in the biomedical field due to its significant characteristics, such as large surface area, biocompatibility and biodegradability. In this study, an efficient drug delivery system based on the preparation of NT/HPMC solid dispersion using supercritical antisolvent (SAS) technology was proposed. The effect of different operating parameters such as solvent, host guest ratio, concentration, temperature, and pressure on NT/HPMC was optimized to obtain dispersed particles with maximum solubility. The formed solid dispersion presents non-static spherical particles with a high surface area and small particle size. Importantly, in vitro drug release studies have demonstrated that the dissolution and solubility of NT in solid dispersion are significantly enhanced compared to pure drug. In vitro bioactivity experiments showed that the NT/HPMC solid dispersion has good biocompatibility and antibacterial performance. Thus, this study indicates that solid dispersion prepared using SAS technology are considered a promising drug delivery system.
Collapse
Affiliation(s)
- Jianxia Hao
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, Hohhot 010051, China; Key Laboratory of CO(2) Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot 010051, China
| | - Ning Zhu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, Hohhot 010051, China; Key Laboratory of CO(2) Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot 010051, China
| | - Lijun Song
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, Hohhot 010051, China; Key Laboratory of CO(2) Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot 010051, China.
| | - Hailong Hong
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; Inner Mongolia Engineering Research Center for CO(2) Capture and Utilization, Hohhot 010051, China; Key Laboratory of CO(2) Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot 010051, China.
| |
Collapse
|
7
|
Fang F, Chen X. Carrier-Free Nanodrugs: From Bench to Bedside. ACS NANO 2024; 18:23827-23841. [PMID: 39163559 DOI: 10.1021/acsnano.4c09027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Carrier-free nanodrugs with extraordinary active pharmaceutical ingredient (API) loading (even 100%), avoidable carrier-induced toxicity, and simple synthetic procedures are considered as one of the most promising candidates for disease theranostics. Substantial studies and the commercial success of "carrier-free" nanocrystals have demonstrated their strong clinical potential. However, their practical translations remain challenging and are impeded by unpredictable assembly processes, insufficient delivery efficiency, and an unclear in vivo fate. In this Perspective, we systematically outline the contemporary and emerging carrier-free nanodrugs based on diverse APIs, as well as highlight their opportunities and challenges in clinical translation. Looking ahead, further improvements in design and preparation, drug delivery, in vivo efficacy, and safety of carrier-free nanomedicines are essential to facilitate their translation from the bench to bedside.
Collapse
Affiliation(s)
- Fang Fang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
8
|
Yang J, Tsai PA. Microfluidic supercritical CO 2 applications: Solvent extraction, nanoparticle synthesis, and chemical reaction. BIOMICROFLUIDICS 2024; 18:051301. [PMID: 39345267 PMCID: PMC11435780 DOI: 10.1063/5.0215567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
SupercriticalCO 2 , known for its non-toxic, non-flammable and abundant properties, is well-perceived as a green alternative to hazardous organic solvents. It has attracted considerable interest in food, pharmaceuticals, chromatography, and catalysis fields. When supercriticalCO 2 is integrated into microfluidic systems, it offers several advantages compared to conventional macro-scale supercritical reactors. These include optical transparency, small volume, rapid reaction, and precise manipulation of fluids, making microfluidics a versatile tool for process optimization and fundamental studies of extraction and reaction kinetics in supercriticalCO 2 applications. Moreover, the small length scale of microfluidics allows for the production of uniform nanoparticles with reduced particle size, beneficial for nanomaterial synthesis. In this perspective, we review microfluidic investigations involving supercriticalCO 2 , with a particular focus on three primary applications, namely, solvent extraction, nanoparticle synthesis, and chemical reactions. We provide a summary of the experimental innovations, key mechanisms, and principle findings from these microfluidic studies, aiming to spark further interest. Finally, we conclude this review with some discussion on the future perspectives in this field.
Collapse
Affiliation(s)
- Junyi Yang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Peichun Amy Tsai
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
9
|
Tu Y, Gong J, Mou J, Jiang H, Zhao H, Gao J. Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment. Front Pharmacol 2024; 15:1434137. [PMID: 39144632 PMCID: PMC11322083 DOI: 10.3389/fphar.2024.1434137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers in vivo, at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Tu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Mou
- Department of Neonatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haibo Zhao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiake Gao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Zhu L, Zhong W, Meng X, Yang X, Zhang W, Tian Y, Li Y. Polymeric nanocarriers delivery systems in ischemic stroke for targeted therapeutic strategies. J Nanobiotechnology 2024; 22:424. [PMID: 39026255 PMCID: PMC11256638 DOI: 10.1186/s12951-024-02673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemic stroke is a complex, high-mortality disease with multifactorial etiology and pathogenesis. Currently, drug therapy is mainly used treat ischemic stroke in clinic, but there are still some limitations, such as limited blood-brain barrier (BBB) penetration efficiency, a narrow treatment time window and drug side effects. Recent studies have pointed out that drug delivery systems based on polymeric nanocarriers can effectively improve the insufficient treatment for ischemic stroke. They can provide neuronal protection by extending the plasma half-life of drugs, enhancing the drug's permeability to penetrate the BBB, and targeting specific structures and cells. In this review, we classified polymeric nanocarriers used for delivering ischemic stroke drugs and introduced their preparation methods. We also evaluated the feasibility and effectiveness and discussed the existing limitations and prospects of polymeric nanocarriers for ischemic stroke treatment. We hoped that this review could provide a theoretical basis for the future development of nanomedicine delivery systems for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xuchen Meng
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xiaosheng Yang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Wenchuan Zhang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yayuan Tian
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
11
|
Xia HY, Li BY, Ye YT, Wang SB, Chen AZ, Kankala RK. Transition Metal Oxide-Decorated MXenes as Drugless Nanoarchitectonics for Enriched Nanocatalytic Chemodynamic Treatment. Adv Healthc Mater 2024; 13:e2303582. [PMID: 38160261 DOI: 10.1002/adhm.202303582] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Despite their unique characteristics, 2D MXenes with sole photothermal conversion ability are required to explore their superfluous abilities in biomedicine. The small-molecule-based chemotherapeutics suffer from various shortcomings of time-consuming and expensiveness concerning theoretical and performance (preclinical/clinical) checks. This study demonstrates the fabrication of Ti3C2 MXene nanosheets (TC-MX NSs) and subsequent decoration with transition metal oxides, that is, copper oxide (Cu2O/MX, CO-MX NCs) as drugless nanoarchitectonics for synergistic photothermal (PTT)-chemodynamic therapeutic (CDT) efficacies. Initially, the monolayer/few-layered TC-MX NSs are prepared using the chemical etching-assisted ultrasonic exfoliation method and then deposited with Cu2O nanoconstructs using the in situ reduction method. Further, the photothermal ablation under near-infrared (NIR)-II laser irradiation shows PTT effects of CO-MX NCs. The deposited Cu2O on TC-MX NSs facilitates the release of copper (Cu+) ions in the acidic microenvironment intracellularly for Fenton-like reaction-assisted CDT effects and enriched PTT effects synergistically. Mechanistically, these deadly free radicals intracellularly imbalance the glutathione (GSH) levels and result in mitochondrial dysfunction, inducing apoptosis of 4T1 cells. Finally, the in vivo investigations in BALB/c mice confirm the substantial ablation of breast carcinoma. Together, these findings demonstrate the potential synergistic PTT-CDT effects of the designed CO-MX NCs as drugless nanoarchitectonics against breast carcinoma.
Collapse
Affiliation(s)
- Hong-Ying Xia
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
| | - Bo-Yi Li
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ying-Tong Ye
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Ai-Zheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Ranjith Kumar Kankala
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
12
|
Cheng K, Zhao K, Zhang R, Guo J. Progress on control of harmful algae by sustained-release technology of allelochemical: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170364. [PMID: 38307275 DOI: 10.1016/j.scitotenv.2024.170364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
The outbreak of harmful algae blooms caused by water eutrophication seriously jeopardizes the aquatic ecological environment and human health. Therefore, algae control technology has attracted widespread attention between environmental scholars. Allelochemical sustained-release technology which releases the active ingredient to the target medium at a certain rate within the effective time, so that the system maintains a certain concentration, thus prolonging its influence on the target organism. Allelochemical sustained-release technology has become the focus of research due to the characteristics of high efficiency, safety, low-cost, environment friendly and no secondary pollution. This paper reviews the characteristics of allelochemical substances and the status quo of plant extraction, explains the detailed classification of allelochemical sustained-release microspheres (ASRMs) and the application of algae inhibition, summarizes the preparation method of ASRMs, elaborates on the mechanism of algae inhibition of sustained-release technology from the perspective of photosynthesis, cellular enzyme activity, algae cell structure, gene expression, and target site action. Focuses on the summary of the factors influencing the effect of algae inhibition of ASRMs, including particle size of sustained-release microspheres, selection of carrier materials, and the growth stage of algae. The future direction and prospect of algae inhibition by allelochemical sustained-release technology were prospected to provide the scientific basis for water ecological restoration.
Collapse
Affiliation(s)
- Kai Cheng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Kai Zhao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Rong Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Jifeng Guo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, School of Water and Environment, Chang'an University, Xi'an 710054, PR China.
| |
Collapse
|
13
|
Lu H, Ban Z, Xiao K, Sun M, Liu Y, Chen F, Shi T, Chen L, Shao D, Zhang M, Li W. Hepatic-Accumulated Obeticholic Acid and Atorvastatin Self-Assembled Nanocrystals Potentiate Ameliorative Effects in Treatment of Metabolic-Associated Fatty Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308866. [PMID: 38196299 PMCID: PMC10933608 DOI: 10.1002/advs.202308866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Indexed: 01/11/2024]
Abstract
Exploration of medicines for efficient and safe management of metabolic-associated fatty liver disease (MAFLD) remains a challenge. Obeticholic acid (OCA), a selective farnesoid X receptor agonist, has been reported to ameliorate injury and inflammation in various liver diseases. However, its clinical application is mainly limited by poor solubility, low bioavailability, and potential side effects. Herein a hepatic-targeted nanodrugs composed of OCA and cholesterol-lowering atorvastatin (AHT) with an ideal active pharmaceutical ingredient (API) content for orally combined treatment of MAFLD is created. Such carrier-free nanocrystals (OCAHTs) are self-assembled, not only improving the stability in gastroenteric environments but also achieving hepatic accumulation through the bile acid transporter-mediated enterohepatic recycling process. Orally administrated OCAHT outperforms the simple combination of OCA and AHT in ameliorating of liver damage and inflammation in both acetaminophen-challenged mice and high-fat diet-induced MAFLD mice with less systematic toxicity. Importantly, OCAHT exerts profoundly reverse effects on MAFLD-associated molecular pathways, including impairing lipid metabolism, reducing inflammation, and enhancing the antioxidation response. This work not only provides a facile bile acid transporter-based strategy for hepatic-targeting drug delivery but also presents an efficient and safe full-API nanocrystal with which to facilitate the practical translation of nanomedicines against MAFLD.
Collapse
Affiliation(s)
- Huanfen Lu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Zhenglan Ban
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Kai Xiao
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Madi Sun
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Yongbo Liu
- College of Chinese Medicinal MaterialsJilin Agricultural UniversityChangchun130118China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Tongfei Shi
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Li Chen
- College of MedicineJilin UniversityChangchun130021China
| | - Dan Shao
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Ming Zhang
- College of MedicineJilin UniversityChangchun130021China
| | - Wei Li
- College of Chinese Medicinal MaterialsJilin Agricultural UniversityChangchun130118China
| |
Collapse
|
14
|
Illanes-Bordomás C, Landin M, García-González CA. Aerogels as Carriers for Oral Administration of Drugs: An Approach towards Colonic Delivery. Pharmaceutics 2023; 15:2639. [PMID: 38004617 PMCID: PMC10674668 DOI: 10.3390/pharmaceutics15112639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Polysaccharide aerogels have emerged as a highly promising technology in the field of oral drug delivery. These nanoporous, ultralight materials, derived from natural polysaccharides such as cellulose, starch, or chitin, have significant potential in colonic drug delivery due to their unique properties. The particular degradability of polysaccharide-based materials by the colonic microbiota makes them attractive to produce systems to load, protect, and release drugs in a controlled manner, with the capability to precisely target the colon. This would allow the local treatment of gastrointestinal pathologies such as colon cancer or inflammatory bowel diseases. Despite their great potential, these applications of polysaccharide aerogels have not been widely explored. This review aims to consolidate the available knowledge on the use of polysaccharides for oral drug delivery and their performance, the production methods for polysaccharide-based aerogels, the drug loading possibilities, and the capacity of these nanostructured systems to target colonic regions.
Collapse
Affiliation(s)
| | - Mariana Landin
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Carlos A. García-González
- AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| |
Collapse
|
15
|
Rojas A, Sajadian SA, López-de-Dicastillo C, Ardestani NS, Aguila G, Jouyban A. Improving and measuring the solubility of favipiravir and montelukast in SC-CO 2 with ethanol projecting their nanonization. RSC Adv 2023; 13:34210-34223. [PMID: 38020033 PMCID: PMC10664086 DOI: 10.1039/d3ra05484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Supercritical carbon dioxide (SC-CO2)-based approaches have become more popular in recent years as alternative methods for creating micro- or nanosized medicines. Particularly, high drug solubility is required in those techniques using SC-CO2 as a solvent. During the most recent pandemic years, favipiravir and montelukast were two of the most often prescribed medications for the treatment of COVID-19. In this study, ethanol at 1 and 3 mol% was utilized as a cosolvent to increase the solubility of both medicines in SC-CO2 by a static approach using a range of temperatures (308 to 338 K) and pressure (12 to 30 MPa) values. The experimentally determined solubilities of favipiravir and montelukast in SC-CO2 + 3 mol% ethanol showed solubility values up to 33.3 and 24.5 times higher than that obtained for these drugs with only SC-CO2. The highest values were achieved in the pressure of 12 MPa and temperature of 338 K. Last but not least, six density-based semi-empirical models with various adjustable parameters were used to perform the modeling of the solubility of favipiravir and montelukast.
Collapse
Affiliation(s)
- Adrián Rojas
- Packaging Innovation Center (LABEN), Department of Science and Food Technology, Faculty of Technology, University of Santiago of Chile (USACH) Obispo Umaña 050 Santiago 9170201 Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA) Santiago 9170124 Chile
| | - Seyed Ali Sajadian
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan 87317-53153 Kashan Iran
| | - Carol López-de-Dicastillo
- Packaging Laboratory, Institute of Agrochemistry and Food Technology IATA-CSIC Av. Agustín Escardino 7 46980 Paterna Spain
| | - Nedasadat Saadati Ardestani
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI) P.O. Box: 14857-336 Tehran Iran
| | - Gonzalo Aguila
- Departamento de Ciencias de la Ingeniería, Facultad de Ingeniería, Universidad Andres Bello Antonio Varas 880 Santiago Chile
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
16
|
Taldaev A, Pankov DI, Terekhov RP, Zhevlakova AK, Selivanova IA. Modification of the Physicochemical Properties of Active Pharmaceutical Ingredients via Lyophilization. Pharmaceutics 2023; 15:2607. [PMID: 38004585 PMCID: PMC10674228 DOI: 10.3390/pharmaceutics15112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioavailability is an important biopharmaceutical characteristic of active pharmaceutical ingredients (APIs) that is often correlated with their solubility in water. One of the methods of increasing solubility is freeze drying (lyophilization). The article provides a systematic review of studies published from 2012 to 2022 aimed at optimizing the properties of active pharmaceutical ingredients by freeze drying. This review was carried out in accordance with the recommendations of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). In general, 141 modifications of 36 APIs attributed to 12 pharmacological groups were reported in selected publications. To characterize the products of phase modification after lyophilization, a complex of analytical methods was used, including microscopic, thermal, X-ray, and spectral approaches. Solubility and pharmacokinetic parameters were assessed. There is a tendency to increase solubility due to the amorphization of APIs during lyophilization. Thus, the alcohol lyophilizate of dihydroquercetin is "soluble" in water compared to the initial substance belonging to the category "very poorly soluble". Based on the analysis of the literature, it can be argued that lyophilization is a promising method for optimizing the properties of APIs.
Collapse
Affiliation(s)
- Amir Taldaev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, 141701 Moscow, Russia
| | - Denis I. Pankov
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Roman P. Terekhov
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anastasia K. Zhevlakova
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Irina A. Selivanova
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
17
|
Serri C, Cruz-Maya I, Bonadies I, Rassu G, Giunchedi P, Gavini E, Guarino V. Green Routes for Bio-Fabrication in Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:1744. [PMID: 37376192 PMCID: PMC10300741 DOI: 10.3390/pharmaceutics15061744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In the last decade, significant advances in nanotechnologies, rising from increasing knowledge and refining of technical practices in green chemistry and bioengineering, enabled the design of innovative devices suitable for different biomedical applications. In particular, novel bio-sustainable methodologies are developing to fabricate drug delivery systems able to sagely mix properties of materials (i.e., biocompatibility, biodegradability) and bioactive molecules (i.e., bioavailability, selectivity, chemical stability), as a function of the current demands for the health market. The present work aims to provide an overview of recent developments in the bio-fabrication methods for designing innovative green platforms, emphasizing the relevant impact on current and future biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/a, 07100 Sassari, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
18
|
Park H, Ha E, Kim J, Kim M. Injectable sustained-release poly(lactic-co-glycolic acid) (PLGA) microspheres of exenatide prepared by supercritical fluid extraction of emulsion process based on a design of experiment approach. Bioeng Transl Med 2023; 8:e10485. [PMID: 37206215 PMCID: PMC10189459 DOI: 10.1002/btm2.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
This study aimed to develop an improved sustained-release (SR) PLGA microsphere of exenatide using supercritical fluid extraction of emulsions (SFEE). As a translational research, we investigated the effect of various process parameters on the fabrication of exenatide-loaded PLGA microspheres by SFEE (ELPM_SFEE) using the Box-Behnken design (BBD), a design of experiment approach. Further, ELPM obtained under optimized conditions and satisfying all the response criteria were compared with PLGA microspheres prepared using the conventional solvent evaporation (ELPM_SE) method through various solid-state characterizations and in vitro and in vivo evaluations. The four process parameters selected as independent variables were pressure (X 1), temperature (X 2), stirring rate (X 3), and flow ratio (X 4). The effects of these independent variables on five responses, namely the particle size, its distribution (SPAN value), encapsulation efficiency (EE), initial drug burst release (IBR), and residual organic solvent, were evaluated using BBD. Based on the experimental results, a desirable range of combinations of various variables in the SFEE process was determined by graphical optimization. Solid-state characterization and in vitro evaluation revealed that ELPM_SFEE improved properties, including a smaller particle size and SPAN value, higher EE, lower IBR, and lower residual solvent. Furthermore, the pharmacokinetic and pharmacodynamic study results indicated better in vivo efficacy with desirable SR properties, including a reduction in blood glucose levels, weight gain, and food intake, for ELPM_SFEE than those generated using SE. Therefore, the potential drawback of conventional technologies such as the SE for the preparation of injectable SR PLGA microspheres could be improved by optimizing the SFEE process.
Collapse
Affiliation(s)
- Heejun Park
- College of PharmacyDuksung Women's UniversitySeoulSouth Korea
| | - Eun‐Sol Ha
- College of PharmacyPusan National UniversityBusanSouth Korea
| | - Jeong‐Soo Kim
- Dong‐A ST Research InstituteDong‐A ST Co. Ltd.Giheung‐guYongin‐siGyeonggiSouth Korea
| | - Min‐Soo Kim
- College of PharmacyPusan National UniversityBusanSouth Korea
| |
Collapse
|
19
|
Shi X, Xu D, Cheng H, Chu C, Liu G. Recent Advances in Interventional Fluorescence Imaging: Toward the Precise Visualization of Transarterial Mini-Invasive Delivery Systems. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:251-263. [DOI: 10.1021/accountsmr.2c00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Affiliation(s)
- Xiaoxiao Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
20
|
Using the supercritical carbon dioxide as the solvent of Nystatin: Studying the effect of co-solvent, experimental and correlating. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Supercritical Fluid-assisted Fabrication of Pt-modified Cerium Oxide Nanozyme Based on Polymer Nanoreactors for Peroxidase-like and Glucose Detection Characteristics. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
22
|
Liang B, Hao J, Zhu N, Han L, Song L, Hong H. Formulation of nitrendipine/hydroxypropyl-β-cyclodextrin inclusion complex as a drug delivery system to enhance the solubility and bioavailability by supercritical fluid technology. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Wang C, Yan T, Yan T, Wang Z. Fabrication of Hesperetin/hydroxypropyl-β-cyclodextrin Complex Nanoparticles for Enhancement of Bioactivity Using Supercritical Antisolvent Technology. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Ha ES, Kang HT, Park H, Kim S, Kim MS. Advanced technology using supercritical fluid for particle production in pharmaceutical continuous manufacturing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Ruiz HK, Serrano DR, Calvo L, Cabañas A. Current Treatments for COVID-19: Application of Supercritical Fluids in the Manufacturing of Oral and Pulmonary Formulations. Pharmaceutics 2022; 14:2380. [PMID: 36365198 PMCID: PMC9697571 DOI: 10.3390/pharmaceutics14112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 10/06/2024] Open
Abstract
Even though more than two years have passed since the emergence of COVID-19, the research for novel or repositioned medicines from a natural source or chemically synthesized is still an unmet clinical need. In this review, the application of supercritical fluids to the development of novel or repurposed medicines for COVID-19 and their secondary bacterial complications will be discussed. We envision three main applications of the supercritical fluids in this field: (i) drug micronization, (ii) supercritical fluid extraction of bioactives and (iii) sterilization. The supercritical fluids micronization techniques can help to improve the aqueous solubility and oral bioavailability of drugs, and consequently, the need for lower doses to elicit the same pharmacological effects can result in the reduction in the dose administered and adverse effects. In addition, micronization between 1 and 5 µm can aid in the manufacturing of pulmonary formulations to target the drug directly to the lung. Supercritical fluids also have enormous potential in the extraction of natural bioactive compounds, which have shown remarkable efficacy against COVID-19. Finally, the successful application of supercritical fluids in the inactivation of viruses opens up an opportunity for their application in drug sterilization and in the healthcare field.
Collapse
Affiliation(s)
- Helga K. Ruiz
- Department of Physical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Dolores R. Serrano
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lourdes Calvo
- Department of Chemical Engineering, Complutense University of Madrid, 28040 Madrid, Spain
| | - Albertina Cabañas
- Department of Physical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
26
|
Xu PY, Kumar Kankala R, Wang SB, Chen AZ. Development of highly stable ICG-polymeric nanoparticles with ultra-high entrapment efficiency using supercritical antisolvent (SAS)-combined solution casting process. Int J Pharm 2022; 629:122348. [DOI: 10.1016/j.ijpharm.2022.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
27
|
Xu PY, Kankala RK, Li YW, Wang SB, Chen AZ. Synergistic chemo-/photothermal therapy based on supercritical technology-assisted chitosan-indocyanine green/luteolin nanocomposites for wound healing. Regen Biomater 2022; 9:rbac072. [PMID: 36246765 PMCID: PMC9555995 DOI: 10.1093/rb/rbac072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the success, it is highly challenging to battle against pathogenic biofilms-based chronic bacterial infections by conventional antibiotic therapy. Herein, we report a near-infrared (NIR)/acid-induced nanoplatform based on chitosan (CS)-coated indocyanine green (ICG, photosensitizer)/luteolin (LUT, a natural quorum sensing inhibitor) nanocomposites (ICG/LUT-CS) as antibacterial and antibiofilm agents for skin wound healing. Initially, the ICG/LUT nanoplatforms are prepared by the supercritical antisolvent technology and coated with the CS layer. The obtained ICG/LUT-CS with ultra-high encapsulation efficiency exhibited more favorable photothermal conversion effects and improved NIR laser/acid dual-induced drug release behavior than individual modalities, achieving exceptional bacteria-killing and biofilm elimination effects. Moreover, the ICG/LUT-CS realized the synergetic effects of chemotherapy and photothermal therapy outcomes for wound healing. Together, our findings provided an appealing strategy for the rapid preparation and future translational application of ICG/LUT-CS as an ideal agent for fighting against biofilm infections.
Collapse
Affiliation(s)
- Pei-Yao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Yue-Wei Li
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
28
|
Supercritical Fluid Technologies for the Incorporation of Synthetic and Natural Active Compounds into Materials for Drug Formulation and Delivery. Pharmaceutics 2022; 14:pharmaceutics14081670. [PMID: 36015296 PMCID: PMC9413081 DOI: 10.3390/pharmaceutics14081670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Various active compounds isolated from natural sources exhibit remarkable benefits, making them attractive for pharmaceutical and biomedical applications, such as antioxidant, antimicrobial, and anti-inflammatory activities, which contribute to the treatment of cardiovascular diseases, neurodegenerative disorders, various types of cancer, diabetes, and obesity. However, their major drawbacks are their reactivity, instability, relatively poor water solubility, and consequently low bioavailability. Synthetic drugs often face similar challenges associated with inadequate solubility or burst release in gastrointestinal media, despite being otherwise a safe and effective option for the treatment of numerous diseases. Therefore, drug-eluting pharmaceutical formulations have been of great importance over the years in efforts to improve the bioavailability of active compounds by increasing their solubility and achieving their controlled release in body media. This review highlights the success of the fabrication of micro- and nanoformulations using environmentally friendly supercritical fluid technologies for the processing and incorporation of active compounds. Several novel approaches, namely micronization to produce micro- and nano-sized particles, supercritical drying to produce aerogels, supercritical foaming, and supercritical solvent impregnation, are described in detail, along with the currently available drug delivery data for these formulations.
Collapse
|
29
|
Fabrication of apigenin nanoparticles using antisolvent crystallization technology: A comparison of supercritical antisolvent, ultrasonic-assisted liquid antisolvent, and high-pressure homogenization technologies. Int J Pharm 2022; 624:121981. [DOI: 10.1016/j.ijpharm.2022.121981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/06/2023]
|
30
|
CO2 Utilization as Gas Antisolvent for the Pharmaceutical Micro and Nanoparticle Production: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Solubility of Lacosamide in supercritical carbon Dioxide: An experimental analysis and thermodynamic modeling. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Zhang J, Liu M, Zeng Z. The antisolvent coprecipitation method for enhanced bioavailability of poorly water-soluble drugs. Int J Pharm 2022; 626:122043. [PMID: 35902056 DOI: 10.1016/j.ijpharm.2022.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
In recent years, poorly water-soluble drug candidates in the drug development pipeline have been a challenging issue for the pharmaceutical industry. Many delivery systems such as nanocrystals, cocrystals, nanoparticles, and amorphous solid dispersions (ASDs) have been developed to overcome these problems. A large number of methods are utilized to realize the above delivery systems. Among all the preparation methods, the antisolvent coprecipitation method is a relatively simple, cost-effective method, offering many advantages over conventional methods. An overview of recent developments for each solubility enhancement approach using the antisolvent coprecipitation method is presented. This current review details a comprehensive overview of the antisolvent coprecipitation process and its properties, as well as the fundamentals for enhancing the solubility and bioavailability of poorly water-soluble drugs by nanotization, polymorph control with polymers and/or surfactants. Furthermore, this review also presents insights into the factors affecting the antisolvent coprecipitation process.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Minzhuo Liu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Zhihong Zeng
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China.
| |
Collapse
|
33
|
Chen BQ, Liu H, Zhao Y, Lu XC, Zhang CY, Kankala RK, Wang SB, Chen AZ. Preparation of astragaloside IV (AS-IV) nanoparticles via SAS process for anticancer efficacy: optimization based on Box-Behnken Design. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Computational prediction of drug solubility in supercritical carbon dioxide: Thermodynamic and artificial intelligence modeling. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Sajadian SA, Ardestani NS, Esfandiari N, Askarizadeh M, Jouyban A. Solubility of favipiravir (as an anti-COVID-19) in supercritical carbon dioxide: An experimental analysis and thermodynamic modeling. J Supercrit Fluids 2022; 183:105539. [PMID: 35136283 PMCID: PMC8815272 DOI: 10.1016/j.supflu.2022.105539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
Favipiravir is one of the most commonly prescribed drugs in the treatment of COVID-19 in the early stages of the disease. In this work, the solubility of favipiravir was measured in supercritical CO2 at temperatures ranging from 308 to 338 K and pressures ranging from 12 to 30 MPa. The mole fraction solubility of favipiravir was in the range of 3.0 × 10-6 to 9.05 × 10-4. The solubility data were correlated with three types of methods including; (a) density-based models (Chrastil, Garlapati and Madras, Sparks et al., Sodeifian et al., K-J and Keshmiri et al.), (b) Equations of states SRK with quadratic mixing rules) and (c) expanded liquid theory (modified Wilson model). According to the results, modified Wilson and K-J models are generally capable of providing good correlation of solubility. Finally, the approximate values of total (Δ H total ), vaporization (Δ H vap ), and solvation (Δ H sol ) enthalpies were computed.
Collapse
Affiliation(s)
- Seyed Ali Sajadian
- South Zagros Oil and Gas Production, National Iranian Oil Company, 7135717991 Shiraz, Iran
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, 87317-53153 Kashan, Iran
| | - Nedasadat Saadati Ardestani
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, 14155-4777 Karaj, Iran
| | - Nadia Esfandiari
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mahshid Askarizadeh
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO BOX: 99138, Mersin 10, Nicosia, North Cyprus,Turkey
| |
Collapse
|
36
|
Micronization of a poorly water-soluble drug, fenofibrate, via supercritical-fluid-assisted spray-drying. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00565-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Park H, Kim JS, Kim S, Ha ES, Kim MS, Hwang SJ. Pharmaceutical Applications of Supercritical Fluid Extraction of Emulsions for Micro-/Nanoparticle Formation. Pharmaceutics 2021; 13:pharmaceutics13111928. [PMID: 34834343 PMCID: PMC8625501 DOI: 10.3390/pharmaceutics13111928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
Micro-/nanoparticle formulations containing drugs with or without various biocompatible excipients are widely used in the pharmaceutical field to improve the physicochemical and clinical properties of the final drug product. Among the various micro-/nanoparticle production technologies, emulsion-based particle formation is the most widely used because of its unique advantages such as uniform generation of spherical small particles and higher encapsulation efficiency (EE). For this emulsion-based micro-/nanoparticle technology, one of the most important factors is the extraction efficiency associated with the fast removal of the organic solvent. In consideration of this, a technology called supercritical fluid extraction of emulsions (SFEE) that uses the unique mass transfer mechanism and solvent power of a supercritical fluid (SCF) has been proposed to overcome the shortcomings of several conventional technologies such as solvent evaporation, extraction, and spray drying. This review article presents the main aspects of SFEE technology for the preparation of micro-/nanoparticles by focusing on its pharmaceutical applications, which have been organized and classified according to several types of drug delivery systems and active pharmaceutical ingredients. It was definitely confirmed that SFEE can be applied in a variety of drugs from water-soluble to poorly water-soluble. In addition, it has advantages such as low organic solvent residual, high EE, desirable release control, better particle size control, and agglomeration prevention through efficient and fast solvent removal compared to conventional micro-/nanoparticle technologies. Therefore, this review will be a good resource for determining the applicability of SFEE to obtain better pharmaceutical quality when researchers in related fields want to select a suitable manufacturing process for preparing desired micro-/nanoparticle drug delivery systems containing their active material.
Collapse
Affiliation(s)
- Heejun Park
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Korea; (H.P.); (S.K.)
| | - Jeong-Soo Kim
- Dong-A ST Co. Ltd., 21, Geumhwa-ro 105beon-gil, Giheung-gu, Yongin-si 17073, Korea;
| | - Sebin Kim
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Korea; (H.P.); (S.K.)
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea;
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea;
- Correspondence: (M.-S.K.); (S.-J.H.); Tel.: +82-51-510-2813 (M.-S.K.)
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences & College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
- Correspondence: (M.-S.K.); (S.-J.H.); Tel.: +82-51-510-2813 (M.-S.K.)
| |
Collapse
|
38
|
Liu H, Chen BQ, Pan YJ, Fu CP, Kankala RK, Wang SB, Chen AZ. Role of supercritical carbon dioxide (scCO 2) in fabrication of inorganic-based materials: a green and unique route. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:695-717. [PMID: 34512177 PMCID: PMC8425740 DOI: 10.1080/14686996.2021.1955603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In recent times, the supercritical carbon dioxide (scCO2) process has attracted increasing attention in fabricating diverse materials due to the attractive features of environmentally benign nature and economically promising character. Owing to these unique characteristics and high-penetrability, as well as diffusivity conditions of scCO2, this high-pressure technology, with mild operation conditions, cost-effective, and non-toxic, among others, is often applied to fabricate various organic and inorganic-based materials, resulting in the unique crystal architectures (amorphous, crystalline, and heterojunction), tunable architectures (nanoparticles, nanosheets, and aerogels) for diverse applications. In this review, we give an emphasis on the fabrication of various inorganic-based materials, highlighting the recent research on the driving factors for improving the quality of fabrication in scCO2, procedures for production and dispersion in scCO2, as well as common indicators utilized to assess quality and processing ability of materials. Next, we highlight the effects of specific properties of scCO2 towards synthesizing the highly functional inorganic-based nanomaterials. Finally, we summarize this compilation with interesting perspectives, aiming to arouse a more comprehensive utilization of scCO2 to broaden the horizon in exploring the green/eco-friendly processing of such versatile inorganic-based materials. Together, we firmly believe that this compilation endeavors to disclose the latent capability and universal prevalence of scCO2 in the synthesis and processing of inorganic-based materials.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen, P. R. China
| | - Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Yu-Jing Pan
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
| | - Chao-Ping Fu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| |
Collapse
|