1
|
Xie X, Shen Z, He Y, Chen Y, Zhang W, Chen F, Tang J, Guan S, Wang L, Shao D, Yang C. Intracellular Bacteria-Mimicking Whole-Cell Cancer Vaccine Potentiates Immune Responses via Concurrent Activation of NLRP3 Inflammasome and STING Pathway. NANO LETTERS 2025; 25:9702-9711. [PMID: 40476548 DOI: 10.1021/acs.nanolett.5c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
Whole-cell cancer vaccines can trigger broader-spectrum antitumoral immune responses. However, a lack of immunogenicity and unclear interactions with antigen-presenting cells (APCs) hinder their translation into effective personalized immunotherapies. Herein, tumor cells are engineered via layer-by-layer bimineralization integrating sequential silicification and manganese mineralization, which reprograms the APC recognition with high immunogenicity. These bacteria-mimicking cells with enhanced mechanical stiffness protect against antigen degradation and facilitate phagocytosis by APCs. The secondary Mn mineralization creates spiky-like MnO2 nanoclusters with extreme roughness that stimulate the intracellular NLRP3 inflammasome and concurrently activate the cGAS-STING pathway, which is closely related to diverse immune patterns in response to intracellular bacterial infection. As a consequence, such bimineralized tumor cells outperform other monomineralized vaccinations in terms of prophylactic and therapeutic outcomes against the development and progression of a mouse B16F10 melanoma model. This bimineralization strategy uniquely bridges materials science and immunology, offering a transformative framework for engineering immunogenic whole-cell cancer vaccines.
Collapse
Affiliation(s)
- Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zikun Shen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yan He
- Central Laboratory, Yuedong Hospital of the Third Affiliated Hospital of Sun Yat-sen University, Meizhou 514700, Guangdong, China
| | - Yinglu Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
- Department of Orthopedics, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Wensheng Zhang
- Department of Orthopedics, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 519000, China
| | - Jie Tang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Liang Wang
- Department of Orthopedics, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chao Yang
- Department of Orthopedics, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
2
|
Liu X, Min Q, Li Y, Chen S. Enhanced Cellular Immunity for Hepatitis B Virus Vaccine: A Novel Polyinosinic-Polycytidylic Acid-Incorporated Adjuvant Leveraging Cytoplasmic Retinoic Acid-Inducible Gene-Like Receptor Activation and Increased Antigen Uptake. Biomater Res 2024; 28:0096. [PMID: 39469105 PMCID: PMC11513446 DOI: 10.34133/bmr.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Conventional aluminum adjuvants exhibit limited cellular immunity. Polyinosinic-polycytidylic acid (poly I:C) activates cytoplasmic retinoic acid-inducible gene-like receptor (RLR), triggering strong T cell activation and cellular responses. However, when applied as an adjuvant, its limited endocytosis and restricted cytoplasmic delivery diminish its effectiveness and increase its toxicity. Hybrid polymer-lipid nanoparticle (PLNP) possesses numerous benefits such as good stability, reduced drug leakage, simple fabrication, easy property modulation, and excellent reproducibility compared to the lipid nanoparticle or the polymeric vector. Here, we developed a novel cationic polymer-lipid hybrid adjuvant capable of incorporating poly I:C to enhance cellular immunity. The hepatitis B surface antigen (HBsAg) was immobilized onto poly I:C-incorprated PLNP (PPLNP) via electrostatic interactions, forming the HBsAg/PPLNP vaccine formulation. The PPLNP adjuvant largely enhanced the cellular endocytosis and cytoplasmic transport of poly I:C, activating RLR followed by promoting type I interferon (IFN) secretion. Meanwhile, PPLNP obviously enhanced the antigen uptake, prolonged antigen retention at the site of administration, and facilitated enhanced transport of antigens to lymph nodes. The HBsAg/PPLNP nanovaccine led to amplified concentrations of antigen-specific immunoglobulin G (IgG), IFN-γ, granzyme B, and an enhanced IgG2a/IgG1 ratio, alongside the FasL+/CD8+ T cell activation, favoring a T helper 1 (TH1)-driven immune response. PPLNP, distinguished by its biocompatibility, ease of fabrication, and effectiveness in augmenting cellular immunity, holds significant promise as a new adjuvant.
Collapse
Affiliation(s)
- Xuhan Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qiuxia Min
- Department of Pharmacy, First People’s Hospital of Yunnan Province,
Kunming University of Science and Technology, Kunming, 650034 Yunnan, China
| | - Yihui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816 China
| |
Collapse
|
3
|
Ou BS, Baillet J, Filsinger Interrante MV, Adamska JZ, Zhou X, Saouaf OM, Yan J, Klich JH, Jons CK, Meany EL, Valdez AS, Carter L, Pulendran B, King NP, Appel EA. Saponin nanoparticle adjuvants incorporating Toll-like receptor agonists drive distinct immune signatures and potent vaccine responses. SCIENCE ADVANCES 2024; 10:eadn7187. [PMID: 39110802 PMCID: PMC11305391 DOI: 10.1126/sciadv.adn7187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Over the past few decades, the development of potent and safe immune-activating adjuvant technologies has become the heart of intensive research in the constant fight against highly mutative and immune evasive viruses such as influenza, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and human immunodeficiency virus (HIV). Herein, we developed a highly modular saponin-based nanoparticle platform incorporating Toll-like receptor agonists (TLRas) including TLR1/2a, TLR4a, and TLR7/8a adjuvants and their mixtures. These various TLRa-saponin nanoparticle adjuvant constructs induce unique acute cytokine and immune-signaling profiles, leading to specific T helper responses that could be of interest depending on the target disease for prevention. In a murine vaccine study, the adjuvants greatly improved the potency, durability, breadth, and neutralization of both COVID-19 and HIV vaccine candidates, suggesting the potential broad application of these adjuvant constructs to a range of different antigens. Overall, this work demonstrates a modular TLRa-SNP adjuvant platform that could improve the design of vaccines and affect modern vaccine development.
Collapse
Affiliation(s)
- Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Julie Baillet
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Maria V. Filsinger Interrante
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Julia Z. Adamska
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xueting Zhou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Olivia M. Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jerry Yan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - John H. Klich
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carolyn K. Jons
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Emily L. Meany
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Adian S. Valdez
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics-Endocrinology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford CA 94305, USA
| |
Collapse
|
4
|
Li J, Xing H, Meng F, Liu T, Hong X, Han X, Dong Y, Li M, Wang Z, Zhang S, Cui C, Zheng A. Virus-Mimetic Extracellular-Vesicle Vaccine Boosts Systemic and Mucosal Immunity via Immune Recruitment. ACS NANO 2024. [PMID: 39013102 DOI: 10.1021/acsnano.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Mucosal vaccines can prevent viruses from infecting the respiratory mucosa, rather than only curtailing infection and protecting against the development of disease symptoms. The SARS-CoV-2 spike receptor-binding domain (RBD) is a compelling vaccine target but is undermined by suboptimal mucosal immunogenicity. Here, we report a SARS-CoV-2-mimetic extracellular-vesicle vaccine developed using genetic engineering and dendritic cell membrane budding. After mucosal immunization, the vaccine recruits antigen-presenting cells rapidly initiating a strong innate immune response. Notably, it obviates the need for adjuvants and can induce germinal center formation through both intramuscular and intratracheal vaccination. It not only elicits high levels of RBD-specific antibodies but also stimulates extensive cellular immunity in the respiratory mucosa. A sequential immunization strategy, starting with an intramuscular injection followed by an intratracheal booster, significantly bolsters mucosal immunity with high levels of IgA and tissue-resident memory T cell responses, thereby establishing a formidable defense against pseudovirus infection.
Collapse
Affiliation(s)
- Jingru Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Haonan Xing
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fan Meng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Xiaoxuan Hong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Xiaolu Han
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuhan Dong
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meng Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zengming Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shuang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
- Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Aiping Zheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
5
|
Ou BS, Baillet J, Filsinger Interrante MV, Adamska JZ, Zhou X, Saouaf OM, Yan J, Klich JH, Jons CK, Meany EL, Valdez AS, Carter L, Pulendran B, King NP, Appel EA. Saponin Nanoparticle Adjuvants Incorporating Toll-Like Receptor Agonists Drive Distinct Immune Signatures and Potent Vaccine Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.16.549249. [PMID: 37577608 PMCID: PMC10418080 DOI: 10.1101/2023.07.16.549249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Over the past few decades, the development of potent and safe immune-activating adjuvant technologies has become the heart of intensive research in the constant fight against highly mutative and immune evasive viruses such as influenza, SARS-CoV-2, and HIV. Herein, we developed a highly modular saponin-based nanoparticle platform incorporating toll-like receptor agonists (TLRas) including TLR1/2a, TLR4a, TLR7/8a adjuvants and their mixtures. These various TLRa-SNP adjuvant constructs induce unique acute cytokine and immune-signaling profiles, leading to specific Th-responses that could be of interest depending on the target disease for prevention. In a murine vaccine study, the adjuvants greatly improved the potency, durability, breadth, and neutralization of both COVID-19 and HIV vaccine candidates, suggesting the potential broad application of these adjuvant constructs to a range of different antigens. Overall, this work demonstrates a modular TLRa-SNP adjuvant platform which could improve the design of vaccines for and dramatically impact modern vaccine development. Teaser Saponin-TLRa nanoadjuvants provide distinct immune signatures and drive potent, broad, durable COVID-19 and HIV vaccine responses.
Collapse
|
6
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
7
|
Jia Z, Liu R, Chang Q, Zhou X, De X, Yang Z, Li Y, Zhang C, Wang F, Ge J. Proof of concept in utilizing the peptidoglycan skeleton of pathogenic bacteria as antigen delivery platform for enhanced immune response. Int J Biol Macromol 2024; 264:130591. [PMID: 38437938 DOI: 10.1016/j.ijbiomac.2024.130591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Subunit vaccines are becoming increasingly important because of their safety and effectiveness. However, subunit vaccines often exhibit limited immunogenicity, necessitating the use of suitable adjuvants to elicit robust immune responses. In this study, we demonstrated for the first time that pathogenic bacteria can be prepared into a purified peptidoglycan skeleton without nucleic acids and proteins, presenting bacterium-like particles (pBLP). Our results showed that the peptidoglycan skeletons screened from four pathogens could activate Toll-like receptor1/2 receptors better than bacterium-like particles from Lactococcus lactis in macrophages. We observed that pBLP was safe in mouse models of multiple ages. Furthermore, pBLP improved the performance of two commercial vaccines in vivo. We confirmed that pBLP successfully loaded antigens onto the surface and proved to be an effective antigen delivery platform with enhanced antibody titers, antibody avidity, balanced subclass distribution, and mucosal immunity. These results indicate that the peptidoglycan skeleton of pathogenic bacteria represents a new strategy for developing subunit vaccine delivery systems.
Collapse
Affiliation(s)
- Zheng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Runhang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China
| | - Qingru Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xinyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Zaixing Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Chuankun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150086, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China; Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150036, China.
| |
Collapse
|
8
|
Baljon J, Kwiatkowski AJ, Pagendarm HM, Stone PT, Kumar A, Bharti V, Schulman JA, Becker KW, Roth EW, Christov PP, Joyce S, Wilson JT. A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists. ACS NANO 2024; 18:6845-6862. [PMID: 38386282 PMCID: PMC10919087 DOI: 10.1021/acsnano.3c04471] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment and led to complete and durable responses, but only for a minority of patients. Resistance to ICB can largely be attributed to insufficient number and/or function of antitumor CD8+ T cells in the tumor microenvironment. Neoantigen targeted cancer vaccines can activate and expand the antitumor T cell repertoire, but historically, clinical responses have been poor because immunity against peptide antigens is typically weak, resulting in insufficient activation of CD8+ cytotoxic T cells. Herein, we describe a nanoparticle vaccine platform that can overcome these barriers in several ways. First, the vaccine can be reproducibly formulated using a scalable confined impingement jet mixing method to coload a variety of physicochemically diverse peptide antigens and multiple vaccine adjuvants into pH-responsive, vesicular nanoparticles that are monodisperse and less than 100 nm in diameter. Using this approach, we encapsulated synergistically acting adjuvants, cGAMP and monophosphoryl lipid A (MPLA), into the nanocarrier to induce a robust and tailored innate immune response that increased peptide antigen immunogenicity. We found that incorporating both adjuvants into the nanovaccine synergistically enhanced expression of dendritic cell costimulatory markers, pro-inflammatory cytokine secretion, and peptide antigen cross-presentation. Additionally, the nanoparticle delivery increased lymph node accumulation and uptake of peptide antigen by dendritic cells in the draining lymph node. Consequently, nanoparticle codelivery of peptide antigen, cGAMP, and MPLA enhanced the antigen-specific CD8+ T cell response and delayed tumor growth in several mouse models. Finally, the nanoparticle platform improved the efficacy of ICB immunotherapy in a murine colon carcinoma model. This work establishes a versatile nanoparticle vaccine platform for codelivery of peptide neoantigens and synergistic adjuvants to enhance responses to cancer vaccines.
Collapse
Affiliation(s)
- Jessalyn
J. Baljon
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alexander J. Kwiatkowski
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hayden M. Pagendarm
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Payton T. Stone
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Amrendra Kumar
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Vijaya Bharti
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jacob A. Schulman
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kyle W. Becker
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Eric W. Roth
- Northwestern
University Atomic and Nanoscale Characterization Experimental (NUANCE)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Plamen P. Christov
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232, United States
| | - Sebastian Joyce
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Veteran Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - John T. Wilson
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram
Cancer Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
9
|
Zhao Y, Song R, Zhang Z, Hu H, Ning W, Duan X, Jiao J, Fu X, Zhang G. Hollow metal-organic framework-based, stimulator of interferon genes pathway-activating nanovaccines for tumor immunotherapy. NANOSCALE ADVANCES 2023; 6:72-78. [PMID: 38125595 PMCID: PMC10729872 DOI: 10.1039/d3na00867c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Nanovaccines have emerged as promising agents for cancer therapy because of their ability to induce specific immune responses without off-target effects. However, inadequate cytotoxic T lymphocyte response and low antigen/adjuvant encapsulation remain major obstacles to vaccinating against cancer. Herein, we designed a stimulator of interferon genes (STING) pathway-activating nanovaccine based on hollow metal-organic frameworks (MOFs) for tumor treatment. The nanovaccine (OVA@HZIF-Mn) was constructed by encapsulating a model antigen ovalbumin (OVA) into zeolitic imidazolate framework-8, followed by etching with tannic acid and functionalizing with manganese ions. Studies have shown that the nanovaccine can effectively enhance antigen uptake, STING pathway activation and dendritic cell maturation, triggering a robust immune response to inhibit tumor growth. In addition, no infection or pathological signs were observed in mice organs after multiple administrations. This study combines a simple assembly approach and superior therapeutic effect, providing a promising strategy for engineering effective nanovaccines.
Collapse
Affiliation(s)
- Yilei Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 China
| | - Ruinan Song
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 China
| | - Zhen Zhang
- Jinan Vocational College of Nursing Jinan Shandong 250102 China
| | - Houyang Hu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 China
| | - Wenli Ning
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250021 China
| | - Xiuying Duan
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science Beijing 100101 China
| | - Xiao Fu
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250021 China
| | - Guiqiang Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 China
- Shandong Hongkui Medical Laboratory Co., Ltd Jinan 271100 P. R. China
| |
Collapse
|
10
|
Xu X, Moreno S, Gentzel M, Zhang K, Wang D, Voit B, Appelhans D. Biomimetic Protocells Featuring Macrophage-Like Capture and Digestion of Protein Pathogens. SMALL METHODS 2023; 7:e2300257. [PMID: 37599260 DOI: 10.1002/smtd.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/11/2023] [Indexed: 08/22/2023]
Abstract
Modern medical research develops interest in sophisticated artificial nano- and microdevices for future treatment of human diseases related to biological dysfunctions. This covers the design of protocells capable of mimicking the structure and functionality of eukaryotic cells. The authors use artificial organelles based on trypsin-loaded pH-sensitive polymeric vesicles to provide macrophage-like digestive functions under physiological conditions. Herein, an artificial cell is established where digestive artificial organelles (nanosize) are integrated into a protocell (microsize). With this method, mimicking crossing of different biological barriers, capture of model protein pathogens, and compartmentalized digestive function are possible. This allows the integration of different components (e.g., dextran as stabilizing block) and the diffusion of pathogens in simulated cytosolic environment under physiological conditions. An integrated characterization approach is carried out, with identifying electrospray ionization mass spectrometry as an excellent detection method for the degradation of a small peptide such as β-amyloid. The degradation of model enzymes is measured by enzyme activity assays. This work is an important contribution to effective biomimicry with the design of cell-like functions having potential for therapeutic action.
Collapse
Affiliation(s)
- Xiaoying Xu
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| | - Marc Gentzel
- Center for Molecular and Cellular Bioengineering (CMCB), Core Facility Mass Spectrometry & Proteomics, Technische Universität Dresden, 01307, Dresden, Germany
| | - Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Dishi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| |
Collapse
|
11
|
Li L, Shen Y, Tang Z, Yang Y, Fu Z, Ni D, Cai X. Engineered nanodrug targeting oxidative stress for treatment of acute kidney injury. EXPLORATION (BEIJING, CHINA) 2023; 3:20220148. [PMID: 38264689 PMCID: PMC10742205 DOI: 10.1002/exp.20220148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/23/2023] [Indexed: 01/25/2024]
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid decline in renal function, and is associated with a high risk of death. Many pathological changes happen in the process of AKI, including crucial alterations to oxidative stress levels. Numerous efforts have thus been made to develop effective medicines to scavenge excess reactive oxygen species (ROS). However, researchers have encountered several significant challenges, including unspecific biodistribution, high biotoxicity, and in vivo instability. To address these problems, engineered nanoparticles have been developed to target oxidative stress and treat AKI. This review thoroughly discusses the methods that empower nanodrugs to specifically target the glomerular filtration barrier and presents the latest achievements in engineering novel ROS-scavenging nanodrugs in clustered sections. The analysis of each study's breakthroughs and imperfections visualizes the progress made in developing effective nanodrugs with specific biodistribution and oxidative stress-targeting capabilities. This review fills the blank of a comprehensive outline over current progress in applying nanotechnology to treat AKI, providing potential insights for further research.
Collapse
Affiliation(s)
- Liwen Li
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| | - Yining Shen
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| | - Zhongmin Tang
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonWisconsinUSA
| | - Yuwen Yang
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| | - Zi Fu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Dalong Ni
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Xiaojun Cai
- Department of Ultrasound in MedicineShanghai Jiao Tong University School of Medicine Affiliated Sixth People's HospitalShanghaiPeople's Republic of China
| |
Collapse
|
12
|
Feng C, Tan P, Nie G, Zhu M. Biomimetic and bioinspired nano-platforms for cancer vaccine development. EXPLORATION (BEIJING, CHINA) 2023; 3:20210263. [PMID: 37933383 PMCID: PMC10624393 DOI: 10.1002/exp.20210263] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2023]
Abstract
The advent of immunotherapy has revolutionized the treating modalities of cancer. Cancer vaccine, aiming to harness the host immune system to induce a tumor-specific killing effect, holds great promises for its broad patient coverage, high safety, and combination potentials. Despite promising, the clinical translation of cancer vaccines faces obstacles including the lack of potency, limited options of tumor antigens and adjuvants, and immunosuppressive tumor microenvironment. Biomimetic and bioinspired nanotechnology provides new impetus for the designing concepts of cancer vaccines. Through mimicking the stealth coating, pathogen recognition pattern, tissue tropism of pathogen, and other irreplaceable properties from nature, biomimetic and bioinspired cancer vaccines could gain functions such as longstanding, targeting, self-adjuvanting, and on-demand cargo release. The specific behavior and endogenous molecules of each type of living entity (cell or microorganism) offer unique features to cancer vaccines to address specific needs for immunotherapy. In this review, the strategies inspired by eukaryotic cells, bacteria, and viruses will be overviewed for advancing cancer vaccine development. Our insights into the future cancer vaccine development will be shared at the end for expediting the clinical translation.
Collapse
Affiliation(s)
- Chenchao Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Peng Tan
- Klarman Cell ObservatoryBroad Institute of MIT and HarvardCambridgeUSA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
- GBA Research Innovation Institute for NanotechnologyGuangzhouChina
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
| |
Collapse
|
13
|
Cao F, Peng S, An Y, Xu K, Zheng T, Dai L, Ogino K, Ngai T, Xia Y, Ma G. Inside-out assembly of viral antigens for the enhanced vaccination. Signal Transduct Target Ther 2023; 8:189. [PMID: 37221173 DOI: 10.1038/s41392-023-01414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/13/2023] [Accepted: 03/08/2023] [Indexed: 05/25/2023] Open
Abstract
Current attempts in vaccine delivery systems concentrate on replicating the natural dissemination of live pathogens, but neglect that pathogens evolve to evade the immune system rather than to provoke it. In the case of enveloped RNA viruses, it is the natural dissemination of nucleocapsid protein (NP, core antigen) and surface antigen that delays NP exposure to immune surveillance. Here, we report a multi-layered aluminum hydroxide-stabilized emulsion (MASE) to dictate the delivery sequence of the antigens. In this manner, the receptor-binding domain (RBD, surface antigen) of the spike protein was trapped inside the nanocavity, while NP was absorbed on the outside of the droplets, enabling the burst release of NP before RBD. Compared with the natural packaging strategy, the inside-out strategy induced potent type I interferon-mediated innate immune responses and triggered an immune-potentiated environment in advance, which subsequently boosted CD40+ DC activations and the engagement of the lymph nodes. In both H1N1 influenza and SARS-CoV-2 vaccines, rMASE significantly increased antigen-specific antibody secretion, memory T cell engagement, and Th1-biased immune response, which diminished viral loads after lethal challenge. By simply reversing the delivery sequence of the surface antigen and core antigen, the inside-out strategy may offer major implications for enhanced vaccinations against the enveloped RNA virus.
Collapse
Affiliation(s)
- Fengqiang Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Sha Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Yaling An
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Kun Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan, 571199, PR China
| | - Tianyi Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, 999077, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- Innovation Academy for Green Manufacture Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- Innovation Academy for Green Manufacture Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
14
|
Li CX, Qi Y, Chen Y, Zhang Y, Li B, Feng J, Zhang XZ. Tuning Bacterial Morphology to Enhance Anticancer Vaccination. ACS NANO 2023; 17:8815-8828. [PMID: 37093563 DOI: 10.1021/acsnano.3c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Morphology tuning is a potent strategy to modulate physiological effects of synthetic biomaterials, but it is rarely explored in microbe-based biochemicals due to the lack of artificial adjustability. Inspired by the interesting phenomenon of microbial transformation, Escherichia coli is rationally adjusted into filamentous morphology-adjusted bacteria (MABac) via chemical stimulation to prepare a bacteria-based vaccine adjuvant/carrier. Inactivated MABac display stronger immunogenicity and special delivery patterns (phagosome escape and cytoplasmic retention) that are sharply distinct from the short rod-shaped bacteria parent (Bac). Transcriptomic study further offers solid evidence for deeply understanding the in vivo activity of MABac-based vaccine, which more effectively motivates multiple cytosolic immune pathways (such as NOD-like receptors and STING) and induces pleiotropic immune responses in comparison with Bac. Harnessing the special functions caused by morphology tuning, the MABac-based adjuvant/carrier significantly improves the immunogenicity and delivery profile of cancer antigens in vivo, thus boosting cancer-specific immunity against the melanoma challenge. This study validates the feasibility of tuning bacterial morphology to improve their biological effects, establishing a facile engineering strategy that upgrades bacterial properties and functions without complex procedures like gene editing.
Collapse
Affiliation(s)
- Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yongdan Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yingge Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Bin Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
15
|
Mabrouk MT, Huang W, Martinez‐Sobrido L, Lovell JF. Advanced Materials for SARS-CoV-2 Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107781. [PMID: 34894000 PMCID: PMC8957524 DOI: 10.1002/adma.202107781] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/28/2021] [Indexed: 05/09/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), has killed untold millions worldwide and has hurtled vaccines into the spotlight as a go-to approach to mitigate it. Advances in virology, genomics, structural biology, and vaccine technologies have enabled a rapid and unprecedented rollout of COVID-19 vaccines, although much of the developing world remains unvaccinated. Several new vaccine platforms have been developed or deployed against SARS-CoV-2, with most targeting the large viral Spike immunogen. Those that safely induce strong and durable antibody responses at low dosages are advantageous, as well are those that can be rapidly produced at a large scale. Virtually all COVID-19 vaccines and adjuvants possess nanoscale or microscale dimensions and represent diverse and unique biomaterials. Viral vector vaccine platforms, lipid nanoparticle mRNA vaccines and multimeric display technologies for subunit vaccines have received much attention. Nanoscale vaccine adjuvants have also been used in combination with other vaccines. To deal with the ongoing pandemic, and to be ready for potential future ones, advanced vaccine technologies will continue to be developed in the near future. Herein, the recent use of advanced materials used for developing COVID-19 vaccines is summarized.
Collapse
Affiliation(s)
- Moustafa T. Mabrouk
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| | - Wei‐Chiao Huang
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| | - Luis Martinez‐Sobrido
- Division of Disease Intervention and PreventionTexas Biomedical Research InstituteSan AntonioTX78227USA
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| |
Collapse
|
16
|
Du B, Jiao Q, Bai Y, Yu M, Pang M, Zhao M, Ma H, Yao H. Glutamine Metabolism-Regulated Nanoparticles to Enhance Chemoimmunotherapy by Increasing Antigen Presentation Efficiency. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8753-8765. [PMID: 35138815 DOI: 10.1021/acsami.1c21417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although the strategies to induce dendritic cells (DCs) maturation and promote their antigen presentation can stimulate the tumor immune response, the endogenous deficiency and immunosuppression of DCs reduce antigen utilization, which limits antigen presentation efficiency and reduces immunotherapy effectiveness. Here, we report an endogenous stimulus-responsive nanodelivery system (DOX@HFn-MSO@PGZL). On the one hand, doxorubicin (DOX) promoted antigen presentation by DCs after the immunogenic death of tumor cells. On the other hand, l-methionine sulfoximine (MSO) regulated the glutamine metabolism of tumor-associated macrophages (TAMs) to induce a shift toward the M1-type. M1-TAMs synergistically presented antigens with mature DCs and were more frequently produced to destroy the tumor suppressive immune microenvironment, resulting in the alleviation of DCs functional inhibition. Ultimately, the antigen presentation efficiency was improved, completely activating tumor immunity and exhibiting powerful antitumor effects.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, 100 Science Road, Zhengzhou 450001, China
| | - Qingqing Jiao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Yimeng Bai
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Min Yu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Mengxue Pang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Mengmeng Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Huizhen Ma
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Hanchun Yao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, 100 Science Road, Zhengzhou 450001, China
| |
Collapse
|
17
|
Zhang H, Zhu J, Li M, Chen G, Chen Q, Fang T. Supramolecular biomaterials for enhanced cancer immunotherapy. J Mater Chem B 2022; 10:7183-7193. [DOI: 10.1039/d2tb00048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer immunotherapy has achieved promising clinical results. However, many limitations associated with current cancer immunotherapy still exist, including low response rates and severe adverse effects in patients. Engineering biomaterials for...
Collapse
|