1
|
Xu S, Zhang Y, Li J, Zhang X, Wang W. External stimuli-responsive drug delivery to the posterior segment of the eye. Drug Deliv 2025; 32:2476140. [PMID: 40126105 PMCID: PMC11934192 DOI: 10.1080/10717544.2025.2476140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Posterior segment eye diseases represent the leading causes of vision impairment and blindness globally. Current therapies still have notable drawbacks, including the need for frequent invasive injections and the associated risks of severe ocular complications. Recently, the utility of external stimuli, such as light, ultrasound, magnetic field, and electric field, has been noted as a promising strategy to enhance drug delivery to the posterior segment of the eye. In this review, we briefly summarize the main physiological barriers against ocular drug delivery, focusing primarily on the recent advancements that utilize external stimuli to improve treatment outcomes for posterior segment eye diseases. The advantages of these external stimuli-responsive drug delivery strategies are discussed, with illustrative examples highlighting improved tissue penetration, enhanced control over drug release, and targeted drug delivery to ocular lesions through minimally invasive routes. Finally, we discuss the challenges and future perspectives in the translational research of external stimuli-responsive drug delivery platforms, aiming to bridge existing gaps toward clinical use.
Collapse
Affiliation(s)
- Shuting Xu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Yaming Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Jia Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Xinyu Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Li J, Zhang Y, Tian J, Ling G, Zhang P. Advances in magnetic microneedles: From fabrications to applications. Biomaterials 2025; 318:123143. [PMID: 40032442 DOI: 10.1016/j.biomaterials.2025.123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/29/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Microneedles (MNs) are a new type of physically facilitated penetration technology that not only allows for transdermal drug delivery in a minimally invasive and painless manner, but also serves as a channel for biosignal sensing, demonstrating great potential for application in the medical field. Magnetic materials consist of magnetic elements and their compounds, which can be used for separation, diagnosis, drug delivery and other applications in the fields of medicine, biology and materials. Combining magnetic materials with microneedles can confer magnetic responsiveness to microneedles. Specific strategies for magnetic introduction, corresponding synthetic methods, related applications, and comparisons with other externally stimulus-responsive microneedles are reviewed in this paper on magnetic microneedles. In the end, the limitations of current research and the potential for development of magnetically responsive microneedles are discussed. We hope that the description of magnetic microneedle synthesis methods and related applications in this paper will provide readers with a better understanding of magnetic microneedle systems and inspire the development of novel magnetic microneedle products.
Collapse
Affiliation(s)
- Jiaweijie Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Yuanke Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Jingjing Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
3
|
Mamidi N, Franco De Silva F, Orash Mahmoudsalehi A. Advanced disease therapeutics using engineered living drug delivery systems. NANOSCALE 2025; 17:7673-7696. [PMID: 40040419 DOI: 10.1039/d4nr05298f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Biological barriers significantly impede the delivery of nanotherapeutics to diseased tissues, diminishing therapeutic efficacy across pathologies such as cancer and inflammatory disorders. Although conventional strategies integrate multifunctional designs and molecular components into nanomaterials (NMs), many approaches remain insufficient to overcome these barriers. Key challenges, including inadequate drug accumulation at target sites and nonspecific biodistribution, persist in nanotherapeutic development. NMs, which harness the ability to precisely modulate drug delivery spatiotemporally and control release kinetics, represent a transformative platform for targeted cancer therapy. In this review, we highlight the biological obstacles limiting effective cancer treatment and evaluate how stimuli-responsive NMs address these constraints. By leveraging exogenous and endogenous stimuli, such NMs improve therapeutic specificity, reduce off-target effects, and amplify drug activity within pathological microenvironments. We systematically analyze the rational design and synthesis of stimuli-responsive NMs, driven by advances in oncology, biomaterials science, and nanoscale engineering. Furthermore, we highlight advances across NM classes-including polymeric, lipid-based, inorganic, and hybrid systems and explore functionalization approaches using targeting ligands, antibodies, and biomimetic coatings. Diverse delivery strategies are evaluated, such as small-molecule prodrug activation, peptide- and protein-based targeting, nucleic acid payloads, and engineered cell-mediated transport. Despite the promise of stimuli-responsive NMs, challenges such as biocompatibility, scalable fabrication, and clinical translation barriers must be addressed. By elucidating structure-function relationships and refining stimulus-triggered mechanisms, these NMs pave the way for transformative precision oncology strategies, enabling patient-specific therapies with enhanced efficacy and safety. This synthesis of interdisciplinary insights aims to catalyze innovation in next-generation nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for Nanobiosystems, School of Pharmacy, University of Wisconsin-Madison, Wisconsin-53705, USA.
| | - Fátima Franco De Silva
- Department of Food Engineering, Tecnologico de Monterrey, Monterrey, Nuevo Leon-64849, Mexico
| | - Amin Orash Mahmoudsalehi
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon-64849, Mexico
| |
Collapse
|
4
|
Panja P, Manne U, Awasthi V, Bhattacharya R, Mukherjee P. Interrogation of the tumor microenvironment by nanoparticles. Cancer Lett 2025; 612:217454. [PMID: 39805387 DOI: 10.1016/j.canlet.2025.217454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer progression by fostering intricate multicellular crosstalk among cancer cells, stromal cells, and immune cells. This review explores the emerging paradigm of utilizing nanoparticles to disrupt this crosstalk within the TME as a therapeutic strategy. Nanoparticles are engineered with precise physicochemical properties to target specific cell types and deliver therapeutic payloads, thereby inhibiting critical signaling pathways involved in tumor growth, invasion, and metastasis. The mechanisms involved include modulation of the immune response, interference with growth factor signaling, and induction of programmed cell death in cancer cells. Challenges such as biocompatibility, efficient delivery, and potential development of resistance are discussed alongside promising advancements in nanoparticle design. Moving forward, integration of nanoparticle-based therapies with existing treatment modalities holds great potential for enhancing therapeutic efficacy and personalized medicine in cancer therapy.
Collapse
Affiliation(s)
- Prasanta Panja
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Suite 309, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
5
|
Park T, Leem JW, Kim YL, Lee CH. Photonic Nanomaterials for Wearable Health Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418705. [PMID: 39901482 DOI: 10.1002/adma.202418705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Indexed: 02/05/2025]
Abstract
This review underscores the transformative potential of photonic nanomaterials in wearable health technologies, driven by increasing demands for personalized health monitoring. Their unique optical and physical properties enable rapid, precise, and sensitive real-time monitoring, outperforming conventional electrical-based sensors. Integrated into ultra-thin, flexible, and stretchable formats, these materials enhance compatibility with the human body, enabling prolonged wear, improved efficiency, and reduced power consumption. A comprehensive exploration is provided of the integration of photonic nanomaterials into wearable devices, addressing material selection, light-matter interaction principles, and device assembly strategies. The review highlights critical elements such as device form factors, sensing modalities, and power and data communication, with representative examples in skin patches and contact lenses. These devices enable precise monitoring and management of biomarkers of diseases or biological responses. Furthermore, advancements in materials and integration approaches have paved the way for continuum of care systems combining multifunctional sensors with therapeutic drug delivery mechanisms. To overcome existing barriers, this review outlines strategies of material design, device engineering, system integration, and machine learning to inspire innovation and accelerate the adoption of photonic nanomaterials for next-generation of wearable health, showcasing their versatility and transformative potential for digital health applications.
Collapse
Affiliation(s)
- Taewoong Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Cancer Research, Regenstrief Center for Healthcare Engineering, Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Mechanical Engineering, School of Materials Engineering, Elmore Family School of Electrical and Computer Engineering, Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
6
|
Shi F, Ergashev A, Pan Z, Sun H, Kong L, Jin Y, Zhang T, Liu Z, Xie H, Wang J, Li H, Wang Y, Zheng L, Shen J, Herrmann A, Chen G, Kong H. Macrophage-mimicking nanotherapy for attenuation of acute pancreatitis. Mater Today Bio 2025; 30:101406. [PMID: 39816666 PMCID: PMC11733200 DOI: 10.1016/j.mtbio.2024.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/29/2024] [Accepted: 12/14/2024] [Indexed: 01/18/2025] Open
Abstract
Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics. To address this challenge, we herein demonstrate a surface masking strategy that involves coating the surface of selenylated Poria cocos polysaccharide nanoparticles with a layer of macrophage plasma membrane to circumvent MPS sequestration, thereby enhancing the therapeutic efficacy of selenylated Poria cocos polysaccharide nanoparticles. Nanoparticles encapsulated with macrophage membranes can simulate the active homing efficacy of macrophages to inflamed lesions during AP, resulting in excessive infiltration of macrophages in pancreatic inflammation sites and prolonged tissue retention time. This technique converts non-adhesive lipid nanoparticles into bioadhesive nanoparticles, increasing local tissue accumulation under inflammatory conditions, including the pancreas and vulnerable lungs. The mechanism is related to targeting pro-inflammatory macrophages. In murine models of mild and severe AP, intravenous treatment with macrophage-mimicking nanoparticles effectively reduces systemic inflammation level and diminishes the recruitment of macrophages and neutrophils. Mechanistic studies elucidate that macrophage membrane-biomimetic selenylated Poria cocos polysaccharide nanoparticles primarily mitigate pancreatic inflammation by inhibiting the AKT/mTOR pathway to reverse autophagic flux impairment. This allows us to envision that the developed biomimetic nanotherapy approach could potentially serve as a novel strategy for pancreatic drug therapy.
Collapse
Affiliation(s)
- Fengyu Shi
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Akmal Ergashev
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhenyan Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Hongwei Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Lingming Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Yuepeng Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Tan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Haonan Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Jinhui Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Huiping Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, China
| | - Lifei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Andreas Herrmann
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
- DWI – Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
- Institute for Technical and Macromolecular Chemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52074, Germany
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Hongru Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
7
|
Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, Shi G, Li HK, Wang JW, Dong MC, Hong L, Li JF. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024; 11:75. [PMID: 39639374 PMCID: PMC11619216 DOI: 10.1186/s40779-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation. This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species, blood and lymphatic vessels, immune cells, and repair cells. Then, a variety of delivery platforms, including scaffolds and hydrogels, electrospun fibers, surface coatings, assisted particles, nanotubes, two-dimensional nanomaterials, and nanoparticles engineered cells, are summarized to incorporate BAPPs for effective tissue repair, modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed. Additionally, the delivery of BAPPs can be precisely regulated by endogenous stimuli (glucose, reactive oxygen species, enzymes, pH) or exogenous stimuli (ultrasound, heat, light, magnetic field, and electric field) to achieve on-demand release tailored for specific tissue repair needs. Furthermore, this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types, including bone, cartilage, intervertebral discs, muscle, tendons, periodontal tissues, skin, myocardium, nervous system (encompassing brain, spinal cord, and peripheral nerve), endometrium, as well as ear and ocular tissue. Finally, current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zhuo-Wen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe-Yuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ze-Pu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Yao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian-Hong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Ke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Wu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min-Chao Dong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Yamada S, Sasaki E, Ohno H, Hanaoka K. Heat-guided drug delivery via thermally induced crosslinking of polymeric micelles. Commun Chem 2024; 7:287. [PMID: 39627351 PMCID: PMC11615195 DOI: 10.1038/s42004-024-01383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Targeted drug delivery in response to external stimuli is therapeutically desirable, but long-term drug retention at the target site after stimulation is turned off remains a challenge. Herein, we present a targeted-delivery strategy via irreversible aggregation of drug carriers in response to mild external heating. We constructed two types of polymeric micelles, DBCO-TRM and Az-TRM, having a thermo-responsive polymer shell based on N-isopropylacrylamide (NIPAAm) and incorporating alkyne and azide moieties, respectively. Upon heating at 42 °C, the micelles aggregated through hydrophobic interaction between their dehydrated shells. Further, the azide moieties of Az-TRM become exposed on the surface due to the thermally shrinkage of the shells, thereby enabling crosslinking between the two types of micelles via azide-alkyne click chemistry to form irreversible aggregates. These aggregates were efficiently accumulated at tumor sites in mice by local heating after intravenous administration of a mixture of the micelles, and were well retained after cessation of heating due to their increased size. As proof of concept, we show that delivery of doxorubicin in this heat-guided drug delivery system dramatically improved the anti-tumor effect in a mouse model after a single treatment. Our results suggest that this platform could be an efficient tool for on-demand drug delivery.
Collapse
Affiliation(s)
- Sota Yamada
- Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
| | - Eita Sasaki
- Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
| | - Hisashi Ohno
- Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan
| | - Kenjiro Hanaoka
- Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, 105-8512, Japan.
| |
Collapse
|
9
|
Ye Q, Zhang M, Li S, Liu W, Xu C, Li Y, Xie R. Controlled Stimulus-Responsive Delivery Systems for Osteoarthritis Treatment. Int J Mol Sci 2024; 25:11799. [PMID: 39519350 PMCID: PMC11545989 DOI: 10.3390/ijms252111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA), a common and disabling degenerative joint disease, affects millions of people worldwide and imposes a considerable burden on patients and society due to its high prevalence and economic costs. The pathogenesis of OA is closely related to the progressive degradation of articular cartilage and the accompany inflammation; however, articular cartilage itself cannot heal and modulate the inflammation due to the lack of nerves, blood vessels, and lymph-vessels. Therefore, reliable and effective methods to treat OA remain highly desired. Local administration of drugs or bioactive materials by intra-articular injection of the delivery system represents a promising approach to treat OA, especially considering the prolonged joint retention, cartilage or chondrocytes targeting, and stimuli-responsive release to achieve precision OA therapy. This article summarizes and discusses the advances in the currently used delivery systems (nanoparticle, hydrogel, liposome, and microsphere) and then focuses on their applications in OA treatment from the perspective of endogenous stimulus (redox reactions, pH, enzymes, and temperature) and exogenous stimulus (near-infrared, magnetic, and ultrasound)-responsive release. Finally, the challenges and potential future directions for the development of nano-delivery systems are summarized.
Collapse
Affiliation(s)
- Qianwen Ye
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Mingshuo Zhang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Shuyue Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Wenyue Liu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
10
|
Liao M, Zhang Q, Huang J, Huang X, Cheng C, Tu J, Zhang D, Lu Q, Ma L. Near-infrared and ultrasound triggered Pt/Pd-engineered cluster bombs for the treatment of solid tumors. J Control Release 2024; 375:331-345. [PMID: 39278358 DOI: 10.1016/j.jconrel.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Owing to the dense extracellular matrix and high interstitial fluid pressure in the tumor microenvironment, methods which enhance the permeation and retention of nano drugs into liver tumors remain unsatisfactory for successful tumor treatment. We designed a near-infrared (NIR)- and ultrasound (US)-triggered Pt/Pd-engineered "cluster bomb" (Pt/Pd-CB) which actively penetrates liver cancer cell membranes and achieves photothermal and sonodynamic therapy (SDT). The physical forces generated by the fast expansion and collapse of perfluoropentane nanodroplets eject "sub bombs" (Pt/Pd nanoalloys) into liver cancer cells upon activation by NIR and US. Pt/Pd nanoalloys can then convert H2O2 into O2 to alleviate hypoxia and boost SDT efficiency while exhibiting a highly efficient photothermal response under NIR irradiation. Our findings might especially be promising for the treatment of solid tumors.
Collapse
Affiliation(s)
- Min Liao
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi Zhang
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Jianbo Huang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaotong Huang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Juan Tu
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- School of Physics, Nanjing University, Nanjing 210093, China.
| | - Qiang Lu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
12
|
Yadav K, Gnanakani SPE, Sahu KK, Veni Chikkula CK, Vaddi PS, Srilakshmi S, Yadav R, Sucheta, Dubey A, Minz S, Pradhan M. Nano revolution of DNA nanostructures redefining cancer therapeutics-A comprehensive review. Int J Biol Macromol 2024; 274:133244. [PMID: 38901506 DOI: 10.1016/j.ijbiomac.2024.133244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
DNA nanostructures are a promising tool in cancer treatment, offering an innovative way to improve the effectiveness of therapies. These nanostructures can be made solely from DNA or combined with other materials to overcome the limitations of traditional single-drug treatments. There is growing interest in developing nanosystems capable of delivering multiple drugs simultaneously, addressing challenges such as drug resistance. Engineered DNA nanostructures are designed to precisely deliver different drugs to specific locations, enhancing therapeutic effects. By attaching targeting molecules, these nanostructures can recognize and bind to cancer cells, increasing treatment precision. This approach offers tailored solutions for targeted drug delivery, enabling the delivery of multiple drugs in a coordinated manner. This review explores the advancements and applications of DNA nanostructures in cancer treatment, with a focus on targeted drug delivery and multi-drug therapy. It discusses the benefits and current limitations of nanoscale formulations in cancer therapy, categorizing DNA nanostructures into pure forms and hybrid versions optimized for drug delivery. Furthermore, the review examines ongoing research efforts and translational possibilities, along with challenges in clinical integration. By highlighting the advancements in DNA nanostructures, this review aims to underscore their potential in improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai 490024, India
| | - S Princely E Gnanakani
- Department of Pharmaceutical Biotechnology, Parul Institute of Pharmacy, Parul University, Post Limda, Ta.Waghodia - 391760, Dist. Vadodara, Gujarat, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - C Krishna Veni Chikkula
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - Poorna Sai Vaddi
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - S Srilakshmi
- Gitam School of Pharmacy, Department of Pharmaceutical Chemistry, Gitams University, Vishakhapatnam, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak (M.P.), India
| | | |
Collapse
|
13
|
Joshi SR, Pratap A, Kim S. Ultrathin silk nanofiber-carbon nanotube skin tattoos for wirelessly triggered and temperature feedbacked transdermal drug delivery. Biomed Eng Lett 2024; 14:707-716. [PMID: 38946825 PMCID: PMC11208351 DOI: 10.1007/s13534-024-00363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 07/02/2024] Open
Abstract
Transdermal drug delivery has emerged as an alternative to conventional drug delivery systems as it enables painless and convenient drug administration. However, next-generation healthcare systems need to facilitate "on-demand" delivery operations and should be highly efficient to penetrate the physiological barriers in the skin. Here, we report an ultrathin dye-loaded epidermal tattoo (UDET) that allows wirelessly stimulated drug delivery with high efficiency. The UDET consists of an electrospun dye-loaded silk nanofiber mat and a covered carbon nanotube (CNT) layer. UDETs are conformally tattooed on pigskins and show stable operation under mechanical deformation. Biological fluorescence dyes such as vitamin B12, riboflavin, rhodamine B, and sodium fluorescein are applied as model drugs. Illuminating the UDET by a low-power light-emitting diode (< 34.5 mW/cm2) triggers transdermal drug delivery due to heat generation. The CNTs convert the absorbed light into heat, and then the dyes loaded on silk can be diffused through the epidermis. The CNT layer is electrically conductive and can detect the temperature by reading the resistance change (0.1917 Ω/°C). This indicates that the UDET can be used simultaneously to read temperature and deliver the loaded dye molecules, making it a promising on-demand drug delivery strategy for future medicine technology. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-024-00363-6.
Collapse
Affiliation(s)
- Shalik Ram Joshi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| | - Ajay Pratap
- Department of Energy Systems Research, Ajou University, Suwon, 16499 Republic of Korea
| | - Sunghwan Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763 Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
14
|
Kwon HJ, Wu Y, Li Y, Yuan G, Lopez R, Huang K, Bai W. On-demand drug delivery bioelectronics through a water-processable low dimensional highly conductive MXene layer. LAB ON A CHIP 2024; 24:3294-3304. [PMID: 38864519 PMCID: PMC12066099 DOI: 10.1039/d4lc00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
On-demand drug delivery holds great promise to optimize pharmaceutical efficacy while minimizing the side effects. However, existing on-demand drug delivery systems often require complicated manufacturing processes that preclude their wide implementation of a broad range of drugs. In this work, we demonstrate the introduction of MXene-coated microneedles (MNs) into bioelectronics for digitally controllable gate-valve drug delivery. MXenes, featuring high electronic conductivity, excellent biocompatibility, and solution processibility, enable low-cost scalability for printable bioelectronics. In an electrolytic state (e.g., body fluid), the coated MXene is oxidized and desorbed due to redox reactions caused by electrical bias, allowing the underlying drug to be controllably released. The MXene-incorporated drug delivery system not only demonstrates excellent biocompatibility and operational stability, but also features low-cost construction and sustainable usage. Besides, these MXene-coated MNs allow both on-demand transformation and local-region customization, further increasing the structural versatility and capability of multidrug delivery systems.
Collapse
Affiliation(s)
- Hyeok-Jin Kwon
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Industrial Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Yizhang Wu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Yuan Li
- Joint Department of Biomedical Engineering, at University of North Carolina Chapel Hill, and North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Gongkai Yuan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Rene Lopez
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ke Huang
- Joint Department of Biomedical Engineering, at University of North Carolina Chapel Hill, and North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Kong X, Yang Y, Ren X, Lin Y, Shi Y, Liu Z. External stimuli-triggered photodynamic and sonodynamic therapies in combination with hybrid nanomicelles of ICG@PEP@HA: laser vs. ultrasound. NANOSCALE 2024; 16:7547-7558. [PMID: 38501312 DOI: 10.1039/d4nr00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The concept of combining external medical stimuli with internal functional biomaterials to achieve cancer-oriented treatments is being emergingly developed. Optical and acoustical activations have shown particular promise as non-invasive regulation modalities in cancer treatment and intervention. It is always challenging to leverage the contributions of optical and acoustical stimuli and find appropriate biomaterials to optimally match them. Herein, a type of hybrid nanomicelle (ICG@PEP@HA) containing ICG as a photo/sonosensitizer, an amphiphilic peptide for membrane penetration and hyaluronic acid for cluster determinant 44 (CD44) targeting was fabricated. Triggered by the external stimuli of laser and US irradiation, their photo/sonothermal performance, in vitro reactive oxygen species (ROS) production capability and tumor-targeting efficiency have been systematically evaluated. It was interestingly found that the external stimulus of laser irradiation induced a greater quantity of ROS, which resulted in significant cell apoptosis and tumor growth inhibition in the presence of ICG@PEP@HA. The individual analyses and corresponding rationales have been investigated. Meanwhile, these hybrid nanomicelles were administered into MDA-MB-231 tumor-bearing nude mice for PDT and SDT therapies and their biocompatibility assessment, and a prevailing PDT efficacy and reliable bio-safety have been evidenced based on the hematological analysis and histochemical staining. In summary, this study has validated a novel pathway to utilize these hybrid nanomicelles for laser/US-triggered localized tumor treatment, and the treatment efficiency may be leveraged by different external stimuli sources. It is also expected to give rise to full accessibility to clinical translations for human cancer treatments by means of the as-reported laser/US-nanomicelle combination strategy.
Collapse
Affiliation(s)
- Xinru Kong
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Yanxi Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Xueli Ren
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Yandai Lin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Yu Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Zhe Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Li WZ, Wang XQ, Liu LR, Xiao J, Wang XQ, Ye YY, Wang ZX, Zhu MY, Sun Y, Stang PJ, Sun Y. Supramolecular coordination platinum metallacycle-based multilevel wound dressing for bacteria sensing and wound healing. Proc Natl Acad Sci U S A 2024; 121:e2318391121. [PMID: 38527207 PMCID: PMC10998585 DOI: 10.1073/pnas.2318391121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
The exploitation of novel wound healing methods with real-time infection sensing and high spatiotemporal precision is highly important for human health. Pt-based metal-organic cycles/cages (MOCs) have been employed as multifunctional antibacterial agents due to their superior Pt-related therapeutic efficiency, various functional subunits and specific geometries. However, how to rationally apply these nanoscale MOCs on the macroscale with controllable therapeutic output is still challenging. Here, a centimeter-scale Pt MOC film was constructed via multistage assembly and subsequently coated on a N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole (MPT)-stained silk fabric to form a smart wound dressing for bacterial sensing and wound healing. The MPT on silk fabric could be used to monitor wound infection in real-time through the bacteria-mediated reduction of MPT to its radical form via a color change. The MPT radical also exhibited an excellent photothermal effect under 660 nm light irradiation, which could not only be applied for photothermal therapy but also induce the disassembly of the Pt MOC film suprastructure. The highly ordered Pt MOC film suprastructure exhibited high biosafety, while it also showed improved antibacterial efficiency after thermally induced disassembly. In vitro and in vivo studies revealed that the combination of the Pt MOC film and MPT-stained silk can provide real-time information on wound infection for timely treatment through noninvasive techniques. This study paves the way for bacterial sensing and wound healing with centimeter-scale metal-organic materials.
Collapse
Affiliation(s)
- Wen-Zhen Li
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, China
| | - Xiao-Qiang Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, China
| | - Ling-Ran Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Zhengzhou450046, China
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang212013, China
| | - Ju Xiao
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, China
| | - Xin-Qiong Wang
- Department of Paediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yu-Yuan Ye
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, China
| | - Zi-Xin Wang
- Interdisciplinary Institute of NMR and Molecular Sciences, Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, China
| | - Mai-Yong Zhu
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang212013, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, Salt Lake City, UT84112
| | - Yan Sun
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Zhengzhou450046, China
| |
Collapse
|
17
|
Vinţeler N, Feurdean CN, Petkes R, Barabas R, Boşca BA, Muntean A, Feștilă D, Ilea A. Biomaterials Functionalized with Inflammasome Inhibitors-Premises and Perspectives. J Funct Biomater 2024; 15:32. [PMID: 38391885 PMCID: PMC10889089 DOI: 10.3390/jfb15020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
This review aimed at searching literature for data regarding the inflammasomes' involvement in the pathogenesis of oral diseases (mainly periodontitis) and general pathologies, including approaches to control inflammasome-related pathogenic mechanisms. The inflammasomes are part of the innate immune response that activates inflammatory caspases by canonical and noncanonical pathways, to control the activity of Gasdermin D. Once an inflammasome is activated, pro-inflammatory cytokines, such as interleukins, are released. Thus, inflammasomes are involved in inflammatory, autoimmune and autoinflammatory diseases. The review also investigated novel therapies based on the use of phytochemicals and pharmaceutical substances for inhibiting inflammasome activity. Pharmaceutical substances can control the inflammasomes by three mechanisms: inhibiting the intracellular signaling pathways (Allopurinol and SS-31), blocking inflammasome components (VX-765, Emricasan and VX-740), and inhibiting cytokines mediated by the inflammasomes (Canakinumab, Anakinra and Rilonacept). Moreover, phytochemicals inhibit the inflammasomes by neutralizing reactive oxygen species. Biomaterials functionalized by the adsorption of therapeutic agents onto different nanomaterials could represent future research directions to facilitate multimodal and sequential treatment in oral pathologies.
Collapse
Affiliation(s)
- Norina Vinţeler
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Claudia Nicoleta Feurdean
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Regina Petkes
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Reka Barabas
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Bianca Adina Boşca
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandrina Muntean
- Department of Paediatric, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Dana Feștilă
- Department of Orthodontics, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Kollbek K, Jabłoński P, Perzanowski M, Święch D, Sikora M, Słowik G, Marzec M, Gajewska M, Paluszkiewicz C, Przybylski M. Inert gas condensation made bimetallic FeCu nanoparticles – plasmonic response and magnetic ordering. JOURNAL OF MATERIALS CHEMISTRY C 2024; 12:2593-2605. [DOI: 10.1039/d3tc02630b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Bimetallic FeCu nanoparticles of narrow size distribution produced by inert gas condensation (IGC) technique exhibit functional plasmonic and magnetic properties and can be considered as a promising system for the development of biosensors.
Collapse
Affiliation(s)
- Kamila Kollbek
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Piotr Jabłoński
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Marcin Perzanowski
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Dominika Święch
- Faculty of Foundry Engineering, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Marcin Sikora
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Grzegorz Słowik
- Department of Chemical Technology, Faculty of Chemistry, Maria Curie-Skłodowska University, 3. Maria-Curie-Skłodowska Sq., 20-031, Lublin, Poland
| | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| | - Czesława Paluszkiewicz
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Marek Przybylski
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
19
|
Zhang W, Liu H, Yan L, Mei X, Hou Z. Combining emulsion electrospinning with surface functionalization to fabricate multistructural PLA/CS@ZIF-8 nanofiber membranes toward pH-responsive dual drug delivery. Int J Biol Macromol 2023; 253:126506. [PMID: 37659502 DOI: 10.1016/j.ijbiomac.2023.126506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Developing of the multifunctional polymeric carrier for controlled drug release is still one of most challenging task. In this work, a pH-responsive dual drug delivery system was designed and prepared based on the zeolitic imidazolate framework-8 (ZIF-8). The poly(lactic acid)/chitosan (PLA/CS) core-shell nanofiber membranes by emulsion electrospinning, which the hydrophilic drug (Astragalus Polysacharin, APS) was encapsulated in the CS core and the hydrophobic drug (Camptothecin, CPT) was loaded into the PLA shell, respectively. Subsequently, ZIF-8 nanoparticles served as the protective layer were immobilized on the surface of PLA/CS to form multi-structural PLA/CS@ZIF-8 nanofiber membranes. In vitro drug release of nanofiber membranes were studied in the acidic and neutral medium, respectively. The results were that the hydrophilicity and surface roughness of nanofiber membranes rose with increasing of 2-MIM concentrations. The nanofiber membranes also had excellent pH-responsive and controlled release property. Furthermore, the drug release of PLA/CS@ZIF-8 for either APS or CPT were all carried out in a coexisting manner of diffusion and skeleton corrosion. In addition, in vitro cytotoxicity assay indicated nanofiber membranes with good cytocompatibility. Therefore, the multi-structured PLA/CS@ZIF-8 nanofiber membranes has been used as a potential pH-responsive dual drug release system.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Hongming Liu
- BeiJing Shidabocheng Technology Co., Ltd., Beijing 102200, China
| | - Li Yan
- College of Humanities, Tiangong University, Tianjin 300387, China
| | - Xi Mei
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zikang Hou
- State Key Laboratory of Separation Membranes and Membrane Processes, College of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
20
|
Singh AK, Banerjee V. Phase separation of a magnetic fluid: Asymptotic states and nonequilibrium kinetics. Phys Rev E 2023; 108:064604. [PMID: 38243485 DOI: 10.1103/physreve.108.064604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/15/2023] [Indexed: 01/21/2024]
Abstract
We study self-assembly in a colloidal suspension of magnetic particles by performing comprehensive molecular dynamics simulations of the Stockmayer (SM) model, which comprises spherical particles decorated by a magnetic moment. The SM potential incorporates dipole-dipole interactions along with the usual Lennard-Jones interaction and exhibits a gas-liquid phase coexistence observed experimentally in magnetic fluids. When this system is quenched from the high-temperature homogeneous phase to the coexistence region, the nonequilibrium evolution to the condensed phase proceeds with the development of spatial as well as magnetic order. We observe density-dependent coarsening mechanisms-a diffusive growth law ℓ(t)∼t^{1/3} in the nucleation regime and hydrodynamics-driven inertial growth law ℓ(t)∼t^{2/3} in the spinodal regimes. [ℓ(t) is the average size of the condensate at time t after the quench.] While the spatial growth is governed by the expected conserved order parameter dynamics, the growth of magnetic order in the spinodal regime exhibits unexpected nonconserved dynamics. The asymptotic morphologies have density-dependent shapes which typically include the isotropic sphere and spherical bubble morphologies in the nucleation region, and the anisotropic cylinder, planar slab, cylindrical bubble morphologies in the spinodal region. The structures are robust and nonvolatile, and exhibit characteristic magnetic properties. For example, the oppositely magnetized hemispheres in the spherical morphology impart the characteristics of a Janus particle to it. The observed structures have versatile applications in catalysis, drug delivery systems, memory devices, and magnetic photonic crystals, to name a few.
Collapse
Affiliation(s)
- Anuj Kumar Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Varsha Banerjee
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
21
|
Mao X, Wang G, Wang Z, Duan C, Wu X, Xu H. Theranostic Lipid Nanoparticles for Renal Cell Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306246. [PMID: 37747365 DOI: 10.1002/adma.202306246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Renal cell carcinoma (RCC) is a common urological malignancy and represents a leading threat to healthcare. Recent years have seen a series of progresses in the early diagnosis and management of RCC. Theranostic lipid nanoparticles (LNPs) are increasingly becoming one of the focuses in this field, because of their suitability for tumor targeting and multimodal therapy. LNPs can be precisely fabricated with desirable chemical compositions and biomedical properties, which closely match the physiological characteristics and clinical needs of RCC. Herein, a comprehensive review of theranostic LNPs is presented, emphasizing the generic tool nature of LNPs in developing advanced micro-nano biomaterials. It begins with a brief overview of the compositions and formation mechanism of LNPs, followed with an introduction to kidney-targeting approaches, such as passive, active, and stimulus responsive targeting. With examples provided, a series of modification strategies for enhancing the tumor targeting and functionality of LNPs are discussed. Thereafter, research advances on applications of these LNPs for RCC including bioimaging, liquid biopsy, drug delivery, physical therapy, and gene therapy are summarized and discussed from an interdisciplinary perspective. The final part highlights the milestone achievements of translation medicine, current challenges as well as future development directions of LNPs for the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Xiongmin Mao
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guanyi Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zijian Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Xu
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
22
|
Li B, Zhao M, Lai W, Zhang X, Yang B, Chen X, Ni Q. Activatable NIR-II Photothermal Lipid Nanoparticles for Improved Messenger RNA Delivery. Angew Chem Int Ed Engl 2023; 62:e202302676. [PMID: 37074038 DOI: 10.1002/anie.202302676] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Endosomal escape remains a central issue limiting the high protein expression of mRNA therapeutics. Here, we present second near-infrared (NIR-II) lipid nanoparticles (LNPs) containing pH activatable NIR-II dye conjugated lipid (Cy-lipid) for potentiating mRNA delivery efficiency via a stimulus-responsive photothermal-promoted endosomal escape delivery (SPEED) strategy. In acidic endosomal microenvironment, Cy-lipid is protonated and turns on NIR-II absorption for light-to-heat transduction mediated by 1064 nm laser irradiation. Then, the heat-promoted LNPs morphology change triggers rapid escape of NIR-II LNPs from the endosome, allowing about 3-fold enhancement of enhanced green fluorescent protein (eGFP) encoding mRNA translation capacity compared to the NIR-II light free group. In addition, the bioluminescence intensity induced by delivered luciferase encoding mRNA in the mouse liver region shows positive correlation with incremental radiation dose, indicating the validity of the SPEED strategy.
Collapse
Affiliation(s)
- Benhao Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Weiping Lai
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Fudan University, Shanghai, 200433, China
| | - Xuanbo Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Bowei Yang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Qianqian Ni
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|
23
|
Zong C, Bronckaers A, Willems G, He H, Cadenas de Llano-Pérula M. Nanomaterials for Periodontal Tissue Regeneration: Progress, Challenges and Future Perspectives. J Funct Biomater 2023; 14:290. [PMID: 37367254 DOI: 10.3390/jfb14060290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Bioactive nanomaterials are increasingly being applied in oral health research. Specifically, they have shown great potential for periodontal tissue regeneration and have substantially improved oral health in translational and clinical applications. However, their limitations and side effects still need to be explored and elucidated. This article aims to review the recent advancements in nanomaterials applied for periodontal tissue regeneration and to discuss future research directions in this field, especially focusing on research using nanomaterials to improve oral health. The biomimetic and physiochemical properties of nanomaterials such as metals and polymer composites are described in detail, including their effects on the regeneration of alveolar bone, periodontal ligament, cementum and gingiva. Finally, the biomedical safety issues of their application as regenerative materials are updated, with a discussion about their complications and future perspectives. Although the applications of bioactive nanomaterials in the oral cavity are still at an initial stage, and pose numerous challenges, recent research suggests that they are a promising alternative in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Chen Zong
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute, Faculty of Life Sciences, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Guy Willems
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Center for Dentofacial Development and Sleep Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Maria Cadenas de Llano-Pérula
- Department of Oral Health Sciences-Orthodontics, University of Leuven (KU Leuven) and Dentistry, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Jiang F, Xu XW, Chen FQ, Weng HF, Chen J, Ru Y, Xiao Q, Xiao AF. Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review. Mar Drugs 2023; 21:md21050299. [PMID: 37233493 DOI: 10.3390/md21050299] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Numerous compounds present in the ocean are contributing to the development of the biomedical field. Agarose, a polysaccharide derived from marine red algae, plays a vital role in biomedical applications because of its reversible temperature-sensitive gelling behavior, excellent mechanical properties, and high biological activity. Natural agarose hydrogel has a single structural composition that prevents it from adapting to complex biological environments. Therefore, agarose can be developed into different forms through physical, biological, and chemical modifications, enabling it to perform optimally in different environments. Agarose biomaterials are being increasingly used for isolation, purification, drug delivery, and tissue engineering, but most are still far from clinical approval. This review classifies and discusses the preparation, modification, and biomedical applications of agarose, focusing on its applications in isolation and purification, wound dressings, drug delivery, tissue engineering, and 3D printing. In addition, it attempts to address the opportunities and challenges associated with the future development of agarose-based biomaterials in the biomedical field. It should help to rationalize the selection of the most suitable functionalized agarose hydrogels for specific applications in the biomedical industry.
Collapse
Affiliation(s)
- Feng Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Xin-Wei Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Fu-Quan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Hui-Fen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - An-Feng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| |
Collapse
|
25
|
Upadhayay VK, Chitara MK, Mishra D, Jha MN, Jaiswal A, Kumari G, Ghosh S, Patel VK, Naitam MG, Singh AK, Pareek N, Taj G, Maithani D, Kumar A, Dasila H, Sharma A. Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability. Front Microbiol 2023; 14:1133968. [PMID: 37206335 PMCID: PMC10189066 DOI: 10.3389/fmicb.2023.1133968] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023] Open
Abstract
Modern agriculture is primarily focused on the massive production of cereals and other food-based crops in a sustainable manner in order to fulfill the food demands of an ever-increasing global population. However, intensive agricultural practices, rampant use of agrochemicals, and other environmental factors result in soil fertility degradation, environmental pollution, disruption of soil biodiversity, pest resistance, and a decline in crop yields. Thus, experts are shifting their focus to other eco-friendly and safer methods of fertilization in order to ensure agricultural sustainability. Indeed, the importance of plant growth-promoting microorganisms, also determined as "plant probiotics (PPs)," has gained widespread recognition, and their usage as biofertilizers is being actively promoted as a means of mitigating the harmful effects of agrochemicals. As bio-elicitors, PPs promote plant growth and colonize soil or plant tissues when administered in soil, seeds, or plant surface and are used as an alternative means to avoid heavy use of agrochemicals. In the past few years, the use of nanotechnology has also brought a revolution in agriculture due to the application of various nanomaterials (NMs) or nano-based fertilizers to increase crop productivity. Given the beneficial properties of PPs and NMs, these two can be used in tandem to maximize benefits. However, the use of combinations of NMs and PPs, or their synergistic use, is in its infancy but has exhibited better crop-modulating effects in terms of improvement in crop productivity, mitigation of environmental stress (drought, salinity, etc.), restoration of soil fertility, and strengthening of the bioeconomy. In addition, a proper assessment of nanomaterials is necessary before their application, and a safer dose of NMs should be applicable without showing any toxic impact on the environment and soil microbial communities. The combo of NMs and PPs can also be encapsulated within a suitable carrier, and this method aids in the controlled and targeted delivery of entrapped components and also increases the shelf life of PPs. However, this review highlights the functional annotation of the combined impact of NMs and PPs on sustainable agricultural production in an eco-friendly manner.
Collapse
Affiliation(s)
- Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Manoj Kumar Chitara
- Department of Plant Pathology, College of Agriculture, A.N.D University of Agriculture and Technology, Ayodhya, Uttar Pradesh, India
| | - Dhruv Mishra
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Manindra Nath Jha
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Aman Jaiswal
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Geeta Kumari
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Saipayan Ghosh
- Department of Horticulture, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Vivek Kumar Patel
- Department of Plant Pathology, PGCA, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Mayur G. Naitam
- Department of Microbiology, College of Basic Sciences & Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Ashish Kumar Singh
- Department of Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, India
| | - Navneet Pareek
- Department of Soil Science, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Gohar Taj
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences and Humanities, GBPUA&; T, Pantnagar, Uttarakhand, India
| | | | - Ankit Kumar
- Department of Horticulture, College of Agriculture, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Hemant Dasila
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Adita Sharma
- College of Fisheries, Dholi, Dr. Rajendra Prasad Central Agricultural University, Muzaffarpur, Bihar, India
| |
Collapse
|
26
|
Dai M, Xiao G, Shao M, Zhang YS. The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review. BIOSENSORS 2023; 13:389. [PMID: 36979601 PMCID: PMC10046732 DOI: 10.3390/bios13030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Organs-on-chips (OoCs) are miniature microfluidic systems that have arguably become a class of advanced in vitro models. Deep learning, as an emerging topic in machine learning, has the ability to extract a hidden statistical relationship from the input data. Recently, these two areas have become integrated to achieve synergy for accelerating drug screening. This review provides a brief description of the basic concepts of deep learning used in OoCs and exemplifies the successful use cases for different types of OoCs. These microfluidic chips are of potential to be assembled as highly potent human-on-chips with complex physiological or pathological functions. Finally, we discuss the future supply with perspectives and potential challenges in terms of combining OoCs and deep learning for image processing and automation designs.
Collapse
Affiliation(s)
- Manna Dai
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Computing and Intelligence Department, Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Ming Shao
- Department of Computer and Information Science, College of Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Kim SJ, Lee G, Hong G, Yun SH, Hahn SK. Advanced light delivery materials and systems for photomedicines. Adv Drug Deliv Rev 2023; 194:114729. [PMID: 36764457 DOI: 10.1016/j.addr.2023.114729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gibum Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 65 Landsdowne St., UP-5, Cambridge, MA 02139, USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|