1
|
Chang X, Guo H, Li Y, Ding J. Implantable devices for resected glioblastoma therapy. Asian J Pharm Sci 2025; 20:101034. [PMID: 40182136 PMCID: PMC11964529 DOI: 10.1016/j.ajps.2025.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/30/2024] [Accepted: 12/26/2024] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma (GBM) is a highly infiltrative brain tumor. The treatment of GBM is challenging due to the existence of blood brain barrier, its highly invasive nature, and its heterogeneity. Given the limitations of conventional therapies, this Perspective explores the development trajectory of implantable devices, highlighting the advantages of current models. With the progression in research, these implantable devices certainly hold promising potential for GBM therapy.
Collapse
Affiliation(s)
- Xiaoyu Chang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun 130061, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hui Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yunqian Li
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun 130061, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Ding Y, Chen R, Zhou J, Bao Y, Meng N, Zheng X, Yang S, Lu J, Jiang Z, Liu Y, Xie C, Lu L, Lu W. All-stage targeted nanodiscs for glioma treatment by inducing cuproptosis and apoptosis of cancer cells and cancer stem cells. Asian J Pharm Sci 2025; 20:101010. [PMID: 40182135 PMCID: PMC11964743 DOI: 10.1016/j.ajps.2024.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 04/05/2025] Open
Abstract
There remain several intractable challenges for chemotherapy in glioma treatment, including the blood-brain barrier (BBB), blood-brain tumor barrier (BBTB), and tumor heterogeneity caused by cancer stem cells (CSCs), which are resistant to conventional chemotherapy. Here, we established a nano strategy to kill glioma cells and CSCs, combining carfilzomib and bis(diethyldithiocarbamate)copper. The synergistic drug combination disturbed cell protein metabolism at different stages and induced apoptosis and cuproptosis. The Y-shaped targeting ligand pHA-VAP-modified nanodiscs were designed to help the chemotherapeutic agents cross the BBB/BBTB and finally accumulate in tumor site. This all-stage targeting and all-stage treatment nanomedicine significantly prolonged the survival in glioma-bearing mice and might inspire the rational design of advanced drug delivery platforms.
Collapse
Affiliation(s)
- Yuan Ding
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Ruohan Chen
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jianfen Zhou
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yanning Bao
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Nana Meng
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Xudong Zheng
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Shengmin Yang
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Jiasheng Lu
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Zhixuan Jiang
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Yu Liu
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Cao Xie
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
| | - Weiyue Lu
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China
- Institutes of Integrative Medicine, Fudan University, Shanghai 200032, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
3
|
Martorana A, Puleo G, Miceli GC, Cancilla F, Licciardi M, Pitarresi G, Tranchina L, Marrale M, Palumbo FS. Redox/NIR dual-responsive glutathione extended polyurethane urea electrospun membranes for synergistic chemo-photothermal therapy. Int J Pharm 2025; 669:125108. [PMID: 39708849 DOI: 10.1016/j.ijpharm.2024.125108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Despite advancements in cancer treatments, therapies frequently exhibit high cytotoxicity, and surgery remains the predominant method for treating most solid tumors, often with limited success in preventing post-surgical recurrence. Implantable biomaterials, designed to release drugs at a localised site in response to specific stimuli, represent a promising approach for enhancing tumour therapy. In this study, a redox-responsive glutathione extended polyurethane urea (PolyCEGS) was used to produce paclitaxel (PTX) and gold nanorods (AuNRs) loaded electrospun membranes for combined redox/near-infrared (NIR) light-responsive release chemotherapy and hyperthermic effect. Electrospinning conditions were optimized to fabricate AuNR-loaded scaffolds, at three different AuNRs concentrations. The obtained membranes were characterized by scanning electron microscopy (SEM) analyses and photothermal profiles were evaluated by a thermocamera, showing a temperature increase, up to 42.5 °C, when exposed to NIR light (810 nm) at 3 W/cm2. The AuNRs/PTX loaded scaffolds exhibited sustained PTX release, with 15 % released over 30 days and almost 1.8 times more in a simulated reductive environment. Moreover, their excellent photothermal effects and NIR light-triggered release led to significant synergic cytotoxicity in human colon cancer (HCT-116) and human breast cancer (MCF-7) cell lines. This system potentially enables controllable locoregional PTX release at the tumour site post-surgery, preventing recurrence and enhancing cytotoxicity through combined drug and PTT effects, highlighting its potential for future anticancer treatments.
Collapse
Affiliation(s)
- Annalisa Martorana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy; Fondazione Ri.MED, c/o IRCCS ISMETT, via E. Tricomi 5, 90127, Palermo, Italy(2)
| | - Giorgia Puleo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Edificio 18, Palermo, Italy; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, 2100, Denmark
| | - Giovanni Carlo Miceli
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy; Department of Bioengineering, Imperial College London, London, SW7 2BX, UK(2)
| | - Francesco Cancilla
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy
| | - Mariano Licciardi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy
| | - Giovanna Pitarresi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy
| | - Luigi Tranchina
- Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze, edificio 18a, Palermo, 90128, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Viale delle Scienze, edificio 18, Palermo, 90128, Italy; National Institute for Nuclear Physics (INFN), Catania Division, Via Santa Sofia,64, Catania, 95123, Italy
| | - Fabio Salvatore Palumbo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, Italy; Istituto per la Ricerca e Innovazione Biomedica (IRIB), CNR, Via Ugo La Malfa, 153, 90146, Palermo, Italy.
| |
Collapse
|
4
|
Jin Z, Fu Y, Zhang Y, Guo S. Lesion-Adaptative Bionic Tracheal Stent with Local Paclitaxel Release for Enhanced Therapy of Tracheal Tumor and Stenosis. ACS Biomater Sci Eng 2024; 10:6677-6689. [PMID: 39325474 DOI: 10.1021/acsbiomaterials.4c01523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The efficacy of tracheal stents (TSs) in treating malignant tracheal stenosis is often compromised by tumor overgrowth, leading to restenosis and other stent-related complications that conventional chemotherapy and commercial stents fail to adequately address. Drug-loaded tracheal stents have the potential to deliver chemotherapeutics directly to tumors while relieving stenosis, but their effectiveness has yet to be studied in vivo. The design of drug-loaded tracheal stents adapting to lesions to achieve optimal antitumor effects and minimal side effects remains an area worth exploring. In this study, a lesion-adaptive bionic tracheal stent (PTX-TS) designed for the dual purpose of treating tracheal tumors and associated stenosis was developed. This novel PTX-TS was evaluated using an orthotopic rabbit model of malignant tracheal stenosis, newly established in this study. The rabbit lesions were precisely scanned using computed tomography (CT) for 3D reconstruction, enabling the design of a PTX-TS that fit both the tumor and airway dimensions to ensure complete tumor coverage and effective dilation of the stenotic airway. The PTX-TS featured a bilayer structure including a surface layer of PTX/ethylene-vinyl acetate copolymer (EVA) blends for sustained PTX release and an inner layer of polycaprolactone (PCL)/EVA blends for appropriate mechanical performance. The stent was fabricated layer by layer using a custom-built 3D printer, and the drug-loaded surface layer was printed using a novel liquid printing technique developed in our lab, achieving a high drug loading of up to 80%. The dose of the PTX-TS was investigated and set as 7.5 mg/cm2, which leads to maximum tissue permeation. With its bionic cross-sectional C-shaped structure, the PTX-TS demonstrated excellent radial flexibility, allowing successful implantation at the lesion site using a specially designed delivery apparatus, where it self-expanded to relieve stenosis. Additionally, the PTX-TS effectively delivered PTX directly to the tracheal tumor, resulting in superior antitumor efficacy without significant toxicity or complications.
Collapse
Affiliation(s)
- Zhu Jin
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiaotong University Chongqing Research Institute, Chongqing 401135, China
| | - Yuli Fu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujia Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengrong Guo
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Batheja S, Gupta S, Tejavath KK, Gupta U. TPP-based conjugates: potential targeting ligands. Drug Discov Today 2024; 29:103983. [PMID: 38641237 DOI: 10.1016/j.drudis.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Mitochondria are one of the major sources of energy as well as regulators of cancer cell metabolism. Thus, they are potential targets for the effective treatment and management of cancer. Research has explored triphenylphosphonium (TPP) derivatives as potent cancer-targeting ligands because of their lipophilic nature and mitochondrial affinity. In this review, we summarize the utility of TPP-based conjugates targeting mitochondria in different types of cancer and other diseases, such as neurodegenerative and cardiovascular disorders. Such conjugates offer versatile therapeutic potential by modulating membrane potential, influencing reactive oxygen species (ROS) production, and coupling of molecular modifications (such as ATP metabolism and energy metabolism). Thus, we highlight TPP conjugates as promising mitochondria-targeting agents for use in targeted drug delivery systems.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India; Department of Biochemistry, All India Institute of Medical Sciences, BIBINAGAR, Hyderabad Metropolitan Region (HMR), Telangana 508126, India.
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India.
| |
Collapse
|
6
|
Mao M, Wu Y, He Q. Recent advances in targeted drug delivery for the treatment of glioblastoma. NANOSCALE 2024; 16:8689-8707. [PMID: 38606460 DOI: 10.1039/d4nr01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the highly malignant brain tumors characterized by significant morbidity and mortality. Despite the recent advancements in the treatment of GBM, major challenges persist in achieving controlled drug delivery to tumors. The management of GBM poses considerable difficulties primarily due to unresolved issues in the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB) and GBM microenvironment. These factors limit the uptake of anti-cancer drugs by the tumor, thus limiting the therapeutic options. Current breakthroughs in nanotechnology provide new prospects concerning unconventional drug delivery approaches for GBM treatment. Specifically, swimming nanorobots show great potential in active targeted delivery, owing to their autonomous propulsion and improved navigation capacities across biological barriers, which further facilitate the development of GBM-targeted strategies. This review presents an overview of technological progress in different drug administration methods for GBM. Additionally, the limitations in clinical translation and future research prospects in this field are also discussed. This review aims to provide a comprehensive guideline for researchers and offer perspectives on further development of new drug delivery therapies to combat GBM.
Collapse
Affiliation(s)
- Meng Mao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
7
|
Wang J, Wang Z, Zhang G, Rodrigues J, Tomás H, Shi X, Shen M. Blood-brain barrier-crossing dendrimers for glioma theranostics. Biomater Sci 2024; 12:1346-1356. [PMID: 38362780 DOI: 10.1039/d4bm00043a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Glioma, as a disease of the central nervous system, is difficult to be treated due to the presence of the blood-brain barrier (BBB) that can severely hamper the efficacy of most therapeutic agents. Hence, drug delivery to glioma in an efficient, safe, and specifically targeted manner is the key to effective treatment of glioma. With the advances in nanotechnology, targeted drug delivery systems have been extensively explored to deliver chemotherapeutic agents, nucleic acids, and contrast agents. Among these nanocarriers, dendrimers have played a significant role since they possess highly branched structures, and are easy to be decorated, thus offering numerous binding sites for various drugs and ligands. Dendrimers can be designed to cross the BBB for glioma targeting, therapy or theranostics. In this review, we provide a concise overview of dendrimer-based carrier designs including dendrimer surface modification with hydroxyl termini, peptides, and transferrin etc. for glioma imaging diagnostics, chemotherapy, gene therapy, or imaging-guided therapy. Finally, the future perspectives of dendrimer-based glioma theraputics are also briefly discussed.
Collapse
Affiliation(s)
- Jinxia Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Guixiang Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - João Rodrigues
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Martins C, Pacheco C, Faria P, Sarmento B. Nanomedicine approaches for treating glioblastoma. Nanomedicine (Lond) 2023; 18:1135-1138. [PMID: 37593960 DOI: 10.2217/nnm-2023-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| | - Catarina Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS-CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Paulo Faria
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS-CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| |
Collapse
|