1
|
Vettorazzi M, Díaz I, Angelina E, Salido S, Gutierrez L, Alvarez SE, Cobo J, Enriz RD. Second generation of pyrimidin-quinolone hybrids obtained from virtual screening acting as sphingosine kinase 1 inhibitors and potential anticancer agents. Bioorg Chem 2024; 144:107112. [PMID: 38237390 DOI: 10.1016/j.bioorg.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
We report here the virtual screening design, synthesis and activity of eight new inhibitors of SphK1. For this study we used a pre-trained Graph Convolutional Network (GCN) combined with docking calculations. This exploratory analysis proposed nine compounds from which eight displayed significant inhibitory effect against sphingosine kinase 1 (SphK1) demonstrating a high level of efficacy for this approach. Four of these compounds also displayed anticancer activity against different tumor cell lines, and three of them (5), (6) and (7) have shown a wide inhibitory action against many of the cancer cell line tested, with GI50 below 5 µM, being (5) the most promising with TGI below 10 µM for the half of cell lines. Our results suggest that the three most promising compounds reported here are the pyrimidine-quinolone hybrids (1) and (6) linked by p-aminophenylsulfanyl and o-aminophenol fragments respectively, and (8) without such aryl linker. We also performed an exhaustive study about the molecular interactions that stabilize the different ligands at the binding site of SphK1. This molecular modeling analysis was carried out by using combined techniques: docking calculations, MD simulations and QTAIM analysis. In this study we also included PF543, as reference compound, in order to better understand the molecular behavior of these ligands at the binding site of SphK1.These results provide useful information for the design of new inhibitors of SphK1 possessing these structural scaffolds.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Iván Díaz
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Emilio Angelina
- Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura, Departamento de Química, Área de Química Física, Laboratorio de Estructura Molecular y Propiedades, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Sofía Salido
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Lucas Gutierrez
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Sergio E Alvarez
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina
| | - Justo Cobo
- Universidad de Jaén, Departamento de Química Inorgánica y Orgánica, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Ricardo D Enriz
- Universidad Nacional de San Luis, Facultad de Química, Bioquímica y Farmacia, Ejercito de los Andes 950, (5700) San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejercito de los Andes 950, (5700) San Luis, Argentina.
| |
Collapse
|
2
|
Chen H, Haddadi N, Zhu X, Hatoum D, Chen S, Nassif NT, Lin Y, McGowan EM. Expression Profile of Sphingosine Kinase 1 Isoforms in Human Cancer Tissues and Cells: Importance and Clinical Relevance of the Neglected 1b-Isoform. JOURNAL OF ONCOLOGY 2022; 2022:2250407. [PMID: 36532885 PMCID: PMC9750787 DOI: 10.1155/2022/2250407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 09/28/2023]
Abstract
Background Overexpression of sphingosine kinase 1 (SphK1) is casually associated with many types of cancer, and inhibitors of SphK1 sensitize tumors to chemotherapy. SphK1 is expressed as two major isoforms, SphK1a and SphK1b. To date, no information has been reported on the SphK1 isoform expression profile and its clinical relevance. Objective The objective is to examine the expression profile of the SphK1a and SPhK1b isoforms in human cancer and noncancer tissues and cell lines and explore their clinical relevance. Methods We used PCR to qualitatively examine the expression profile of these two isoforms in breast, liver, and prostate cancer tissues plus paired adjacent tissues and in 11 cancer and normal cell lines (breast, cervical, bone, prostate, colon, brain, mesothelioma tumor and benign, and human kidney cells). Results We found that SphK1a was ubiquitously expressed in all cancer cells and tissues tested; in contrast, SphK1b was only expressed in selective cell types in breast, prostate, and lung cancer. Conclusions Our data suggest that SphK1a is important for generic SphK1/S1P functions, and SphK1b mediates specialized and/or unique pathways in a specific type of tissue and could be a biomarker for cancer. This discovery is important for future SphK1-related cancer research and may have clinical implications in drug development associated with SphK1-directed cancer treatment.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Traditional Chinese Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Xiaofeng Zhu
- Department of Transplant Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
- Public Health and College of Arts and Sciences, Phoenicia University, Daoudiye, Lebanon
| | - Size Chen
- Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Yiguang Lin
- Department of Traditional Chinese Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
- Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
- Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
4
|
Revealing 2-Dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as Sphingosine Kinase 2 inhibitors: some hints on the structural basis for selective inhibition. Bioorg Chem 2022; 121:105668. [DOI: 10.1016/j.bioorg.2022.105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
5
|
Yu J, Dong J, Chen K, Ding Y, Yang Z, Lan T. Generation of mice with hepatocyte-specific conditional deletion of sphingosine kinase 1. Transgenic Res 2020; 29:419-428. [PMID: 32696422 DOI: 10.1007/s11248-020-00211-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
SphK1 gene has different roles in various types of cells in liver diseases, but most studies are based on global knockout mice, which hampers the study on the cellular and molecular mechanisms of SphK1. In order to further study the role of SphK1 in liver, SphK1 conditional knockout mice were constructed. A liver-specific SphK1 gene knockout mouse model was constructed by the Cre/Loxp recombinant enzyme system. PCR technologies and western blotting were used to identified the elimination of SphK1 gene in hepatocytes. SphK1flox/flox mice were used as a control group to verify the effectiveness of SphK1 liver-specific knockout mice from the profile, pathology, and serology of mice. The ablation of SphK1 in hepatic parenchymal cells was demonstrated by fluorescent in situ hybridization and the contents of S1P and Sph were measured by ELISA kit. The genotypes of liver in SphK1 conditional knockout mice were different from that of other organs. The mRNA and protein levels of SphK1 in liver tissue of SphK1 conditional knockout mice were almost depleted by compared with SphK1flox/flox mice. Physiology and pathology showed no significant difference between SphK1 liver conditional knockout mice and SphK1flox/flox mice. Additionally, SphK1 was eliminated in hepatocytes, leading to the reduce of S1P content in hepatocytes and liver tissues and the increase of Sph content in hepatocytes. The model of SphK1 gene liver conditional knockout mice was successfully constructed, providing a tool for the study of the roles of SphK1 in hepatocyte and liver diseases.
Collapse
Affiliation(s)
- Jinfeng Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiale Dong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kangdi Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yaping Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhicheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Guangzhou Higher Education Mega Center, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Hii LW, Chung FFL, Mai CW, Yee ZY, Chan HH, Raja VJ, Dephoure NE, Pyne NJ, Pyne S, Leong CO. Sphingosine Kinase 1 Regulates the Survival of Breast Cancer Stem Cells and Non-stem Breast Cancer Cells by Suppression of STAT1. Cells 2020; 9:886. [PMID: 32260399 PMCID: PMC7226795 DOI: 10.3390/cells9040886] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) represent rare tumor cell populations capable of self-renewal, differentiation, and tumor initiation and are highly resistant to chemotherapy and radiotherapy. Thus, therapeutic approaches that can effectively target CSCs and tumor cells could be the key to efficient tumor treatment. In this study, we explored the function of SPHK1 in breast CSCs and non-CSCs. We showed that RNAi-mediated knockdown of SPHK1 inhibited cell proliferation and induced apoptosis in both breast CSCs and non-CSCs, while ectopic expression of SPHK1 enhanced breast CSC survival and mammosphere forming efficiency. We identified STAT1 and IFN signaling as key regulatory targets of SPHK1 and demonstrated that an important mechanism by which SPHK1 promotes cancer cell survival is through the suppression of STAT1. We further demonstrated that SPHK1 inhibitors, FTY720 and PF543, synergized with doxorubicin in targeting both breast CSCs and non-CSCs. In conclusion, we provide important evidence that SPHK1 is a key regulator of cell survival and proliferation in breast CSCs and non-CSCs and is an attractive target for the design of future therapies.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE) International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Chun Wai Mai
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Zong Yang Yee
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Hong Hao Chan
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Vijay Joseph Raja
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA; (V.J.R.); (N.E.D.)
| | - Noah Elias Dephoure
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA; (V.J.R.); (N.E.D.)
| | - Nigel J. Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK; (N.J.P.); (S.P.)
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK; (N.J.P.); (S.P.)
| | - Chee-Onn Leong
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
7
|
Alshaker H, Thrower H, Pchejetski D. Sphingosine Kinase 1 in Breast Cancer-A New Molecular Marker and a Therapy Target. Front Oncol 2020; 10:289. [PMID: 32266132 PMCID: PMC7098968 DOI: 10.3389/fonc.2020.00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is now well-established that sphingosine kinase 1 (SK1) plays a significant role in breast cancer development, progression, and spread, whereas SK1 knockdown can reverse these processes. In breast cancer cells and tumors, SK1 was shown to interact with various pathways involved in cell survival and chemoresistance, such as nuclear factor-kappa B (NFκB), Notch, Ras/MAPK, PKC, and PI3K. SK1 is upregulated by estrogen signaling, which, in turn, confers cancer cells with resistance to tamoxifen. Sphingosine-1-phosphate (S1P) produced by SK1 has been linked to tumor invasion and metastasis. Both SK1 and S1P are closely linked to inflammation and adipokine signaling in breast cancer. In human tumors, high SK1 expression has been linked with poorer survival and prognosis. SK1 is upregulated in triple negative tumors and basal-like subtypes. It is often associated with high phosphorylation levels of ERK1/2, SFK, LYN, AKT, and NFκB. Higher tumor SK1 mRNA levels were correlated with poor response to chemotherapy. This review summarizes the up-to-date evidence and discusses the therapeutic potential for the SK1 inhibition in breast cancer, with emphasis on the mechanisms of chemoresistance and combination with other therapies such as gefitinib or docetaxel. We have outlined four key areas for future development, including tumor microenvironment, combination therapies, and nanomedicine. We conclude that SK1 may have a potential as a target for precision medicine, its high expression being a negative prognostic marker in ER-negative breast cancer, as well as a target for chemosensitization therapy.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Hannah Thrower
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
8
|
Abstract
Introduction: The development of drug candidates with a defined selectivity profile and a unique molecular structure is of fundamental interest for drug discovery. In contrast to the costly screening of large substance libraries, the targeted de novo design of a drug by using structural information of either the biological target and/or structure-activity relationship data of active modulators offers an efficient and intellectually appealing alternative. Areas covered: This review provides an overview on the different techniques of de novo drug design (ligand-based drug design, structure-based drug design, and fragment-based drug design) and highlights successful examples of this targeted approach toward selective modulators of therapeutically relevant targets. Expert opinion: De novo drug design has established itself as a very efficient method for the development of potent and selective modulators for a variety of different biological target classes. The ever-growing wealth of structural data on therapeutic targets will certainly further enhance the importance of de novo design for the drug discovery process in the future. However, a consistent use of the terminology of de novo drug design in the scientific literature should be sought.
Collapse
Affiliation(s)
- Thomas Fischer
- a Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology , Zurich University of Applied Sciences ZHAW , Wädenswil , Switzerland
| | - Silvia Gazzola
- b Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Como , Italy
| | - Rainer Riedl
- a Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology , Zurich University of Applied Sciences ZHAW , Wädenswil , Switzerland
| |
Collapse
|
9
|
Alshaker H, Wang Q, Brewer D, Pchejetski D. Transcriptome-Wide Effects of Sphingosine Kinases Knockdown in Metastatic Prostate and Breast Cancer Cells: Implications for Therapeutic Targeting. Front Pharmacol 2019; 10:303. [PMID: 30971929 PMCID: PMC6445839 DOI: 10.3389/fphar.2019.00303] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Sphingosine kinases 1 and 2 (SK1 and SK2) are proto-oncogenic isozymes expressed in many human tumors and associated with chemoresistance and poor prognosis. They are well-recognized therapy targets and their inhibition was shown to induce tumor volume reduction and chemosensitization in multiple cancer models. Oncogenic signaling is extremely complex and often cross-regulated. Designing molecular therapies and their combinations requires rational approaches to avoid redundant targeting or developing resistance. In this study, we have performed RNA transcriptome microarray analysis of two breast and two prostate metastatic cancer cell lines treated with siRNAs targeting SK1 or SK2. In prostate cancer cell lines SK1 knockdown (KD) has significantly changed expression of several genes including downregulation of NSUN2, G3BP2 and upregulation of ETS1. SK2 KD also affected expression of multiple genes including downregulation of CAPZA1 NSUN3 and ADPGK and upregulation of VDAC1, IBTK, ETS1, and MKNK2. Similarly, in breast cancer cells SK1 KD led to downregulation of NSUN2, NFATC3, CDK2, and G3BP2 and upregulation of GTF2B, TTC17, and RAB23. SK2 KD in breast cancer cells has decreased expression of ITGAV and CAPZA1 and increased expression of GTF2B and ST13. Gene-set enrichment analysis of known biochemical pathways showed that in prostate and breast cell lines SKs KD have altered multiple pathways. SK1 KD altered chromatin assembly, regulation of G1/S transition and mitosis, Wnt and MAP kinase signaling and cell motility. SK2 KD altered RAS protein signal transduction, regulation of MAP kinase and serine/threonine kinase activity, cell motility, small GTPase mediated signal transduction and phosphatidylinositol 3-kinase (PI3K) signaling. Through genome-wide microarray analysis, we have identified important molecular pathways affected by SK1 and SK2 KD. It appears that while KD of both genes leads to a decrease in individual pro-tumorigenic genes, there is a universal cellular response resulting in upregulation of several known pro-survival and pro-tumorigenic pathways such as MAPK, RAS, and PI3K, which may mediate cancer resistance to anti-SKs therapies. Our data point out to the potential advantage of certain molecular therapy combinations in targeting prostate and breast cancer. Further signaling studies are required to confirm the individual involvement of identified pathways.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom.,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Qi Wang
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Daniel Brewer
- School of Medicine, University of East Anglia, Norwich, United Kingdom.,Earlham Institute, Norwich, United Kingdom
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
10
|
Alshaker H, Srivats S, Monteil D, Wang Q, Low CMR, Pchejetski D. Field template-based design and biological evaluation of new sphingosine kinase 1 inhibitors. Breast Cancer Res Treat 2018; 172:33-43. [PMID: 30043096 PMCID: PMC6208908 DOI: 10.1007/s10549-018-4900-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/19/2018] [Indexed: 11/29/2022]
Abstract
Purpose Sphingosine kinase 1 (SK1) is a protooncogenic enzyme expressed in many human tumours and is associated with chemoresistance and poor prognosis. It is a potent therapy target and its inhibition chemosensitises solid tumours. Despite recent advances in SK1 inhibitors synthesis and validation, their clinical safety and chemosensitising options are not well described. In this study, we have designed, synthesised and tested a new specific SK1 inhibitor with a low toxicity profile. Methods Field template molecular modelling was used for compound design. Lead compounds were tested in cell and mouse cancer models. Results Field template analysis of three known SK1 inhibitors, SKI-178, 12aa and SK1-I, was performed and compound screening identified six potential new SK1 inhibitors. SK1 activity assays in both cell-free and in vitro settings showed that two compounds were effective SK1 inhibitors. Compound SK-F has potently decreased cancer cell viability in vitro and sensitised mouse breast tumours to docetaxel (DTX) in vivo, without significant whole-body toxicity. Conclusion Through field template screening, we have identified a new SK1 inhibitor, SK-F, which demonstrated antitumour activity in vitro and in vivo without overt toxicity when combined with DTX. Electronic supplementary material The online version of this article (10.1007/s10549-018-4900-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK. .,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| | - Shyam Srivats
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Danielle Monteil
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Qi Wang
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK
| | | | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK.
| |
Collapse
|
11
|
Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol Lett 2018; 291:77-85. [PMID: 29654831 DOI: 10.1016/j.toxlet.2018.04.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/17/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
Sphingolipids are critical regulators of tumor microenvironments and play an important role in estrogen-dependent cancers. Estrogen and estrogen metabolites were found to be involved in prostate cancer. Fingolimod (FTY720) is a sphingokinase-1 (SphK1) inhibitor with anticancer properties against various tumor cell types. Herein, we investigated the interference of FTY720 with the cross talk between sphingolipid metabolism and estrogen metabolism within prostate cancer cells. FTY720 showed cytotoxic antiproliferative effects against androgen-dependent and -independent prostate cancer cells with IC50 ranging from 3.0 ± 0.3 to 6.8 ± 1.7 μM. Exposure of prostate cancer cells to FTY720 resulted in a dramatic decrease in the concentration of estradiol, estrone, 4-hydroxyestradiol and 16α-hydroxyestrone compared to control cells. However, FTY720 significantly increased the concentration of 2-methoxyestrone and 2-methoxyestradiol within prostate cancer cells. This was mirrored by significant downregulating of the expression of estrogen and catechol estrogen-synthesizing enzymes (CYP19, CYP1A1 and CYP1B1) within prostate cancer cells. On the other hand, FTY720 significantly upregulated the expression of catechol estrogen-detoxifying enzyme (COMT). Additionally, FTY720 abolished estrogen-stimulated expression of ERα and basal expression of ERβ within prostate cancer cells. Furthermore, FTY720 suppressed the expression of the ER-downstream regulated genes, CXCR4 and cyclin D1. Reciprocally, it was found that estradiol and catechol estrogens significantly induced the expression of SphK1 while methoxylated catechol estrogen suppressed its expression within prostate cancer cells in a dose-dependent manner. Current research has highlighted the hazardous influence of the estrogenic component to prostate cancer. We found that fingolimod (FTY720) could modulate the estrogenic micromilieu and interrupt its cross talk with sphingolipid metabolism.
Collapse
|
12
|
The Role of Sphingosine-1-Phosphate and Ceramide-1-Phosphate in Inflammation and Cancer. Mediators Inflamm 2017; 2017:4806541. [PMID: 29269995 PMCID: PMC5705877 DOI: 10.1155/2017/4806541] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/30/2017] [Indexed: 01/02/2023] Open
Abstract
Inflammation is part of our body's response to tissue injury and pathogens. It helps to recruit various immune cells to the site of inflammation and activates the production of mediators to mobilize systemic protective processes. However, chronic inflammation can increase the risk of diseases like cancer. Apart from cytokines and chemokines, lipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), contribute to inflammation and cancer. S1P is an important player in inflammation-associated colon cancer progression. On the other hand, C1P has been recognized to be involved in cancer cell growth, migration, survival, and inflammation. However, whether C1P is involved in inflammation-associated cancer is not yet established. In contrast, few studies have also suggested that S1P and C1P are involved in anti-inflammatory pathways regulated in certain cell types. Ceramide is the substrate for ceramide kinase (CERK) to yield C1P, and sphingosine is phosphorylated to S1P by sphingosine kinases (SphKs). Biological functions of sphingolipid metabolites have been studied extensively. Ceramide is associated with cell growth inhibition and enhancement of apoptosis while S1P and C1P are associated with enhancement of cell growth and survival. Altogether, S1P and C1P are important regulators of ceramide level and cell fate. This review focuses on S1P and C1P involvement in inflammation and cancer with emphasis on recent progress in the field.
Collapse
|
13
|
"Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. Int J Mol Sci 2017; 18:ijms18091891. [PMID: 28869494 PMCID: PMC5618540 DOI: 10.3390/ijms18091891] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or “non-oncogenic addiction”. Here we discuss additional theories of SphK cellular mislocation and aberrant “dicing and splicing” as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics.
Collapse
|
14
|
Vettorazzi M, Angelina E, Lima S, Gonec T, Otevrel J, Marvanova P, Padrtova T, Mokry P, Bobal P, Acosta LM, Palma A, Cobo J, Bobalova J, Csollei J, Malik I, Alvarez S, Spiegel S, Jampilek J, Enriz RD. An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors. Eur J Med Chem 2017; 139:461-481. [PMID: 28822281 DOI: 10.1016/j.ejmech.2017.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
Sphingosine kinase 1 (SphK1), the enzyme that produces the bioactive sphingolipid metabolite, sphingosine-1-phosphate, is a promising new molecular target for therapeutic intervention in cancer and inflammatory diseases. In view of its importance, the main objective of this work was to find new and more potent inhibitors for this enzyme possessing different structural scaffolds than those of the known inhibitors. Our theoretical and experimental study has allowed us to identify two new structural scaffolds (three new compounds), which could be used as starting structures for the design and then the development of new inhibitors of SphK1. Our study was carried out in different steps: virtual screening, synthesis, bioassays and molecular modelling. From our results, we propose a new dihydrobenzo[b]pyrimido[5,4-f]azepine and two alkyl{3-/4-[1-hydroxy-2-(4-arylpiperazin-1-yl)ethyl]phenyl}carbamates as initial structures for the development of new inhibitors. In addition, our molecular modelling study using QTAIM calculations, allowed us to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analyses indicate that the cationic head of the different compounds must be refined in order to obtain an increase in the binding affinity of these ligands.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Química, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Jan Otevrel
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Tereza Padrtova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Petr Mokry
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Pavel Bobal
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Lina M Acosta
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, Carrera 27, Calle 9, A.A 678, Bucaramanga, Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, Carrera 27, Calle 9, A.A 678, Bucaramanga, Colombia
| | - Justo Cobo
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
| | - Janette Bobalova
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveri 97, 602 00 Brno, Czech Republic
| | - Jozef Csollei
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Ivan Malik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Sergio Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina.
| |
Collapse
|
15
|
Zhu W, Jarman KE, Lokman NA, Neubauer HA, Davies LT, Gliddon BL, Taing H, Moretti PAB, Oehler MK, Pitman MR, Pitson SM. CIB2 Negatively Regulates Oncogenic Signaling in Ovarian Cancer via Sphingosine Kinase 1. Cancer Res 2017; 77:4823-4834. [PMID: 28729416 DOI: 10.1158/0008-5472.can-17-0025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/02/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022]
Abstract
Sphingosine kinase 1 (SK1) is a key regulator of the cellular balance between proapoptotic and prosurvival sphingolipids. Oncogenic signaling by SK1 relies on its localization to the plasma membrane, which is mediated by the calcium and integrin binding protein CIB1 via its Ca2+-myristoyl switch function. Here we show that another member of the CIB family, CIB2, plays a surprisingly opposite role to CIB1 in the regulation of SK1 signaling. CIB2 bound SK1 on the same site as CIB1, yet it lacks the Ca2+-myristoyl switch function. As a result, CIB2 blocked translocation of SK1 to the plasma membrane and inhibited its subsequent signaling, which included sensitization to TNFα-induced apoptosis and inhibition of Ras-induced neoplastic transformation. CIB2 was significantly downregulated in ovarian cancer and low CIB2 expression was associated with poor prognosis in ovarian cancer patients. Notably, reintroduction of CIB2 in ovarian cancer cells blocked plasma membrane localization of endogenous SK1, reduced in vitro neoplastic growth and tumor growth in mice, and suppressed cell motility and invasiveness both in vitro and in vivo Consistent with the in vitro synergistic effects between the SK1-specific inhibitor SK1-I and standard chemotherapeutics, expression of CIB2 also sensitized ovarian cancer cells to carboplatin. Together, these findings identify CIB2 as a novel endogenous suppressor of SK1 signaling and potential prognostic marker and demonstrate the therapeutic potential of SK1 in this gynecologic malignancy. Cancer Res; 77(18); 4823-34. ©2017 AACR.
Collapse
Affiliation(s)
- Wenying Zhu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, South Australia, Australia
| | - Kate E Jarman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, South Australia, Australia
| | - Noor A Lokman
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - Heidi A Neubauer
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Lorena T Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Houng Taing
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Paul A B Moretti
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Martin K Oehler
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia. .,School of Biological Sciences, University of Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Alshaker H, Wang Q, Srivats S, Chao Y, Cooper C, Pchejetski D. New FTY720-docetaxel nanoparticle therapy overcomes FTY720-induced lymphopenia and inhibits metastatic breast tumour growth. Breast Cancer Res Treat 2017; 165:531-543. [PMID: 28695300 PMCID: PMC5602005 DOI: 10.1007/s10549-017-4380-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/05/2017] [Indexed: 01/21/2023]
Abstract
Purpose Combining molecular therapies with chemotherapy may offer an improved clinical outcome for chemoresistant tumours. Sphingosine-1-phosphate (S1P) receptor antagonist and sphingosine kinase 1 (SK1) inhibitor FTY720 (FTY) has promising anticancer properties, however, it causes systemic lymphopenia which impairs its use in cancer patients. In this study, we developed a nanoparticle (NP) combining docetaxel (DTX) and FTY for enhanced anticancer effect, targeted tumour delivery and reduced systemic toxicity. Methods Docetaxel, FTY and glucosamine were covalently conjugated to poly(lactic-co-glycolic acid) (PLGA). NPs were characterised by dynamic light scattering and electron microscopy. The cellular uptake, cytotoxicity and in vivo antitumor efficacy of CNPs were evaluated. Results We show for the first time that in triple negative breast cancer cells FTY provides chemosensitisation to DTX, allowing a four-fold reduction in the effective dose. We have encapsulated both drugs in PLGA complex NPs (CNPs), with narrow size distribution of ~ 100 nm and excellent cancer cell uptake providing sequential, sustained release of FTY and DTX. In triple negative breast cancer cells and mouse breast cancer models, CNPs had similar efficacy to systemic free therapies, but allowed an effective drug dose reduction. Application of CNPs has significantly reversed chemotherapy side effects such as weight loss, liver toxicity and, most notably, lymphopenia. Conclusions We show for the first time the DTX chemosensitising effects of FTY in triple negative breast cancer. We further demonstrate that encapsulation of free drugs in CNPs can improve targeting, provide low off-target toxicity and most importantly reduce FTY-induced lymphopenia, offering potential therapeutic use of FTY in clinical cancer treatment. Electronic supplementary material The online version of this article (doi:10.1007/s10549-017-4380-8) contains supplementary material, which is available to authorised users.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Qi Wang
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK
| | - Shyam Srivats
- University of California San Francisco, Health Sciences East 1350, San Francisco, CA, 94143-0130, USA
| | - Yimin Chao
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK.
| |
Collapse
|
17
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
18
|
Abstract
The sphingolipid family of lipids modulate several cellular processes, including proliferation, cell cycle regulation, inflammatory signaling pathways, and cell death. Several members of the sphingolipid pathway have opposing functions and thus imbalances in sphingolipid metabolism result in deregulated cellular processes, which cause or contribute to diseases and disorders in humans. A key cellular process regulated by sphingolipids is apoptosis, or programmed cell death. Sphingolipids play an important role in both extrinsic and intrinsic apoptotic pathways depending on the stimuli, cell type and cellular response to the stress. During mitochondrial-mediated apoptosis, multiple pathways converge on mitochondria and induce mitochondrial outer membrane permeabilization (MOMP). MOMP results in the release of intermembrane space proteins such as cytochrome c and Apaf1 into the cytosol where they activate the caspases and DNases that execute cell death. The precise molecular components of the pore(s) responsible for MOMP are unknown, but sphingolipids are thought to play a role. Here, we review evidence for a role of sphingolipids in the induction of mitochondrial-mediated apoptosis with a focus on potential underlying molecular mechanisms by which altered sphingolipid metabolism indirectly or directly induce MOMP. Data available on these mechanisms is reviewed, and the focus and limitations of previous and current studies are discussed to present important unanswered questions and potential future directions.
Collapse
Affiliation(s)
- Gauri A Patwardhan
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Levi J Beverly
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.,Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, 505 South Hancock Street, Clinical and Translational Research Building, Room 203, Louisville, KY, 40202, USA
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA. .,James Graham Brown Cancer Center, University of Louisville, 505 South Hancock Street, Clinical and Translational Research Building, Room 203, Louisville, KY, 40202, USA.
| |
Collapse
|
19
|
Mouse Sphingosine Kinase 1a Is Negatively Regulated through Conventional PKC-Dependent Phosphorylation at S373 Residue. PLoS One 2015; 10:e0143695. [PMID: 26642194 PMCID: PMC4671553 DOI: 10.1371/journal.pone.0143695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 11/08/2015] [Indexed: 02/02/2023] Open
Abstract
Sphingosine kinase is a lipid kinase that converts sphingosine into sphingosine-1-phosphate, an important signaling molecule with intracellular and extracellular functions. Although diverse extracellular stimuli influence cellular sphingosine kinase activity, the molecular mechanisms underlying its regulation remain to be clarified. In this study, we investigated the phosphorylation-dependent regulation of mouse sphingosine kinase (mSK) isoforms 1 and 2. mSK1a was robustly phosphorylated in response to extracellular stimuli such as phorbol ester, whereas mSK2 exhibited a high basal level of phosphorylation in quiescent cells regardless of agonist stimulation. Interestingly, phorbol ester-induced phosphorylation of mSK1a correlated with suppression of its activity. Chemical inhibition of conventional PKCs (cPKCs) abolished mSK1a phosphorylation, while overexpression of PKCα, a cPKC isoform, potentiated the phosphorylation, in response to phorbol ester. Furthermore, an in vitro kinase assay showed that PKCα directly phosphorylated mSK1a. In addition, phosphopeptide mapping analysis determined that the S373 residue of mSK1a was the only site phosphorylated by cPKC. Interestingly, alanine substitution of S373 made mSK1a refractory to the inhibitory effect of phorbol esters, whereas glutamate substitution of the same residue resulted in a significant reduction in mSK1a activity, suggesting the significant role of this phosphorylation event. Taken together, we propose that mSK1a is negatively regulated through cPKC-dependent phosphorylation at S373 residue.
Collapse
|
20
|
Gao Y, Gao F, Chen K, Tian ML, Zhao DL. Sphingosine kinase 1 as an anticancer therapeutic target. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3239-45. [PMID: 26150697 PMCID: PMC4484649 DOI: 10.2147/dddt.s83288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of chemotherapeutic resistance is a major challenge in oncology. Elevated sphingosine kinase 1 (SK1) levels is predictive of a poor prognosis, and SK1 overexpression may confer resistance to chemotherapeutics. The SK/sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor (S1PR) signaling pathway has been implicated in the progression of various cancers and in chemotherapeutic drug resistance. Therefore, SK1 may represent an important target for cancer therapy. Targeting the SK/S1P/S1PR signaling pathway may be an effective anticancer therapeutic strategy, particularly in the context of overcoming drug resistance. This review summarizes our current understanding of the role of SK/S1P/S1PR signaling in cancer and development of SK1 inhibitors.
Collapse
Affiliation(s)
- Ying Gao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fei Gao
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China
| | - Kan Chen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Mei-li Tian
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Dong-li Zhao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
21
|
Follo MY, Manzoli L, Poli A, McCubrey JA, Cocco L. PLC and PI3K/Akt/mTOR signalling in disease and cancer. Adv Biol Regul 2014; 57:10-6. [PMID: 25482988 DOI: 10.1016/j.jbior.2014.10.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022]
Abstract
Cancer cell metabolism is deregulated, and signalling pathways can be involved. For instance, PI3K/Akt/mTOR is associated with normal proliferation and differentiation, and its alteration is detectable in cancer cells, that exploit the normal mechanisms to overcome apoptosis. On the other hand, also the family of Phospholipase C (PLC) enzymes play a critical role in cell growth, and any change concerning these enzymes or their downstream targets can be associated with neoplastic transformation. Here, we review the role of PLC and PI3K/Akt/mTOR signal transduction pathways in pathophysiology.
Collapse
Affiliation(s)
- Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy.
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy
| | - Alessandro Poli
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, University of Bologna, Bologna, Italy.
| |
Collapse
|
22
|
Alshaker H, Krell J, Frampton AE, Waxman J, Blyuss O, Zaikin A, Winkler M, Stebbing J, Yagüe E, Pchejetski D. Leptin induces upregulation of sphingosine kinase 1 in oestrogen receptor-negative breast cancer via Src family kinase-mediated, janus kinase 2-independent pathway. Breast Cancer Res 2014; 16:426. [PMID: 25482303 PMCID: PMC4303110 DOI: 10.1186/s13058-014-0426-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Obesity is a known risk factor for breast cancer. Sphingosine kinase 1 (SK1) is an oncogenic lipid kinase that is overexpressed in breast tumours and linked with poor prognosis, however, its role in obesity-driven breast cancer was never elucidated. METHODS Human primary and secondary breast cancer tissues were analysed for SK1 and leptin receptor expression using quantitative real-time polymerase chain reaction (qRT-PCR) assay. Leptin-induced signalling was analysed in human oestrogen receptor (ER)-positive and negative breast cancer cells using Western blotting, qRT-PCR and radiolabelling assays. RESULTS Our findings show for the first time that human primary breast tumours and associated lymph node metastases exhibit a strong correlation between SK1 and leptin receptor expression (Pearson R = 0.78 and R = 0.77, respectively, P <0.001). Both these genes are elevated in metastases of ER-negative patients and show a significant increase in patients with higher body mass index (BMI). Leptin induces SK1 expression and activation in ER-negative breast cancer cell lines MDAMB-231 and BT-549, but not in ER-positive cell lines. Pharmacological inhibition and gene knockdown showed that leptin-induced SK1 activity and expression are mediated by activation of extracellular signal-regulated kinases 1/2 (ERK1/2) and Src family kinase (SFK) pathways, but not by the major pathways downstream of leptin receptor (LEPR) - janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). Src-homology 2 domain-containing phosphatase 2 (SHP2) appeared to be key to SK1 activation, and may function as an adaptor protein between SFKs and LEPR. Importantly, leptin-induced breast cancer cell proliferation was abrogated by SK1-specific small interfering RNA (siRNA). CONCLUSIONS Overall, our findings demonstrate a novel SFK/ERK1/2-mediated pathway that links leptin signalling and expression of oncogenic enzyme SK1 in breast tumours and suggest the potential significance of this pathway in ER-negative breast cancer.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, Petra University, Amman, Jordan
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Adam E Frampton
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Jonathan Waxman
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Oleg Blyuss
- Institute for Women's Health, University College London, 74, Huntley Street, London, WC1E 6AU UK
| | - Alexey Zaikin
- Institute for Women's Health, University College London, 74, Huntley Street, London, WC1E 6AU UK
| | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Ernesto Yagüe
- Department of Surgery and Cancer, Imperial College London, 1st Floor ICTEM, Hammersmith Hospital, Ducane Road, London, W120NN UK
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Elizabeth Fry Building, Norwich Research Park, Norwich, NR47TJ UK
| |
Collapse
|
23
|
Pyne NJ, Ohotski J, Bittman R, Pyne S. The role of sphingosine 1-phosphate in inflammation and cancer. Adv Biol Regul 2014; 54:121-129. [PMID: 24070975 DOI: 10.1016/j.jbior.2013.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/31/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
The enzymes that catalyze formation of the bioactive sphingolipid, sphingosine 1-phosphate, sphingosine kinase 1 and 2, are predictive markers in inflammatory diseases and cancer as evidenced by data from patients, knockout mice and the use of available molecular and chemical inhibitors. Thus, there is a compelling case for therapeutic targeting of sphingosine kinase. In addition, there are several examples of functional interaction between sphingosine 1-phosphate receptors and sphingosine kinase 1 that can drive malicious amplification loops that promote cancer cell growth. These novel aspects of sphingosine 1-phosphate pathobiology are reviewed herein.
Collapse
Affiliation(s)
- Nigel J Pyne
- Cell Biology Research Group, Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Jan Ohotski
- Cell Biology Research Group, Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, New York 11367-1597, USA
| | - Susan Pyne
- Cell Biology Research Group, Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
24
|
McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Basecke J, Libra M, Nicoletti F, Cocco L, Martelli AM, Steelman LS. Diverse roles of GSK-3: tumor promoter-tumor suppressor, target in cancer therapy. Adv Biol Regul 2013; 54:176-96. [PMID: 24169510 DOI: 10.1016/j.jbior.2013.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022]
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | - Nicole M Davis
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Jorg Basecke
- Department of Medicine, University of Göttingen, Göttingen, Germany; Sanct-Josef-Hospital Cloppenburg, Department of Hematology and Oncology, Cloppenburg, Germany
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | | | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; Institute of Molecular Genetics, National Research Council-IOR, Bologna, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
25
|
Wang Z, Min X, Xiao SH, Johnstone S, Romanow W, Meininger D, Xu H, Liu J, Dai J, An S, Thibault S, Walker N. Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 2013; 21:798-809. [PMID: 23602659 DOI: 10.1016/j.str.2013.02.025] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/05/2013] [Accepted: 02/28/2013] [Indexed: 11/24/2022]
Abstract
Sphingosine kinase 1 (SphK1) is a lipid kinase that catalyzes the conversion of sphingosine to sphingosine-1-phosphate (S1P), which has been shown to play a role in lymphocyte trafficking, angiogenesis, and response to apoptotic stimuli. As a central enzyme in modulating the S1P levels in cells, SphK1 emerges as an important regulator for diverse cellular functions and a potential target for drug discovery. Here, we present the crystal structures of human SphK1 in the apo form and in complexes with a substrate sphingosine-like lipid, ADP, and an inhibitor at 2.0-2.3 Å resolution. The SphK1 structures reveal a two-domain architecture in which its catalytic site is located in the cleft between the two domains and a hydrophobic lipid-binding pocket is buried in the C-terminal domain. Comparative analysis of these structures with mutagenesis and kinetic studies provides insight into how SphK1 recognizes the lipid substrate and catalyzes ATP-dependent phosphorylation.
Collapse
Affiliation(s)
- Zhulun Wang
- Department of Molecular Structure and Characterization, Amgen, Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang C, He H, Zhang H, Yu D, Zhao W, Chen Y, Shao R. The blockage of Ras/ERK pathway augments the sensitivity of SphK1 inhibitor SKI II in human hepatoma HepG2 cells. Biochem Biophys Res Commun 2013; 434:35-41. [PMID: 23545258 DOI: 10.1016/j.bbrc.2013.03.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/17/2013] [Indexed: 02/06/2023]
Abstract
The treatment of hepatocellular carcinoma (HCC) remains a challenge and the future of cancer therapy will incorporate rational combinations directed to molecular targets that cooperate to drive critical pro-survival signaling. Sphingosine kinase 1 (SphK1) has been shown to regulate various processes important for cancer progression. Given the up-regulated expression of SphK1 in response to the silence of N-ras and other interactions between Ras/ERK and SphK1, it was speculated that combined inhibition of Ras/ERK and SphK1 would create enhanced antitumor effects. Experimental results showed that dual blockage of N-ras/ERK and SphK1 resulted in enhanced growth inhibitions in human hepatoma cells. Similarly, MEK1/2 Inhibitor U0126 potentiated SKI II-induced apoptosis in hepatoma HepG2 cells, consistently with the further attenuation of Akt/ERK/NF-κB signaling pathway. It was also shown that the combination of SKI II and U0126 further attenuated the migration of hepatoma HepG2 cells via FAK/MLC-2 signaling pathway. Taken together, the dual inhibition of SphK1 and Ras/ERK pathway resulted in enhanced effects, which might be an effective therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhao P, Cladman W, Van Tol HHM, Chidiac P. Fine-tuning of GPCR signals by intracellular G protein modulators. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:421-53. [PMID: 23415100 DOI: 10.1016/b978-0-12-394587-7.00010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heterotrimeric G proteins convey receptor signals to intracellular effectors. Superimposed over the basic GPCR-G protein-effector scheme are three types of auxiliary proteins that also modulate Gα. Regulator of G protein signaling proteins and G protein signaling modifier proteins respectively promote GTPase activity and hinder GTP/GDP exchange to limit Gα activation. There are also diverse proteins that, like GPCRs, can promote nucleotide exchange and thus activation. Here we review the impact of these auxiliary proteins on GPCR signaling. Although their precise physiological functions are not yet clear, all of them can produce significant effects in experimental systems. These signaling changes are generally consistent with established effects on isolated Gα; however, the activation state of Gα is seldom verified and many such changes appear also to reflect the physical disruption of or indirect effects on interactions between Gα and its associated GPCR, Gβγ, and/or effector.
Collapse
Affiliation(s)
- Peishen Zhao
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|