1
|
Zhang Y, Guan X, Chai Y, Lu T, An N, Lin X, Liao X. Rational design, optimization, and biological evaluation of novel pyrrolo-pyridone derivatives as potent and orally active Cbl-b inhibitors. Eur J Med Chem 2025; 290:117488. [PMID: 40120499 DOI: 10.1016/j.ejmech.2025.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, plays a critical role in negatively regulating T-cell, natural killer (NK) cell, and B-cell activation. Inhibiting Cbl-b has emerged as a promising immuno-oncology strategy to enhance immune cell function. Here, we describe the rational design and optimization of pyrrolo-pyridone derivatives as potent Cbl-b inhibitors. Using structure-based drug design, we identified key structural elements that enhance binding affinity and inhibitory potency. Notably, compound B2 stands out, showing superior potency in stimulating IL-2 production in T cells and modulating phosphorylation of key proteins in T-cell receptor signaling. Furthermore, B2 demonstrates favorable pharmacokinetics and significantly inhibits tumor growth in vivo, outperforming NX-1607, which is currently in clinical trials.
Collapse
Affiliation(s)
- Yixuan Zhang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Pharmacy, Bengbu Medical University, Bengbu, 233030, China
| | - Xiangna Guan
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yushuang Chai
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Tingting Lu
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Na An
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xinyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China.
| | - Xuebin Liao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Wang Q, Tao C, Wu Y, Anderson KE, Hannan A, Lin CS, Hawkins P, Stephens L, Zhang X. Phospholipase Cγ regulates lacrimal gland branching by competing with PI3K in phosphoinositide metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601066. [PMID: 39005344 PMCID: PMC11244885 DOI: 10.1101/2024.06.28.601066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although the regulation of branching morphogenesis by spatially distributed cues is well established, the role of intracellular signaling in determining the branching pattern remains poorly understood. In this study, we investigated the regulation and function of phospholipase C gamma (PLCγ) in Fibroblast Growth Factor (FGF) signaling in lacrimal gland development. We showed that deletion of PLCγ1 in the lacrimal gland epithelium leads to ectopic branching and acinar hyperplasia, which was phenocopied by either mutating the PLCγ1 binding site on Fgfr2 or disabling any of its SH2 domains. PLCγ1 inactivation did not change the level of Fgfr2 or affect MAPK signaling, but instead led to sustained AKT phosphorylation due to increased PIP3 production. Consistent with this, PLCγ1 mutant phenotype can be reproduced by elevation of PI3K signaling in Pten knockout and attenuated by blocking AKT signaling. This study demonstrated that PLCγ modulates PI3K signaling by shifting phosphoinositide metabolism, revealing an important role of signaling dynamics in conjunction with spatial cues in shaping branching morphogenesis.
Collapse
|
3
|
Ma M, Zheng Y, Lu S, Pan X, Worley KC, Burrage LC, Blieden LS, Allworth A, Chen WL, Merla G, Mandriani B, Rosenfeld JA, Li-Kroeger D, Dutta D, Yamamoto S, Wangler MF, Glass IA, Strohbehn S, Blue E, Prontera P, Lalani SR, Bellen HJ. De novo variants in PLCG1 are associated with hearing impairment, ocular pathology, and cardiac defects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.23300523. [PMID: 38260438 PMCID: PMC10802640 DOI: 10.1101/2024.01.08.23300523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Phospholipase C isozymes (PLCs) hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, important signaling molecules involved in many cellular processes. PLCG1 encodes the PLCγ1 isozyme that is broadly expressed. Hyperactive somatic mutations of PLCG1 are observed in multiple cancers, but only one germline variant has been reported. Here we describe three unrelated individuals with de novo heterozygous missense variants in PLCG1 (p.Asp1019Gly, p.His380Arg, and p.Asp1165Gly) who exhibit variable phenotypes including hearing loss, ocular pathology and cardiac septal defects. To model these variants in vivo, we generated the analogous variants in the Drosophila ortholog, small wing (sl). We created a null allele slT2A and assessed the expression pattern. sl is broadly expressed, including in wing discs, eye discs, and a subset of neurons and glia. Loss of sl causes wing size reductions, ectopic wing veins and supernumerary photoreceptors. We document that mutant flies exhibit a reduced lifespan and age-dependent locomotor defects. Expressing wild-type sl in slT2A mutant rescues the loss-of-function phenotypes whereas expressing the variants causes lethality. Ubiquitous overexpression of the variants also reduces viability, suggesting that the variants are toxic. Ectopic expression of an established hyperactive PLCG1 variant (p.Asp1165His) in the wing pouch causes severe wing phenotypes, resembling those observed with overexpression of the p.Asp1019Gly or p.Asp1165Gly variants, further arguing that these two are gain-of-function variants. However, the wing phenotypes associated with p.His380Arg overexpression are mild. Our data suggest that the PLCG1 de novo heterozygous missense variants are pathogenic and contribute to the features observed in the probands.
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Yiming Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Current affiliation: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kim C. Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren S. Blieden
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aimee Allworth
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wei-Liang Chen
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Current affiliation: Children’s National Medical Center and George Washington University, Washington DC 20010, USA
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia 71013, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Barbara Mandriani
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Li-Kroeger
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | | | - Ian A. Glass
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
| | - Sam Strohbehn
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elizabeth Blue
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Paolo Prontera
- Medical Genetics Unit, Hospital of Perugia, Perugia 06129, Italy
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
4
|
Tao P, Han X, Wang Q, Wang S, Zhang J, Liu L, Fan X, Liu C, Liu M, Guo L, Lee PY, Aksentijevich I, Zhou Q. A gain-of-function variation in PLCG1 causes a new immune dysregulation disease. J Allergy Clin Immunol 2023; 152:1292-1302. [PMID: 37422272 PMCID: PMC10770301 DOI: 10.1016/j.jaci.2023.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Phospholipase C (PLC) γ1 is a critical enzyme regulating nuclear factor-κB (NF-κB), extracellular signal-related kinase, mitogen-activated protein kinase, and nuclear factor of activated T cells signaling pathways, yet germline PLCG1 mutation in human disease has not been reported. OBJECTIVE We aimed to investigate the molecular pathogenesis of a PLCG1 activating variant in a patient with immune dysregulation. METHODS Whole exome sequencing was used to identify the patient's pathogenic variants. Bulk RNA sequencing, single-cell RNA sequencing, quantitative PCR, cytometry by time of flight, immunoblotting, flow cytometry, luciferase assay, IP-One ELISA, calcium flux assay, and cytokine measurements in patient PBMCs and T cells and COS-7 and Jurkat cell lines were used to define inflammatory signatures and assess the impact of the PLCG1 variant on protein function and immune signaling. RESULTS We identified a novel and de novo heterozygous PLCG1 variant, p.S1021F, in a patient presenting with early-onset immune dysregulation disease. We demonstrated that the S1021F variant is a gain-of-function variant, leading to increased inositol-1,4,5-trisphosphate production, intracellular Ca2+ release, and increased phosphorylation of extracellular signal-related kinase, p65, and p38. The transcriptome and protein expression at the single-cell level revealed exacerbated inflammatory responses in the patient's T cells and monocytes. The PLCG1 activating variant resulted in enhanced NF-κB and type II interferon pathways in T cells, and hyperactivated NF-κB and type I interferon pathways in monocytes. Treatment with either PLCγ1 inhibitor or Janus kinase inhibitor reversed the upregulated gene expression profile in vitro. CONCLUSIONS Our study highlights the critical role of PLCγ1 in maintaining immune homeostasis. We illustrate immune dysregulation as a consequence of PLCγ1 activation and provide insight into therapeutic targeting of PLCγ1.
Collapse
Affiliation(s)
- Panfeng Tao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Xu Han
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qintao Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shihao Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lin Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaorui Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chenlu Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Meng Liu
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Li Guo
- Department of Rheumatology Immunology & Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Shieh BH, Sun W, Ferng D. A conventional PKC critical for both the light-dependent and the light-independent regulation of the actin cytoskeleton in Drosophila photoreceptors. J Biol Chem 2023:104822. [PMID: 37201584 DOI: 10.1016/j.jbc.2023.104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Pkc53E is the second conventional protein kinase C (PKC) gene expressed in Drosophila photoreceptors; it encodes at least six transcripts generating four distinct protein isoforms including Pkc53E-B whose mRNA is preferentially expressed in photoreceptors. By characterizing transgenic lines expressing Pkc53E-B-GFP we show Pkc53E-B is localized in the cytosol and rhabdomeres of photoreceptors, and the rhabdomeric localization appears dependent on the diurnal rhythm. A loss of function of pkc53E-B leads to light-dependent retinal degeneration. Interestingly, the knockdown of pkc53E also impacted the actin cytoskeleton of rhabdomeres in a light-independent manner. Here the Actin-GFP reporter is mislocalized and accumulated at the base of the rhabdomere, suggesting that Pkc53E regulates depolymerization of the actin microfilament. We explored the light-dependent regulation of Pkc53E and demonstrated that activation of Pkc53E can be independent of the phospholipase C PLCβ4/NorpA as degeneration of norpAP24 photoreceptors was enhanced by a reduced Pkc53E activity. We further show that the activation of Pkc53E may involve the activation of Plc21C by Gqα. Taken together, Pkc53E-B appears to exert both constitutive and light-regulated activity to promote the maintenance of photoreceptors possibly by regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- Bih-Hwa Shieh
- Department of Pharmacology, Center for Molecular Neuroscience and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37232, USA.
| | - Wesley Sun
- Department of Pharmacology, Center for Molecular Neuroscience and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Darwin Ferng
- Department of Pharmacology, Center for Molecular Neuroscience and Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Nosbisch JL, Bear JE, Haugh JM. A kinetic model of phospholipase C-γ1 linking structure-based insights to dynamics of enzyme autoinhibition and activation. J Biol Chem 2022; 298:101886. [PMID: 35367415 PMCID: PMC9097458 DOI: 10.1016/j.jbc.2022.101886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/31/2023] Open
Abstract
Phospholipase C-γ1 (PLC-γ1) is a receptor-proximal enzyme that promotes signal transduction through PKC in mammalian cells. Because of the complexity of PLC-γ1 regulation, a two-state (inactive/active) model does not account for the intricacy of activation and inactivation steps at the plasma membrane. Here, we introduce a structure-based kinetic model of PLC-γ1, considering interactions of its regulatory Src homology 2 (SH2) domains and perturbation of those dynamics upon phosphorylation of Tyr783, a hallmark of activation. For PLC-γ1 phosphorylation to dramatically enhance enzyme activation as observed, we found that high intramolecular affinity of the C-terminal SH2 (cSH2) domain-pTyr783 interaction is critical, but this affinity need not outcompete the autoinhibitory interaction of the cSH2 domain. Under conditions for which steady-state PLC-γ1 activity is sensitive to the rate of Tyr783 phosphorylation, maintenance of the active state is surprisingly insensitive to the phosphorylation rate, since pTyr783 is well protected by the cSH2 domain while the enzyme is active. In contrast, maintenance of enzyme activity is sensitive to the rate of PLC-γ1 membrane (re)binding. Accordingly, we found that hypothetical PLC-γ1 mutations that either weaken autoinhibition or strengthen membrane binding influence the activation kinetics differently, which could inform the characterization of oncogenic variants. Finally, we used this newly informed kinetic scheme to refine a spatial model of PLC/PKC polarization during chemotaxis. The refined model showed improved stability of the polarized pattern while corroborating previous qualitative predictions. As demonstrated here for PLC-γ1, this approach may be adapted to model the dynamics of other receptor- and membrane-proximal enzymes.
Collapse
Affiliation(s)
- Jamie L Nosbisch
- Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - James E Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
7
|
Mandal S, Bandyopadhyay S, Tyagi K, Roy A. Recent advances in understanding the molecular role of phosphoinositide-specific phospholipase C gamma 1 as an emerging onco-driver and novel therapeutic target in human carcinogenesis. Biochim Biophys Acta Rev Cancer 2021; 1876:188619. [PMID: 34454048 DOI: 10.1016/j.bbcan.2021.188619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023]
Abstract
Phosphoinositide metabolism is crucial intracellular signaling system that regulates a plethora of biological functions including mitogenesis, cell proliferation and division. Phospholipase C gamma 1 (PLCγ1) which belongs to phosphoinositide-specific phospholipase C (PLC) family, is activated by many extracellular stimuli including hormones, neurotransmitters, growth factors and modulates several cellular and physiological functions necessary for tumorigenesis such as cell survival, migration, invasion and angiogenesis by generating inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) via hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2). Cancer remains as a leading cause of global mortality and aberrant expression and regulation of PLCγ1 is linked to a plethora of deadly human cancers including carcinomas of the breast, lung, pancreas, stomach, prostate and ovary. Although PLCγ1 cross-talks with many onco-drivers and signaling circuits including PI3K, AKT, HIF1-α and RAF/MEK/ERK cascade, its precise role in carcinogenesis is not completely understood. This review comprehensively discussed the status quo of this ubiquitously expressed phospholipase as a tumor driver and highlighted its significance as a novel therapeutic target in cancer. Furthermore, we have highlighted the significance of somatic driver mutations in PLCG1 gene and molecular roles of PLCγ1 in several major human cancers, a knowledgebase that can be utilized to develop novel, isoform-specific small molecule inhibitors of PLCγ1.
Collapse
Affiliation(s)
- Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
8
|
Abstract
Phospholipase C γ1 (PLCγ1) is a member of the PLC family that functions as signal transducer by hydrolyzing membrane lipid to generate second messengers. The unique protein structure of PLCγ1 confers a critical role as a direct effector of VEGFR2 and signaling mediated by other receptor tyrosine kinases. The distinct vascular phenotypes in PLCγ1-deficient animal models and the gain-of-function mutations of PLCγ1 found in human endothelial cancers point to a major physiological role of PLCγ1 in the endothelial system. In this review, we discuss aspects of physiological and molecular function centering around PLCγ1 in the context of endothelial cells and provide a perspective for future investigation.
Collapse
Affiliation(s)
- Dongying Chen
- Yale Cardiovascular Research Center, Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
9
|
Ökten S, Aydın A, Koçyiğit ÜM, Çakmak O, Erkan S, Andac CA, Taslimi P, Gülçin İ. Quinoline‐based promising anticancer and antibacterial agents, and some metabolic enzyme inhibitors. Arch Pharm (Weinheim) 2020; 353:e2000086. [DOI: 10.1002/ardp.202000086] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Salih Ökten
- Department of Maths and Science EducationKırıkkale UniversityYahşihan Kırıkkale Turkey
| | - Ali Aydın
- Department of Basic Medical Science, Faculty of MedicineYozgat Bozok UniversityYozgat Turkey
| | - Ümit M. Koçyiğit
- Department of Basic Pharmacy Sciences, Faculty of PharmacyCumhuriyet UniversitySivas Turkey
| | - Osman Çakmak
- Department of Gastronomy, Faculty of Arts and Designİstanbul Rumeli UniversitySilivri İstanbul Turkey
| | - Sultan Erkan
- Department of Chemistry and Chemical Processing Technologies, Yıldızeli Vocational SchoolSivas Cumhuriyet UniversitySivas Turkey
| | - Cenk A. Andac
- Department of Pharmaceutical Chemistry, Faculty of PharmacyIstanbul Istinye UniversityZeytinburnu Istanbul Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of ScienceBartın UniversityBartın Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of SciencesAtatürk UniversityErzurum Turkey
| |
Collapse
|
10
|
Hajicek N, Keith NC, Siraliev-Perez E, Temple BRS, Huang W, Zhang Q, Harden TK, Sondek J. Structural basis for the activation of PLC-γ isozymes by phosphorylation and cancer-associated mutations. eLife 2019; 8:e51700. [PMID: 31889510 PMCID: PMC7004563 DOI: 10.7554/elife.51700] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Direct activation of the human phospholipase C-γ isozymes (PLC-γ1, -γ2) by tyrosine phosphorylation is fundamental to the control of diverse biological processes, including chemotaxis, platelet aggregation, and adaptive immunity. In turn, aberrant activation of PLC-γ1 and PLC-γ2 is implicated in inflammation, autoimmunity, and cancer. Although structures of isolated domains from PLC-γ isozymes are available, these structures are insufficient to define how release of basal autoinhibition is coupled to phosphorylation-dependent enzyme activation. Here, we describe the first high-resolution structure of a full-length PLC-γ isozyme and use it to underpin a detailed model of their membrane-dependent regulation. Notably, an interlinked set of regulatory domains integrates basal autoinhibition, tyrosine kinase engagement, and additional scaffolding functions with the phosphorylation-dependent, allosteric control of phospholipase activation. The model also explains why mutant forms of the PLC-γ isozymes found in several cancers have a wide spectrum of activities, and highlights how these activities are tuned during disease.
Collapse
Affiliation(s)
- Nicole Hajicek
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Nicholas C Keith
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Edhriz Siraliev-Perez
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Brenda RS Temple
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
- R L Juliano Structural Bioinformatics Core FacilityThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Weigang Huang
- Division of Chemical Biology and Medicinal ChemistryThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Qisheng Zhang
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
- Division of Chemical Biology and Medicinal ChemistryThe University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillUnited States
| | - T Kendall Harden
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - John Sondek
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
11
|
Tripathi N, Vetrivel I, Téletchéa S, Jean M, Legembre P, Laurent AD. Investigation of Phospholipase Cγ1 Interaction with SLP76 Using Molecular Modeling Methods for Identifying Novel Inhibitors. Int J Mol Sci 2019; 20:4721. [PMID: 31548507 PMCID: PMC6801593 DOI: 10.3390/ijms20194721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/03/2023] Open
Abstract
The enzyme phospholipase C gamma 1 (PLCγ1) has been identified as a potential drug target of interest for various pathological conditions such as immune disorders, systemic lupus erythematosus, and cancers. Targeting its SH3 domain has been recognized as an efficient pharmacological approach for drug discovery against PLCγ1. Therefore, for the first time, a combination of various biophysical methods has been employed to shed light on the atomistic interactions between PLCγ1 and its known binding partners. Indeed, molecular modeling of PLCγ1 with SLP76 peptide and with previously reported inhibitors (ritonavir, anethole, daunorubicin, diflunisal, and rosiglitazone) facilitated the identification of the common critical residues (Gln805, Arg806, Asp808, Glu809, Asp825, Gly827, and Trp828) as well as the quantification of their interaction through binding energies calculations. These features are in agreement with previous experimental data. Such an in depth biophysical analysis of each complex provides an opportunity to identify new inhibitors through pharmacophore mapping, molecular docking and MD simulations. From such a systematic procedure, a total of seven compounds emerged as promising inhibitors, all characterized by a strong binding with PLCγ1 and a comparable or higher binding affinity to ritonavir (∆Gbind < -25 kcal/mol), one of the most potent inhibitor reported till now.
Collapse
Affiliation(s)
- Neha Tripathi
- CEISAM UMR CNRS 6230, UFR Sciences et Techniques, Université de Nantes, 44322 Nantes CEDEX 3, France.
| | - Iyanar Vetrivel
- CEISAM UMR CNRS 6230, UFR Sciences et Techniques, Université de Nantes, 44322 Nantes CEDEX 3, France.
| | - Stéphane Téletchéa
- UFIP UMR CNRS 6286, UFR Sciences et Techniques, Université de Nantes, 44322 Nantes CEDEX 3, France.
| | - Mickaël Jean
- CLCC Eugène Marquis, Equipe Ligue Contre Le Cancer, 35042 Rennes, France.
| | - Patrick Legembre
- CLCC Eugène Marquis, Equipe Ligue Contre Le Cancer, 35042 Rennes, France.
- COSS INSERM UMR1242, Université Rennes 1, 35042 Rennes, France.
| | - Adèle D Laurent
- CEISAM UMR CNRS 6230, UFR Sciences et Techniques, Université de Nantes, 44322 Nantes CEDEX 3, France.
| |
Collapse
|
12
|
Lattanzio R, Iezzi M, Sala G, Tinari N, Falasca M, Alberti S, Buglioni S, Mottolese M, Perracchio L, Natali PG, Piantelli M. PLC-gamma-1 phosphorylation status is prognostic of metastatic risk in patients with early-stage Luminal-A and -B breast cancer subtypes. BMC Cancer 2019; 19:747. [PMID: 31362705 PMCID: PMC6668079 DOI: 10.1186/s12885-019-5949-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Background Phospholipase Cγ1 (PLCγ1) is highly expressed in human tumours. Our previous studies reported that both stable and inducible PLCγ1 down-regulation can inhibit formation of breast-cancer-derived experimental lung metastasis. Further, high expression of PLCγ1 and its constitutively activated forms (i.e., PLCγ1-pY1253, PLCγ1-pY783) is associated with worse clinical outcome in terms of incidence of distant metastases, but not of local relapse in T1-T2, N0 breast cancer patients. Methods In the present retrospective study, we analysed the prognostic role of PLCγ1 in early breast cancer patients stratified according to the St. Gallen criteria and to their menopausal status. PLCγ1-pY1253 and PLCγ1-pY783 protein expression levels were determined by immunohistochemistry on tissue microarrays, and were correlated with patients’ clinical data, using univariate and multivariate statistical analyses. Results In our series, the prognostic value of PLCγ1 overexpression was restricted to Luminal type tumours. From multivariate analyses, pY1253-PLCγ1High was an independent prognostic factor only in postmenopausal patients with Luminal-B tumours (hazard ratio [HR], 2.4; 95% confidence interval [CI], 1.1–5.3; P = 0.034). Conversely, PLCγ1-pY783High was a remarkably strong risk factor (HR, 20.1; 95% CI, 2.2–178.4; P = 0.003) for pre/perimenopausal patients with Luminal-A tumours. Conclusions PLCγ1 overexpression is a strong predictive surrogate marker of development of metastases in early Luminal-A and -B breast cancer patients, being able to discriminate patients with high and low risk of metastases. Therefore, targeting the PLCγ1 pathway can be considered of potential benefit for prevention of metastatic disease. Electronic supplementary material The online version of this article (10.1186/s12885-019-5949-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rossano Lattanzio
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy. .,Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| | - Manuela Iezzi
- Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy.,Department of Medicine and Aging Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Saverio Alberti
- Department of Biotechnology BIOMORF, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Simonetta Buglioni
- Department of Pathology, 'Regina Elena' National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy
| | - Marcella Mottolese
- Department of Pathology, 'Regina Elena' National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy
| | - Letizia Perracchio
- Department of Pathology, 'Regina Elena' National Cancer Institute, Via E. Chianesi, 53, 00144, Rome, Italy
| | - Pier Giorgio Natali
- Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Mauro Piantelli
- Center for Advanced Studies and Technology (CAST), 'G. d'Annunzio' University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
| |
Collapse
|
13
|
Jang HJ, Suh PG, Lee YJ, Shin KJ, Cocco L, Chae YC. PLCγ1: Potential arbitrator of cancer progression. Adv Biol Regul 2018; 67:179-189. [PMID: 29174396 DOI: 10.1016/j.jbior.2017.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Phospholipase C (PLC) is an essential mediator of cellular signaling. PLC regulates multiple cellular processes by generating bioactive molecules such as inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). These products propagate and regulate cellular signaling via calcium (Ca2+) mobilization and activation of protein kinase C (PKC), other kinases, and ion channels. PLCγ1, one of the primary subtypes of PLC, is directly activated by membrane receptors, including receptor tyrosine kinases (RTKs), and adhesion receptors such as integrin. PLCγ1 mediates signaling through direct interactions with other signaling molecules via SH domains, as well as its lipase activity. PLCγ1 is frequently enriched and mutated in various cancers, and is involved in the processes of tumorigenesis, including proliferation, migration, and invasion. Although many studies have suggested that PLCγ functions in cell mobility rather than proliferation in cancer, questions remain as to whether PLCγ regulates mitogenesis and whether PLCγ promotes or inhibits proliferation. Moreover, how PLCγ regulates cancer-associated cellular processes and the interplay among other proteins involved in cancer progression have yet to be fully elucidated. In this review, we discuss the current understanding of the role of PLCγ1 in cancer mobility and proliferation.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yu Jin Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyeong Jin Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy
| | - Young Chan Chae
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
14
|
Forebrain-specific ablation of phospholipase Cγ1 causes manic-like behavior. Mol Psychiatry 2017; 22:1473-1482. [PMID: 28138157 DOI: 10.1038/mp.2016.261] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 10/20/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
Abstract
Manic episodes are one of the major diagnostic symptoms in a spectrum of neuropsychiatric disorders that include schizophrenia, obsessive-compulsive disorder and bipolar disorder (BD). Despite a possible association between BD and the gene encoding phospholipase Cγ1 (PLCG1), its etiological basis remains unclear. Here, we report that mice lacking phospholipase Cγ1 (PLCγ1) in the forebrain (Plcg1f/f; CaMKII) exhibit hyperactivity, decreased anxiety-like behavior, reduced depressive-related behavior, hyperhedonia, hyperphagia, impaired learning and memory and exaggerated startle responses. Inhibitory transmission in hippocampal pyramidal neurons and striatal dopamine receptor D1-expressing neurons of Plcg1-deficient mice was significantly reduced. The decrease in inhibitory transmission is likely due to a reduced number of γ-aminobutyric acid (GABA)-ergic boutons, which may result from impaired localization and/or stabilization of postsynaptic CaMKII (Ca2+/calmodulin-dependent protein kinase II) at inhibitory synapses. Moreover, mutant mice display impaired brain-derived neurotrophic factor-tropomyosin receptor kinase B-dependent synaptic plasticity in the hippocampus, which could account for deficits of spatial memory. Lithium and valproate, the drugs presently used to treat mania associated with BD, rescued the hyperactive phenotypes of Plcg1f/f; CaMKII mice. These findings provide evidence that PLCγ1 is critical for synaptic function and plasticity and that the loss of PLCγ1 from the forebrain results in manic-like behavior.
Collapse
|
15
|
Emmanouilidi A, Lattanzio R, Sala G, Piantelli M, Falasca M. The role of phospholipase Cγ1 in breast cancer and its clinical significance. Future Oncol 2017; 13:1991-1997. [DOI: 10.2217/fon-2017-0125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer, the most common malignancy among women, is usually detected at an early stage and has a low risk of relapse. Nevertheless, a significant number of patients cannot be cured solely by local treatment. Distinguishing between patients who are of low risk of relapse from those who are of high risk may have important implications to improve treatment outcomes. The PLC-γ1 signaling pathway promotes many physiological processes, including cell migration and invasion. Increasing evidence shows aberrant PLC-γ1 signaling implication in carcinogenesis including breast cancer. In this review, the role of PLC-γ1 in breast cancer and its clinical implications will be discussed, as well as its potential as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Aikaterini Emmanouilidi
- Curtin Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Rossano Lattanzio
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Mauro Piantelli
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Marco Falasca
- Curtin Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Belmont J, Gu T, Mudd A, Salomon AR. A PLC-γ1 Feedback Pathway Regulates Lck Substrate Phosphorylation at the T-Cell Receptor and SLP-76 Complex. J Proteome Res 2017. [PMID: 28644030 DOI: 10.1021/acs.jproteome.6b01026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phospholipase C gamma 1 (PLC-γ1) occupies a critically important position in the T-cell signaling pathway. While its functions as a regulator of both Ca2+ signaling and PKC-family kinases are well characterized, PLC-γ1's role in the regulation of early T-cell receptor signaling events is incompletely understood. Activation of the T-cell receptor leads to the formation of a signalosome complex between SLP-76, LAT, PLC-γ1, Itk, and Vav1. Recent studies have revealed the existence of both positive and negative feedback pathways from SLP-76 to the apical kinase in the pathway, Lck. To determine if PLC-γ1 contributes to the regulation of these feedback networks, we performed a quantitative phosphoproteomic analysis of PLC-γ1-deficient T cells. These data revealed a previously unappreciated role for PLC-γ1 in the positive regulation of Zap-70 and T-cell receptor tyrosine phosphorylation. Conversely, PLC-γ1 negatively regulated the phosphorylation of SLP-76-associated proteins, including previously established Lck substrate phosphorylation sites within this complex. While the positive and negative regulatory phosphorylation sites on Lck were largely unchanged, Tyr192 phosphorylation was elevated in Jgamma1. The data supports a model wherein Lck's targeting, but not its kinase activity, is altered by PLC-γ1, possibly through Lck Tyr192 phosphorylation and increased association of the kinase with protein scaffolds SLP-76 and TSAd.
Collapse
Affiliation(s)
- Judson Belmont
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Tao Gu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Ashley Mudd
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States.,Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
17
|
Peptide microarray profiling identifies phospholipase C gamma 1 (PLC-γ1) as a potential target for t(8;21) AML. Oncotarget 2017; 8:67344-67354. [PMID: 28978037 PMCID: PMC5620177 DOI: 10.18632/oncotarget.18631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/01/2017] [Indexed: 12/27/2022] Open
Abstract
The t(8;21) (q22;q22) chromosomal translocation is one of the most frequent genetic alterations in acute myeloid leukemia (AML) which has a need for improved therapeutic strategies. We found PLC-γ1 as one of the highest phosphorylated peptides in t(8;21) AML samples compared to NBM or CN-AML in our previous peptide microarray. PLC-γ1 is known to play a role in cancer progression, however, the impact of PLC-γ1 in AML is currently unknown. Therefore, we aimed to study the functional role of PLC-γ1 by investigating the cellular growth, survival and its underlying mechanism in t(8;21) AML. In this study, PLC-γ1 expression was significantly higher in t(8;21) AML compared to other karyotypes. The PLC-γ1 protein expression was suppressed in AML1-ETO knock down cells indicating that it might induce kasumi-1 cell death. ShRNA-mediated PLC-γ1 knockdown in kasumi-1 cells significantly blocked cell growth, induced apoptosis and cell cycle arrest which was explained by the increased activation of apoptotic related and cell cycle regulatory protein expressions. Gene expression array analysis showed the up-regulation of apoptotic and DNA damage response genes together with the downregulation of cell growth, proliferation and differentiation genes in the PLC-γ1 suppressed kasumi-1 cells, consistent with the observed phenotypic effects. Importantly, PLC-γ1 suppressed kasumi-1 cells showed higher chemosensitivity to the chemotherapeutic drug treatments and lower cell proliferation upon hypoxic stress. Taken together, these in vitro finding strongly support an important role for PLC-γ1 in the survival of t(8;21) AML mimicking kasumi-1 cells and identify PLC-γ1 as a potential therapeutic target for t(8;21) AML treatment.
Collapse
|
18
|
Woo SJ, Jo HI, Lee HH, Chung JK. Molecular characterization and expression analysis of olive flounder (Paralichthys olivaceus) phospholipase C gamma 1 and gamma 2. FISH & SHELLFISH IMMUNOLOGY 2017; 63:353-366. [PMID: 27894895 DOI: 10.1016/j.fsi.2016.11.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Phospholipase C gamma 1 and gamma 2 (PLCG1 and PLCG2) are influential in modulating Ca2+ and diacylglycerol, second messengers involved in tyrosine kinase-dependent signaling, including growth factor activation. Here, we used RACE (rapid amplification of cDNA ends) to clone cDNA encoding PLCG1 (PoPLCG1) and PLCG2 (PoPLCG2) in the olive flounder (Paralichthys olivaceus). The respective 1313 and 1249 amino acid sequences share high identity with human PLCG1 and PLCG2, and contain the following domains: pleckstrin homology (PH), EF-hand, catalytic X and Y, Src homology 2 (SH2), Src homology 3 (SH3), and C2. Phylogenic analysis and sequence comparison of PoPLCG1 and PoPLCG2 with other PLC isozymes showed a close relationship between the two PLCGs, supported by structural analysis. In addition, tissue expression analysis showed that PoPLCG1 was expressed predominantly in the brain, eye, and heart, whereas PoPLCG2 was expressed principally in gills, esophagus, spleen, and kidney. Following stimulation with LPS and Poly I:C, PoPLCG expression was compared with the expression of inflammatory cytokines IL-1β, IL-6, and TNF-α via reverse transcription-PCR and real-time quantitative PCR. Our results suggest that PoPLCG isozymes perform a critical immune function in olive flounder, being active in pathogen resistance and the inflammation process.
Collapse
Affiliation(s)
- Soo Ji Woo
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea.
| | - Hyae In Jo
- Gyeongbuk Native Fish Business Center, Uiseong 37366, South Korea.
| | - Hyung Ho Lee
- Department of Biotechnology, Pukyong National University, Busan 608-737, South Korea.
| | - Joon Ki Chung
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea.
| |
Collapse
|
19
|
Yang Z, Kim S, Mahajan S, Zamani A, Faccio R. Phospholipase Cγ1 (PLCγ1) Controls Osteoclast Numbers via Colony-stimulating Factor 1 (CSF-1)-dependent Diacylglycerol/β-Catenin/CyclinD1 Pathway. J Biol Chem 2016; 292:1178-1186. [PMID: 27941021 DOI: 10.1074/jbc.m116.764928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/09/2016] [Indexed: 01/22/2023] Open
Abstract
Phospholipases Cγ (PLCγ) 1 and 2 are a class of highly homologous enzymes modulating a variety of cellular pathways through production of inositol 1,4,5-trisphosphate and diacylglycerol (DAG). Our previous studies demonstrated the importance of PLCγ2 in osteoclast (OC) differentiation by modulating inositol 1,4,5-trisphosphate-mediated calcium oscillations and the up-regulation of the transcription factor NFATc1. Surprisingly, despite being expressed throughout osteoclastogenesis, PLCγ1 did not compensate for PLCγ2 deficiency. Because both isoforms are activated during osteoclastogenesis, it is plausible that PLCγ1 modulates OC development independently of PLCγ2. Here, we utilized PLCγ1-specific shRNAs to delete PLCγ1 in OC precursors derived from wild type (WT) mice. Differently from PLCγ2, we found that PLCγ1 shRNA significantly suppresses OC differentiation by limiting colony-stimulating factor 1 (CSF-1)-dependent proliferation and β-catenin/cyclinD1 levels. Confirming the specificity toward CSF-1 signaling, PLCγ1 is recruited to the CSF-1 receptor following exposure to the cytokine. To understand how PLCγ1 controls cell proliferation, we turned to its downstream effector, DAG. By utilizing cells lacking the DAG kinase ζ, which have increased DAG levels, we demonstrate that DAG modulates CSF-1-dependent proliferation and β-catenin/cyclinD1 levels in OC precursors. Most importantly, the proliferation and osteoclastogenesis defects observed in the absence of PLCγ1 are normalized in PLCγ1/DAG kinase ζ double null cells. Taken together, our study shows that PLCγ1 controls OC numbers via a CSF-1-dependent DAG/β-catenin/cyclinD1 pathway.
Collapse
Affiliation(s)
- Zhengfeng Yang
- From the Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Seokho Kim
- From the Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sahil Mahajan
- From the Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ali Zamani
- From the Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Roberta Faccio
- From the Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
20
|
Mongiorgi S, Finelli C, Yang YR, Clissa C, McCubrey JA, Billi AM, Manzoli L, Suh PG, Cocco L, Follo MY. Inositide-dependent signaling pathways as new therapeutic targets in myelodysplastic syndromes. Expert Opin Ther Targets 2015; 20:677-87. [PMID: 26610046 DOI: 10.1517/14728222.2016.1125885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Nuclear inositide signaling pathways specifically regulate cell proliferation and differentiation. Interestingly, the modulation of nuclear inositides in hematological malignancies can differentially affect erythropoiesis or myelopoiesis. This is particularly important in patients with myelodysplastic syndromes (MDS), who show both defective erythroid and myeloid differentiation, as well as an increased risk of evolution into acute myeloid leukemia (AML). AREAS COVERED This review focuses on the structure and function of specific nuclear inositide enzymes, whose impairment could be linked with disease pathogenesis and cancer. The authors, stemming from literature and published data, discuss and describe the role of nuclear inositides, focusing on specific enzymes and demonstrating that targeting these molecules could be important to develop innovative therapeutic approaches, with particular reference to MDS treatment. EXPERT OPINION Demethylating therapy, alone or in combination with other drugs, is the most common and current therapy for MDS patients. Nuclear inositide signaling molecules have been demonstrated to be important in hematopoietic differentiation and are promising new targets for developing a personalized MDS therapy. Indeed, these enzymes can be ideal targets for drug design and their modulation can have several important downstream effects to regulate MDS pathogenesis and prevent MDS progression to AML.
Collapse
Affiliation(s)
- Sara Mongiorgi
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Carlo Finelli
- b Institute of Hematology "L e A Seràgnoli" , S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Yong Ryoul Yang
- c School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Republic of Korea
| | - Cristina Clissa
- b Institute of Hematology "L e A Seràgnoli" , S. Orsola-Malpighi Hospital , Bologna , Italy.,d Hematology and Transplant Center , AORMN , Pesaro , Italy
| | - James A McCubrey
- e Department of Microbiology & Immunology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Anna Maria Billi
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Lucia Manzoli
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Pann-Ghill Suh
- c School of Life Sciences , Ulsan National Institute of Science and Technology , Ulsan , Republic of Korea
| | - Lucio Cocco
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| | - Matilde Y Follo
- a Cellular Signalling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
21
|
Koss H, Bunney TD, Behjati S, Katan M. Dysfunction of phospholipase Cγ in immune disorders and cancer. Trends Biochem Sci 2014; 39:603-11. [PMID: 25456276 DOI: 10.1016/j.tibs.2014.09.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
The surge in genetic and genomic investigations over the past 5 years has resulted in many discoveries of causative variants relevant to disease pathophysiology. Although phospholipase C (PLC) enzymes have long been recognized as important components in intracellular signal transmission, it is only recently that this approach highlighted their role in disease development through gain-of-function mutations. In this review we describe the new findings that link the PLCγ family to immune disorders and cancer, and illustrate further efforts to elucidate the molecular mechanisms that underpin their dysfunction.
Collapse
Affiliation(s)
- Hans Koss
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK; Division of Molecular Structure, Medical Research Council (MRC) National Institute for Medical Research, London, UK
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| | - Sam Behjati
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
22
|
Zhu D, Tan Y, Yang X, Qiao J, Yu C, Wang L, Li J, Zhang Z, Zhong L. Phospholipase C gamma 1 is a potential prognostic biomarker for patients with locally advanced and resectable oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2014; 43:1418-26. [PMID: 25085076 DOI: 10.1016/j.ijom.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/14/2014] [Accepted: 07/02/2014] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the prognostic and predictive values of phospholipase C gamma 1 (PLCG1) expression in patients with locally advanced and resectable oral squamous cell carcinoma (OSCC), who were treated in a prospective, randomized, phase 3 trial evaluating standard treatment with surgery and postoperative radiation preceded or not by induction docetaxel, cisplatin, and 5-fluorouracil (TPF). Immunohistochemical staining for PLCG1 was performed on the biopsies of 232 out of 256 OSCC patients at clinical stage III/IVA; the PLCG1 positive score was determined by immunoreactive scoring system. The survival analysis was performed by Kaplan-Meier method; hazard ratios were calculated using the Cox proportional hazards model. Patients with a low PLCG1 expression had a significantly better overall survival (P=0.022), and a trend towards better disease-free survival (P=0.087), loco-regional recurrence-free survival (P=0.058), distant metastasis-free survival (P=0.053), and a high response rate to TPF induction chemotherapy with regard to clinical response (P=0.052) and pathological response (P=0.061), compared to those with high PLCG1 expression. Our results suggest that PLCG1 expression could be used as a prognostic biomarker for patients with advanced OSCC; however, it was not an adequate predictive biomarker for TPF induction chemotherapy.
Collapse
Affiliation(s)
- D Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Tan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Qiao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C Yu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Wang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Zhong
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Basecke J, Libra M, Nicoletti F, Cocco L, Martelli AM, Steelman LS. Diverse roles of GSK-3: tumor promoter-tumor suppressor, target in cancer therapy. Adv Biol Regul 2013; 54:176-96. [PMID: 24169510 DOI: 10.1016/j.jbior.2013.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/22/2022]
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | - Nicole M Davis
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Jorg Basecke
- Department of Medicine, University of Göttingen, Göttingen, Germany; Sanct-Josef-Hospital Cloppenburg, Department of Hematology and Oncology, Cloppenburg, Germany
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | | | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; Institute of Molecular Genetics, National Research Council-IOR, Bologna, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
24
|
Abstract
Phospholipases are enzymes that use phospholipids as substrate and are classified in three major classes A, C and D based on the reaction they catalyse. Phosphatidylinositol-specific Phospholipase C enzymes utilize phosphatidylinositol 4,5-bisphosphate as substrate and cleave the bond between the glycerol and the phosphate to produce important second messenger such as inositol trisphosphate and diacylglycerol. The Phospholipase C members are the most well-known phospholipases for their role in lipid signalling and cell proliferation and comprise 13 isoforms classified in 6 distinct sub-families. In particular, signalling activated by Phospholipase C γ, mostly activated by receptor and non-receptor tyrosine kinases, is well characterized in different cell systems. Increasing evidence suggest that Phospholipase C γ plays a key role in cell migration and invasion. Because of its role in cell growth and invasion, aberrant Phospholipase C γ signalling can contribute to carcinogenesis. A major challenge facing investigators who seek to target Phospholipase C γ directly is the fact that it is considered an "undruggable" protein. Indeed, isoform specificity and toxicity represents a big hurdle in the development of Phospholipase C γ small molecule inhibitors. Therefore, a future development in the field could be the identification of interacting partners as therapeutic targets that could be more druggable than Phospholipase C γ.
Collapse
Affiliation(s)
- Rossano Lattanzio
- Aging Research Centre, G. d'Annunzio University Foundation, 66013 Chieti, Italy.
| | | | | |
Collapse
|
25
|
Jang HJ, Yang YR, Kim JK, Choi JH, Seo YK, Lee YH, Lee JE, Ryu SH, Suh PG. Phospholipase C-γ1 involved in brain disorders. Adv Biol Regul 2013; 53:51-62. [PMID: 23063587 DOI: 10.1016/j.jbior.2012.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
Phosphoinositide-specific phospholipase C-γ1 (PLC-γ1) is an important signaling regulator involved in various cellular processes. In brain, PLC-γ1 is highly expressed and participates in neuronal cell functions mediated by neurotrophins. Consistent with essential roles of PLC-γ1, it is involved in development of brain and synaptic transmission. Significantly, abnormal expression and activation of PLC-γ1 appears in various brain disorders such as epilepsy, depression, Huntington's disease and Alzheimer's disease. Thus, PLC-γ1 has been implicated in brain functions as well as related brain disorders. In this review, we discuss the roles of PLC-γ1 in neuronal functions and its pathological relevance to diverse brain diseases.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|