1
|
Perales IE, Jones SD, Piaszynski KM, Geyer PK. Developmental changes in nuclear lamina components during germ cell differentiation. Nucleus 2024; 15:2339214. [PMID: 38597409 PMCID: PMC11008544 DOI: 10.1080/19491034.2024.2339214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
The nuclear lamina (NL) changes composition for regulation of nuclear events. We investigated changes that occur in Drosophila oogenesis, revealing switches in NL composition during germ cell differentiation. Germline stem cells (GSCs) express only LamB and predominantly emerin, whereas differentiating nurse cells predominantly express LamC and emerin2. A change in LamC-specific localization also occurs, wherein phosphorylated LamC redistributes to the nuclear interior only in the oocyte, prior to transcriptional reactivation of the meiotic genome. These changes support existing concepts that LamC promotes differentiation, a premise that was tested. Remarkably ectopic LamC production in GSCs did not promote premature differentiation. Increased LamC levels in differentiating germ cells altered internal nuclear structure, increased RNA production, and reduced female fertility due to defects in eggshell formation. These studies suggest differences between Drosophila lamins are regulatory, not functional, and reveal an unexpected robustness to level changes of a major scaffolding component of the NL.
Collapse
Affiliation(s)
- Isabella E. Perales
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Samuel D. Jones
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | | | - Pamela K. Geyer
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Perales IE, Jones SD, Duan T, Geyer PK. Maintenance of germline stem cell homeostasis despite severe nuclear distortion. Dev Biol 2024; 515:139-150. [PMID: 39038593 PMCID: PMC11317214 DOI: 10.1016/j.ydbio.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Stem cell loss in aging and disease is associated with nuclear deformation. Yet, how nuclear shape influences stem cell homeostasis is poorly understood. We investigated this connection using Drosophila germline stem cells, as survival of these stem cells is compromised by dysfunction of the nuclear lamina, the extensive protein network that lines the inner nuclear membrane and gives shape to the nucleus. To induce nuclear distortion in germline stem cells, we used the GAL4-UAS system to increase expression of the permanently farnesylated nuclear lamina protein, Kugelkern, a rate limiting factor for nuclear growth. We show that elevated Kugelkern levels cause severe nuclear distortion in germline stem cells, including extensive thickening and lobulation of the nuclear envelope and nuclear lamina, as well as alteration of internal nuclear compartments. Despite these changes, germline stem cell number, proliferation, and female fertility are preserved, even as females age. Collectively, these data demonstrate that disruption of nuclear architecture does not cause a failure of germline stem cell survival or homeostasis, revealing that nuclear deformation does not invariably promote stem cell loss.
Collapse
Affiliation(s)
- Isabella E Perales
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel D Jones
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Tingting Duan
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Pamela K Geyer
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
3
|
Bhide S, Chandran S, Rajasekaran NS, Melkani GC. Genetic and Pathophysiological Basis of Cardiac and Skeletal Muscle Laminopathies. Genes (Basel) 2024; 15:1095. [PMID: 39202453 PMCID: PMC11354015 DOI: 10.3390/genes15081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Nuclear lamins, a type V intermediate filament, are crucial components of the nuclear envelope's inner layer, maintaining nuclear integrity and mediating interactions between the nucleus and cytoplasm. Research on human iPSC-derived cells and animal models has demonstrated the importance of lamins in cardiac and skeletal muscle development and function. Mutations in lamins result in laminopathies, a group of diseases including muscular dystrophies, Hutchison-Gilford progeria syndrome, and cardiomyopathies with conduction defects. These conditions have been linked to disrupted autophagy, mTOR, Nrf2-Keap, and proteostasis signaling pathways, indicating complex interactions between the nucleus and cytoplasm. Despite progress in understanding these pathways, many questions remain about the mechanisms driving lamin-induced pathologies, leading to limited therapeutic options. This review examines the current literature on dysregulated pathways in cardiac and skeletal muscle laminopathies and explores potential therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Shruti Bhide
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
| | - Sahaana Chandran
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
| | - Namakkal S. Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35294, USA;
| | - Girish C. Melkani
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA; (S.B.); (S.C.)
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35294, USA;
| |
Collapse
|
4
|
Carlson J, Neidviecky E, Cook I, Cross B, Deng H. Interaction with B-type lamin reveals the function of Drosophila Keap1 xenobiotic response factor in nuclear architecture. Mol Biol Rep 2024; 51:556. [PMID: 38642177 PMCID: PMC11414762 DOI: 10.1007/s11033-024-09471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The Keap1-Nrf2 pathway serves as a central regulator that mediates transcriptional responses to xenobiotic and oxidative stimuli. Recent studies have shown that Keap1 and Nrf2 can regulate transcripts beyond antioxidant and detoxifying genes, yet the underlying mechanisms remain unclear. Our research has uncovered that Drosophila Keap1 (dKeap1) and Nrf2 (CncC) proteins can control high-order chromatin structure, including heterochromatin. METHODS AND RESULTS In this study, we identified the molecular interaction between dKeap1 and lamin Dm0, the Drosophila B-type lamin responsible for the architecture of nuclear lamina and chromatin. Ectopic expression of dKeap1 led to an ectopic localization of lamin to the intra-nuclear area, corelated with the spreading of the heterochromatin marker H3K9me2 into euchromatin regions. Additionally, mis-regulated dKeap1 disrupted the morphology of the nuclear lamina. Knocking down of dKeap1 partially rescued the lethality induced by lamin overexpression, suggesting their genetic interaction during development. CONCLUSIONS The discovered dKeap1-lamin interaction suggests a novel role for the Keap1 oxidative/xenobiotic response factor in regulating chromatin architecture.
Collapse
Affiliation(s)
- Jennifer Carlson
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Emma Neidviecky
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Isabel Cook
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Bethany Cross
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Huai Deng
- Department of Biology, University of Minnesota Duluth, 253A SSB, 1035 Kirby Drive, Duluth, MN, 55812, USA.
| |
Collapse
|
5
|
Ulloa R, Corrales O, Cabrera-Reyes F, Jara-Wilde J, Saez JJ, Rivas C, Lagos J, Härtel S, Quiroga C, Yuseff MI, Diaz-Muñoz J. B Cells Adapt Their Nuclear Morphology to Organize the Immune Synapse and Facilitate Antigen Extraction. Front Immunol 2022; 12:801164. [PMID: 35222354 PMCID: PMC8863768 DOI: 10.3389/fimmu.2021.801164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022] Open
Abstract
Upon interaction with immobilized antigens, B cells form an immune synapse where actin remodeling and re-positioning of the microtubule-organizing center (MTOC) together with lysosomes can facilitate antigen extraction. B cells have restricted cytoplasmic space, mainly occupied by a large nucleus, yet the role of nuclear morphology in the formation of the immune synapse has not been addressed. Here we show that upon activation, B cells re-orientate and adapt the size of their nuclear groove facing the immune synapse, where the MTOC sits, and lysosomes accumulate. Silencing the nuclear envelope proteins Nesprin-1 and Sun-1 impairs nuclear reorientation towards the synapse and leads to defects in actin organization. Consequently, B cells are unable to internalize the BCR after antigen activation. Nesprin-1 and Sun-1-silenced B cells also fail to accumulate the tethering factor Exo70 at the center of the synaptic membrane and display defective lysosome positioning, impairing efficient antigen extraction at the immune synapse. Thus, changes in nuclear morphology and positioning emerge as critical regulatory steps to coordinate B cell activation.
Collapse
Affiliation(s)
- Romina Ulloa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oreste Corrales
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Cabrera-Reyes
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Jara-Wilde
- Laboratory for Scientific Image Analysis SCIAN-Lab, Programa de Biología Integrativa, Instituto de Ciencias Biomédicas ICBM, Facultad de Medicina, Universidad de Chile and Biomedical Neuroscience Institute BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan José Saez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christopher Rivas
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jonathan Lagos
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Steffen Härtel
- Laboratory for Scientific Image Analysis SCIAN-Lab, Programa de Biología Integrativa, Instituto de Ciencias Biomédicas ICBM, Facultad de Medicina, Universidad de Chile and Biomedical Neuroscience Institute BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro de Informática Médica y Telemedicina CIMT, Facultad de Medicina, Universidad de Chile and Centro Nacional en Sistemas de Información en Salud CENS, Santiago, Chile
| | - Clara Quiroga
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile and Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Isabel Yuseff
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jheimmy Diaz-Muñoz
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Chu CT, Chen YH, Chiu WT, Chen HC. Tyrosine phosphorylation of lamin A by Src promotes disassembly of nuclear lamina in interphase. Life Sci Alliance 2021; 4:4/10/e202101120. [PMID: 34385357 PMCID: PMC8362257 DOI: 10.26508/lsa.202101120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Lamins form the nuclear lamina, which is important for nuclear structure and activity. Although posttranslational modifications, in particular serine phosphorylation, have been shown to be important for structural properties and functions of lamins, little is known about the role of tyrosine phosphorylation in this regard. In this study, we found that the constitutively active Src Y527F mutant caused the disassembly of lamin A/C. We demonstrate that Src directly phosphorylates lamin A mainly at Tyr45 both in vitro and in intact cells. The phosphomimetic Y45D mutant was diffusively distributed in the nucleoplasm and failed to assemble into the nuclear lamina. Depletion of lamin A/C in HeLa cells induced nuclear dysmorphia and genomic instability as well as increased nuclear plasticity for cell migration, all of which were partially restored by re-expression of lamin A, but further promoted by the Y45D mutant. Together, our results reveal a novel mechanism for regulating the assembly of nuclear lamina through Src and suggest that aberrant phosphorylation of lamin A by Src may contribute to nuclear dysmorphia, genomic instability, and nuclear plasticity.
Collapse
Affiliation(s)
- Ching-Tung Chu
- Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Chen Chen
- Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Arnold R, Vehns E, Randl H, Djabali K. Baricitinib, a JAK-STAT Inhibitor, Reduces the Cellular Toxicity of the Farnesyltransferase Inhibitor Lonafarnib in Progeria Cells. Int J Mol Sci 2021; 22:ijms22147474. [PMID: 34299092 PMCID: PMC8307450 DOI: 10.3390/ijms22147474] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is an ultra-rare multisystem premature aging disorder that leads to early death (mean age of 14.7 years) due to myocardial infarction or stroke. Most cases have a de novo point mutation at position G608G within exon 11 of the LMNA gene. This mutation leads to the production of a permanently farnesylated truncated prelamin A protein called “progerin” that is toxic to the cells. Recently, farnesyltransferase inhibitor (FTI) lonafarnib has been approved by the FDA for the treatment of patients with HGPS. While lonafarnib treatment irrefutably ameliorates HGPS disease, it is however not a cure. FTI has been shown to cause several cellular side effects, including genomic instability as well as binucleated and donut-shaped nuclei. We report that, in addition to these cellular stresses, FTI caused an increased frequency of cytosolic DNA fragment formation. These extranuclear DNA fragments colocalized with cGAs and activated the cGAS-STING-STAT1 signaling axis, upregulating the expression of proinflammatory cytokines in FTI-treated human HGPS fibroblasts. Treatment with lonafarnib and baricitinib, a JAK-STAT inhibitor, not only prevented the activation of the cGAS STING-STAT1 pathway, but also improved the overall HGPS cellular homeostasis. These ameliorations included progerin levels, nuclear shape, proteostasis, cellular ATP, proliferation, and the reduction of cellular inflammation and senescence. Thus, we suggest that combining lonafarnib with baricitinib might provide an opportunity to reduce FTI cellular toxicity and ameliorate HGPS symptoms further than lonafarnib alone.
Collapse
Affiliation(s)
- Rouven Arnold
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Elena Vehns
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Hannah Randl
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
8
|
Cavaliere V, Lattanzi G, Andrenacci D. Silencing of Euchromatic Transposable Elements as a Consequence of Nuclear Lamina Dysfunction. Cells 2020; 9:cells9030625. [PMID: 32151001 PMCID: PMC7140440 DOI: 10.3390/cells9030625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are mobile genomic sequences that are normally repressed to avoid proliferation and genome instability. Gene silencing mechanisms repress TEs by RNA degradation or heterochromatin formation. Heterochromatin maintenance is therefore important to keep TEs silent. Loss of heterochromatic domains has been linked to lamin mutations, which have also been associated with derepression of TEs. In fact, lamins are structural components of the nuclear lamina (NL), which is considered a pivotal structure in the maintenance of heterochromatin domains at the nuclear periphery in a silent state. Here, we show that a lethal phenotype associated with Lamin loss-of-function mutations is influenced by Drosophila gypsy retrotransposons located in euchromatic regions, suggesting that NL dysfunction has also effects on active TEs located in euchromatic loci. In fact, expression analysis of different long terminal repeat (LTR) retrotransposons and of one non-LTR retrotransposon located near active genes shows that Lamin inactivation determines the silencing of euchromatic TEs. Furthermore, we show that the silencing effect on euchromatic TEs spreads to the neighboring genomic regions, with a repressive effect on nearby genes. We propose that NL dysfunction may have opposed regulatory effects on TEs that depend on their localization in active or repressed regions of the genome.
Collapse
Affiliation(s)
- Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy;
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Davide Andrenacci
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence:
| |
Collapse
|
9
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
10
|
Bianchi A, Manti PG, Lucini F, Lanzuolo C. Mechanotransduction, nuclear architecture and epigenetics in Emery Dreifuss Muscular Dystrophy: tous pour un, un pour tous. Nucleus 2019; 9:276-290. [PMID: 29619865 PMCID: PMC5973142 DOI: 10.1080/19491034.2018.1460044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The alteration of the several roles that Lamin A/C plays in the mammalian cell leads to a broad spectrum of pathologies that – all together – are named laminopathies. Among those, the Emery Dreifuss Muscular Dystrophy (EDMD) is of particular interest as, despite the several known mutations of Lamin A/C, the genotype–phenotype correlation still remains poorly understood; this suggests that the epigenetic background of patients might play an important role during the time course of the disease. Historically, both a mechanical role of Lamin A/C and a regulative one have been suggested as the driving force of laminopathies; however, those two hypotheses are not mutually exclusive. Recent scientific evidence shows that Lamin A/C sustains the correct gene expression at the epigenetic level thanks to the Lamina Associated Domains (LADs) reorganization and the crosstalk with the Polycomb Group of Proteins (PcG). Furthermore, the PcG-dependent histone mark H3K27me3 increases under mechanical stress, finally pointing out the link between the mechano-properties of the nuclear lamina and epigenetics. Here, we summarize the emerging mechanisms that could explain the high variability seen in Emery Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Andrea Bianchi
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | | | - Federica Lucini
- b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | - Chiara Lanzuolo
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy.,c Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
11
|
Östlund C, Chang W, Gundersen GG, Worman HJ. Pathogenic mutations in genes encoding nuclear envelope proteins and defective nucleocytoplasmic connections. Exp Biol Med (Maywood) 2019; 244:1333-1344. [PMID: 31299860 DOI: 10.1177/1535370219862243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutations in genes encoding nuclear lamins and associated nuclear envelope proteins have been linked to a broad range of inherited diseases affecting different tissues and organs. These diseases are often referred to as laminopathies. Scientists have yet to elucidate exactly how pathogenic mutations leading to alteration of a nuclear envelope protein cause disease. Our relatively recent research has shown that pathogenic mutations in genes encoding nuclear envelope proteins lead to defective nucleocytoplasmic connections that disrupt proper functioning of the linker of nucleoskeleton and cytoskeleton complex in the establishment of cell polarity. These defects may explain, at least in part, pathogenic mechanisms underlying laminopathies.Impact statementMutations in genes encoding nuclear lamins and associated nuclear envelope proteins have been linked to several diseases affecting different tissues and organs. The pathogenic mechanisms underlying these diseases, often called laminopathies, remain poorly understood. Increased knowledge of the functions of different nuclear envelope proteins and the interactions between them is crucial to elucidate these disease mechanisms. Our research has shown that pathogenic mutations in genes encoding nuclear envelope proteins lead to defective nucleocytoplasmic connections that disrupt proper functioning of the linker of nucleoskeleton and cytoskeleton (LINC) complex in the establishment of cell polarity. These defects may contribute to the pathogenesis of laminopathies and provide novel targets for therapeutics.
Collapse
Affiliation(s)
- Cecilia Östlund
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wakam Chang
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
12
|
Crasto S, Di Pasquale E. Induced Pluripotent Stem Cells to Study Mechanisms of Laminopathies: Focus on Epigenetics. Front Cell Dev Biol 2018; 6:172. [PMID: 30619852 PMCID: PMC6306496 DOI: 10.3389/fcell.2018.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022] Open
Abstract
Laminopathies are a group of rare degenerative disorders that manifest with a wide spectrum of clinical phenotypes, including both systemic multi-organ disorders, such as the Hutchinson-Gilford Progeria Syndrome (HGPS), and tissue-restricted diseases, such as Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy and lipodystrophies, often overlapping. Despite their clinical heterogeneity, which remains an open question, laminopathies are commonly caused by mutations in the LMNA gene, encoding the nuclear proteins Lamin A and C. These two proteins are main components of the nuclear lamina and are involved in several biological processes. Besides the well-known structural function in the nucleus, their role in regulating chromatin organization and transcription has emerged in the last decade, supporting the hypothesis that the disruption of this layer of regulation may be mechanism underlying the disease. Indeed, recent studies that show various epigenetic defects in cells carrying LMNA mutations, such as loss of heterochromatin, changes in gene expression and chromatin remodeling, strongly support this view. However, those findings are restricted to few cell types in humans, mainly because of the limited accessibility of primary cells and the difficulties to culture them ex-vivo. On the other hand, animal models might fail to recapitulate phenotypic hallmarks of the disease as of humans. To fill this gap, models based on induced pluripotent stem cell (iPSCs) technology have been recently generated that allowed investigations on diverse cells types, such as mesenchymal stem cells (MSCs), vascular and smooth muscle cells and cardiomyocytes, and provided a platform for investigating mechanisms underlying the pathogenesis of laminopathies in a cell-type specific human context. Nevertheless, studies on iPSC-based models of laminopathy have expanded only in the last few years and, with the advancement of reprogramming and differentiation protocols, their number is expecting to further increase over time. This review will give an overview of models developed thus far, with a focus on the novel insights on epigenetic mechanisms underlying the disease in different human cellular contexts. Perspectives and future directions of the field will be also given, highlighting the potential of those models for preclinical studies for identifying molecular targets and their translational impact on patients' cure.
Collapse
Affiliation(s)
- Silvia Crasto
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Milan, Milan, Italy.,Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
13
|
Deal SL, Yamamoto S. Unweaving the role of nuclear Lamins in neural circuit integrity. Cell Stress 2018; 2:219-224. [PMID: 31223139 PMCID: PMC6558928 DOI: 10.15698/cst2018.09.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 02/02/2023] Open
Abstract
Lamins are type-V intermediate filament proteins that comprise the nuclear lamina. Although once considered static structural components that provide physical support to the inner nuclear envelope, recent studies are revealing additional functional and regulatory roles for Lamins in chromatin organization, gene regulation, DNA repair, cell division and signal transduction. In this issue of Cell Stress, Oyston et al. (2018) reports the function of Lamin in the maintenance of nervous system integrity and neural circuit function using Drosophila. A number of laminopathies in humans exhibit age-dependent neurological phenotypes, but understanding how defects in specific neural cell types or circuitries contribute to patient phenotypes is very challenging. Drosophila provides a simple yet sophisticated system to begin untangling the vulnerability of diverse neuronal cell types and circuits against cellular stressors induced by defects in nuclear lamina organization.
Collapse
Affiliation(s)
- Samantha L. Deal
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030
- Department of Neuroscience, BCM, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX
| |
Collapse
|
14
|
Ilicheva N, Podgornaya O, Bogolyubov D, Pochukalina G. The karyosphere capsule in Rana temporaria oocytes contains structural and DNA-binding proteins. Nucleus 2018; 9:516-529. [PMID: 30272509 PMCID: PMC6244735 DOI: 10.1080/19491034.2018.1530935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
During the last stages of oogenesis, oocyte chromosomes condense and come close together, forming the so-called karyosphere. Karyosphere formation is accompanied by an essential decrease in transcriptional activity. In the grass frog Rana temporaria, the karyosphere is surrounded by an extrachromosomal capsule that separates the chromosomes from the rest of the nucleoplasm. The karyosphere capsule (KC) of R. temporaria has been investigated in detail at the ultrastructural level, but its protein composition remained largely unknown. We demonstrate here that nuclear actin, especially F-actin, as well as lamins A/C and B are the most abundant proteins of the KC. Key proteins of nuclear pore complexes, such as Nup93 and Nup35, are also detectable in the KC. New antibodies recognizing the telomere-binding protein TRF2 allowed us to localize TRF2 in nuclear speckles. We also found that the R. temporaria KC contains some proteins involved in chromatin remodeling, including topoisomerase II and ATRX. Thus, we believe that KC isolates the chromosomes from the rest of the nucleoplasm during the final period of oocyte growth (late diplotene) and represents a specialized oocyte nuclear compartment to store a variety of factors involved in nuclear metabolism that can be used in future early development. Abbreviations: BrUTP: 5-bromouridine 5'-triphosphate; CytD: cytochalasin D; IGCs: interchromatin granule clasters; IgG: immunoglobulin G; KC: karyosphere capsule; Mw: molecular weight; NE: nuclear envelope; PBS: phosphate buffered saline; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; Topo II: topoisomerase II.
Collapse
Affiliation(s)
- Nadya Ilicheva
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga Podgornaya
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, St. Petersburg, Russia
- Laboratory of Biomedical Cell Technology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Dmitry Bogolyubov
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Galina Pochukalina
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
15
|
Pecorari I, Borin D, Sbaizero O. A Perspective on the Experimental Techniques for Studying Lamins. Cells 2017; 6:E33. [PMID: 28994747 PMCID: PMC5755493 DOI: 10.3390/cells6040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/01/2017] [Accepted: 10/05/2017] [Indexed: 01/29/2023] Open
Abstract
Lamins are type V intermediate filaments that collectively form a meshwork underneath the inner nuclear membrane, called nuclear lamina. Furthermore, they are also present in the nucleoplasm. Lamins are experiencing a growing interest, since a wide range of diseases are induced by mutations in the gene coding for A-type lamins, globally known as laminopathies. Moreover, it has been demonstrated that lamins are involved in other pathological conditions, like cancer. The role of lamins has been studied from several perspectives, exploiting different techniques and procedures. This multidisciplinary approach has contributed to resolving the unique features of lamins and has provided a thorough insight in their role in living organisms. Yet, there are still many unanswered questions, which constantly generate research in the field. The present work is aimed to review some interesting experimental techniques performed so far to study lamins. Scientists can take advantage of this collection for their novel investigations, being aware of the already pursued and consolidated methodologies. Hopefully, advances in these research directions will provide insights to achieve better diagnostic procedures and effective therapeutic options.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, Via Valerio 10, 34127 Trieste, Italy.
| | - Daniele Borin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 10, 34127 Trieste, Italy.
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via Valerio 10, 34127 Trieste, Italy.
| |
Collapse
|
16
|
Ranade D, Koul S, Thompson J, Prasad KB, Sengupta K. Chromosomal aneuploidies induced upon Lamin B2 depletion are mislocalized in the interphase nucleus. Chromosoma 2017; 126:223-244. [PMID: 26921073 PMCID: PMC5371638 DOI: 10.1007/s00412-016-0580-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 12/31/2022]
Abstract
Chromosome territories assume non-random positions in the interphase nucleus with gene-rich chromosomes localized toward the nuclear interior and gene-poor chromosome territories toward the nuclear periphery. Lamins are intermediate filament proteins of the inner nuclear membrane required for the maintenance of nuclear structure and function. Here, we show using whole-genome expression profiling that Lamin A/C or Lamin B2 depletion in an otherwise diploid colorectal cancer cell line (DLD1) deregulates transcript levels from specific chromosomes. Further, three-dimensional fluorescence in situ hybridization (3D-FISH) analyses of a subset of these transcriptionally deregulated chromosome territories revealed that the diploid chromosome territories in Lamin-depleted cells largely maintain conserved positions in the interphase nucleus in a gene-density-dependent manner. In addition, chromosomal aneuploidies were induced in ~25 % of Lamin A/C or Lamin B2-depleted cells. Sub-populations of these aneuploid cells consistently showed a mislocalization of the gene-rich aneuploid chromosome 19 territory toward the nuclear periphery, while gene-poor aneuploid chromosome 18 territory was mislocalized toward the nuclear interior predominantly upon Lamin B2 than Lamin A/C depletion. In addition, a candidate gene locus ZNF570 (Chr.19q13.12) significantly overexpressed upon Lamin B2 depletion was remarkably repositioned away from the nuclear lamina. Taken together, our studies strongly implicate an overarching role for Lamin B2 in the maintenance of nuclear architecture since loss of Lamin B2 relieves the spatial positional constraints required for maintaining conserved localization of aneuploid chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Devika Ranade
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Shivsmriti Koul
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Joyce Thompson
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Kumar Brajesh Prasad
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research, Pune, Main Building, Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
17
|
Abstract
SUMMARYThe nucleoskeleton is an important structural feature of the metazoan nucleus and is involved in the regulation of genome expression and maintenance. The nuclear lamins are intermediate filament proteins that form a peripheral nucleoskeleton in concert with other lamin-associated proteins. Several other proteins normally found in the cytoskeleton have also been identified in the nucleus, but, as will be discussed here, their roles in forming a nucleoskeleton have not been elucidated. Nevertheless, mutations in lamins and lamin-associated proteins cause a spectrum of diseases, making them interesting targets for future research.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
18
|
Pecorari I, Puzzi L, Sbaizero O. Atomic force microscopy and lamins: A review study towards future, combined investigations. Microsc Res Tech 2016; 80:97-108. [PMID: 27859883 DOI: 10.1002/jemt.22801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
In the last decades, atomic force microscopy (AFM) underwent a rapid and stunning development, especially for studying mechanical properties of biological samples. The numerous discoveries relying to this approach, have increased the credit of AFM as a versatile tool, and potentially eligible as a diagnostic equipment. Meanwhile, it has become strikingly evident that lamins are involved on the onset and development of certain diseases, including cancer, Hutchinson-Gilford progeria syndrome, cardiovascular pathologies, and muscular dystrophy. A new category of pathologies has been defined, the laminopathies, which are caused by mutations in the gene encoding for A-type lamins. As the majority of medical issues, lamins, and all their related aspects can be considered as a quite complex problem. Indeed, there are many facets to explore, and this definitely requires a multidisciplinary approach. One of the most intriguing aspects concerning lamins is their remarkable contribute to cells mechanics. Over the years, this has led to the speculation of the so-called "structural hypothesis", which attempts to elucidate the etiology and some features of the laminopathies. Among the various techniques tried to figure out the role of lamins in the cells mechanics, the AFM has been already successfully applied, proving its versatility. Therefore, the present work aims both to highlight the qualities of AFM and to review the most relevant knowledge about lamins, in order to promote the study of the latter, taking advantage from the former. Microsc. Res. Tech. 80:97-108, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| | - Luca Puzzi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| |
Collapse
|
19
|
Burla R, Carcuro M, Torre ML, Fratini F, Crescenzi M, D'Apice MR, Spitalieri P, Raffa GD, Astrologo L, Lattanzi G, Cundari E, Raimondo D, Biroccio A, Gatti M, Saggio I. The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence. Open Biol 2016; 6:160103. [PMID: 27512140 PMCID: PMC5008010 DOI: 10.1098/rsob.160103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023] Open
Abstract
AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence.
Collapse
Affiliation(s)
- Romina Burla
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy Istituto Pasteur Fondazione Cenci Bolognetti, Rome 00185, Italy Istituto di Biologia e Patologia Molecolari CNR Roma, 00185, Italy
| | - Mariateresa Carcuro
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy
| | - Mattia La Torre
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy
| | | | | | | | - Paola Spitalieri
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Roma 00133, Italy
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy
| | - Letizia Astrologo
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy
| | | | - Enrico Cundari
- Istituto di Biologia e Patologia Molecolari CNR Roma, 00185, Italy
| | - Domenico Raimondo
- Dipartimento di Medicina Molecolare, Sapienza, Università di Roma, Rome 00185, Italy
| | - Annamaria Biroccio
- Unità di Oncogenomica ed Epigenetica, Istituto Nazionale Tumori Regina Elena, Roma 00144, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy Istituto di Biologia e Patologia Molecolari CNR Roma, 00185, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, 00185, Italy Istituto di Biologia e Patologia Molecolari CNR Roma, 00185, Italy
| |
Collapse
|
20
|
Pochukalina GN, Ilicheva NV, Podgornaya OI, Voronin AP. Nucleolus-like body of mouse oocytes contains lamin A and B and TRF2 but not actin and topo II. Mol Cytogenet 2016; 9:50. [PMID: 27347007 PMCID: PMC4921027 DOI: 10.1186/s13039-016-0259-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/18/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND During the final stages of oocyte development, all chromosomes join in a limited nuclear volume for the final formation of a single complex chromatin structure - the karyosphere. In the majority of mammalian species, the chromosomes surround a round protein/fibrillar body known as the central body, or nucleolus-like body (NLB). Nothing seems to unite the inner portion of the karyosphere with the nucleolus except position at its remnants. Nevertheless, in this study we will use term NLB as the conventional one for karyosphere with the central body. At the morphological level, NLBs consist of tightly-packed fibres of 6-10 nm. The biochemical structure of this dense, compact NLB fibre centre remains uncertain. RESULTS The aim of this study was to determine which proteins represent the NLB components at final stages of karyosphere formation in mouse oogenesis. To determine this, three antibodies (ABs) have been examined against different actin epitopes. Examination of both ABs against the actin N-end provided similar results: spots inside the nucleus. Double staining with AB against SC35 and actin revealed the colocalization of these proteins in IGCs (interchromatin granule clusters/nuclear speckles/SC35 domains). In contrast, examination of polyclonal AB against peptide at the C-end reveals a different result: actin is localized exclusively in connection with the chromatin. Surprisingly, no forms of actin or topoisomerase II are present as components of the NLB. It was discovered that: (1) lamin B is an NLB component from the beginning of NLB formation, and a major portion of it resides in the NLB at the end of oocyte development; (2) lamin A undergoes rapid movement into the NLB, and a majority of it remains in the NLB; (3) the telomere-binding protein TRF2 resides in the IGCs/nuclear speckles until the end of oocyte development, when significant part of it transfers to the NLB. CONCLUSIONS NLBs do not contain actin or topo II. Lamin B is involved from the beginning of NLB formation. Both Lamin A and TRF2 exhibit rapid movement to the NLB at the end of oogenesis. This dynamic distribution of proteins may reflect the NLB's role in future chromatin organization post-fertilisation.
Collapse
Affiliation(s)
| | - Nadya V. Ilicheva
- />Institute of Cytology, Russian Academy of Sciences, St Petersburg, 194064 Russia
| | - Olga I. Podgornaya
- />Institute of Cytology, Russian Academy of Sciences, St Petersburg, 194064 Russia
- />Saint Petersburg State University, St Petersburg, 199034 Russia
- />Far Eastern Federal University, Vladivostok, 690950 Russia
| | - Alexey P. Voronin
- />Institute of Cytology, Russian Academy of Sciences, St Petersburg, 194064 Russia
- />Saint Petersburg State University, St Petersburg, 199034 Russia
| |
Collapse
|
21
|
Wei W, Wang H, Li X, Fang N, Yang S, Liu H, Kang X, Sun X, Ji S. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection. Viruses 2016; 8:v8050126. [PMID: 27164127 PMCID: PMC4885081 DOI: 10.3390/v8050126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 01/02/2023] Open
Abstract
At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf) of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp)-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsids may pass through the nuclear envelope. Immunofluorescence assay indicated that the lamina showed a ruffled staining pattern with the formation of invaginations in the Sf9 cells infected with AcMNPV, while it was evenly distributed at the nuclear periphery of mock-infected cells. Western blotting results indicated that the total amount of lamin in the baculovirus-infected Sf9 cells was significantly decreased compared with the mock-infected cells. These results imply that AcMNPV infection induces structural and biochemical rearrangements of lamina of Sf9 cells.
Collapse
Affiliation(s)
- Wenqiang Wei
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng 475004, China.
| | - Hongju Wang
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng 475004, China.
| | - Xiaoya Li
- School of Education Science, Henan University, Kaifeng 475004, China.
| | - Na Fang
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng 475004, China.
| | - Shili Yang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Hongyan Liu
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng 475004, China.
| | - Xiaonan Kang
- School of Education Science, Henan University, Kaifeng 475004, China.
| | - Xiulian Sun
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Medical School, Henan University, Kaifeng 475004, China.
| |
Collapse
|
22
|
Takeshi S, Pack CG, Goldman RD. Analyses of the Dynamic Properties of Nuclear Lamins by Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Correlation Spectroscopy (FCS). Methods Mol Biol 2016; 1411:99-111. [PMID: 27147036 DOI: 10.1007/978-1-4939-3530-7_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The major structural components of the nuclear lamina are the A- and B-type nuclear lamin proteins which are also present in the nucleoplasm. Studies of molecular movements of the lamins in both the lamina and nucleoplasm of living cell nuclei have provided insights into their roles in maintaining nuclear architecture. In this chapter, we present protocols for quantitatively measuring the mobilities of lamin proteins by fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) in mammalian cell nuclei.
Collapse
Affiliation(s)
- Shimi Takeshi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL, 60611, USA.,Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Chan-Gi Pack
- ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL, 60611, USA.
| |
Collapse
|
23
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. WITHDRAWN: Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014:S1084-9521(14)00058-5. [PMID: 24685615 DOI: 10.1016/j.semcdb.2014.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.semcdb.2014.03.022. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2).
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3).
| |
Collapse
|
24
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014; 29:125-47. [PMID: 24662892 DOI: 10.1016/j.semcdb.2014.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lamin A-related progeroid syndromes are genetically determined, extremely rare and severe. In the past ten years, our knowledge and perspectives for these diseases has widely progressed, through the progressive dissection of their pathophysiological mechanisms leading to precocious and accelerated aging, from the genes mutations discovery until therapeutic trials in affected children. A-type lamins are major actors in several structural and functional activities at the nuclear periphery, as they are major components of the nuclear lamina. However, while this is usually poorly considered, they also play a key role within the rest of the nucleoplasm, whose defects are related to cell senescence. Although nuclear shape and nuclear envelope deformities are obvious and visible events, nuclear matrix disorganization and abnormal composition certainly represent the most important causes of cell defects with dramatic pathological consequences. Therefore, lamin-associated diseases should be better referred as laminopathies instead of envelopathies, this later being too restrictive, considering neither the key structural and functional roles of soluble lamins in the entire nucleoplasm, nor the nuclear matrix contribution to the pathophysiology of lamin-associated disorders and in particular in defective lamin A processing-associated aging diseases. Based on both our understanding of pathophysiological mechanisms and the biological and clinical consequences of progeria and related diseases, therapeutic trials have been conducted in patients and were terminated less than 10 years after the gene discovery, a quite fast issue for a genetic disease. Pharmacological drugs have been repurposed and used to decrease the toxicity of the accumulated, unprocessed and truncated prelaminA in progeria. To date, none of them may be considered as a cure for progeria and these clinical strategies were essentially designed toward reducing a subset of the most dramatic and morbid features associated to progeria. New therapeutic strategies under study, in particular targeting the protein expression pathway at the mRNA level, have shown a remarkable efficacy both in vitro in cells and in vivo in mice models. Strategies intending to clear the toxic accumulated proteins from the nucleus are also under evaluation. However, although exceedingly rare, improving our knowledge of genetic progeroid syndromes and searching for innovative and efficient therapies in these syndromes is of paramount importance as, even before they can be used to save lives, they may significantly (i) expand the affected childrens' lifespan and preserve their quality of life; (ii) improve our understanding of aging-related disorders and other more common diseases; and (iii) expand our fundamental knowledge of physiological aging and its links with major physiological processes such as those involved in oncogenesis.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| |
Collapse
|
25
|
Fehring V, Schaeper U, Ahrens K, Santel A, Keil O, Eisermann M, Giese K, Kaufmann J. Delivery of therapeutic siRNA to the lung endothelium via novel Lipoplex formulation DACC. Mol Ther 2014; 22:811-20. [PMID: 24390281 DOI: 10.1038/mt.2013.291] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/21/2013] [Indexed: 11/09/2022] Open
Abstract
Posttranscriptional gene silencing by RNA interference can be therapeutically exploited to inhibit pathophysiological gene expression. However, in contrast to the established effectiveness of RNAi in vitro, safe and effective delivery of siRNAs to specific organs and cell types in vivo remains the major hurdle. Here, we report the development and in vivo characterization of a novel siRNA delivery system (DACC lipoplex) suitable for modulating target gene expression specifically in the lung vasculature. Systemic administration of DACC in mice delivered siRNA cargo functionally to the lung pulmonary endothelium. A single dose of DACC lipoplexes administered by bolus injection or by infusion was sufficient to specifically silence genes expressed in pulmonary endothelial cells such as CD31, Tie-2, VE-cadherin, or BMP-R2. When tested in a mouse model for lung cancer, repeated treatment with DACC/siRNA(CD31) reduced formation of lung metastases and increased life span in a mouse model of experimental lung metastasis.
Collapse
Affiliation(s)
- V Fehring
- Silence Therapeutics GmbH, Berlin, Germany
| | - U Schaeper
- Silence Therapeutics GmbH, Berlin, Germany
| | - K Ahrens
- Silence Therapeutics GmbH, Berlin, Germany
| | - A Santel
- Silence Therapeutics GmbH, Berlin, Germany
| | - O Keil
- Silence Therapeutics GmbH, Berlin, Germany
| | | | - K Giese
- Silence Therapeutics GmbH, Berlin, Germany
| | | |
Collapse
|
26
|
Shimi T, Goldman RD. Nuclear lamins and oxidative stress in cell proliferation and longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:415-30. [PMID: 24563359 DOI: 10.1007/978-1-4899-8032-8_19] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In mammalian cells, the nuclear lamina is composed of a complex fibrillar network associated with the inner membrane of the nuclear envelope. The lamina provides mechanical support for the nucleus and functions as the major determinant of its size and shape. At its innermost aspect it associates with peripheral components of chromatin and thereby contributes to the organization of interphase chromosomes. The A- and B-type lamins are the major structural components of the lamina, and numerous mutations in the A-type lamin gene have been shown to cause many types of human diseases collectively known as the laminopathies. These mutations have also been shown to cause a disruption in the normal interactions between the A and B lamin networks. The impact of these mutations on nuclear functions is related to the roles of lamins in regulating various essential processes including DNA synthesis and damage repair, transcription and the regulation of genes involved in the response to oxidative stress. The major cause of oxidative stress is the production of reactive oxygen species (ROS), which is critically important for cell proliferation and longevity. Moderate increases in ROS act to initiate signaling pathways involved in cell proliferation and differentiation, whereas excessive increases in ROS cause oxidative stress, which in turn induces cell death and/or senescence. In this review, we cover current findings about the role of lamins in regulating cell proliferation and longevity through oxidative stress responses and ROS signaling pathways. We also speculate on the involvement of lamins in tumor cell proliferation through the control of ROS metabolism.
Collapse
Affiliation(s)
- Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Ward Building 11-145 303 E, Chicago Avenue, Chicago, IL, 60611-3008, USA,
| | | |
Collapse
|
27
|
Davidson PM, Lammerding J. Broken nuclei--lamins, nuclear mechanics, and disease. Trends Cell Biol 2013; 24:247-56. [PMID: 24309562 DOI: 10.1016/j.tcb.2013.11.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/19/2022]
Abstract
Mutations in lamins, which are ubiquitous nuclear intermediate filaments, lead to a variety of disorders including muscular dystrophy and dilated cardiomyopathy. Lamins provide nuclear stability, help connect the nucleus to the cytoskeleton, and can modulate chromatin organization and gene expression. Nonetheless, the diverse functions of lamins remain incompletely understood. We focus here on the role of lamins on nuclear mechanics and their involvement in human diseases. Recent findings suggest that lamin mutations can decrease nuclear stability, increase nuclear fragility, and disturb mechanotransduction signaling, possibly explaining the muscle-specific defects in many laminopathies. At the same time, altered lamin expression has been reported in many cancers, where the resulting increased nuclear deformability could enhance the ability of cells to transit tight interstitial spaces, thereby promoting metastasis.
Collapse
Affiliation(s)
- Patricia M Davidson
- Weill Institute for Cell and Molecular Biology, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Department of Biomedical Engineering/Weill Institute for Cell and Molecular Biology, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
Adam SA, Butin-Israeli V, Cleland MM, Shimi T, Goldman RD. Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors. Nucleus 2013; 4:142-50. [PMID: 23475125 PMCID: PMC3621746 DOI: 10.4161/nucl.24089] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lamin A and the B-type lamins, lamin B1 and lamin B2, are translated as pre-proteins that are modified at a carboxyl terminal CAAX motif by farnesylation, proteolysis and carboxymethylation. Lamin A is further processed by proteolysis to remove the farnesyl, but B-type lamins remain permanently farnesylated. Two childhood diseases, Hutchinson Gilford Progeria Syndrome and restrictive dermopathy are caused by defects in the processing of lamin A, resulting in permanent farnesylation of the protein. Farnesyltransferase inhibitors, originally developed to target oncogenic Ras, have recently been used in clinical trials to treat children with Hutchinson Gilford Progeria Syndrome. Lamin B1 and lamin B2 play important roles in cell proliferation and organ development, but little is known about the role of farnesylation in their functions. Treating normal human fibroblasts with farnesyltransferase inhibitors causes the accumulation of unprocessed lamin B2 and lamin A and a decrease in mature lamin B1. Normally, lamins are concentrated at the nuclear envelope/lamina, but when farnesylation is inhibited, the peripheral localization of lamin B2 decreases as its nucleoplasmic levels increase. Unprocessed prelamin A distributes into both the nuclear envelope/lamina and nucleoplasm. Farnesyltransferase inhibitors also cause a rapid cell cycle arrest leading to cellular senescence. This study suggests that the long-term inhibition of protein farnesylation could have unforeseen consequences on nuclear functions.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|