1
|
De Jesús-Rojas W, Santiago Cornier A. Reply to Shan et al.: Bone-Specific Manifestations of Spondylothoracic Dysostosis in Jarcho-Levin Syndrome. Am J Respir Crit Care Med 2025; 211:524. [PMID: 39836966 PMCID: PMC11936122 DOI: 10.1164/rccm.202412-2418le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025] Open
Affiliation(s)
- Wilfredo De Jesús-Rojas
- Department of Pediatrics, Centro Medico Episcopal San Lucas, Ponce, Puerto Rico
- Department of Pediatrics and Basic Science and
| | - Alberto Santiago Cornier
- Department of Public Health, Ponce Health Sciences University, Ponce, Puerto Rico
- Department of Genetics, San Jorge Hospital, San Juan, Puerto Rico; and
- Department of Pediatrics, Universidad Central del Caribe School of Medicine, Bayamon, Puerto Rico
| |
Collapse
|
2
|
Shan H, Liu P, Wang X. Bone-Specific Manifestations of Spondylothoracic Dysostosis in Jarcho-Levin Syndrome. Am J Respir Crit Care Med 2025; 211:523. [PMID: 39836964 PMCID: PMC11936127 DOI: 10.1164/rccm.202410-1891le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025] Open
Affiliation(s)
- Huajian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China; and
| | - Peixin Liu
- Department of Orthopedics, Suzhou Xiangcheng People’s Hospital, Suzhou, China
| | - Xiao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China; and
| |
Collapse
|
3
|
Bowen M, Desai V, Anari JB, Cahill PJ. Evaluation and Treatment of Thoracic Insufficiency Syndrome and Early-Onset Scoliosis. J Clin Med 2025; 14:753. [PMID: 39941426 PMCID: PMC11818242 DOI: 10.3390/jcm14030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Thoracic insufficiency syndrome (TIS) and early-onset scoliosis (EOS) are complex pediatric conditions involving deformities of the spine and chest wall, which can significantly impact respiratory function and overall development. Managing these conditions requires a comprehensive approach that combines precise diagnosis and innovative treatment strategies. This opinion article provides a critical discussion of the diagnosis and treatment of TIS and EOS and reflects upon the advancement of methods that are crucial for assessing these conditions and guiding treatment decisions.
Collapse
Affiliation(s)
- Margaret Bowen
- Division of Orthopaedics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vineet Desai
- Division of Orthopaedics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jason B. Anari
- Division of Orthopaedics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick J. Cahill
- Division of Orthopaedics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
García-Irizarry KD, Perez-Ortiz JJ, Meléndez Montañez JM, De Jesús-Rojas W. Spondylothoracic Dysostosis: Crab-like Rib Cage Configuration in a Neonate with Jarcho-Levin Syndrome. Am J Respir Crit Care Med 2024; 210:e1-e2. [PMID: 38713064 DOI: 10.1164/rccm.202402-0382im] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024] Open
Affiliation(s)
| | - Joseph J Perez-Ortiz
- Pediatrics Residency Program, Centro Médico Episcopal San Lucas, Ponce, Puerto Rico; and
| | | | - Wilfredo De Jesús-Rojas
- Pediatrics Residency Program, Centro Médico Episcopal San Lucas, Ponce, Puerto Rico; and
- Department of Pediatrics and Basic Science, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
5
|
Miao Y, Pourquié O. Cellular and molecular control of vertebrate somitogenesis. Nat Rev Mol Cell Biol 2024; 25:517-533. [PMID: 38418851 PMCID: PMC11694818 DOI: 10.1038/s41580-024-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Segmentation is a fundamental feature of the vertebrate body plan. This metameric organization is first implemented by somitogenesis in the early embryo, when paired epithelial blocks called somites are rhythmically formed to flank the neural tube. Recent advances in in vitro models have offered new opportunities to elucidate the mechanisms that underlie somitogenesis. Notably, models derived from human pluripotent stem cells introduced an efficient proxy for studying this process during human development. In this Review, we summarize the current understanding of somitogenesis gained from both in vivo studies and in vitro studies. We deconstruct the spatiotemporal dynamics of somitogenesis into four distinct modules: dynamic events in the presomitic mesoderm, segmental determination, somite anteroposterior polarity patterning, and epithelial morphogenesis. We first focus on the segmentation clock, as well as signalling and metabolic gradients along the tissue, before discussing the clock and wavefront and other models that account for segmental determination. We then detail the molecular and cellular mechanisms of anteroposterior polarity patterning and somite epithelialization.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
Chen S, Lei Y, Yang Y, Liu C, Kuang L, Jin L, Finnell RH, Yang X, Wang H. A mutation in TBXT causes congenital vertebral malformations in humans and mice. J Genet Genomics 2024; 51:433-442. [PMID: 37751845 DOI: 10.1016/j.jgg.2023.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023]
Abstract
T-box transcription factor T (TBXT; T) is required for mesodermal formation and axial skeletal development. Although it has been extensively studied in various model organisms, human congenital vertebral malformations (CVMs) involving T are not well established. Here, we report a family with 15 CVM patients distributed across 4 generations. All affected individuals carry a heterozygous mutation, T c.596A>G (p.Q199R), which is not found in unaffected family members, indicating co-segregation of the genotype and phenotype. In vitro assays show that T p.Q199R increases the nucleocytoplasmic ratio and enhances its DNA-binding affinity, but reduces its transcriptional activity compared to the wild-type. To determine the pathogenicity of this mutation in vivo, we generated a Q199R knock-in mouse model that recapitulates the human CVM phenotype. Most heterozygous Q199R mice show subtle kinked or shortened tails, while homozygous mice exhibit tail filaments and severe vertebral deformities. Overall, we show that the Q199R mutation in T causes CVM in humans and mice, providing previously unreported evidence supporting the function of T in the genetic etiology of human CVM.
Collapse
Affiliation(s)
- Shuxia Chen
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction and Development, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yajun Yang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chennan Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction and Development, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Lele Kuang
- Department of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Li Jin
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xueyan Yang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Key Laboratory of Reproduction Regulation of NPFPC, Institute of Reproduction and Development, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Children's Hospital, Fudan University, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
7
|
Ramírez N, Monroig-Rivera C, De Jesús-Rojas W, Rosado E, Arciniegas Medina NJ, Cornier AS, Vélez-Bartolomei F, Johnston CE, Carlo S. Long-Term Follow-up of Untreated Adult Patients with Spondylothoracic Dysostosis (Jarcho-Levin Syndrome). J Bone Joint Surg Am 2024; 106:501-507. [PMID: 38127843 DOI: 10.2106/jbjs.23.00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
BACKGROUND Spondylothoracic dysostosis (STD), also known as Jarcho-Levin syndrome (JLS), is a rare autosomal recessive disorder affecting the formation of the spine, characterized by a complete bilateral fusion of the ribs at the costovertebral junction, producing a "crablike" appearance of the thorax. Despite being declared a core indication for a V-osteotomy vertical expandable prosthetic titanium rib (VEPTR) expansion thoracoplasty of the posterior thorax, the natural history of STD in untreated subjects remains poorly documented. In this study, we report radiographic and pulmonary function findings and Patient-Reported Outcomes Measurement Information System (PROMIS) and 24-Item Early Onset Scoliosis Questionnaire (EOSQ-24) scores for untreated adult subjects with STD to gain insights into the natural history. METHODS We identified 11 skeletally mature, untreated subjects with STD. Findings on medical evaluation, demographics, radiographic parameters, pulmonary function, genetic testing results, PROMIS measures, and EOSQ-24 scores were assessed. RESULTS Five male and 6 female subjects (mean age, 32.3 years [range, 15 to 70 years]) with a confirmed STD diagnosis based on radiographs and genetic testing were evaluated. Mean body mass index (BMI) was 24.4 kg/m 2 (range, 18 to 38.9 kg/m 2 ), and mean thoracic height was 16 cm (range, 12 to 17 cm). Pulmonary function tests (PFTs) showed a mean forced vital capacity (FVC) of 22% of predicted, mean forced expiratory volume in 1 second (FEV1) of 24% of predicted, and FEV1/FVC ratio of 107% of predicted. The mean PROMIS dyspnea score was 40 ± 8 points (range, 27.7 to 52.1 points). The mean total EOSQ-24 score was 77.3 ± 18 points (range, 43.9 to 93.2 points). CONCLUSIONS Our study characterizes the natural history of STD in untreated subjects. We confirmed the expected restrictive pattern in pulmonary function, but interestingly, our subjects exhibited better EOSQ scores compared with those reported in neuromuscular populations. PFT results and thoracic height did not correspond to PROMIS and EOSQ scores, questioning the use of those parameters as a surgical indication. We therefore suggest that the STD diagnosis as an absolute indication for VEPTR expansion thoracoplasty surgery be reconsidered. LEVEL OF EVIDENCE Therapeutic Level IV . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Norman Ramírez
- Department of Orthopaedic Surgery, Mayagüez Medical Center, Mayagüez, Puerto Rico
- School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Carlos Monroig-Rivera
- School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
- Department of Orthopaedic Surgery, Texas Scottish Rite Hospital for Children, Dallas, Texas
| | - Wilfredo De Jesús-Rojas
- School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
- Department of Pediatrics and Basic Science, Ponce Health Science University, Ponce, Puerto Rico
| | - Edwin Rosado
- Atlantis Medical Center, Barceloneta, Puerto Rico
| | - Norma J Arciniegas Medina
- School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
- Department of Pediatrics, Mayagüez Medical Center, Mayagüez, Puerto Rico
| | - Alberto Santiago Cornier
- Department of Genetics, San Jorge Children's and Women Hospital, San Juan, Puerto Rico
- Department of Pediatrics, Universidad Central del Caribe School of Medicine, Bayamon, Puerto Rico
| | - Frances Vélez-Bartolomei
- Genetics Division, Department of Pediatrics, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Charles E Johnston
- Department of Orthopaedic Surgery, Texas Scottish Rite Hospital for Children, Dallas, Texas
| | - Simón Carlo
- School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
- Department of Pediatrics, Mayagüez Medical Center, Mayagüez, Puerto Rico
- Department of Genetics, San Jorge Children's and Women Hospital, San Juan, Puerto Rico
- Department of Biochemistry, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
8
|
Shapiro F, Wang J, Flynn E, Wu JY. Pudgy mouse rib deformities emanate from abnormal paravertebral longitudinal cartilage/bone accumulations. Biol Open 2024; 13:bio060139. [PMID: 38252118 PMCID: PMC10840853 DOI: 10.1242/bio.060139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/03/2023] [Indexed: 01/23/2024] Open
Abstract
The pudgy (pu/pu) mouse, caused by a recessive mutation in the Notch family Delta like-3 gene (Dll3), has severe rib, vertebral body and intervertebral disc abnormalities. Using whole-mount preparations and serial histologic sections we demonstrate: 1) localized paravertebral longitudinal cartilage/bone accumulations (PVLC/BAs) invariably associated with branched, fused and asymmetrically spaced ribs that emanate from it laterally; 2) abnormal rib formation immediately adjacent to abnormal vertebral body and intervertebral disc formation in asymmetric right/left fashion; and 3) patterns of rib deformation that differ in each mouse. Normal BALB/c embryo and age-matched non-affected pu/+ mice assessments allow for pu/pu comparisons. The Dll3 Notch family gene is involved in normal somitogenesis via the segmentation clock mechanism. Although pathogenesis of rib deformation is initially triggered by the Dll3 gene mutation, these findings of abnormal asymmetric costo-vertebral region structure imply that differing patterns cannot be attributed to this single gene mutation alone. All findings implicate a dual mechanism of malformation: the Dll3 gene mutation leading to subtle timing differences in traveling oscillation waves of the segmentation clock and further subsequent misdirection of tissue formation by altered chemical reaction-diffusion and epigenetic landscape responses. PVLC/BAs appear as primary supramolecular structures underlying severe rib malformation associated both with time-sensitive segmentation clock mutations and subsequent reactions.
Collapse
Affiliation(s)
- Frederic Shapiro
- Department of Medicine/Endocrinology, Stanford University School of Medicine, Palo Alto CA 94305, USA
- Department of Bioengineering, Northeastern University, Boston MA 02115, USA
| | - Jamie Wang
- Department of Medicine/Endocrinology, Stanford University School of Medicine, Palo Alto CA 94305, USA
| | - Evelyn Flynn
- Orthopaedic Research Laboratory, Boston Children's Hospital, Boston MA 02115, USA
| | - Joy Y. Wu
- Department of Medicine/Endocrinology, Stanford University School of Medicine, Palo Alto CA 94305, USA
| |
Collapse
|
9
|
Gao Y, Fu Z, Guan J, Liu X, Zhang Q. The role of Notch signaling pathway in metabolic bone diseases. Biochem Pharmacol 2023; 207:115377. [PMID: 36513140 DOI: 10.1016/j.bcp.2022.115377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Metabolic bone diseases is the third most common endocrine diseases after diabetes and thyroid diseases. More than 500 million people worldwide suffer from metabolic bone diseases. The generation and development of bone metabolic diseases is a complex process regulated by multiple signaling pathways, among which the Notch signaling pathway is one of the most important pathways. The Notch signaling pathway regulates the differentiation and function of osteoblasts and osteoclasts, and affects the process of cartilage formation, bone formation and bone resorption. Genetic mutations in upstream and downstream of Notch signaling genes can lead to a series of metabolic bone diseases, such as Alagille syndrome, Adams-Oliver syndrome and spondylocostal dysostosis. In this review, we analyzed the mechanisms of Notch ligands, Notch receptors and signaling molecules in the process of signal transduction, and summarized the progress on the pathogenesis and clinical manifestations of bone metabolic diseases caused by Notch gene mutation. We hope to draw attention to the role of the Notch signaling pathway in metabolic bone diseases and provide new ideas and approaches for the diagnosis and treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| | - Zhanda Fu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Junxia Guan
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xinhua Liu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Qing Zhang
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| |
Collapse
|
10
|
Umair M, Younus M, Shafiq S, Nayab A, Alfadhel M. Clinical genetics of spondylocostal dysostosis: A mini review. Front Genet 2022; 13:996364. [PMID: 36506336 PMCID: PMC9732429 DOI: 10.3389/fgene.2022.996364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Spondylocostal dysostosis is a genetic defect associated with severe rib and vertebrae malformations. In recent years, extensive clinical and molecular diagnosis advancements enabled us to identify disease-causing variants in different genes for such severe conditions. The identification of novel candidate genes enabled us to understand the developmental biology and molecular and cellular mechanisms involved in the etiology of these rare diseases. Here, we discuss the clinical and molecular targets associated with spondylocostal dysostosis, including clinical evaluation, genes, and pathways involved. This review might help us understand the basics of such a severe disorder, which might help in proper clinical characterization and help in future therapeutic strategies.
Collapse
Affiliation(s)
- Muhammad Umair
- Medical Genomics Research Department, Ministry of National Guard Health Affairs (MNGH), King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,*Correspondence: Muhammad Umair, ,
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Anam Nayab
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Majid Alfadhel
- Medical Genomics Research Department, Ministry of National Guard Health Affairs (MNGH), King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Powel JE, Sham CE, Spiliopoulos M, Ferreira CR, Rosenthal E, Sinkovskaya ES, Brown S, Jelin AC, Al-Kouatly HB. Genetics of non-isolated hemivertebra: A systematic review of fetal, neonatal, and infant cases. Clin Genet 2022; 102:262-287. [PMID: 35802600 PMCID: PMC9830455 DOI: 10.1111/cge.14188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 01/12/2023]
Abstract
Hemivertebra is a congenital vertebral malformation caused by unilateral failure of formation during embryogenesis that may be associated with additional abnormalities. A systematic review was conducted to investigate genetic etiologies of non-isolated hemivertebra identified in the fetal, neonatal, and infant periods using PubMed, Cochrane database, Ovid Medline, and ClinicalTrials.gov from inception through May 2022 (PROSPERO ID CRD42021229576). The Human Phenotype Ontology database was accessed May 2022. Studies were deemed eligible for inclusion if they addressed non-isolated hemivertebra or genetic causes of non-isolated hemivertebra identified in the fetal, neonatal, or infant periods. Cases diagnosed clinically without molecular confirmation were included. Systematic review identified 23 cases of non-isolated hemivertebra with karyotypic abnormalities, 2 cases due to microdeletions, 59 cases attributed to single gene disorders, 18 syndromic cases without known genetic etiology, and 14 cases without a known syndromic association. The Human Phenotype Ontology search identified 49 genes associated with hemivertebra. Non-isolated hemivertebra is associated with a diverse spectrum of cytogenetic abnormalities and single gene disorders. Genetic syndromes were notably common. Frequently affected organ systems include musculoskeletal, cardiovascular, central nervous system, genitourinary, gastrointestinal, and facial dysmorphisms. When non-isolated hemivertebra is identified on prenatal ultrasound, the fetus must be assessed for associated anomalies and genetic counseling is recommended.
Collapse
Affiliation(s)
- Jennifer E. Powel
- Division of Maternal Fetal Medicine, Department of Obstetrics Gynecology, & Women’s Health, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Catherine E. Sham
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michail Spiliopoulos
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Miami, Miami, Florida, USA
| | - Carlos R. Ferreira
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Emily Rosenthal
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Elena S. Sinkovskaya
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Shannon Brown
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Angie C. Jelin
- Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huda B. Al-Kouatly
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Jarcho-Levin syndrome in Pakistan: a case report and review of 321 cases on the principles of diagnosis and management. THE CARDIOTHORACIC SURGEON 2022. [DOI: 10.1186/s43057-022-00075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Jarcho-Levin syndrome (JLS) is a genetic condition that constitutes specific vertebral anomalies combined with coastal or thoracic anomalies due to specific gene mutations. Although the condition is associated typically to Puerto-Ricans, we describe the novel case of JLS in a Pakistani family that presented with respiratory distress secondary to the condition.
Case presentation
The case is a full-term girl that had a webbed neck with an undefined chest deformity. Radiology showed kyphoscoliosis and a crablike chest. Early identification of these high morbidity conditions is key to allow for optimal treatment and improved outcomes.
Conclusions
We have provided a brief breakdown of the management principles of the condition and more than 80 years after the first case of Jarcho-Levin syndrome was reported, we present the diagnostic criterion for JLS.
Collapse
|
13
|
Feng X, Cheung JPY, Je JSH, Cheung PWH, Chen S, Yue M, Wang N, Choi VNT, Yang X, Song YQ, Luk KDK, Gao B. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China. J Orthop Res 2021; 39:971-988. [PMID: 32672867 DOI: 10.1002/jor.24805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
Congenital scoliosis (CS) is a spinal deformity present at birth due to underlying congenital vertebral malformation (CVM) that occurs during embryonic development. Hemivertebrae is the most common anomaly that causes CS. Recently, compound heterozygosity in TBX6 has been identified in Northern Chinese, Japanese, and European CS patient cohorts, which explains about 7%-10% of the affected population. In this report, we recruited 67 CS patients characterized with hemivertebrae in the Southern Chinese population and investigated the TBX6 variant and risk haplotype. We found that two patients with hemivertebrae in the thoracic spine and one patient with hemivertebrae in the lumbar spine carry the previously defined pathogenic TBX6 compound heterozygous variants. In addition, whole exome sequencing of patients with CS and their family members identified a de novo missense mutation (c.G47T: p.R16L) in another member of the T-box family, TBXT. This rare mutation compromised the binding of TBXT to its target sequence, leading to reduced transcriptional activity, and exhibited dominant-negative effect on wild-type TBXT. Our findings further highlight the importance of T-box family genes in the development of congenital scoliosis.
Collapse
Affiliation(s)
- Xin Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jimmy S H Je
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Prudence W H Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Shuxia Chen
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ni Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Vanessa N T Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xueyan Yang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Keith D K Luk
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
14
|
Yamada S, Furuse Y, Ikeda M, Onda T, Cho K. High-flow nasal cannula therapy in a case of spondylocostal dysostosis type 2. Pediatr Int 2020; 62:1289-1290. [PMID: 33089894 DOI: 10.1111/ped.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Satoshi Yamada
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Yuta Furuse
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Masahiko Ikeda
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Tetsuo Onda
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
15
|
Carlo SE, Martinez-Baladejo MT, Santiago-Cornier A, Arciniegas-Medina N. 9q34 & 16p13 chromosome duplications in autism. AME Case Rep 2020; 4:17. [PMID: 32793859 DOI: 10.21037/acr.2020.03.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/28/2020] [Indexed: 11/06/2022]
Abstract
Epigenetic mechanisms, genetic factors, and environment influence the diversity of phenotypes developed in various diseases. Duplications in several chromosomes are well characterized in the scientific literature, but partial duplications, in some cases, present with milder forms of a disease and are yet to be understood. Fortunately, the identification of genetic diseases has now become more feasible due to several cytogenetic techniques such as microarray analysis and karyotyping. With these tools, together with other laboratory results and clinical examination, we are able to report the first case in the medical literature of double partial trisomy of chromosome 9q34 and 16p13.
Collapse
Affiliation(s)
- Simon E Carlo
- Department of Biochemistry, Ponce Health Sciences University, Ponce.,Department of Medicine, Ponce Health Sciences University, Ponce.,SER de Puerto Rico, Ponce.,Mayagüez Medical Center, Mayaguez, Ponce
| | | | | | | |
Collapse
|
16
|
Zhang E, Yang J, Liu Y, Hong N, Xie H, Fu Q, Li F, Chen S, Yu Y, Sun K. MESP2 variants contribute to conotruncal heart defects by inhibiting cardiac neural crest cell proliferation. J Mol Med (Berl) 2020; 98:1035-1048. [PMID: 32572506 DOI: 10.1007/s00109-020-01929-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 11/24/2022]
Abstract
Conotruncal heart defects (CTDs) are closely related to defective outflow tract (OFT) development, in which cardiac neural crest cells (CNCCs) play an indispensable role. However, the genetic etiology of CTDs remains unclear. Mesoderm posterior 2 (MESP2) is an important transcription factor regulating early cardiogenesis. Nevertheless, MESP2 variants have not been reported in congenital heart defect (CHD) patients. We first identified four MESP2 variants in 601 sporadic nonsyndromic CTD patients that were not detected in 400 healthy controls using targeted sequencing. Reverse transcription-quantitative PCR (RT-qPCR), immunohistochemistry, and immunofluorescence assays revealed MESP2 expression in the OFT of Carnegie stage (CS) 11, CS13, and CS15 human embryos and embryonic day (E) 8.5, E10, and E11.5 mouse embryos. Functional analyses in HEK 293T cells, HL-1 cells, JoMa1 cells, and primary mouse CNCCs revealed that MESP2 directly regulates the transcriptional activities of downstream CTD-related genes and promotes CNCC proliferation by regulating cell cycle factors. Three MESP2 variants, c.346G>C (p.G116R), c.921C>G (p.Y307X), and c.59A>T (p.Q20L), altered the transcriptional activities of MYOCD, GATA4, NKX2.5, and CFC1 and inhibited CNCC proliferation by upregulating p21cip1 or downregulating Cdk4. Based on our findings, MESP2 variants disrupted MESP2 function by interfering with CNCC proliferation during OFT development, which may contribute to CTDs. KEY MESSAGES: This study first analyzed MESP2 variants identified in sporadic nonsyndromic CTD patients. MESP2 is expressed in the OFT of different stages of human and mouse embryos. MESP2 regulates the transcriptional activities of downstream CTD-related genes and promotes CNCC proliferation by regulating cell cycle factor p21cip1 or Cdk4.
Collapse
Affiliation(s)
- Erge Zhang
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jianping Yang
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yang Liu
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Nanchao Hong
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huilin Xie
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qihua Fu
- Medical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yu Yu
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
17
|
Matsuda M, Yamanaka Y, Uemura M, Osawa M, Saito MK, Nagahashi A, Nishio M, Guo L, Ikegawa S, Sakurai S, Kihara S, Maurissen TL, Nakamura M, Matsumoto T, Yoshitomi H, Ikeya M, Kawakami N, Yamamoto T, Woltjen K, Ebisuya M, Toguchida J, Alev C. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 2020; 580:124-129. [PMID: 32238941 DOI: 10.1038/s41586-020-2144-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/20/2020] [Indexed: 12/29/2022]
Abstract
Pluripotent stem cells are increasingly used to model different aspects of embryogenesis and organ formation1. Despite recent advances in in vitro induction of major mesodermal lineages and cell types2,3, experimental model systems that can recapitulate more complex features of human mesoderm development and patterning are largely missing. Here we used induced pluripotent stem cells for the stepwise in vitro induction of presomitic mesoderm and its derivatives to model distinct aspects of human somitogenesis. We focused initially on modelling the human segmentation clock, a major biological concept believed to underlie the rhythmic and controlled emergence of somites, which give rise to the segmental pattern of the vertebrate axial skeleton. We observed oscillatory expression of core segmentation clock genes, including HES7 and DKK1, determined the period of the human segmentation clock to be around five hours, and demonstrated the presence of dynamic travelling-wave-like gene expression in in vitro-induced human presomitic mesoderm. Furthermore, we identified and compared oscillatory genes in human and mouse presomitic mesoderm derived from pluripotent stem cells, which revealed species-specific and shared molecular components and pathways associated with the putative mouse and human segmentation clocks. Using CRISPR-Cas9-based genome editing technology, we then targeted genes for which mutations in patients with segmentation defects of the vertebrae, such as spondylocostal dysostosis, have been reported (HES7, LFNG, DLL3 and MESP2). Subsequent analysis of patient-like and patient-derived induced pluripotent stem cells revealed gene-specific alterations in oscillation, synchronization or differentiation properties. Our findings provide insights into the human segmentation clock as well as diseases associated with human axial skeletogenesis.
Collapse
Affiliation(s)
- Mitsuhiro Matsuda
- Laboratory for Reconstitutive Developmental Biology, RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe, Japan.,European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Yoshihiro Yamanaka
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Maya Uemura
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ayako Nagahashi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Megumi Nishio
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences (RIKEN IMS), Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences (RIKEN IMS), Tokyo, Japan
| | - Satoko Sakurai
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shunsuke Kihara
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Thomas L Maurissen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tomoko Matsumoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hiroyuki Yoshitomi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Makoto Ikeya
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Noriaki Kawakami
- Department of Orthopedics and Spine Surgery, Meijo Hospital, Nagoya, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo, Japan.,Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Miki Ebisuya
- Laboratory for Reconstitutive Developmental Biology, RIKEN Center for Biosystems Dynamics Research (RIKEN BDR), Kobe, Japan. .,European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain.
| | - Junya Toguchida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Cantas Alev
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan. .,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Chen W, Lin J, Wang L, Li X, Zhao S, Liu J, Akdemir ZC, Zhao Y, Du R, Ye Y, Song X, Zhang Y, Yan Z, Yang X, Lin M, Shen J, Wang S, Gao N, Yang Y, Liu Y, Li W, Liu J, Zhang N, Yang X, Xu Y, Zhang J, Delgado MR, Posey JE, Qiu G, Rios JJ, Liu P, Wise CA, Zhang F, Wu Z, Lupski JR, Wu N. TBX6 missense variants expand the mutational spectrum in a non-Mendelian inheritance disease. Hum Mutat 2019; 41:182-195. [PMID: 31471994 DOI: 10.1002/humu.23907] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022]
Abstract
Congenital scoliosis (CS) is a birth defect with variable clinical and anatomical manifestations due to spinal malformation. The genetic etiology underlying about 10% of CS cases in the Chinese population is compound inheritance by which the gene dosage is reduced below that of haploinsufficiency. In this genetic model, the trait manifests as a result of the combined effect of a rare variant and common pathogenic variant allele at a locus. From exome sequencing (ES) data of 523 patients in Asia and two patients in Texas, we identified six TBX6 gene-disruptive variants from 11 unrelated CS patients via ES and in vitro functional testing. The in trans mild hypomorphic allele was identified in 10 of the 11 subjects; as anticipated these 10 shared a similar spinal deformity of hemivertebrae. The remaining case has a homozygous variant in TBX6 (c.418C>T) and presents a more severe spinal deformity phenotype. We found decreased transcriptional activity and abnormal cellular localization as the molecular mechanisms for TBX6 missense loss-of-function alleles. Expanding the mutational spectrum of TBX6 pathogenic alleles enabled an increased molecular diagnostic detection rate, provided further evidence for the gene dosage-dependent genetic model underlying CS, and refined clinical classification.
Collapse
Affiliation(s)
- Weisheng Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jiachen Lin
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Lianlei Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jiaqi Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yanxue Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yongyu Ye
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xinzhuang Yang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mao Lin
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Shengru Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Na Gao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Yang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenli Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Na Zhang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Yang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Xu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Mauricio R Delgado
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Neurology Department, Texas Scottish Rite Hospital, Dallas, Texas
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jonathan J Rios
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas.,McDermott Center for Human Growth and Development, Department of Pediatrics and Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Baylor Genetics Laboratory, Houston, Texas
| | - Carol A Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas.,McDermott Center for Human Growth and Development, Department of Pediatrics and Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Phenotypic heterogeneity of kyphoscoliosis with vertebral and rib defects: a case series. Clin Dysmorphol 2019; 28:103-113. [PMID: 30921094 DOI: 10.1097/mcd.0000000000000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Disorders associated with multiple vertebral segmentation defects may have additional rib anomalies in form of absence or hypoplastic ribs, fanning of ribs, etc. Spondylocostal dysostosis is genetic disorder with abnormal vertebral segmentation and rib anomalies. Diagnosis is often delayed because of non-familiarity with the characteristic features. There are six genes identified for spondylocostal dysostosis, of which SCDO5 is responsible for autosomal dominant form of the disorder. Retrospective study was conducted in Genetic and Metabolic unit of a tertiary hospital in north India over a period of 9 years. Twenty patients with a clinical diagnosis of congenital scoliosis were identified, and reviewed. Three patients were discussed in an earlier report and 11 subsequent patients, are described in this case series here. The median age at presentation was 34 months. The patients showed hemivertebrae, vertebral fusion, fusion of ribs, fanning of ribs. Hydrocephalus/ventriculomegaly was found in three cases and diastematomyelia was identified in one case. Other associated anomalies included corpus callosal agenesis, club foot and capillary malformation. One parent showed rib/spinal defects in two cases. Further studies are needed to characterise the phenotype and genetic basis of scoliosis in Indian patients.
Collapse
|
20
|
Keskin S, Simsek MF, Vu HT, Yang C, Devoto SH, Ay A, Özbudak EM. Regulatory Network of the Scoliosis-Associated Genes Establishes Rostrocaudal Patterning of Somites in Zebrafish. iScience 2019; 12:247-259. [PMID: 30711748 PMCID: PMC6360518 DOI: 10.1016/j.isci.2019.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Gene regulatory networks govern pattern formation and differentiation during embryonic development. Segmentation of somites, precursors of the vertebral column among other tissues, is jointly controlled by temporal signals from the segmentation clock and spatial signals from morphogen gradients. To explore how these temporal and spatial signals are integrated, we combined time-controlled genetic perturbation experiments with computational modeling to reconstruct the core segmentation network in zebrafish. We found that Mesp family transcription factors link the temporal information of the segmentation clock with the spatial action of the fibroblast growth factor signaling gradient to establish rostrocaudal (head to tail) polarity of segmented somites. We further showed that cells gradually commit to patterning by the action of different genes at different spatiotemporal positions. Our study provides a blueprint of the zebrafish segmentation network, which includes evolutionarily conserved genes that are associated with the birth defect congenital scoliosis in humans. A core network establishes rostrocaudal polarity of segmented somites in zebrafish mesp genes link the segmentation clock with the FGF signaling gradient Gradual patterning is done by the action of different genes at different positions
Collapse
Affiliation(s)
- Sevdenur Keskin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - M Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ha T Vu
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Carlton Yang
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Hamilton, NY 13346, USA.
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
21
|
Abstract
Notch (Notch1 through 4) are transmembrane receptors that play a fundamental role in cell differentiation and function. Notch receptors are activated following interactions with their ligands in neighboring cells. There are five classic ligands termed Jagged (Jag)1 and Jag2 and Delta-like (Dll)1, Dll3, and Dll4. Recent work has established Notch as a signaling pathway that plays a critical role in the differentiation and function of cells of the osteoblast and osteoclast lineages and in skeletal development and bone remodeling. The effects of Notch are cell-context dependent, and the four Notch receptors carry out specific functions in the skeleton. Gain- and loss-of-function mutations of components of the Notch signaling pathway result in a variety of congenital disorders with significant craniofacial and skeletal manifestations. The Notch ligand Jag1 is a determinant of bone mineral density, and Notch plays a role in the early phases of fracture healing. Alterations in Notch signaling are associated with osteosarcoma and with the metastatic potential of carcinoma of the breast and of the prostate. Controlling Notch signaling could prove useful in diseases of Notch gain-of-function and in selected skeletal disorders. However, clinical data on agents that modify Notch signaling are not available. In conclusion, Notch signaling is a novel pathway that regulates skeletal homeostasis in health and disease.
Collapse
Affiliation(s)
- E Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-4037, USA.
| |
Collapse
|
22
|
Salian S, Shukla A, Shah H, Bhat SN, Bhat VR, Nampoothiri S, Shenoy R, Phadke SR, Hariharan SV, Girisha KM. Seven additional families with spondylocarpotarsal synostosis syndrome with novel biallelic deleterious variants in FLNB. Clin Genet 2018; 94:159-164. [PMID: 29566257 DOI: 10.1111/cge.13252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 02/01/2023]
Abstract
The location and/or type of variants in FLNB result in a spectrum of osteochondrodysplasias ranging from mild forms, like spondylocarpotarsal synostosis syndrome and Larsen syndrome, to severe perinatal lethal forms, such as atelosteogenesis I and III and Boomerang dysplasia. Spondylocarpotarsal synostosis syndrome is characterized by disproportionate short stature, vertebral anomalies and fusion of carpal and tarsal bones. Biallelic loss-of-function variants in FLNB are known to cause spondylocarpotarsal synostosis syndrome and 9 families and 9 pathogenic variants have been reported so far. We report clinical features of 10 additional patients from 7 families with spondylocarpotarsal synostosis syndrome due to 7 novel deleterious variants in FLNB, thus expanding the clinical and molecular repertoire of spondylocarpotarsal synostosis syndrome. Our report validates key clinical (fused thoracic vertebrae and carpal and tarsal coalition) and molecular (truncating variants in FLNB) characteristics of this condition.
Collapse
Affiliation(s)
- S Salian
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - A Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - H Shah
- Department of Orthopedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S N Bhat
- Department of Orthopedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - V R Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, Kerala, India
| | - R Shenoy
- Department of Pediatrics, KS Hegde Medical Academy, Mangalore, Karnataka, India
| | - S R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S V Hariharan
- Department of Pediatrics, Sree Avittom Thirunal Hospital, Government Medical College, Trivandrum, Kerala, India
| | - K M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
23
|
Chen W, Liu J, Yuan D, Zuo Y, Liu Z, Liu S, Zhu Q, Qiu G, Huang S, Giampietro PF, Zhang F, Wu N, Wu Z. Progress and perspective of TBX6 gene in congenital vertebral malformations. Oncotarget 2018; 7:57430-57441. [PMID: 27437870 PMCID: PMC5302999 DOI: 10.18632/oncotarget.10619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/16/2016] [Indexed: 02/05/2023] Open
Abstract
Congenital vertebral malformation is a series of significant health problems affecting a large number of populations. It may present as an isolated condition or as a part of an underlying syndromes occurring with other malformations and/or clinical features. Disruption of the genesis of paraxial mesoderm, somites or axial bones can result in spinal deformity. In the course of somitogenesis, the segmentation clock and the wavefront are the leading factors during the entire process in which TBX6 gene plays an important role. TBX6 is a member of the T-box gene family, and its important pathogenicity in spinal deformity has been confirmed. Several TBX6 gene variants and novel pathogenic mechanisms have been recently revealed, and will likely have significant impact in understanding the genetic basis for CVM. In this review, we describe the role which TBX6 plays during human spine development including its interaction with other key elements during the process of somitogenesis. We then systematically review the association between TBX6 gene variants and CVM associated phenotypes, highlighting an important and emerging role for TBX6 and human malformations.
Collapse
Affiliation(s)
- Weisheng Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Breast Surgical Oncology, Cancer Hospital of Chinese Academy of Medical Sciences, Beijing, China
| | - Dongtang Yuan
- Department of Orthopaedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yuzhi Zuo
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenlei Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Qiankun Zhu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Shishu Huang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Philip F Giampietro
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Lefebvre M, Dieux-Coeslier A, Baujat G, Schaefer E, Judith SO, Bazin A, Pinson L, Attie-Bitach T, Baumann C, Fradin M, Pierquin G, Julia S, Quélin C, Doray B, Berg S, Vincent-Delorme C, Lambert L, Bachmann N, Lacombe D, Isidor B, Laurent N, Joelle R, Blanchet P, Odent S, Kervran D, Leporrier N, Abel C, Segers K, Guiliano F, Ginglinger-Fabre E, Selicorni A, Goldenberg A, El Chehadeh S, Francannet C, Demeer B, Duffourd Y, Thauvin-Robinet C, Verloes A, Cormier-Daire V, Riviere JB, Faivre L, Thevenon J. Diagnostic strategy in segmentation defect of the vertebrae: a retrospective study of 73 patients. J Med Genet 2018; 55:422-429. [DOI: 10.1136/jmedgenet-2017-104939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/02/2018] [Accepted: 01/21/2018] [Indexed: 11/04/2022]
Abstract
BackgroundSegmentation defects of the vertebrae (SDV) are non-specific features found in various syndromes. The molecular bases of SDV are not fully elucidated due to the wide range of phenotypes and classification issues. The genes involved are in the Notch signalling pathway, which is a key system in somitogenesis. Here we report on mutations identified in a diagnosis cohort of SDV. We focused on spondylocostal dysostosis (SCD) and the phenotype of these patients in order to establish a diagnostic strategy when confronted with SDV.Patients and methodsWe used DNA samples from a cohort of 73 patients and performed targeted sequencing of the five known SCD-causing genes (DLL3, MESP2, LFNG, HES7 and TBX6) in the first 48 patients and whole-exome sequencing (WES) in 28 relevant patients.ResultsTen diagnoses, including four biallelic variants in TBX6, two biallelic variants in LFNG and DLL3, and one in MESP2 and HES7, were made with the gene panel, and two diagnoses, including biallelic variants in FLNB and one variant in MEOX1, were made by WES. The diagnostic yield of the gene panel was 10/73 (13.7%) in the global cohort but 8/10 (80%) in the subgroup meeting the SCD criteria; the diagnostic yield of WES was 2/28 (8%).ConclusionAfter negative array CGH, targeted sequencing of the five known SCD genes should only be performed in patients who meet the diagnostic criteria of SCD. The low proportion of candidate genes identified by WES in our cohort suggests the need to consider more complex genetic architectures in cases of SDV.
Collapse
|
25
|
Giampietro PF, Pourquie O, Raggio C, Ikegawa S, Turnpenny PD, Gray R, Dunwoodie SL, Gurnett CA, Alman B, Cheung K, Kusumi K, Hadley-Miller N, Wise CA. Summary of the first inaugural joint meeting of the International Consortium for scoliosis genetics and the International Consortium for vertebral anomalies and scoliosis, March 16-18, 2017, Dallas, Texas. Am J Med Genet A 2018; 176:253-256. [PMID: 29159998 PMCID: PMC6525596 DOI: 10.1002/ajmg.a.38550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/23/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022]
Abstract
Scoliosis represents the most common musculoskeletal disorder in children and affects approximately 3% of the world population. Scoliosis is separated into two major phenotypic classifications: congenital and idiopathic. Idiopathic scoliosis is defined as a curvature of the spine of 10° or greater visualized on plane radiograph and does not have associated vertebral malformations (VM). "Congenital" scoliosis (CS) due to malformations in vertebrae is frequently associated with other birth defects. Recently, significant advances have been made in understanding the genetic basis of both conditions. There is evidence that both conditions are etiologically related. A 2-day conference entitled "Genomic Approaches to Understanding and Treating Scoliosis" was held at Scottish Rite Hospital for Children in Dallas, Texas, to synergize research in this field. This first combined, multidisciplinary conference featured international scoliosis researchers in basic and clinical sciences. A major outcome of the conference advancing scoliosis research was the proposal and subsequent vote in favor of merging the International Consortium for Vertebral Anomalies and Scoliosis (ICVAS) and International Consortium for Scoliosis Genetics (ICSG) into a single entity called International Consortium for Spinal Genetics, Development, and Disease (ICSGDD). The ICSGDD is proposed to meet annually as a forum to synergize multidisciplinary spine deformity research.
Collapse
Affiliation(s)
| | | | - Cathy Raggio
- Hospital for Special Surgery, New York, New York
| | - Shiro Ikegawa
- RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | | | | | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | | | | | | | | | | | - Carol A Wise
- Texas Scottish Rite Hospital for Children, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
26
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 686] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Lutke T. Sonographic Criteria for Diagnosing Jarcho-Levin Syndrome. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2017. [DOI: 10.1177/8756479317733730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This is a case study of Jarcho-Levin syndrome, which is a rare genetic disorder described as a malformation of bones in the spinal column and the ribs. This disorder can be an autosomal recessive or dominant trait. Those affected by this disorder have respiratory insufficiency and potentially other abnormalities. Recurrent respiratory infections are expected. In milder cases, surgery is a possibility, but in severe cases, prognosis is poor. OB sonography can aid in diagnosis of Jarcho-Levin syndrome in patients with no known family history of the disease, but it is particularly helpful in known at-risk cases.
Collapse
Affiliation(s)
- Terrie Lutke
- Diagnostic Medical Sonography Program, El Centro College, Dallas, TX, USA
| |
Collapse
|
28
|
Belbin GM, Odgis J, Sorokin EP, Yee MC, Kohli S, Glicksberg BS, Gignoux CR, Wojcik GL, Van Vleck T, Jeff JM, Linderman M, Schurmann C, Ruderfer D, Cai X, Merkelson A, Justice AE, Young KL, Graff M, North KE, Peters U, James R, Hindorff L, Kornreich R, Edelmann L, Gottesman O, Stahl EE, Cho JH, Loos RJ, Bottinger EP, Nadkarni GN, Abul-Husn NS, Kenny EE. Genetic identification of a common collagen disease in puerto ricans via identity-by-descent mapping in a health system. eLife 2017; 6:25060. [PMID: 28895531 PMCID: PMC5595434 DOI: 10.7554/elife.25060] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Achieving confidence in the causality of a disease locus is a complex task that often requires supporting data from both statistical genetics and clinical genomics. Here we describe a combined approach to identify and characterize a genetic disorder that leverages distantly related patients in a health system and population-scale mapping. We utilize genomic data to uncover components of distant pedigrees, in the absence of recorded pedigree information, in the multi-ethnic BioMe biobank in New York City. By linking to medical records, we discover a locus associated with both elevated genetic relatedness and extreme short stature. We link the gene, COL27A1, with a little-known genetic disease, previously thought to be rare and recessive. We demonstrate that disease manifests in both heterozygotes and homozygotes, indicating a common collagen disorder impacting up to 2% of individuals of Puerto Rican ancestry, leading to a better understanding of the continuum of complex and Mendelian disease. Diseases often run in families. These disease are frequently linked to changes in DNA that are passed down through generations. Close family members may share these disease-causing mutations; so may distant relatives who inherited the same mutation from a common ancestor long ago. Geneticists use a method called linkage mapping to trace a disease found in multiple members of a family over generations to genetic changes in a shared ancestor. This allows scientists to pinpoint the exact place in the genome the disease-causing mutation occurred. Using computer algorithms, scientists can apply the same technique to identify mutations that distant relatives inherited from a common ancestor. Belbin et al. used this computational technique to identify a mutation that may cause unusually short stature or bone and joint problems in up to 2% of people of Puerto Rican descent. In the experiments, the genomes of about 32,000 New Yorkers who have volunteered to participate in the BioMe Biobank and their health records were used to search for genetic changes linked to extremely short stature. The search revealed that people who inherited two copies of this mutation from their parents were likely to be extremely short or to have bone and joint problems. People who inherited one copy had an increased likelihood of joint or bone problems. This mutation affects a gene responsible for making a form of protein called collagen that is important for bone growth. The analysis suggests the mutation first arose in a Native American ancestor living in Puerto Rico around the time that European colonization began. The mutation had previously been linked to a disorder called Steel syndrome that was thought to be rare. Belbin et al. showed this condition is actually fairly common in people whose ancestors recently came from Puerto Rico, but may often go undiagnosed by their physicians. The experiments emphasize the importance of including diverse populations in genetic studies, as studies of people of predominantly European descent would likely have missed the link between this disease and mutation.
Collapse
Affiliation(s)
- Gillian Morven Belbin
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Jacqueline Odgis
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Elena P Sorokin
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Muh-Ching Yee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Sumita Kohli
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Benjamin S Glicksberg
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Harris Center for Precision Wellness, Icahn School of Medicine at Mt Sinai, New York, United States
| | - Christopher R Gignoux
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Genevieve L Wojcik
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Tielman Van Vleck
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Janina M Jeff
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Michael Linderman
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Douglas Ruderfer
- Broad Institute, Cambridge, United States.,Division of Psychiatric Genomics, Icahn School of Medicine at Mt Sinai, New York, United States.,Center for Statistical Genetics, Icahn School of Medicine at Mt Sinai, New York, United States
| | - Xiaoqiang Cai
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Amanda Merkelson
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Misa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Epidemiology, University of Washington School of Public Health, Seattle, United States
| | - Regina James
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, United States
| | - Lucia Hindorff
- National Human Genome Research Institute, National Institutes of Health, Bethesda, United States
| | - Ruth Kornreich
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Lisa Edelmann
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Omri Gottesman
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Eli Ea Stahl
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Harris Center for Precision Wellness, Icahn School of Medicine at Mt Sinai, New York, United States.,Broad Institute, Cambridge, United States
| | - Judy H Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Ruth Jf Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Noura S Abul-Husn
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Center for Statistical Genetics, Icahn School of Medicine at Mt Sinai, New York, United States
| |
Collapse
|
29
|
Yang CF, Wang CH, Siong H'ng W, Chang CP, Lin WD, Chen YT, Wu JY, Tsai FJ. Filamin B Loss-of-Function Mutation in Dimerization Domain Causes Autosomal-Recessive Spondylocarpotarsal Synostosis Syndrome with Rib Anomalies. Hum Mutat 2017; 38:540-547. [PMID: 28145000 DOI: 10.1002/humu.23186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
Spondylocarpotarsal synostosis syndrome (SCT) is a distinct group of disorders characterized by short stature, disrupted vertebral segmentation with vertebral fusion, scoliosis, lordosis, carpal/tarsal synostosis, and lack of rib anomalies. Mutations in filamin B (FLNB) and MYH3 have been reported for autosomal-recessive and autosomal-dominant SCT, respectively. We present a family with two patients suffering from autosomal-recessive SCT with rib anomalies, including malalignment, crowding, and uneven size and shape of ribs. Whole-exome sequencing revealed a novel p.S2542Lfs* 82 (c.7621dup) frameshift mutation in FLNB. This frameshift mutation lies in the C-terminal-most domain involved in FLNB dimerization and resulted in a 20-residue elongation, with complete familial segregation and absence in 376 normal controls. The mutant p.S2542Lfs* 82 FLNB demonstrated a complete loss of ability to form a functional dimer in transiently transfected HEK293T cells. The p.S2542Lfs* 82 mutation also led to significantly reduced protein levels and accumulation of the mutant protein in the Golgi apparatus. This is the first identified mutation in the dimerization domain of FLNB. This loss-of-function frameshift mutation in FLNB causes autosomal-recessive SCT with rarely reported rib anomalies. This report demonstrates the involvement of rib anomaly in SCT and its causative mutation in the dimerization domain of FLNB.
Collapse
Affiliation(s)
- Chi-Fan Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chung-Hsing Wang
- Department of Genetics and Metabolism, Children's Hospital of China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Weng Siong H'ng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Ping Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-De Lin
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Division of Pediatric Genetics, Endocrinology & Metabolism, China Medical University Children's Hospital, Taichung, Taiwan
| |
Collapse
|
30
|
Yang Y, Wang BQ, Wu ZH, Zhang HY, Qiu GX, Shen JX, Zhang JG, Zhao Y, Wang YP, Fei Q. Five known tagging DLL3 SNPs are not associated with congenital scoliosis: A case-control association study in a Chinese Han population. Medicine (Baltimore) 2016; 95:e4347. [PMID: 27472720 PMCID: PMC5265857 DOI: 10.1097/md.0000000000004347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genetic etiology hypothesis is widely accepted in the development of congenital scoliosis (CS). The delta-like 3 (DLL3) gene, a member of the Notch signaling pathway, was implicated to contribute to human CS. In this study, a case-control association study was conducted to determine the association of single nucleotide polymorphism (SNP) in the DLL3 gene with CS in a Chinese Han Population. Five known tagging SNPs of the DLL3 gene were genotyped among 270 Chinese Han subjects (128 nonsyndromic CS patients and 142 matched controls). CS patients were divided into 3 types: type I-failure of formation (29 cases), type II-failure of segmentation (50 cases), and type III-mixed defects (49 cases). The 5 SNPs were analyzed by the allelic and genotypic association analysis, genotype-phenotype association analysis, and haplotype analysis. Allele frequencies of 5 tagging SNPs (SNP1: rs1110627, SNP2: rs3212276, SNP3: rs2304223, SNP4: rs2304222, and SNP5: rs2304214) in CS cases and controls were comparable and there were no available inheritance models. The SNPs were not associated with clinical phenotypes. Moreover, the 5 makers in the DLL3 gene were found to be in strong linkage disequilibrium (LD). Both global haplotype and individual haplotype analyses showed that the haplotypes of SNP1/SNP2/SNP3/SNP4/SNP5 did not correlate with the disease (P >0.05). Together, these data suggest that genetic variants of the DLL3 gene are not associated with CS in the Chinese Han population.
Collapse
Affiliation(s)
- Yong Yang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University
| | - Bing-Qiang Wang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University
| | - Zhi-Hong Wu
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Hai-Yan Zhang
- Department of Cell Biology, Capital Medical University, Xicheng, Beijing, China
| | - Gui-Xing Qiu
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Jian-Xiong Shen
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Jian-Guo Zhang
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Yu Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Yi-Peng Wang
- Department of Orthopaedics, Peking Union Medical College Hospital
| | - Qi Fei
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University
- Correspondence: Qi Fei, Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Xicheng, Beijing, China (e-mail: )
| |
Collapse
|
31
|
Abstract
Notch 1 to 4 receptors are important determinants of cell fate and function, and Notch signaling plays an important role in skeletal development and bone remodeling. After direct interactions with ligands of the Jagged and Delta-like families, a series of cleavages release the Notch intracellular domain (NICD), which translocates to the nucleus where it induces transcription of Notch target genes. Classic gene targets of Notch are hairy and enhancer of split (Hes) and Hes-related with YRPW motif (Hey). In cells of the osteoblastic lineage, Notch activation inhibits cell differentiation and causes cancellous bone osteopenia because of impaired bone formation. In osteocytes, Notch1 has distinct effects that result in an inhibition of bone resorption secondary to an induction of osteoprotegerin and suppression of sclerostin with a consequent enhancement of Wnt signaling. Notch1 inhibits, whereas Notch2 enhances, osteoclastogenesis and bone resorption. Congenital disorders of loss- and gain-of-Notch function present with severe clinical manifestations, often affecting the skeleton. Enhanced Notch signaling is associated with osteosarcoma, and Notch can influence the invasive potential of carcinoma of the breast and prostate. Notch signaling can be controlled by the use of inhibitors of Notch activation, small peptides that interfere with the formation of a transcriptional complex, or antibodies to the extracellular domain of specific Notch receptors or to Notch ligands. In conclusion, Notch plays a critical role in skeletal development and homeostasis, and serious skeletal disorders can be attributed to alterations in Notch signaling.
Collapse
Affiliation(s)
- Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine and the UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030
| |
Collapse
|
32
|
Demir N, Peker E, Gülşen İ, Ağengin K, Kaba S, Tuncer O. A Single-Center Experience of CNS Anomalies or Neural Tube Defects in Patients With Jarcho-Levin Syndrome. J Child Neurol 2016; 31:415-20. [PMID: 26239489 DOI: 10.1177/0883073815596614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/26/2015] [Indexed: 11/15/2022]
Abstract
Jarcho-Levin syndrome (JLS) is a genetic disorder characterized by distinct malformations of the ribs and vertebrae, and/or other associated abnormalities such as neural tube defect, Arnold-Chiari malformation, renal and urinary abnormalities, hydrocephalus, congenital cardiac abnormalities, and extremity malformations. The study included 12 cases at 37-42 weeks of gestation and diagnosed to have had Jarcho-Levin syndrome, Arnold-Chiari malformation, and meningmyelocele. All cases of Jarcho-Levin syndrome had Arnold-Chiari type 2 malformation; there was corpus callosum dysgenesis in 6, lumbosacral meningmyelocele in 6, lumbal meningmyelocele in 3, thoracal meningmyelocele in 3, and holoprosencephaly in 1 of the cases. With this article, the authors underline the neurologic abnormalities accompanying Jarcho-Levin syndrome and that each of these abnormalities is a component of Jarcho-Levin syndrome.
Collapse
Affiliation(s)
- Nihat Demir
- Department of Pediatrics, Division of Neonatology, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Erdal Peker
- Department of Pediatrics, Division of Neonatology, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - İsmail Gülşen
- Department of Neurosurgery, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Kemal Ağengin
- Department of Pediatric Surgery, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Sultan Kaba
- Department of Pediatrics, Yuzuncu Yil University School of Medicine, Van, Turkey
| | - Oğuz Tuncer
- Department of Pediatrics, Division of Neonatology, Yuzuncu Yil University School of Medicine, Van, Turkey
| |
Collapse
|
33
|
Ramirez N, Villarin S, Ritchie R, Thompson KJ. Thoracic Insufficiency Syndrome: An Overview. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2015. [DOI: 10.17795/rijm33030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Willet CE, Makara M, Reppas G, Tsoukalas G, Malik R, Haase B, Wade CM. Canine disorder mirrors human disease: exonic deletion in HES7 causes autosomal recessive spondylocostal dysostosis in miniature Schnauzer dogs. PLoS One 2015; 10:e0117055. [PMID: 25659135 PMCID: PMC4319916 DOI: 10.1371/journal.pone.0117055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
Spondylocostal dysostosis is a congenital disorder of the axial skeleton documented in human families from diverse racial backgrounds. The condition is characterised by truncal shortening, extensive hemivertebrae and rib anomalies including malalignment, fusion and reduction in number. Mutations in the Notch signalling pathway genes DLL3, MESP2, LFNG, HES7 and TBX6 have been associated with this defect. In this study, spondylocostal dysostosis in an outbred family of miniature schnauzer dogs is described. Computed tomography demonstrated that the condition mirrors the skeletal defects observed in human cases, but unlike most human cases, the affected dogs were stillborn or died shortly after birth. Through gene mapping and whole genome sequencing, we identified a single-base deletion in the coding region of HES7. The frameshift mutation causes loss of functional domains essential for the oscillatory transcriptional autorepression of HES7 during somitogenesis. A restriction fragment length polymorphism test was applied within the immediate family and supported a highly penetrant autosomal recessive mode of inheritance. The mutation was not observed in wider testing of 117 randomly sampled adult miniature schnauzer and six adult standard schnauzer dogs; providing a significance of association of Praw = 4.759e-36 (genome-wide significant). Despite this apparently low frequency in the Australian population, the allele may be globally distributed based on its presence in two unrelated sires from geographically distant locations. While isolated hemivertebrae have been observed in a small number of other dog breeds, this is the first clinical and genetic diagnosis of spontaneously occurring spondylocostal dysostosis in a non-human mammal and offers an excellent model in which to study this devastating human disorder. The genetic test can be utilized by dog breeders to select away from the disease and avoid unnecessary neonatal losses.
Collapse
Affiliation(s)
- Cali E. Willet
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
- * E-mail: (CEW); (CMW)
| | - Mariano Makara
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | | | - George Tsoukalas
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | - Richard Malik
- Centre for Veterinary Education, University of Sydney, Sydney, NSW, Australia
| | - Bianca Haase
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | - Claire M. Wade
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
- * E-mail: (CEW); (CMW)
| |
Collapse
|
35
|
Abstract
The Notch signalling pathway is evolutionarily conserved and is crucial for the development and homeostasis of most tissues. Deregulated Notch signalling leads to various diseases, such as T cell leukaemia, Alagille syndrome and a stroke and dementia syndrome known as CADASIL, and so strategies to therapeutically modulate Notch signalling are of interest. Clinical trials of Notch pathway inhibitors in patients with solid tumours have been reported, and several approaches are under preclinical evaluation. In this Review, we focus on aspects of the pathway that are amenable to therapeutic intervention, diseases that could be targeted and the various Notch pathway modulation strategies that are currently being explored.
Collapse
|
36
|
Abstract
Notch receptors are single-pass transmembrane proteins that determine cell fate. Upon Notch ligand interactions, proteolytic cleavages release the Notch intracellular domain, which translocates to the nucleus to regulate the transcription of target genes, including Hairy enhancer of split (Hes) and Hes related to YRPW motif (Hey). Notch is critical for skeletal development and activity of skeletal cells, and dysregulation of Notch signaling is associated with human diseases affecting the skeleton. Inherited or sporadic mutations in components of the Notch signaling pathway are associated with spondylocostal dysostosis, spondylothoracic dysostosis and recessive brachydactyly, diseases characterized by skeletal patterning defects. Inactivating mutations of the Notch ligand JAG1 or of NOTCH2 are associated with Alagille syndrome, and activating mutations in NOTCH2 are associated with Hajdu-Cheney syndrome (HCS). Individuals affected by HCS exhibit osteolysis in distal phalanges and osteoporosis. NOTCH is activated in selected tumors, such as osteosarcoma, and in breast cancer cells that form osteolytic bone metastases. In conclusion, Notch regulates skeletal development and bone remodeling, and gain- or loss-of-function mutations of Notch signaling result in important skeletal diseases.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Address correspondence: Ernesto Canalis, M.D. Department of Research, Saint Francis Hospital and Medical Center, 114 Woodland Street, Hartford, CT 06105-1299, Tel: (860)714-4068, Fax: (860)714-8053,
| |
Collapse
|
37
|
Giampietro PF, Raggio CL, Blank RD, McCarty C, Broeckel U, Pickart MA. Clinical, genetic and environmental factors associated with congenital vertebral malformations. Mol Syndromol 2013; 4:94-105. [PMID: 23653580 DOI: 10.1159/000345329] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Congenital vertebral malformations (CVM) pose a significant health problem because they can be associated with spinal deformities, such as congenital scoliosis and kyphosis, in addition to various syndromes and other congenital malformations. Additional information remains to be learned regarding the natural history of congenital scoliosis and related health problems. Although significant progress has been made in understanding the process of somite formation, which gives rise to vertebral bodies, there is a wide gap in our understanding of how genetic factors contribute to CVM development. Maternal diabetes during pregnancy most commonly contributes to the occurrence of CVM, followed by other factors such as hypoxia and anticonvulsant medications. This review highlights several emerging clinical issues related to CVM, including pulmonary and orthopedic outcome in congenital scoliosis. Recent breakthroughs in genetics related to gene and environment interactions associated with CVM development are discussed. The Klippel-Feil syndrome which is associated with cervical segmentation abnormalities is illustrated as an example in which animal models, such as the zebrafish, can be utilized to provide functional evidence of pathogenicity of identified mutations.
Collapse
Affiliation(s)
- P F Giampietro
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisc., USA
| | | | | | | | | | | |
Collapse
|
38
|
Giampietro PF, Dunwoodie SL, Kusumi K, Pourquié O, Tassy O, Offiah AC, Cornier AS, Alman BA, Blank RD, Raggio CL, Glurich I, Turnpenny PD. Molecular diagnosis of vertebral segmentation disorders in humans. ACTA ACUST UNITED AC 2013; 2:1107-21. [PMID: 23496422 DOI: 10.1517/17530059.2.10.1107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Vertebral malformations contribute substantially to the pathophysiology of kyphosis and scoliosis, common health problems associated with back and neck pain, disability, cosmetic disfigurement and functional distress. OBJECTIVE To provide an overview of the current understanding of vertebral malformations, at both the clinical level and the molecular level, and factors that contribute to their occurrence. METHODS The literature related to the following was reviewed: recent advances in the understanding of the molecular embryology underlying vertebral development and relevance to elucidation of etiologies of several known human vertebral malformation syndromes; outcomes of molecular studies elucidating genetic contributions to congenital and sporadic vertebral malformations; and complex interrelationships between genetic and environmental factors that contribute to the pathogenesis of isolated syndromic and non-syndromic congenital vertebral malformations. RESULTS/CONCLUSION Expert opinions extend to discussion of the importance of establishing improved classification systems for vertebral malformation, future directions in molecular and genetic research approaches to vertebral malformation and translational value of research efforts to clinical management and genetic counseling of affected individuals and their families.
Collapse
Affiliation(s)
- Philip F Giampietro
- Marshfield Clinic, Department of Genetic Services, 1000 N. Oak Avenue, Marshfield, WI 54449, USA +1 715 221 7410 ; +1 715 389 4399 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Makino Y, Takahashi Y, Tanabe R, Tamamura Y, Watanabe T, Haraikawa M, Hamagaki M, Hata K, Kanno J, Yoneda T, Saga Y, Goseki-Sone M, Kaneko K, Yamaguchi A, Iimura T. Spatiotemporal disorder in the axial skeleton development of the Mesp2-null mouse: a model of spondylocostal dysostosis and spondylothoracic dysostosis. Bone 2013; 53:248-58. [PMID: 23238123 DOI: 10.1016/j.bone.2012.11.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/01/2012] [Accepted: 11/19/2012] [Indexed: 12/18/2022]
Abstract
Spondylocostal dysostosis (SCDO) is a genetic disorder characterized by severe malformation of the axial skeleton. Mesp2 encodes a basic helix-loop-helix type transcription factor that is required for somite formation. Its human homologue, Mesp2, is a gene affected in patients with SCDO and a related vertebral disorder, spondylothoracic dysostosis (STDO). This work investigated how the loss of Mesp2 affects axial skeleton development and causes the clinical features of SCDO and STDO. We first confirmed, by three-dimensional computed tomography scanning, that Mesp2-null mice exhibited mineralized tissue patterning resembling the radiological features of SCDO and STDO. Histological observations and in situ hybridization probing for extracellular matrix molecules demonstrated that the developing vertebral bodies in Mesp2-null mice were extensively fused with rare insertions of intervertebral tissue. Unexpectedly, the intervertebral tissues were mostly fused longitudinally in the vertebral column, instead of exhibiting extended formation, as was expected based on the caudalized properties of Mesp2-null somite derivatives. Furthermore, the differentiation of vertebral body chondrocytes in Mesp2-null mice was spatially disordered and largely delayed, with an increased cell proliferation rate. The quantitative three-dimensional immunofluorescence image analyses of phospho-Smad2 and -Smad1/5/8 revealed that these chondrogenic phenotypes were associated with spatially disordered inputs of TGF-β and BMP signaling in the Mesp2-null chondrocytes, and also demonstrated an amorphous arrangement of cells with distinct properties. Furthermore, a significant delay in ossification in Mesp2-null vertebrae was observed by peripheral quantitative computed tomography. The current observations of the spatiotemporal disorder of vertebral organogenesis in the Mesp2-null mice provide further insight into the pathogenesis of SCDO and STDO, and the physiological development of the axial skeleton.
Collapse
Affiliation(s)
- Yuji Makino
- Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sparrow DB, McInerney-Leo A, Gucev ZS, Gardiner B, Marshall M, Leo PJ, Chapman DL, Tasic V, Shishko A, Brown MA, Duncan EL, Dunwoodie SL. Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum Mol Genet 2013; 22:1625-31. [DOI: 10.1093/hmg/ddt012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
41
|
Giampietro PF. Genetic aspects of congenital and idiopathic scoliosis. SCIENTIFICA 2012; 2012:152365. [PMID: 24278672 PMCID: PMC3820596 DOI: 10.6064/2012/152365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/11/2012] [Indexed: 06/02/2023]
Abstract
Congenital and idiopathic scoliosis represent disabling conditions of the spine. While congenital scoliosis (CS) is caused by morphogenic abnormalities in vertebral development, the cause(s) for idiopathic scoliosis is (are) likely to be varied, representing alterations in skeletal growth, neuromuscular imbalances, disturbances involving communication between the brain and spine, and others. Both conditions are characterized by phenotypic and genetic heterogeneities, which contribute to the difficulties in understanding their genetic basis that investigators face. Despite the differences between these two conditions there is observational and experimental evidence supporting common genetic mechanisms. This paper focuses on the clinical features of both CS and IS and highlights genetic and environmental factors which contribute to their occurrence. It is anticipated that emerging genetic technologies and improvements in phenotypic stratification of both conditions will facilitate improved understanding of the genetic basis for these conditions and enable targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Philip F. Giampietro
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
42
|
Phadke SR, Ranganath P, Boggula VR, Gupta D, Phadke RV, Sloman M, Turnpenny PD. Brothers with hypospadias, vertebral segmentation defects, and intellectual disability: New syndrome? Am J Med Genet A 2012; 158A:3065-70. [DOI: 10.1002/ajmg.a.35607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/16/2012] [Indexed: 11/09/2022]
|
43
|
George-Abraham JK, Zimmerman SL, Hinton RB, Marino BS, Witte DP, Hopkin RJ. Tetrasomy 15q25.2 → qter identified with SNP microarray in a patient with multiple anomalies including complex cardiovascular malformation. Am J Med Genet A 2012; 158A:1971-6. [DOI: 10.1002/ajmg.a.35428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 03/28/2012] [Indexed: 11/08/2022]
|
44
|
Louvi A, Artavanis-Tsakonas S. Notch and disease: a growing field. Semin Cell Dev Biol 2012; 23:473-80. [PMID: 22373641 PMCID: PMC4369912 DOI: 10.1016/j.semcdb.2012.02.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 01/09/2023]
Abstract
Signals through the Notch receptors are used throughout development to control cellular fate choices. Our intention here is to provide an overview of the involvement of Notch signaling in human disease, which, keeping pace with the known biology of the pathway, manifests itself in a pleiotropic fashion. A pathway with such broad action in normal development, a profound involvement in the biology of adult stem cells and intricate and complex controls governing its activity, poses numerous challenges. We provide an overview of Notch related pathologies identified thus far and emphasize aspects that have been modeled in experimental systems in order to understand the underlying pathobiology and, hopefully, help the definition of rational therapeutic avenues.
Collapse
Affiliation(s)
- Angeliki Louvi
- Department of Neurosurgery and Neurobiology, Program on Neurogenetics, Yale School of Medicine, New Haven, CT, United States.
| | | |
Collapse
|
45
|
Scottoline B, Rosenthal S, Keisari R, Kirpekar R, Angell C, Wallerstein R. Long-term survival with diaphanospondylodysostosis (DSD): Survival to 5 years and further phenotypic characteristics. Am J Med Genet A 2012; 158A:1447-51. [DOI: 10.1002/ajmg.a.35352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 01/30/2012] [Indexed: 11/11/2022]
|
46
|
Iimura T, Nakane A, Sugiyama M, Sato H, Makino Y, Watanabe T, Takagi Y, Numano R, Yamaguchi A. A fluorescence spotlight on the clockwork development and metabolism of bone. J Bone Miner Metab 2012; 30:254-69. [PMID: 21766187 DOI: 10.1007/s00774-011-0295-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/10/2011] [Indexed: 01/26/2023]
Abstract
Biological phenomena that exhibit periodic activity are often referred as biorhythms or biological clocks. Among these, circadian rhythms, cyclic patterns reflecting a 24-h cycle, are the most obvious in many physiological activities including bone growth and metabolism. In the late 1990s, several clock genes were isolated and their primary structures and functions were identified. The feedback loop model of transcriptional factors was proposed to work as a circadian core oscillator not only in the suprachiasmatic nuclei of the anterior hypothalamus, which is recognized as the mammalian central clock, but also in various peripheral tissues including cartilage and bone. Looking back to embryonic development, the fundamental architecture of skeletal patterning is regulated by ultradian clocks that are defined as biorhythms that cycle more than once every 24 h. As post-genomic approaches, transcriptome analysis by micro-array and bioimaging assays to detect luminescent and fluorescent signals have been exploited to uncover a more comprehensive set of genes and spatio-temporal regulation of the clockwork machinery in animal models. In this review paper, we provide an overview of topics related to these molecular clocks in skeletal biology and medicine, and discuss how fluorescence imaging approaches can contribute to widening our views of this realm of biomedical science.
Collapse
Affiliation(s)
- Tadahiro Iimura
- Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sparrow DB, Chapman G, Smith AJ, Mattar MZ, Major JA, O'Reilly VC, Saga Y, Zackai EH, Dormans JP, Alman BA, McGregor L, Kageyama R, Kusumi K, Dunwoodie SL. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell 2012; 149:295-306. [PMID: 22484060 DOI: 10.1016/j.cell.2012.02.054] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/15/2011] [Accepted: 02/15/2012] [Indexed: 12/16/2022]
Abstract
Congenital scoliosis, a lateral curvature of the spine caused by vertebral defects, occurs in approximately 1 in 1,000 live births. Here we demonstrate that haploinsufficiency of Notch signaling pathway genes in humans can cause this congenital abnormality. We also show that in a mouse model, the combination of this genetic risk factor with an environmental condition (short-term gestational hypoxia) significantly increases the penetrance and severity of vertebral defects. We demonstrate that hypoxia disrupts FGF signaling, leading to a temporary failure of embryonic somitogenesis. Our results potentially provide a mechanism for the genesis of a host of common sporadic congenital abnormalities through gene-environment interaction.
Collapse
Affiliation(s)
- Duncan B Sparrow
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:401-23. [PMID: 23801490 DOI: 10.1002/wdev.34] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vertebral column derives from somites, which are transient paired segments of mesoderm that surround the neural tube in the early embryo. Somites are formed by a genetic mechanism that is regulated by cyclical expression of genes in the Notch, Wnt, and fibroblast growth factor (FGF) signaling pathways. These oscillators together with signaling gradients within the presomitic mesoderm help to set somitic boundaries and rostral-caudal polarity that are essential for the precise patterning of the vertebral column. Disruption of this mechanism has been identified as the cause of severe segmentation defects of the vertebrae in humans. These segmentation defects are part of a spectrum of spinal disorders affecting the skeletal elements and musculature of the spine, resulting in curvatures such as scoliosis, kyphosis, and lordosis. While the etiology of most disorders with spinal curvatures is still unknown, genetic and developmental studies of somitogenesis and patterning of the axial skeleton and musculature are yielding insights into the causes of these diseases.
Collapse
|
49
|
Zanotti S, Canalis E. Notch regulation of bone development and remodeling and related skeletal disorders. Calcif Tissue Int 2012; 90:69-75. [PMID: 22002679 PMCID: PMC3272107 DOI: 10.1007/s00223-011-9541-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/14/2011] [Indexed: 10/16/2022]
Abstract
Notch signaling mediates cell-to-cell interactions that are critical for embryonic development and tissue renewal. In the canonical signaling pathway, the Notch receptor is cleaved following ligand binding, resulting in the release and nuclear translocation of the Notch intracellular domain (NICD). NICD induces gene expression by forming a ternary complex with the DNA binding protein CBF1/Rbp-Jk, Suppressor of Hairless, Lag1, and Mastermind-Like (Maml). Hairy Enhancer of Split (Hes) and Hes related with YRPW motif (Hey) are classic Notch targets. Notch canonical signaling plays a central role in skeletal development and bone remodeling by suppressing the differentiation of skeletal cells. The skeletal phenotype of mice misexpressing Hes1 phenocopies partially the effects of Notch misexpression, suggesting that Hey proteins mediate most of the skeletal effects of Notch. Dysregulation of Notch signaling is associated with diseases affecting human skeletal development, such as Alagille syndrome, brachydactyly and spondylocostal dysostosis. Somatic mutations in Notch receptors and ligands are found in tumors of the skeletal system. Overexpression of NOTCH1 is associated with osteosarcoma, and overexpression of NOTCH3 or JAGGED1 in breast cancer cells favors the formation of osteolytic bone metastasis. Activating mutations in NOTCH2 cause Hajdu-Cheney syndrome, which is characterized by skeletal defects and fractures, and JAG1 polymorphisms, are associated with variations in bone mineral density. In conclusion, Notch is a regulator of skeletal development and bone remodeling, and abnormal Notch signaling is associated with developmental and postnatal skeletal disorders.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, CT 06105 USA
- The University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Address correspondence: Department of Research Saint Francis Hospital and Medical Center 114 Woodland Street Hartford, CT 06105-1299 Tel: (860)714-4068 Fax: (860)714-8053
| |
Collapse
|
50
|
Notch signaling in human development and disease. Semin Cell Dev Biol 2012; 23:450-7. [PMID: 22306179 DOI: 10.1016/j.semcdb.2012.01.010] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 12/31/2022]
Abstract
Mutations in Notch signaling pathway members cause developmental phenotypes that affect the liver, skeleton, heart, eye, face, kidney, and vasculature. Notch associated disorders include the autosomal dominant, multi-system, Alagille syndrome caused by mutations in both a ligand (Jagged1 (JAG1)) and receptor (NOTCH2) and autosomal recessive spondylocostal dysostosis, caused by mutations in a ligand (Delta-like-3 (DLL3)), as well as several other members of the Notch signaling pathway. Mutations in NOTCH2 have also recently been connected to Hajdu-Cheney syndrome, a dominant disorder causing focal bone destruction, osteoporosis, craniofacial morphology and renal cysts. Mutations in the NOTCH1 receptor are associated with several types of cardiac disease and mutations in NOTCH3 cause the dominant adult onset disorder CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy), a vascular disorder with onset in the 4th or 5th decades. Studies of these human disorders and their inheritance patterns and types of mutations reveal insights into the mechanisms of Notch signaling.
Collapse
|