1
|
Edzeamey FJ, Ramchunder Z, Pourzand C, Anjomani Virmouni S. Emerging antioxidant therapies in Friedreich's ataxia. Front Pharmacol 2024; 15:1359618. [PMID: 38379897 PMCID: PMC10876797 DOI: 10.3389/fphar.2024.1359618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a rare childhood neurologic disorder, affecting 1 in 50,000 Caucasians. The disease is caused by the abnormal expansion of the GAA repeat sequence in intron 1 of the FXN gene, leading to the reduced expression of the mitochondrial protein frataxin. The disease is characterised by progressive neurodegeneration, hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. The reduced expression of frataxin has been suggested to result in the downregulation of endogenous antioxidant defence mechanisms and mitochondrial bioenergetics, and the increase in mitochondrial iron accumulation thereby leading to oxidative stress. The confirmation of oxidative stress as one of the pathological signatures of FRDA led to the search for antioxidants which can be used as therapeutic modality. Based on this observation, antioxidants with different mechanisms of action have been explored for FRDA therapy since the last two decades. In this review, we bring forth all antioxidants which have been investigated for FRDA therapy and have been signed off for clinical trials. We summarise their various target points in FRDA disease pathway, their performances during clinical trials and possible factors which might have accounted for their failure or otherwise during clinical trials. We also discuss the limitation of the studies completed and propose possible strategies for combinatorial therapy of antioxidants to generate synergistic effect in FRDA patients.
Collapse
Affiliation(s)
- Fred Jonathan Edzeamey
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| | - Zenouska Ramchunder
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Sara Anjomani Virmouni
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
2
|
Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, Shah N, Suzuki PH, Shrikumar A, Afek A, Greenleaf WJ, Gordân R, Zeitlinger J, Kundaje A, Fordyce PM. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 2023; 381:eadd1250. [PMID: 37733848 DOI: 10.1126/science.add1250] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)-DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.
Collapse
Affiliation(s)
- Connor A Horton
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amr M Alexandari
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Michael G B Hayes
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emil Marklund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia M Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Nilay Shah
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ariel Afek
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94110, USA
| |
Collapse
|
3
|
Chiang S, Huang MLH, Park KC, Richardson DR. Antioxidant defense mechanisms and its dysfunctional regulation in the mitochondrial disease, Friedreich's ataxia. Free Radic Biol Med 2020; 159:177-188. [PMID: 32739593 DOI: 10.1016/j.freeradbiomed.2020.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Redox stress is associated with the pathogenesis of a wide variety of disease states. This can be amplified potentially through redox active iron deposits in oxidatively active organelles such as the mitochondrion. There are a number of disease states, including Friedreich's ataxia (FA) and sideroblastic anemia, where iron metabolism is dysregulated and leads to mitochondrial iron accumulation. Considering FA, which is due to the decreased expression of the mitochondrial protein, frataxin, this iron accumulation does not occur within protective storage proteins such as mitochondrial ferritin. Instead, it forms unbound biomineral aggregates composed of high spin iron(III), phosphorous and sulfur, which probably contributes to the observed redox stress. There is also a dysregulated response to the ensuing redox assault, as the master regulator of oxidative stress, nuclear factor erythroid 2-related factor-2 (Nrf2), demonstrates marked down-regulation. The dysfunctional response of Nrf2 in FA is due to multiple mechanisms including: (1) up-regulation of Keap1 that is involved in Nrf2 degradation; (2) activation of the nuclear Nrf2 export/degradation machinery via glycogen synthase kinase-3β (Gsk3β) signaling; and (3) inhibited nuclear translocation of Nrf2. More recently, increased microRNA (miRNA) 144 expression has been demonstrated to down-regulate Nrf2 in several disease states, including an animal model of FA. Other miRNAs have also demonstrated to be dysregulated upon frataxin depletion in vivo in humans and animal models of FA. Collectively, frataxin depletion results in multiple, complex responses that lead to detrimental redox effects that could contribute to the mechanisms involved in the pathogenesis of FA.
Collapse
Affiliation(s)
- S Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006, Australia
| | - M L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006, Australia
| | - K C Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006, Australia
| | - D R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, 4111, Australia.
| |
Collapse
|
4
|
Chiara M, Zambelli F, Picardi E, Horner DS, Pesole G. Critical assessment of bioinformatics methods for the characterization of pathological repeat expansions with single-molecule sequencing data. Brief Bioinform 2019; 21:1971-1986. [DOI: 10.1093/bib/bbz099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 01/19/2023] Open
Abstract
Abstract
A number of studies have reported the successful application of single-molecule sequencing technologies to the determination of the size and sequence of pathological expanded microsatellite repeats over the last 5 years. However, different custom bioinformatics pipelines were employed in each study, preventing meaningful comparisons and somewhat limiting the reproducibility of the results. In this review, we provide a brief summary of state-of-the-art methods for the characterization of expanded repeats alleles, along with a detailed comparison of bioinformatics tools for the determination of repeat length and sequence, using both real and simulated data. Our reanalysis of publicly available human genome sequencing data suggests a modest, but statistically significant, increase of the error rate of single-molecule sequencing technologies at genomic regions containing short tandem repeats. However, we observe that all the methods herein tested, irrespective of the strategy used for the analysis of the data (either based on the alignment or assembly of the reads), show high levels of sensitivity in both the detection of expanded tandem repeats and the estimation of the expansion size, suggesting that approaches based on single-molecule sequencing technologies are highly effective for the detection and quantification of tandem repeat expansions and contractions.
Collapse
Affiliation(s)
- Matteo Chiara
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Federico Zambelli
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Via Amendola e, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
5
|
Gottesfeld JM. Molecular Mechanisms and Therapeutics for the GAA·TTC Expansion Disease Friedreich Ataxia. Neurotherapeutics 2019; 16:1032-1049. [PMID: 31317428 PMCID: PMC6985418 DOI: 10.1007/s13311-019-00764-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Friedreich ataxia (FRDA), the most common inherited ataxia, is caused by transcriptional silencing of the nuclear FXN gene, encoding the essential mitochondrial protein frataxin. Currently, there is no approved therapy for this fatal disorder. Gene silencing in FRDA is due to hyperexpansion of the triplet repeat sequence GAA·TTC in the first intron of the FXN gene, which results in chromatin histone modifications consistent with heterochromatin formation. Frataxin is involved in mitochondrial iron homeostasis and the assembly and transfer of iron-sulfur clusters to various mitochondrial enzymes and components of the electron transport chain. Frataxin insufficiency leads to progressive spinocerebellar neurodegeneration, causing symptoms of gait and limb ataxia, slurred speech, muscle weakness, sensory loss, and cardiomyopathy in many patients, resulting in death in early adulthood. Numerous approaches are being taken to find a treatment for FRDA, including excision or correction of the repeats by genome engineering methods, gene activation with small molecules or artificial transcription factors, delivery of frataxin to affected cells by protein replacement therapy, gene therapy, or small molecules to increase frataxin protein levels, and therapies aimed at countering the cellular consequences of reduced frataxin. This review will summarize the mechanisms involved in repeat-mediated gene silencing and recent efforts aimed at development of therapeutics.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, 92037, USA.
| |
Collapse
|
6
|
Krestel H, Meier JC. RNA Editing and Retrotransposons in Neurology. Front Mol Neurosci 2018; 11:163. [PMID: 29875629 PMCID: PMC5974252 DOI: 10.3389/fnmol.2018.00163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
Compared to sites in protein-coding sequences many more targets undergoing adenosine to inosine (A-to-I) RNA editing were discovered in non-coding regions of human cerebral transcripts, particularly in genetic transposable elements called retrotransposons. We review here the interaction mechanisms of RNA editing and retrotransposons and their impact on normal function and human neurological diseases. Exemplarily, A-to-I editing of retrotransposons embedded in protein-coding mRNAs can contribute to protein abundance and function via circular RNA formation, alternative splicing, and exonization or silencing of retrotransposons. Interactions leading to disease are not very well understood. We describe human diseases with involvement of the central nervous system including inborn errors of metabolism, neurodevelopmental disorders, neuroinflammatory and neurodegenerative and paroxysmal diseases, in which retrotransposons (Alu and/or L1 elements) appear to be causally involved in genetic rearrangements. Sole binding of single-stranded retrotransposon transcripts by RNA editing enzymes rather than enzymatic deamination may have a homeostatic effect on retrotransposon turnover. We also review evidence in support of the emerging pathophysiological function of A-to-I editing of retrotransposons in inflammation and its implication for different neurological diseases including amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's and Parkinson's disease, and epilepsy.
Collapse
Affiliation(s)
- Heinz Krestel
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Hu H, Li H, Li J, Yu J, Tan L. Genome-wide association study identified ATP6V1H locus influencing cerebrospinal fluid BACE activity. BMC MEDICAL GENETICS 2018; 19:75. [PMID: 29751835 PMCID: PMC5948839 DOI: 10.1186/s12881-018-0603-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
Background The activity of cerebrospinal fluid (CSF) β-site APP cleaving enzyme (BACE) is a potential diagnostic biomarker for Alzheimer disease (AD). Methods A total of 340 non-Hispanic Caucasian participants from the Alzheimer’s Disease Neuroimaging Initiative cohort (ADNI) database were included in this study with quality-controlled CSF BACE and genotype data. Association of CSF BACE with the genetic variants of single nucleotide polymorphisms (SNPs) was assessed using PLINK under the additive genetic model. The P values of all SNPs for CSF BACE were adjusted for multiple comparisons. Results One SNP (rs1481950) in the ATP6V1H gene reached genome-wide significance for associations with CSF BACE (P = 4.88 × 10− 9). The minor allele (G) of rs1481950 was associated with higher CSF BACE activity. Although seven SNPs in SNX31, RORA, CDH23, RGS20, LRRC4C, MAPK6PS1 and LOC105378355 did not reach genome-wide significance (P < 10− 8), they were identified as suggestive loci (P < 10− 5). Conclusion This study identified rs1481950 within ATP6V1H influencing human CSF BACE activity, which indicated that ATP6V1H gene may play some roles in the pathogenesis of neurodegenerative diseases such as AD. Electronic supplementary material The online version of this article (10.1186/s12881-018-0603-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong Province, China
| | - Haiyan Li
- Department of Neurology, Weihai Wei People's Hospital, Weihai, China
| | - Jieqiong Li
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong Province, China
| | - Jintai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong Province, China. .,Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China. .,Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, Box 1207, San Francisco, CA, 94158, USA.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, Shandong Province, China. .,Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | | |
Collapse
|
8
|
Intron retention induced by microsatellite expansions as a disease biomarker. Proc Natl Acad Sci U S A 2018; 115:4234-4239. [PMID: 29610297 DOI: 10.1073/pnas.1716617115] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expansions of simple sequence repeats, or microsatellites, have been linked to ∼30 neurological-neuromuscular diseases. While these expansions occur in coding and noncoding regions, microsatellite sequence and repeat length diversity is more prominent in introns with eight different trinucleotide to hexanucleotide repeats, causing hereditary diseases such as myotonic dystrophy type 2 (DM2), Fuchs endothelial corneal dystrophy (FECD), and C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we test the hypothesis that these GC-rich intronic microsatellite expansions selectively trigger host intron retention (IR). Using DM2, FECD, and C9-ALS/FTD as examples, we demonstrate that retention is readily detectable in affected tissues and peripheral blood lymphocytes and conclude that IR screening constitutes a rapid and inexpensive biomarker for intronic repeat expansion disease.
Collapse
|
9
|
Bagshaw AT. Functional Mechanisms of Microsatellite DNA in Eukaryotic Genomes. Genome Biol Evol 2017; 9:2428-2443. [PMID: 28957459 PMCID: PMC5622345 DOI: 10.1093/gbe/evx164] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
Microsatellite repeat DNA is best known for its length mutability, which is implicated in several neurological diseases and cancers, and often exploited as a genetic marker. Less well-known is the body of work exploring the widespread and surprisingly diverse functional roles of microsatellites. Recently, emerging evidence includes the finding that normal microsatellite polymorphism contributes substantially to the heritability of human gene expression on a genome-wide scale, calling attention to the task of elucidating the mechanisms involved. At present, these are underexplored, but several themes have emerged. I review evidence demonstrating roles for microsatellites in modulation of transcription factor binding, spacing between promoter elements, enhancers, cytosine methylation, alternative splicing, mRNA stability, selection of transcription start and termination sites, unusual structural conformations, nucleosome positioning and modification, higher order chromatin structure, noncoding RNA, and meiotic recombination hot spots.
Collapse
|
10
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
11
|
Abstract
INTRODUCTION Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by expansion of a GAA·TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Repeat expansion results in transcriptional silencing through an epigenetic mechanism, resulting in significant decreases in frataxin protein in affected individuals. Since the FXN protein coding sequence is unchanged in FRDA, an attractive therapeutic approach for this disease would be to increase transcription of pathogenic alleles with small molecules that target the silencing mechanism. AREAS COVERED We review the evidence that histone postsynthetic modifications and heterochromatin formation are responsible for FXN gene silencing in FRDA, along with efforts to reverse silencing with drugs that target histone modifying enzymes. Chemical and pharmacological properties of histone deacetylase (HDAC) inhibitors, which reverse silencing, together with enzyme target profiles and kinetics of inhibition, are discussed. Two HDAC inhibitors have been studied in human clinical trials and the properties of these compounds are compared and contrasted. Efforts to improve on bioavailability, metabolic stability, and target activity are reviewed. EXPERT OPINION 2-aminobenzamide class I HDAC inhibitors are attractive therapeutic small molecules for FRDA. These molecules increase FXN gene expression in human neuronal cells derived from patient induced pluripotent stem cells, and in two mouse models for the disease, as well as in circulating lymphocytes in patients treated in a phase Ib clinical trial. Medicinal chemistry efforts have identified compounds with improved brain penetration, metabolic stability and efficacy in the human neuronal cell model. A clinical candidate will soon be identified for further human testing.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| | - Joel M Gottesfeld
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| |
Collapse
|
12
|
Chiang S, Kovacevic Z, Sahni S, Lane DJR, Merlot AM, Kalinowski DS, Huang MLH, Richardson DR. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clin Sci (Lond) 2016; 130:853-70. [PMID: 27129098 DOI: 10.1042/cs20160072] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
The mitochondrion is a major site for the metabolism of the transition metal, iron, which is necessary for metabolic processes critical for cell vitality. The enigmatic mitochondrial protein, frataxin, is known to play a significant role in both cellular and mitochondrial iron metabolism due to its iron-binding properties and its involvement in iron-sulfur cluster (ISC) and heme synthesis. The inherited neuro- and cardio-degenerative disease, Friedreich's ataxia (FA), is caused by the deficient expression of frataxin that leads to deleterious alterations in iron metabolism. These changes lead to the accumulation of inorganic iron aggregates in the mitochondrial matrix that are presumed to play a key role in the oxidative damage and subsequent degenerative features of this disease. Furthermore, the concurrent dys-regulation of cellular antioxidant defense, which coincides with frataxin deficiency, exacerbates oxidative stress. Hence, the pathogenesis of FA underscores the importance of the integrated homeostasis of cellular iron metabolism and the cytoplasmic and mitochondrial redox environments. This review focuses on describing the pathogenesis of the disease, the molecular mechanisms involved in mitochondrial iron-loading and the dys-regulation of cellular antioxidant defense due to frataxin deficiency. In turn, current and emerging therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael L-H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia )
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia )
| |
Collapse
|
13
|
Wang L, Tian D, Hu J, Xing H, Sun M, Wang J, Jian Q, Yang H. MiRNA-145 Regulates the Development of Congenital Heart Disease Through Targeting FXN. Pediatr Cardiol 2016; 37:629-36. [PMID: 26717909 DOI: 10.1007/s00246-015-1325-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of death in infants in the world. The study of CHDs has come a long way since their classification and description. Although transcriptional programmes that are impaired in individuals with CHDs are being identified, the mechanisms of how these deficiencies translate to a structural defect are unknown. In this study, using high-throughput microarray analysis and molecular network analysis, FXN was identified to be the most differentially expressed key gene in CHD. By TargetScan analysis, we predicted FXN was the target gene of miRNA-145 and miRNA-182. Through real-time PCR analysis of clinical samples and experiments in cell lines, we confirmed that miRNA-145 but not miRNA-182 directly binds to the 3' UTR region of FXN and negatively regulates its expression. We further found that through targeting FXN, miRNA-145 regulates apoptosis and mitochondrial function. In general, our study confirmed the differentially expressed FXN regulates the development of CHD and the differential expression was under the control of miRNA-145. These results might provide new insight into the understanding of the CHD pathogenesis and may facilitate further therapeutic studies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiology, Xi'an Children's Hospital, No. 69, Xiju RD, Lianhu District, Xi'an, 710003, Shaanxi, China.
| | - Danqiu Tian
- Department of Cardiology, Xi'an Children's Hospital, No. 69, Xiju RD, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - Jihua Hu
- Department of Cardiology, Xi'an Children's Hospital, No. 69, Xiju RD, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - Haijian Xing
- Department of Cardiology, Xi'an Children's Hospital, No. 69, Xiju RD, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - Min Sun
- Department of Cardiology, Xi'an Children's Hospital, No. 69, Xiju RD, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - Juanli Wang
- Department of Cardiology, Xi'an Children's Hospital, No. 69, Xiju RD, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - Qiang Jian
- Department of Cardiology, Xi'an Children's Hospital, No. 69, Xiju RD, Lianhu District, Xi'an, 710003, Shaanxi, China
| | - Hua Yang
- Department of Cardiology, Xi'an Children's Hospital, No. 69, Xiju RD, Lianhu District, Xi'an, 710003, Shaanxi, China
| |
Collapse
|
14
|
Wang MY, Li QX, He J, Qiu LX, Wang YN, Li J, Sun MH, Wang XF, Yang YJ, Wang JC, Jin L, Wei QY. Genetic variations in the mTOR gene contribute toward gastric adenocarcinoma susceptibility in an Eastern Chinese population. Pharmacogenet Genomics 2015; 25:521-530. [PMID: 26287940 DOI: 10.1097/fpc.0000000000000163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Genetic variants in the mammalian target of rapamycin (mTOR) gene have become an interesting topic for the study of genetic susceptibility to cancer, but their associations with the risk of gastric cancer have not been fully investigated. MATERIALS AND METHODS In a hospital-based case-control study of 1002 gastric cancer patients and 1003 cancer-free controls, we genotyped four potentially functional single nucleotide polymorphisms (SNPs) (rs1034528G>C, rs17036508T>C, rs3806317A>G, and rs2295080T>G) of mTOR and assessed their associations with the risk of gastric cancer using univariate and multivariate logistic regression analyses. We also used the multifactorial dimension reduction analysis to explore possible interactions and the false-positive report probabilities to assess significant findings. RESULTS We found that rs1034528 CG/CC and rs3806317 GA/GG variant genotypes were associated with an increased risk of gastric cancer under a dominant model (adjusted odds ratio=1.27 and 1.22, respectively). In the combined analysis of all four SNPs under investigation, patients with 3-4 risk genotypes of mTOR had a significantly increased risk of gastric cancer (adjusted odds ratio=1.46, 95% confidence interval=1.19-1.79) compared with those with 0-2 risk genotypes. Stratified analysis indicated that this risk was more pronounced in subgroups of men, never-smokers, never-drinkers, and clinical stages III+IV. The multifactorial dimension reduction analysis suggested some evidence of interactions between the combined genotypes and other risk factors for gastric cancer. CONCLUSION These findings suggest that potentially functional SNPs of mTOR may individually or collectively contribute to the risk of gastric cancer. Larger studies with diverse ethnic populations are warranted to validate our findings.
Collapse
Affiliation(s)
- Meng-Yun Wang
- aCancer Institute, Collaborative Innovation Center for Cancer Medicine bDepartment of Medical Oncology cDepartment of Abdominal Surgery dDepartment of Pathology, Fudan University Shanghai Cancer Center eDepartment of Oncology, Shanghai Medical College fMinistry of Education Key Laboratory of Contemporary Anthropology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai gState Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangdong hFudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China iDuke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
GAA triplet-repeats cause nucleosome depletion in the human genome. Genomics 2015; 106:88-95. [DOI: 10.1016/j.ygeno.2015.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/18/2022]
|
16
|
Abstract
Approximately 40 human diseases are associated with expansion of repeat sequences. These expansions can reside within coding or non-coding parts of the genes, affecting the host gene function. The presence of such expansions results in the production of toxic RNA and/or protein or causes transcriptional repression and silencing of the host gene. Although the molecular mechanisms of expansion diseases are not well understood, mounting evidence suggests that transcription through expanded repeats plays an essential role in disease pathology. The presence of an expansion can affect RNA polymerase transcription, leading to dysregulation of transcription-associated processes, such as RNA splicing, formation of RNA/DNA hybrids (R-loops), production of antisense, short non-coding and bidirectional RNA transcripts. In the present review, we summarize current advances in this field and discuss possible roles of transcriptional defects in disease pathology.
Collapse
|
17
|
Cooper-Knock J, Kirby J, Highley R, Shaw PJ. The Spectrum of C9orf72-mediated Neurodegeneration and Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015; 12:326-39. [PMID: 25731823 PMCID: PMC4404438 DOI: 10.1007/s13311-015-0342-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery that a hexanucleotide repeat expansion in C9orf72 is the most numerous genetic variant of both amyotrophic lateral sclerosis and frontotemporal dementia has opened a rapidly growing field, which may provide long hoped for advances in the understanding and treatment of these devastating diseases. In this review we describe the various phenotypes, clinical and pathological, associated with expansion of C9orf72, which go beyond amyotrophic lateral sclerosis and frontotemporal dementia to include neurodegeneration more broadly. Next we take a step back and summarize the current understanding of the C9orf72 expansion and its protein products at a molecular level. Three mechanisms are prominent: toxicity mediated directly by RNA transcribed from the repeat; toxicity mediated by dipeptide repeat proteins translated from the repeat sequence; and haploinsufficiency resulting from reduced transcription of the C9orf72 exonic sequence. A series of exciting advances have recently described how dipeptide repeat proteins might interfere with the normal role of the nucleolus in maturation of RNA binding proteins and in production of ribosomes. Importantly, these mechanisms are unlikely to be mutually exclusive. We draw attention to the fact that clinical and pathological similarities to other genetic variants without a repeat expansion must not be overlooked in ascribing a pathogenic mechanism to C9orf72-disease. Finally, with a view to impact on patient care, we discuss current practice with respect to genetic screening in patients with and without a family history of disease, and the most promising developments towards therapy that have been reported to date.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Robin Highley
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ UK
| |
Collapse
|
18
|
Wan H, Zhu J, Chen F, Xiao F, Huang H, Han X, Zhong L, Zhong H, Xu L, Ni B, Zhong J. SLC29A1 single nucleotide polymorphisms as independent prognostic predictors for survival of patients with acute myeloid leukemia: an in vitro study. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:90. [PMID: 25398670 PMCID: PMC4234887 DOI: 10.1186/s13046-014-0090-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/20/2014] [Indexed: 12/12/2022]
Abstract
Background The mechanism behind poor survival of acute myeloid leukemia (AML) patients with 1-barabinofuranosylcytosine (Ara-C) based treatment remains unclear. This study aimed to assess the pharmacogenomic effects of Ara-C metabolic pathway in patients with AML. Methods The genotypes of 19 single nucleotide polymorphisms (SNPs) of DCK, CDA and SLC29A1from 100 AML patients treated with Ara-C were examined. All the SNPs were screened with ligase detection reaction assay. The transcription analysis of genes was examined by quantitative real time polymerase chain reaction. The association between clinical outcome and gene variants was evaluated by Kaplan-Meier method. Results Genotypes of rs9394992 and rs324148 for SLC29A1 in remission patients were significantly different from those in relapsed ones. Post-induction overall survival (OS) significantly decreased in patients with the CC genotype of rs324148 compared with CT and TT genotypes (hazard ratio [HR] = 2.997 [95% confidence interval (CI): 1.71-5.27]). As compared with CT and TT genotype, patients with the CC genotype of rs9394992 had longer survival time (HR = 0.25 [95% CI: 0.075-0.81]; HR = 0.43 [95% CI: 0.24-0.78]) and longer disease-free survival (DFS) (HR = 0.52 [95% CI: 0.29-0.93]; HR = 0.15 [95% CI: 0.05-0.47]) as well As compared with CT and TT genotype, patients with the CC genotype of rs324148 had shorter DFS (HR = 3.18 [95% CI: 1.76-5.76]). Additionally, patients with adverse karyotypes had shorter DFS (HR = 0.17 [95% CI: 0.05-0.54]) and OS (HR = 0.18 [95% CI: 0.05-0.68]). Conclusions AML patients with low activity of SLC29A1 genotype have shorter DFS and OS in Ara-C based therapy. Genotypes of rs9394992 and rs324148 may be independent prognostic predictors for the survival of AML patients. Electronic supplementary material The online version of this article (doi:10.1186/s13046-014-0090-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haixia Wan
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jianyi Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Fei Xiao
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Honghui Huang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Xiaofeng Han
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Lu Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Lan Xu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Beiwen Ni
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
19
|
Functional single nucleotide polymorphisms of the RASSF3 gene and susceptibility to squamous cell carcinoma of the head and neck. Eur J Cancer 2013; 50:582-92. [PMID: 24295637 DOI: 10.1016/j.ejca.2013.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/05/2013] [Accepted: 11/10/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND RASSF3 suppresses tumour formation through uncertain mechanisms, but it is an important gene of p53-dependent apoptosis. RASSF3 depletion impairs DNA repair after DNA damage, leading to polyploidy. The authors hypothesised that potential functional single-nucleotide polymorphisms (SNPs) of RASSF3 are associated with risk of squamous cell carcinoma of the head and neck (SCCHN). METHODS The authors used a functional SNP approach to evaluate the associations between common (minor allele frequency⩾0.05), putative functional variants in RASSF3 and risk of SCCHN. Four selected such functional SNPs (rs6581580 T>G, rs7313765 G>A, rs12311754 G>C and rs1147098 T>C) in RASSF3 were identified and genotyped in 1087 patients and 1090 cancer-free controls in a non-Hispanic white population. RESULTS The authors found that two SNPs were significantly associated with SCCHN risk. Carriers of the variant rs6581580G and rs7313765A alleles were at a reduced SCCHN risk, compared with the corresponding common homozygotes [adjusted odds ratio (OR)=0.75 and 0.73 and 95% confidence interval (CI)=0.62-0.91 and 0.60-0.88, respectively, for dominant models; and Ptrend=0.012 and 0.041, respectively, for additive models], particularly for non-oropharyngeal tumours (adjusted OR=0.68 and 0.60 and 95% CI=0.53-0.86 and 0.47-0.77, respectively, for dominant models). In the genotype-phenotype correlation analysis of peripheral blood mononuclear cells from 102 cancer-free controls, the rs6581580 GG genotype was associated with significantly increased expression levels of RASSF3 mRNA (P=0.038), compared with the TT genotype. Additional functional experiments further showed that variant G allele of rs6581580 had a significantly stronger binding affinity to the nuclear protein extracts than the T allele. CONCLUSION Taken together, these findings indicate that the RASSF3 promoter rs6581580 T>G SNP is potentially functional, modulating susceptibility to SCCHN among non-Hispanic whites. Larger replication studies are needed to confirm our findings.
Collapse
|
20
|
Gottesfeld JM, Rusche JR, Pandolfo M. Increasing frataxin gene expression with histone deacetylase inhibitors as a therapeutic approach for Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:147-54. [PMID: 23859350 PMCID: PMC3766837 DOI: 10.1111/jnc.12302] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 01/08/2023]
Abstract
The genetic defect in Friedreich's ataxia (FRDA) is the expansion of a GAA·TCC triplet in the first intron of the FXN gene, which encodes the mitochondrial protein frataxin. Previous studies have established that the repeats reduce transcription of this essential gene, with a concomitant decrease in frataxin protein in affected individuals. As the repeats do not alter the FXN protein coding sequence, one therapeutic approach would be to increase transcription of pathogenic FXN genes. Histone posttranslational modifications near the expanded repeats are consistent with heterochromatin formation and FXN gene silencing. In an effort to find small molecules that would reactivate this silent gene, histone deacetylase inhibitors were screened for their ability to up-regulate FXN gene expression in patient cells and members of the pimelic 2-aminobenzamide family of class I histone deacetylase inhibitors were identified as potent inducers of FXN gene expression and frataxin protein. Importantly, these molecules up-regulate FXN expression in human neuronal cells derived from patient-induced pluripotent stem cells and in two mouse models for the disease. Preclinical studies of safety and toxicity have been completed for one such compound and a phase I clinical trial in FRDA patients has been initiated. Furthermore, medicinal chemistry efforts have identified improved compounds with superior pharmacological properties.
Collapse
Affiliation(s)
- Joel M. Gottesfeld
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 USA
| | | | - Massimo Pandolfo
- Université Libre de Bruxelles - Hôpital Erasme, 1070 Brussels, Belgium
| |
Collapse
|
21
|
Yandim C, Natisvili T, Festenstein R. Gene regulation and epigenetics in Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:21-42. [PMID: 23859339 DOI: 10.1111/jnc.12254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
This is an exciting time in the study of Friedreich's ataxia. Over the last 10 years much progress has been made in uncovering the mechanisms, whereby the Frataxin gene is silenced by (GAA)n repeat expansions and several of the findings are now ripe for testing in the clinic. The discovery that the Frataxin gene is heterochromatinised and that this can be antagonised in vivo has led to the tantalizing possibility that the disease might be amenable to a more radical therapeutic approach involving epigenetic modifiers. Here, we set out to review progress in the understanding of the fundamental mechanisms whereby genes are regulated at this level and how these findings have been applied to achieve a deeper understanding of the dysregulation that occurs as the primary genetic lesion in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cihangir Yandim
- Gene Control Mechanisms and Disease, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | |
Collapse
|
22
|
Abstract
BACKGROUND Although genome-wide association studies (GWAS) and subsequent meta-analyses have confirmed associations between the PTPN2 (protein tyrosine phosphatase, nonreceptor type 2) gene and Crohn's disease (CD), the potential causal variants remain unidentified. We aimed to dissect potential causal CD-associated PTPN2 variants, assess their functional significance, and relate PTPN2 protein expression with inflammation in CD. METHODS A 3-stage study was carried out. In stage 1, we genotyped tagging single nucleotide polymorphisms (tag-SNPs) in the PTPN2 gene in a sample of patients with CD (<20 years, n = 556) and controls (n = 602). In stage 2, we resequenced the putative promoter, target exons and introns in the PTPN2 gene, and examined associations with high-frequency variants with CD in the stage 1 cohort. In stage 3 we studied the relationship between PTPN2 protein expression and mucosal inflammation and carried out in silico analyses to study the functional characteristics of the PTPN2 CD-associated SNPs. RESULTS In stage 1, we observed associations between 5 intronic SNPs and CD including rs1893217 (P = 2 × 10⁻⁴), the SNP that is in perfect linkage disequilibrium with the lead genome-wide association studies SNP rs2542151. Resequencing revealed 2 known promoter polymorphisms. No associations between these promoter SNPs and CD were evident. In silico analyses revealed that the 5 associated intronic SNPs influenced PTPN2 expression and binding to important transcription factors. PTPN2 protein was overexpressed in inflamed intestinal tissues of patients with CD. CONCLUSIONS Our findings suggest that noncoding variation in the PTPN2 gene may represent the causal variations influencing susceptibility for CD.
Collapse
|
23
|
Kim KI, Huh IS, Kim IW, Park T, Ahn KS, Yoon SS, Yoon JH, Oh JM. Combined interaction of multi-locus genetic polymorphisms in cytarabine arabinoside metabolic pathway on clinical outcomes in adult acute myeloid leukaemia (AML) patients. Eur J Cancer 2013; 49:403-10. [DOI: 10.1016/j.ejca.2012.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 01/09/2023]
|
24
|
Roman EA, Faraj SE, Gallo M, Salvay AG, Ferreiro DU, Santos J. Protein stability and dynamics modulation: the case of human frataxin. PLoS One 2012; 7:e45743. [PMID: 23049850 PMCID: PMC3458073 DOI: 10.1371/journal.pone.0045743] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/24/2012] [Indexed: 01/06/2023] Open
Abstract
Frataxin (FXN) is an α/β protein that plays an essential role in iron homeostasis. Apparently, the function of human FXN (hFXN) depends on the cooperative formation of crucial interactions between helix α1, helix α2, and the C-terminal region (CTR) of the protein. In this work we quantitatively explore these relationships using a purified recombinant fragment hFXN90-195. This variant shows the hydrodynamic behavior expected for a monomeric globular domain. Circular dichroism, fluorescence, and NMR spectroscopies show that hFXN90-195 presents native-like secondary and tertiary structure. However, chemical and temperature induced denaturation show that CTR truncation significantly destabilizes the overall hFXN fold. Accordingly, limited proteolysis experiments suggest that the native-state dynamics of hFXN90-195 and hFXN90-210 are indeed different, being the former form much more sensitive to the protease at specific sites. The overall folding dynamics of hFXN fold was further explored with structure-based protein folding simulations. These suggest that the native ensemble of hFXN can be decomposed in at least two substates, one with consolidation of the CTR and the other without consolidation of the CTR. Explicit-solvent all atom simulations identify some of the proteolytic target sites as flexible regions of the protein. We propose that the local unfolding of CTR may be a critical step for the global unfolding of hFXN, and that modulation of the CTR interactions may strongly affect hFXN physiological function.
Collapse
Affiliation(s)
- Ernesto A. Roman
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Protein Physiology Laboratory, Departamento de Química Biológica-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Santiago E. Faraj
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Gallo
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Andres G. Salvay
- Instituto de Física de Líquidos y Sistemas Biológicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional Quilmes, Bernal, Provincia de Buenos Aires, Argentina
| | - Diego U. Ferreiro
- Protein Physiology Laboratory, Departamento de Química Biológica-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Santos
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Soragni E, Xu C, Plasterer HL, Jacques V, Rusche JR, Gottesfeld JM. Rationale for the development of 2-aminobenzamide histone deacetylase inhibitors as therapeutics for Friedreich ataxia. J Child Neurol 2012; 27:1164-73. [PMID: 22764181 PMCID: PMC3743553 DOI: 10.1177/0883073812448533] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous studies have pointed to histone deacetylase inhibitors as potential therapeutics for various neurodegenerative diseases, and clinical trials with several histone deacetylase inhibitors have been performed or are under way. However, histone deacetylase inhibitors tested to date either are highly cytotoxic or have very low specificities for different histone deacetylase enzymes. The authors' laboratories have identified a novel class of histone deacetylase inhibitors (2-aminobenzamides) that reverses heterochromatin-mediated silencing of the frataxin (FXN) gene in Friedreich ataxia. The authors have identified the histone deacetylase enzyme isotype target of these compounds and present evidence that compounds that target this enzyme selectively increase FXN expression from pathogenic alleles. Studies with model compounds show that these histone deacetylase inhibitors increase FXN messenger RNA levels in the brain in mouse models for Friedreich ataxia and relieve neurological symptoms observed in mouse models and support the notion that this class of molecules may serve as therapeutics for the human disease.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Chunping Xu
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | | - Joel M. Gottesfeld
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
26
|
Bogunia-Kubik K, Gieryng A, Gebura K, Lange A. Genetic variant of the G-CSF receptor gene is associated with lower mobilization potential and slower recovery of granulocytes after transplantation of autologous peripheral blood progenitor cells. Cytokine 2012; 60:463-7. [PMID: 22796466 DOI: 10.1016/j.cyto.2012.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/21/2012] [Accepted: 06/16/2012] [Indexed: 11/29/2022]
Abstract
Peripheral blood mobilized by cytokines (i.e. granulocyte colony stimulating factor, G-CSF) and chemotherapy has become a major source of hematopoietic stem and progenitor cells for transplantation (PBPCT). In this study the effect of the G-CSF receptor (CSF3R) gene polymorphism was investigated. The presence of the CSF3R variant (T allele, rs3917924) was related to CD34(+) mobilization yield and the pace of granulocyte recovery after autologous PBPCT. The mobilization yield was higher in patients lacking the CSF3R variant (OR=4.756, p=0.046) and those with multiple myeloma (OR=10.534, p=0.019). The pace of granulocyte recovery was found to be associated with the CSF3R polymorphism and was significantly slower in patients carrying the CSF3R-T variant than in CC homozygotes (median of 17 vs. 13 days, p<0.001). This association was confirmed (OR=4.445, p=0.014) by multiple regression analysis considering patient age and sex, the number of transplanted CD34(+) cells, diagnosis and CSF3R polymorphism. These results imply that CSF3R gene polymorphism plays a significant role in PBPCT.
Collapse
Affiliation(s)
- Katarzyna Bogunia-Kubik
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| | | | | | | |
Collapse
|
27
|
Polymorphisms of XPG/ERCC5 and risk of squamous cell carcinoma of the head and neck. Pharmacogenet Genomics 2012; 22:50-7. [PMID: 22108238 DOI: 10.1097/fpc.0b013e32834e3cf6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Xeroderma pigmentosum group G (XPG) protein is essential for the nucleotide excision repair system, and genetic variations in XPG/ERCC5 that affect DNA repair capacity may contribute to the risk of tobacco-induced cancers, including squamous cell carcinoma of the head and neck (SCCHN). We investigated the association between XPG/ERCC5 polymorphisms and risk of SCCHN. METHODS We genotyped 12 tagging and potentially functional single nucleotide polymorphisms (SNPs) of XPG/ERCC5 in a case-control study of 1059 non-Hispanic white patients with SCCHN and 1066 cancer-free age- and sex-matched controls, and evaluated their associations with the risk of SCCHN. RESULTS Multivariate logistic regression showed that only an intronic tagging SNP (rs4150351A/C) of XPG/ERCC5 was associated with a decreased risk of SCCHN (adjusted odds ratio=0.76, 95% confidence interval=0.62-0.92 for AC vs. AA; adjusted odds ratio=0.81, 95% confidence interval=0.67-0.98 for AC/CC vs. AA), but this association was nonsignificant after corrections by the permutation test (empirical P=0.105). In the genotype-phenotype correlation analysis using peripheral lymphocytes from 44 patients with SCCHN, we found that rs4150351 AC/CC was associated with a statistically significant increase in the XPG/ERCC5 mRNA expression. CONCLUSION These findings suggest that genetic variation in XPG/ERCC5 may not affect the risk of SCCHN, although rs4150351 C variant genotypes were associated with an increased expression of XPG/ERCC5 mRNA and nonsignificantly decreased risk of SCCHN. Larger population-based and additional functional studies are warranted to validate our findings.
Collapse
|
28
|
Kumari D, Usdin K. Is Friedreich ataxia an epigenetic disorder? Clin Epigenetics 2012; 4:2. [PMID: 22414340 PMCID: PMC3305337 DOI: 10.1186/1868-7083-4-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/30/2012] [Indexed: 12/16/2022] Open
Abstract
Friedreich ataxia (FRDA) is a debilitating and frequently fatal neurological disorder that is recessively inherited. It belongs to the group of genetic disorders known as the Repeat Expansion Diseases, in which pathology arises from the deleterious consequences of the inheritance of a tandem repeat array whose repeat number exceeds a critical threshold. In the case of FRDA, the repeat unit is the triplet GAA•TTC and the tandem array is located in the first intron of the frataxin (FXN) gene. Pathology arises because expanded alleles make lower than normal levels of mature FXN mRNA and thus reduced levels of frataxin, the FXN gene product. The repeats form a variety of unusual DNA structures that have the potential to affect gene expression in a number of ways. For example, triplex formation in vitro and in bacteria leads to the formation of persistent RNA:DNA hybrids that block transcription. In addition, these repeats have been shown to affect splicing in model systems. More recently, it has been shown that the region flanking the repeats in the FXN gene is enriched for epigenetic marks characteristic of transcriptionally repressed regions of the genome. However, exactly how repeats in an intron cause the FXN mRNA deficit in FRDA has been the subject of much debate. Identifying the mechanism or mechanisms responsible for the FXN mRNA deficit in FRDA is important for the development of treatments for this currently incurable disorder. This review discusses evidence for and against different models for the repeat-mediated mRNA deficit.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.
| | | |
Collapse
|
29
|
Chromatin changes in the development and pathology of the Fragile X-associated disorders and Friedreich ataxia. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:802-10. [PMID: 22245581 DOI: 10.1016/j.bbagrm.2011.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/22/2011] [Accepted: 12/26/2011] [Indexed: 01/11/2023]
Abstract
The Fragile X-associated disorders (FXDs) and Friedreich ataxia (FRDA) are genetic conditions resulting from expansion of a trinucleotide repeat in a region of the affected gene that is transcribed but not translated. In the case of the FXDs, pathology results from expansion of CGG•CCG-repeat tract in the 5' UTR of the FMR1 gene, while pathology in FRDA results from expansion of a GAA•TTC-repeat in intron 1 of the FXN gene. Expansion occurs during gametogenesis or early embryogenesis by a mechanism that is not well understood. Associated Expansion then produces disease pathology in various ways that are not completely understood either. In the case of the FXDs, alleles with 55-200 repeats express higher than normal levels of a transcript that is thought to be toxic, while alleles with >200 repeats are silenced. In addition, alleles with >200 repeats are associated with a cytogenetic abnormality known as a fragile site, which is apparent as a constriction or gap in the chromatin that is seen when cells are grown in presence of inhibitors of thymidylate synthase. FRDA alleles show a deficit of the FXN transcript. This review will address the role of repeat-mediated chromatin changes in these aspects of FXD and FRDA disease pathology. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
|
30
|
Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. THE PHARMACOGENOMICS JOURNAL 2011; 11:274-86. [PMID: 20386561 PMCID: PMC3248744 DOI: 10.1038/tpj.2010.28] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) metabolizes ∼50% of all clinically used drugs. Although CYP3A4 expression varies widely between individuals, the contribution of genetic factors remains uncertain. In this study, we measured allelic CYP3A4 heteronuclear RNA (hnRNA) and mRNA expression in 76 human liver samples heterozygous for at least one of eight marker SNPs and found marked allelic expression imbalance (1.6-6.3-fold) in 10/76 liver samples (13%). This was fully accounted for by an intron 6 SNP (rs35599367, C>T), which also affected mRNA expression in cell culture on minigene transfections. CYP3A4 mRNA level and enzyme activity in livers with CC genotype were 1.7- and 2.5-fold, respectively, greater than in CT and TT carriers. In 235 patients taking stable doses of atorvastatin, simvastatin, or lovastatin for lipid control, carriers of the T allele required significantly lower statin doses (0.2-0.6-fold, P=0.019) than non-T carriers for optimal lipid control. These results indicate that intron 6 SNP rs35599367 markedly affects expression of CYP3A4 and could serve as a biomarker for predicting response to CYP3A4-metabolized drugs.
Collapse
Affiliation(s)
- D Wang
- Department of Pharmacology, Program in Pharmacogenomics, School of Biomedical Science, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
31
|
Pastor T, Dal Mas A, Talotti G, Bussani E, Pagani F. Intron cleavage affects processing of alternatively spliced transcripts. RNA (NEW YORK, N.Y.) 2011; 17:1604-13. [PMID: 21673105 PMCID: PMC3153982 DOI: 10.1261/rna.2514811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 05/02/2011] [Indexed: 05/26/2023]
Abstract
We previously showed that the insertion of a hammerhead ribozyme (Rz) in a critical intronic position between the EDA exon and a downstream regulatory element affects alternative splicing. Here we evaluate the effect of other intronic cotranscriptional cleavage events on alternative pre-mRNA processing using different ribozymes (Rz) and Microprocessor target sequences (MTSs). In the context of the fibronectin EDA minigene, intronic MTSs were cleaved very inefficiently and did not affect alternative splicing or the level of mature transcripts. On the contrary, all hammerhead Rz derivatives and hepatitis δ Rz were completely cleaved before a splicing decision and able to affect alternative splicing. Despite the very efficient Rz-mediated cleavage, the levels of mature mRNA were only reduced to ∼40%. We show that this effect on mature transcripts occurs regardless of the type and intronic position of Rzs, or changes in alternative splicing and exon definition. Thus, we suggest that intron integrity is not strictly required for splicing but is necessary for efficient pre-mRNA biosynthesis.
Collapse
Affiliation(s)
- Tibor Pastor
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Andrea Dal Mas
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Gabriele Talotti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Erica Bussani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Franco Pagani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
32
|
Eom SY, Kim YS, Lee CJ, Lee CH, Kim YD, Kim H. Effects of intronic and exonic polymorphisms of paraoxonase 1 (PON1) gene on serum PON1 activity in a Korean population. J Korean Med Sci 2011; 26:720-5. [PMID: 21655055 PMCID: PMC3102863 DOI: 10.3346/jkms.2011.26.6.720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 03/24/2011] [Indexed: 01/08/2023] Open
Abstract
Paraoxonase 1 (PON1) hydrolyzes a number of toxic organophosphorous compounds and reduces lipid peroxide accumulation, and PON1 genetic polymorphisms in the coding region modulate serum PON1 activity. In this study, we investigated the association between 3 polymorphisms of PON1 located in intron 5 (17899insdelTT and 17974CT) and exon 6 (192QR) and serum PON1 activity. The genetic polymorphisms and serum activity of PON1 were analyzed in 153 healthy Koreans by using a direct sequencing assay and spectrophotometric method, respectively. A significant linkage disequilibrium (LD) was observed between all tested single nucleotide polymorphisms, with the strongest LD observed between 17899insdelTT and 192QR (D' = 0.984). The 17899insdelTT, 17974CT and 192QR genetic polymorphisms were associated with significant differences in serum paraoxonase activity. In multiple regression analyses, smoking, triglyceride level, high-density lipoprotein (HDL) level, and the 17899insdelTT and 192QR genetic polymorphisms were significant determinants of serum paraoxonase activity, while age, smoking, triglyceride level, HDL level, and the 192QR genetic polymorphism were significant determinants of serum arylesterase activity. These results suggest that although the 192QR genetic polymorphism in the coding region of PON1 is primarily associated with serum PON1 activity, the intronic polymorphisms are also involved in serum PON1 activity, and this association may be mediated by LD.
Collapse
Affiliation(s)
- Sang-Yong Eom
- Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Yun-Sik Kim
- Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Chung-Jong Lee
- Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Chul-Ho Lee
- Environmental Epidemiology Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Korea
| | - Yong-Dae Kim
- Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Heon Kim
- Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
33
|
Gene therapeutic approach using mutation-adapted U1 snRNA to correct a RPGR splice defect in patient-derived cells. Mol Ther 2011; 19:936-41. [PMID: 21326217 DOI: 10.1038/mt.2011.7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is a disease that primarily affects the peripheral retina and ultimately causes visual impairment. X-chromosomal forms of RP are frequently caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We show that the novel splice donor site (SDS) mutation c.1245+3A>T in intron 10 of RPGR cosegregates with RP in a five-generation Caucasian family. The mutation causes in-frame skipping of exon 10 from RPGR transcripts in patient-derived primary fibroblasts. To correct the splice defect, we developed a gene therapeutic approach using mutation-adapted U1 small nuclear RNA (U1). U1 is required for SDS recognition of pre-mRNAs and initiates the splice process. The mutation described herein interferes with the recognition of the SDS by U1. To overcome the deleterious effects of the mutation, we generated four U1 isoforms with increasing complementarity to the SDS. Lentiviral particles were used to transduce patient-derived fibroblasts with these U1 variants. Full complementarity of U1 corrects the splice defect partially and increases recognition of the mutant SDS. The therapeutic effect is U1-concentration dependent as we show for endogenously expressed RPGR transcripts in patient-derived cells. U1-based gene therapeutic approaches constitute promising technologies to treat SDS mutations in inherited diseases including X-linked RP.
Collapse
|
34
|
Poulos MG, Batra R, Charizanis K, Swanson MS. Developments in RNA splicing and disease. Cold Spring Harb Perspect Biol 2011; 3:a000778. [PMID: 21084389 DOI: 10.1101/cshperspect.a000778] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pre-mRNA processing, including 5'-end capping, splicing, editing, and polyadenylation, consists of a series of orchestrated and primarily cotranscriptional steps that ensure both the high fidelity and extreme diversity characteristic of eukaryotic gene expression. Alternative splicing and editing allow relatively small genomes to encode vast proteomic arrays while alternative 3'-end formation enables variations in mRNA localization, translation, and stability. Of course, this mechanistic complexity comes at a high price. Mutations in the myriad of RNA sequence elements that regulate mRNA biogenesis, as well as the trans-acting factors that act upon these sequences, underlie a number of human diseases. In this review, we focus on one of these key RNA processing steps, splicing, to highlight recent studies that describe both conventional and novel pathogenic mechanisms that underlie muscle and neurological diseases.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
35
|
Li K, Singh A, Crooks DR, Dai X, Cong Z, Pan L, Ha D, Rouault TA. Expression of human frataxin is regulated by transcription factors SRF and TFAP2. PLoS One 2010; 5:e12286. [PMID: 20808827 PMCID: PMC2924884 DOI: 10.1371/journal.pone.0012286] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 07/24/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Friedreich ataxia is an autosomal recessive neurodegenerative disease caused by reduced expression levels of the frataxin gene (FXN) due to expansion of triplet nucleotide GAA repeats in the first intron of FXN. Augmentation of frataxin expression levels in affected Friedreich ataxia patient tissues might substantially slow disease progression. METHODOLOGY/PRINCIPAL FINDINGS We utilized bioinformatic tools in conjunction with chromatin immunoprecipitation and electrophoretic mobility shift assays to identify transcription factors that influence transcription of the FXN gene. We found that the transcription factors SRF and TFAP2 bind directly to FXN promoter sequences. SRF and TFAP2 binding sequences in the FXN promoter enhanced transcription from luciferase constructs, while mutagenesis of the predicted SRF or TFAP2 binding sites significantly decreased FXN promoter activity. Further analysis demonstrated that robust SRF- and TFAP2-mediated transcriptional activity was dependent on a regulatory element, located immediately downstream of the first FXN exon. Finally, over-expression of either SRF or TFAP2 significantly increased frataxin mRNA and protein levels in HEK293 cells, and frataxin mRNA levels were also elevated in SH-SY5Y cells and in Friedreich ataxia patient lymphoblasts transfected with SRF or TFAP2. CONCLUSIONS/SIGNIFICANCE We identified two transcription factors, SRF and TFAP2, as well as an intronic element encompassing EGR3-like sequence, that work together to regulate expression of the FXN gene. By providing new mechanistic insights into the molecular factors influencing frataxin expression, our results should aid in the discovery of new therapeutic targets for the treatment of Friedreich ataxia.
Collapse
Affiliation(s)
- Kuanyu Li
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Anamika Singh
- Molecular Medicine Program, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Daniel R. Crooks
- Molecular Medicine Program, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, D. C., United States of America
| | - Xiaoman Dai
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhuangzhuang Cong
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Liang Pan
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Dung Ha
- Molecular Medicine Program, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Tracey A. Rouault
- Molecular Medicine Program, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| |
Collapse
|
36
|
Kumar RP, Senthilkumar R, Singh V, Mishra RK. Repeat performance: how do genome packaging and regulation depend on simple sequence repeats? Bioessays 2010; 32:165-74. [PMID: 20091758 DOI: 10.1002/bies.200900111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-coding DNA has consistently increased during evolution of higher eukaryotes. Since the number of genes has remained relatively static during the evolution of complex organisms, it is believed that increased degree of sophisticated regulation of genes has contributed to the increased complexity. A higher proportion of non-coding DNA, including repeats, is likely to provide more complex regulatory potential. Here, we propose that repeats play a regulatory role by contributing to the packaging of the genome during cellular differentiation. Repeats, and in particular the simple sequence repeats, are proposed to serve as landmarks that can target regulatory mechanisms to a large number of genomic sites with the help of very few factors and regulate the linked loci in a coordinated manner. Repeats may, therefore, function as common target sites for regulatory mechanisms involved in the packaging and dynamic compartmentalization of the chromatin into active and inactive regions during cellular differentiation.
Collapse
Affiliation(s)
- Ram Parikshan Kumar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
37
|
Punga T, Bühler M. Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Mol Med 2010; 2:120-9. [PMID: 20373285 PMCID: PMC3377279 DOI: 10.1002/emmm.201000064] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/08/2010] [Accepted: 02/02/2010] [Indexed: 12/31/2022] Open
Abstract
Friedreich ataxia is a degenerative disease caused by deficiency of the protein frataxin (FXN). An intronic expansion of GAA triplets in the FXN-encoding gene, FXN, causes gene silencing and thus reduced FXN protein levels. Although it is widely assumed that GAA repeats block transcription via the assembly of an inaccessible chromatin structure marked by methylated H3K9, direct proof for this is lacking. In this study, we analysed different histone modification patterns along the human FXN gene in FRDA patient-derived lymphoblastoid cell lines. We show that FXN mRNA synthesis, but not turnover rates are affected by an expanded GAA repeat tract. Importantly, rather than preventing transcription initiation, long GAA repeat tracts affect transcription at the elongation step and this can occur independently of H3K9 methylation. Our data demonstrate that finding novel strategies to overcome the transcription elongation problem may develop into promising new treatments for FRDA.
Collapse
Affiliation(s)
- Tanel Punga
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland
| |
Collapse
|
38
|
Pastor T, Talotti G, Lewandowska MA, Pagani F. An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM. Nucleic Acids Res 2010; 37:7258-67. [PMID: 19773425 PMCID: PMC2790898 DOI: 10.1093/nar/gkp778] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA is responsible for ataxia telangiectasia. We show here that the last 40 bases of a downstream intronic antisense Alu repeat are required for the activation of the cryptic exon by the ISPE deletion. Evaluation of the pre-mRNA splicing intermediate by a hybrid minigene assay indicates that the identified intronic splicing enhancer represents a novel class of enhancers that facilitates processing of splicing intermediates possibly by recruiting U1 snRNP to defective donor sites. In the absence of this element, the splicing intermediate accumulates and is not further processed to generate the cryptic exon. Our results indicate that Alu-derived sequences can provide intronic splicing regulatory elements that facilitate pre-mRNA processing and potentially affect the severity of disease-causing splicing mutations.
Collapse
Affiliation(s)
- Tibor Pastor
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | | | | | |
Collapse
|
39
|
Pan X, Ding Y, Shi L. The roles of SbcCD and RNaseE in the transcription of GAA x TTC repeats in Escherichia coli. DNA Repair (Amst) 2009; 8:1321-7. [PMID: 19733517 DOI: 10.1016/j.dnarep.2009.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 07/24/2009] [Accepted: 08/09/2009] [Indexed: 10/20/2022]
Abstract
Expansion of GAA x TTC repeats in FXN gene is associated with decreased frataxin production in Frederich's ataxia patients. To study this effect, we have engineered a set of GAA x TTC repeats in the EcoRI site of lacZ gene of plasmid pUC18 as part of the transcription template of the lacZ gene, while keeping its ORF unchanged. The effects of the GAA x TTC repeats on the lacZ expression were investigated in Escherichia coli JM83 and its mutants deficiency in RNA processing, homologous recombination and DNA repair. We found that transcriptions of the GAA strand with different sizes and organizations displayed normal alpha-complementation when RNase E was functional. By contrast, transcriptions of TTC repeats containing more than 13 triplets failed to support alpha-complementation, showing RNase-independent but length-dependent effects of TTC repeats on lacZ expression. In addition, we also found that functions of SbcCD, a DNA structure specific nuclease, were needed in the RNase E-dependent lacZ expression of the GAA repeats. These suggested that processing of DNA and RNA is essential to the transcription of the repeats-carrying gene in vivo.
Collapse
Affiliation(s)
- Xuefeng Pan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | | | | |
Collapse
|
40
|
Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol Cell 2009; 35:82-92. [PMID: 19595718 PMCID: PMC2722067 DOI: 10.1016/j.molcel.2009.06.017] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 01/07/2009] [Accepted: 06/18/2009] [Indexed: 12/12/2022]
Abstract
Large-scale expansions of DNA repeats are implicated in numerous hereditary disorders in humans. We describe a yeast experimental system to analyze large-scale expansions of triplet GAA repeats responsible for the human disease Friedreich's ataxia. When GAA repeats were placed into an intron of the chimeric URA3 gene, their expansions caused gene inactivation, which was detected on the selective media. We found that the rates of expansions of GAA repeats increased exponentially with their lengths. These rates were only mildly dependent on the repeat's orientation within the replicon, whereas the repeat-mediated replication fork stalling was exquisitely orientation dependent. Expansion rates were significantly elevated upon inactivation of the replication fork stabilizers, Tof1 and Csm3, but decreased in the knockouts of postreplication DNA repair proteins, Rad6 and Rad5, and the DNA helicase Sgs1. We propose a model for large-scale repeat expansions based on template switching during replication fork progression through repetitive DNA.
Collapse
Affiliation(s)
| | - Irina Voineagu
- Department of Biology, Tufts University, Medford, MA 02155
| | - Robert Matera
- Department of Biology, Tufts University, Medford, MA 02155
| | - Nicole Cherng
- Department of Biology, Tufts University, Medford, MA 02155
| | | | - Maria M. Krasilnikova
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802
| | - Vidhya Narayanan
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | |
Collapse
|
41
|
Sureshkumar S, Todesco M, Schneeberger K, Harilal R, Balasubramanian S, Weigel D. A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science 2009; 323:1060-3. [PMID: 19150812 DOI: 10.1126/science.1164014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Variation in the length of simple DNA triplet repeats has been linked to phenotypic variability in microbes and to several human disorders. Population-level forces driving triplet repeat contraction and expansion in multicellular organisms are, however, not well understood. We have identified a triplet repeat-associated genetic defect in an Arabidopsis thaliana variety collected from the wild. The Bur-0 strain carries a dramatically expanded TTC/GAA repeat in the intron of the ISOPROPYL MALATE ISOMERASE LARGE SUB UNIT1 (IIL1; At4g13430) gene. The repeat expansion causes an environment-dependent reduction in IIL1 activity and severely impairs growth of this strain, whereas contraction of the expanded repeat can reverse the detrimental phenotype. The Bur-0 IIL1 defect thus presents a genetically tractable model for triplet repeat expansions and their variability in natural populations.
Collapse
Affiliation(s)
- Sridevi Sureshkumar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Soragni E, Herman D, Dent SYR, Gottesfeld JM, Wells RD, Napierala M. Long intronic GAA*TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia. Nucleic Acids Res 2008; 36:6056-65. [PMID: 18820300 PMCID: PMC2577344 DOI: 10.1093/nar/gkn604] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 12/25/2022] Open
Abstract
Friedreich ataxia (FRDA) is caused by hyperexpansion of GAA*TTC repeats located in the first intron of the FXN gene, which inhibits transcription leading to the deficiency of frataxin. The FXN gene is an excellent target for therapeutic intervention since (i) 98% of patients carry the same type of mutation, (ii) the mutation is intronic, thus leaving the FXN coding sequence unaffected and (iii) heterozygous GAA*TTC expansion carriers with approximately 50% decrease of the frataxin are asymptomatic. The discovery of therapeutic strategies for FRDA is hampered by a lack of appropriate molecular models of the disease. Herein, we present the development of a new cell line as a molecular model of FRDA by inserting 560 GAA*TTC repeats into an intron of a GFP reporter minigene. The GFP_(GAA*TTC)(560) minigene recapitulates the molecular hallmarks of the mutated FXN gene, i.e. inhibition of transcription of the reporter gene, decreased levels of the reporter protein and hypoacetylation and hypermethylation of histones in the vicinity of the repeats. Additionally, selected histone deacetylase inhibitors, known to stimulate the FXN gene expression, increase the expression of the GFP_(GAA*TTC)(560) reporter. This FRDA model can be adapted to high-throughput analyses in a search for new therapeutics for the disease.
Collapse
Affiliation(s)
- E. Soragni
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - D. Herman
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - S. Y. R. Dent
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - J. M. Gottesfeld
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - R. D. Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - M. Napierala
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|