1
|
Tournier BB, Sorce S, Marteyn A, Ghidoni R, Benussi L, Binetti G, Herrmann FR, Krause K, Zekry D. CCR5 deficiency: Decreased neuronal resilience to oxidative stress and increased risk of vascular dementia. Alzheimers Dement 2024; 20:124-135. [PMID: 37489764 PMCID: PMC10917026 DOI: 10.1002/alz.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION As the chemokine receptor5 (CCR5) may play a role in ischemia, we studied the links between CCR5 deficiency, the sensitivity of neurons to oxidative stress, and the development of dementia. METHODS Logistic regression models with CCR5/apolipoprotein E (ApoE) polymorphisms were applied on a sample of 205 cognitively normal individuals and 189 dementia patients from Geneva. The impact of oxidative stress on Ccr5 expression and cell death was assessed in mice neurons. RESULTS CCR5-Δ32 allele synergized with ApoEε4 as risk factor for dementia and specifically for dementia with a vascular component. We confirmed these results in an independent cohort from Italy (157 cognitively normal and 620 dementia). Carriers of the ApoEε4/CCR5-Δ32 genotype aged ≥80 years have an 11-fold greater risk of vascular-and-mixed dementia. Oxidative stress-induced cell death in Ccr5-/- mice neurons. DISCUSSION We propose the vulnerability of CCR5-deficient neurons in response to oxidative stress as possible mechanisms contributing to dementia.
Collapse
Affiliation(s)
- Benjamin B. Tournier
- Department of PsychiatryGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Silvia Sorce
- Department of Pathology and ImmunologyFaculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Antoine Marteyn
- Department of Pathology and ImmunologyFaculty of MedicineUniversity of GenevaGenevaSwitzerland
- Division of GeriatricsDepartment of Rehabilitation and GeriatricsGeneva University HospitalsThônexSwitzerland
- Division of Internal Medicine for the AgedDepartment of Rehabilitation and GeriatricsGeneva University HospitalsThônexSwitzerland
| | - Roberta Ghidoni
- Molecular Markers LaboratoryIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Luisa Benussi
- Molecular Markers LaboratoryIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers LaboratoryIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - François R Herrmann
- Division of GeriatricsDepartment of Rehabilitation and GeriatricsGeneva University HospitalsThônexSwitzerland
| | - Karl‐Heinz Krause
- Department of Pathology and ImmunologyFaculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Dina Zekry
- Division of Internal Medicine for the AgedDepartment of Rehabilitation and GeriatricsGeneva University HospitalsThônexSwitzerland
| |
Collapse
|
2
|
Han S, DiBlasi E, Monson ET, Shabalin A, Ferris E, Chen D, Fraser A, Yu Z, Staley M, Callor WB, Christensen ED, Crockett DK, Li QS, Willour V, Bakian AV, Keeshin B, Docherty AR, Eilbeck K, Coon H. Whole-genome sequencing analysis of suicide deaths integrating brain-regulatory eQTLs data to identify risk loci and genes. Mol Psychiatry 2023; 28:3909-3919. [PMID: 37794117 PMCID: PMC10730410 DOI: 10.1038/s41380-023-02282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Recent large-scale genome-wide association studies (GWAS) have started to identify potential genetic risk loci associated with risk of suicide; however, a large portion of suicide-associated genetic factors affecting gene expression remain elusive. Dysregulated gene expression, not assessed by GWAS, may play a significant role in increasing the risk of suicide death. We performed the first comprehensive genomic association analysis prioritizing brain expression quantitative trait loci (eQTLs) within regulatory regions in suicide deaths from the Utah Suicide Genetic Risk Study (USGRS). 440,324 brain-regulatory eQTLs were obtained by integrating brain eQTLs, histone modification ChIP-seq, ATAC-seq, DNase-seq, and Hi-C results from publicly available data. Subsequent genomic analyses were conducted in whole-genome sequencing (WGS) data from 986 suicide deaths of non-Finnish European (NFE) ancestry and 415 ancestrally matched controls. Additional independent USGRS suicide deaths with genotyping array data (n = 4657) and controls from the Genome Aggregation Database were explored for WGS result replication. One significant eQTL locus, rs926308 (p = 3.24e-06), was identified. The rs926308-T is associated with lower expression of RFPL3S, a gene important for neocortex development and implicated in arousal. Gene-based analyses performed using Sherlock Bayesian statistical integrative analysis also detected 20 genes with expression changes that may contribute to suicide risk. From analyzing publicly available transcriptomic data, ten of these genes have previous evidence of differential expression in suicide death or in psychiatric disorders that may be associated with suicide, including schizophrenia and autism (ZNF501, ZNF502, CNN3, IGF1R, KLHL36, NBL1, PDCD6IP, SNX19, BCAP29, and ARSA). Electronic health records (EHR) data was further merged to evaluate if there were clinically relevant subsets of suicide deaths associated with genetic variants. In summary, our study identified one risk locus and ten genes associated with suicide risk via gene expression, providing new insight into possible genetic and molecular mechanisms leading to suicide.
Collapse
Affiliation(s)
- Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Emily DiBlasi
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric T Monson
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrey Shabalin
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Elliott Ferris
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Danli Chen
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alison Fraser
- Pedigree & Population Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Zhe Yu
- Pedigree & Population Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Staley
- Office of the Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - W Brandon Callor
- Office of the Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - Erik D Christensen
- Office of the Medical Examiner, Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - David K Crockett
- Clinical Analytics, Intermountain Health, Salt Lake City, UT, USA
| | - Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, Titusville, NJ, USA
| | - Virginia Willour
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Amanda V Bakian
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brooks Keeshin
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Anna R Docherty
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hilary Coon
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
3
|
MAPK/ERK-CBP-RFPL-3 Mediates Adipose-Derived Stem Cell-Induced Tumor Growth in Breast Cancer Cells by Activating Telomerase Reverse Transcriptase Expression. Stem Cells Int 2022; 2022:8540535. [PMID: 35711680 PMCID: PMC9197637 DOI: 10.1155/2022/8540535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
Adipose-derived stem cells (ASCs) improve the self-renewal and survival of fat grafts in breast reconstruction after oncology surgery. However, ASCs have also been found to enhance breast cancer growth, and its role in tumor proliferation remains largely elusive. Here, we explored a novel mechanism that mediates hTERT reactivation during ASC-induced tumor growth in breast cancer cells. In this study, we found the proliferative ability of breast cancer cells markedly increased with ASC coculture. To explore the molecular mechanism, we treated cells with anibody/inhibitor and found that the activation of MEK-ERK pathway was triggered in breast cancer cells by SCF secreted from ASCs, leading to the nuclear recruitment of CBP. As a coactivator of hTERT, CBP subsequently coordinated with RFPL-3 upregulated hTERT transcription and telomerase activity. The inhibition of CBP and RFPL-3 abrogated the activation of hTERT transcription and the promotion of proliferation in breast cancer cells with cocultured ASCs in vitro and in vivo. Collectively, our study findings indicated that CBP coordination with RFPL-3 promotes ASC-induced breast cancer cell proliferation by anchoring to the hTERT promoter and upregulating telomerase activity, which is activated by the MAPK/ERK pathway.
Collapse
|
4
|
Zarzuelo-Romero MJ, Pérez-Ramírez C, Cura Y, Carrasco-Campos MI, Marangoni-Iglecias LM, Ramírez-Tortosa MC, Jiménez-Morales A. Influence of Genetic Polymorphisms on Clinical Outcomes of Glatiramer Acetate in Multiple Sclerosis Patients. J Pers Med 2021; 11:jpm11101032. [PMID: 34683173 PMCID: PMC8540092 DOI: 10.3390/jpm11101032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of autoimmune origin, in which inflammation and demyelination lead to neurodegeneration and progressive disability. Treatment is aimed at slowing down the course of the disease and mitigating its symptoms. One of the first-line treatments used in patients with MS is glatiramer acetate (GA). However, in clinical practice, a response rate of between 30% and 55% is observed. This variability in the effectiveness of the medication may be influenced by genetic factors such as polymorphisms in the genes involved in the pathogenesis of MS. Therefore, this review assesses the impact of genetic variants on the response to GA therapy in patients diagnosed with MS. The results suggest that a relationship exists between the effectiveness of the treatment with GA and the presence of polymorphisms in the following genes: CD86, CLEC16A, CTSS, EOMES, MBP, FAS, TRBC1, IL1R1, IL12RB2, IL22RA2, PTPRT, PVT1, ALOX5AP, MAGI2, ZAK, RFPL3, UVRAG, SLC1A4, and HLA-DRB1*1501. Consequently, the identification of polymorphisms in these genes can be used in the future as a predictive marker of the response to GA treatment in patients diagnosed with MS. Nevertheless, there is a lack of evidence for this and more validation studies need to be conducted to apply this information to clinical practice.
Collapse
Affiliation(s)
- María José Zarzuelo-Romero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18001 Granada, Spain;
| | - Cristina Pérez-Ramírez
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
- Correspondence:
| | - Yasmín Cura
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - María Isabel Carrasco-Campos
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - Luciana María Marangoni-Iglecias
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - María Carmen Ramírez-Tortosa
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
| | - Alberto Jiménez-Morales
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| |
Collapse
|
5
|
Zohud BA, Guo P, Zohud BA, Li F, Hao JJ, Shan X, Yu W, Guo W, Qin Y, Cai X. Importin 13 promotes NSCLC progression by mediating RFPL3 nuclear translocation and hTERT expression upregulation. Cell Death Dis 2020; 11:879. [PMID: 33082305 PMCID: PMC7575581 DOI: 10.1038/s41419-020-03101-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Our previous studies have reported that RFPL3 protein exerts its unique function as a transcriptional factor of hTERT promoter after being transported into the lung cancer cell nucleus. However, the detailed mechanism by which RFPL3 undergoes nuclear transport has not been reported yet. Here, we identified RFPL3 as a potential import cargo for IPO13, which was found to be overexpressed in NSCLC cells and tissues. IPO13 interacted with RFPL3 in lung cancer cells, and the knockdown of IPO13 led to the cytoplasmic accumulation of RFPL3, the decreased anchoring of RFPL3 at hTERT promoter, and the downregulation of hTERT expression. Moreover, IPO13 silencing suppressed tumor growth in vitro and in vivo. IHC analysis confirmed the positive correlation between the expression levels of IPO13 and hTERT in the tumor tissues from patients with lung cancer. Furthermore, the mechanistic study revealed that IPO13 recognized RFPL3 via a functional nuclear localization signal (NLS), which is located in the B30.2 domain at the C-terminal region of RFPL3. Of note, the presence of EGFR mutations was significantly related to the increased IPO13 expression. The EGFR-TKI Osimertinib downregulated IPO13 expression level in NSCLC cell lines with EGFR mutations, but not in EGFR wild-type ones. In summary, our data suggest that inhibition of IPO13 transport activity itself might be an alternative and potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
| | - Ping Guo
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | | | - Fengzhou Li
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Jiao J Hao
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Xiu Shan
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Yu Qin
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| | - Xin Cai
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| |
Collapse
|
6
|
Kimura R, Lardenoije R, Tomiwa K, Funabiki Y, Nakata M, Suzuki S, Awaya T, Kato T, Okazaki S, Murai T, Heike T, Rutten BPF, Hagiwara M. Integrated DNA methylation analysis reveals a potential role for ANKRD30B in Williams syndrome. Neuropsychopharmacology 2020; 45:1627-1636. [PMID: 32303053 PMCID: PMC7419304 DOI: 10.1038/s41386-020-0675-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/20/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
Abstract
Williams syndrome (WS) is a rare genetic disorder, caused by a microdeletion at the 7q11.23 region. WS exhibits a wide spectrum of features including hypersociability, which contrasts with social deficits typically associated with autism spectrum disorders. The phenotypic variability in WS likely involves epigenetic modifications; however, the nature of these events remains unclear. To better understand the role of epigenetics in WS phenotypes, we integrated DNA methylation and gene expression profiles in blood from patients with WS and controls. From these studies, 380 differentially methylated positions (DMPs), located throughout the genome, were identified. Systems-level analysis revealed multiple co-methylation modules linked to intermediate phenotypes of WS, with the top-scoring module related to neurogenesis and development of the central nervous system. Notably, ANKRD30B, a promising hub gene, was significantly hypermethylated in blood and downregulated in brain tissue from individuals with WS. Most CpG sites of ANKRD30B in blood were significantly correlated with brain regions. Furthermore, analyses of gene regulatory networks (GRNs) yielded master regulator transcription factors associated with WS. Taken together, this systems-level approach highlights the role of epigenetics in WS, and provides a possible explanation for the complex phenotypes observed in patients with WS.
Collapse
Affiliation(s)
- Ryo Kimura
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Roy Lardenoije
- grid.411984.10000 0001 0482 5331Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany ,grid.38142.3c000000041936754XDepartment of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA USA
| | - Kiyotaka Tomiwa
- grid.258799.80000 0004 0372 2033Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.416948.60000 0004 1764 9308Department of Child Neurology, Osaka City General Hospital, Osaka, Japan ,Todaiji Ryoiku Hospital for Children, Nara, Japan
| | - Yasuko Funabiki
- grid.258799.80000 0004 0372 2033Department of Cognitive and Behavioral Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Nakata
- grid.258799.80000 0004 0372 2033Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shiho Suzuki
- grid.258799.80000 0004 0372 2033Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonari Awaya
- grid.258799.80000 0004 0372 2033Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeo Kato
- grid.258799.80000 0004 0372 2033Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.413697.e0000 0004 0378 7558Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Shin Okazaki
- grid.416948.60000 0004 1764 9308Department of Child Neurology, Osaka City General Hospital, Osaka, Japan
| | - Toshiya Murai
- grid.258799.80000 0004 0372 2033Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Heike
- grid.258799.80000 0004 0372 2033Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.413697.e0000 0004 0378 7558Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Bart P. F. Rutten
- grid.412966.e0000 0004 0480 1382Division of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Laufer BI, Hwang H, Vogel Ciernia A, Mordaunt CE, LaSalle JM. Whole genome bisulfite sequencing of Down syndrome brain reveals regional DNA hypermethylation and novel disorder insights. Epigenetics 2019; 14:672-684. [PMID: 31010359 PMCID: PMC6557615 DOI: 10.1080/15592294.2019.1609867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023] Open
Abstract
Down Syndrome (DS) is the most common genetic cause of intellectual disability, in which an extra copy of human chromosome 21 (HSA21) affects regional DNA methylation profiles across the genome. Although DNA methylation has been previously examined at select regulatory regions across the genome in a variety of DS tissues and cells, differentially methylated regions (DMRs) have yet to be examined in an unbiased sequencing-based approach. Here, we present the first analysis of DMRs from whole genome bisulfite sequencing (WGBS) data of human DS and matched control brain, specifically frontal cortex. While no global differences in DNA methylation were observed, we identified 3,152 DS-DMRs across the entire genome, the majority of which were hypermethylated in DS. DS-DMRs were significantly enriched at CpG islands and de-enriched at specific gene body and regulatory regions. Functionally, the hypermethylated DS-DMRs were enriched for one-carbon metabolism, membrane transport, and glutamatergic synaptic signalling, while the hypomethylated DMRs were enriched for proline isomerization, glial immune response, and apoptosis. Furthermore, in a cross-tissue comparison to previous studies of DNA methylation from diverse DS tissues and reference epigenomes, hypermethylated DS-DMRs showed a strong cross-tissue concordance, while a more tissue-specific pattern was observed for the hypomethylated DS-DMRs. Overall, this approach highlights that low-coverage WGBS of clinical samples can identify epigenetic alterations to known biological pathways, which are potentially relevant to therapeutic treatments and include metabolic pathways. These results also provide new insights into the genome-wide effects of genetic alterations on DNA methylation profiles indicative of altered neurodevelopment and brain function.
Collapse
Affiliation(s)
- Benjamin I. Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
8
|
McCoy TH, Castro VM, Hart KL, Pellegrini AM, Yu S, Cai T, Perlis RH. Genome-wide Association Study of Dimensional Psychopathology Using Electronic Health Records. Biol Psychiatry 2018; 83:1005-1011. [PMID: 29496196 PMCID: PMC5972060 DOI: 10.1016/j.biopsych.2017.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/17/2017] [Accepted: 12/07/2017] [Indexed: 10/17/2022]
Abstract
BACKGROUND Genetic studies of neuropsychiatric disease strongly suggest an overlap in liability. There are growing efforts to characterize these diseases dimensionally rather than categorically, but the extent to which such dimensional models correspond to biology is unknown. METHODS We applied a newly developed natural language processing method to extract five symptom dimensions based on the National Institute of Mental Health Research Domain Criteria definitions from narrative hospital discharge notes in a large biobank. We conducted a genome-wide association study to examine whether common variants were associated with each of these dimensions as quantitative traits. RESULTS Among 4687 individuals, loci in three of five domains exceeded a genome-wide threshold for statistical significance. These included a locus spanning the neocortical development genes RFPL3 and RFPL3S for arousal (p = 2.29 × 10-8) and one spanning the FPR3 gene for cognition (p = 3.22 × 10-8). CONCLUSIONS Natural language processing identifies dimensional phenotypes that may facilitate the discovery of common genetic variation that is relevant to psychopathology.
Collapse
Affiliation(s)
- Thomas H. McCoy
- Center for Quantitative Health and Department of Psychiatry, Simches Research Building, 6th Floor, 185 Cambridge Street, Massachusetts General Hospital and Harvard Medical School, Boston, MA,Correspondence: Thomas H. McCoy, Jr, MD, Massachusetts General Hospital, Simches Research Building, 6th Floor, Boston, MA 02114, 617-726-7426,
| | - Victor M. Castro
- Center for Quantitative Health and Department of Psychiatry, Simches Research Building, 6th Floor, 185 Cambridge Street, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Kamber L. Hart
- Center for Quantitative Health and Department of Psychiatry, Simches Research Building, 6th Floor, 185 Cambridge Street, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Amelia M. Pellegrini
- Center for Quantitative Health and Department of Psychiatry, Simches Research Building, 6th Floor, 185 Cambridge Street, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Sheng Yu
- Tsinghua University, 30 Shuangqing Rd, Haidian Qu, Beijing Shi, China, 100084
| | - Tianxi Cai
- Harvard School of Public Health, 677 Huntington Ave, Boston, MA 02115
| | - Roy H. Perlis
- Center for Quantitative Health and Department of Psychiatry, Simches Research Building, 6th Floor, 185 Cambridge Street, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Lin C, Qin Y, Zhang H, Gao MY, Wang YF. EGF upregulates RFPL3 and hTERT via the MEK signaling pathway in non‑small cell lung cancer cells. Oncol Rep 2018; 40:29-38. [PMID: 29749533 PMCID: PMC6059751 DOI: 10.3892/or.2018.6417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/23/2018] [Indexed: 12/20/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) during tumor development can trigger the MEK signaling pathway. In the present study, we investigated the MEK signaling pathway in non‑small cell lung cancer (NSCLC) cells with respect to the effect of epidermal growth factor (EGF) on expression of Ret finger protein like 3 (RFPL3) and human telomerase reverse transcriptase (hTERT), and the effect of RFPL3 overexpression on other MEK signaling proteins. In vitro, A549 and H1299 cells were treated with different concentrations of EGF for 24 h or 48 h. Expression of RFPL3 and hTERT at the mRNA and protein levels was determined by real‑time quantitative PCR (RT‑qPCR) and western blot analysis; cell viability was detected by MTT assay, and apoptosis was assayed via flow cytometry. We also pretreated A549 and H1299 cells with EGFR tyrosine kinase inhibitors, AG1478 and erlotinib, and MEK‑specific inhibitor (PD98059) in the presence of EGF. We used western blot analysis to assess the expression levels of RFPL3, hTERT and related MEK‑pathway proteins in A549 and H1299 cells transfected with RFPL3‑overexpression plasmids. EGF significantly upregulated RFPL3 and hTERT protein levels in the NSCLC cells. RFPL3 and hTERT proteins upregulation by EGF were attenuated by pretreatment with AG1478 and erlotinib. EGF promoted proliferation and inhibited apoptosis; PD98059 decreased RFPL3 and hTERT protein expression; and RFPL3 overexpression increased the expression of hTERT and related MEK‑pathway proteins. EGF upregulated RFPL3 and hTERT protein expression in NSCLC cells via the MEK pathway, promoted cell proliferation and inhibited apoptosis. RFPL3 overexpression increased expression of hTERT and related MEK signaling proteins (Ras, Raf, ERK and p‑ERK), which implies that RFPL3 is a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Chuan Lin
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Yu Qin
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Hua Zhang
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Ming-Yang Gao
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Yan-Fu Wang
- Department of Geriatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
10
|
van Dijk SJ, Zhou J, Peters TJ, Buckley M, Sutcliffe B, Oytam Y, Gibson RA, McPhee A, Yelland LN, Makrides M, Molloy PL, Muhlhausler BS. Effect of prenatal DHA supplementation on the infant epigenome: results from a randomized controlled trial. Clin Epigenetics 2016; 8:114. [PMID: 27822319 PMCID: PMC5096291 DOI: 10.1186/s13148-016-0281-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Evidence is accumulating that nutritional exposures in utero can influence health outcomes in later life. Animal studies and human epidemiological studies have implicated epigenetic modifications as playing a key role in this process, but there are limited data from large well-controlled human intervention trials. This study utilized a large double-blind randomized placebo-controlled trial to test whether a defined nutritional exposure in utero, in this case docosahexaenoic acid (DHA), could alter the infant epigenome. Pregnant mothers consumed DHA-rich fish oil (800 mg DHA/day) or placebo supplements from 20 weeks' gestation to delivery. Blood spots were collected from the children at birth (n = 991) and blood leukocytes at 5 years (n = 667). Global DNA methylation was measured in all samples, and Illumina HumanMethylation450K BeadChip arrays were used for genome-wide methylation profiling in a subset of 369 children at birth and 65 children at 5 years. RESULTS There were no differences in global DNA methylation levels between the DHA and control group either at birth or at 5 years, but we identified 21 differentially methylated regions (DMRs) at birth, showing small DNA methylation differences (<5%) between the treatment groups, some of which seemed to persist until 5 years. The number of DMRs at birth was greater in males (127 DMRs) and in females (72 DMRs) separately, indicating a gender-specific effect. CONCLUSION Maternal DHA supplementation during the second half of pregnancy had small effects on DNA methylation of infants. While the potential functional significance of these changes remains to be determined, these findings further support the role of epigenetic modifications in developmental programming in humans and point the way for future studies. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR), ACTRN12605000569606 and ACTRN12611001127998.
Collapse
Affiliation(s)
- Susan J. van Dijk
- CSIRO Health and Biosecurity, PO Box 52, North Ryde, New South Wales 1670 Australia
| | - Jing Zhou
- FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, South Australia 5064 Australia
| | | | | | - Brodie Sutcliffe
- CSIRO Health and Biosecurity, PO Box 52, North Ryde, New South Wales 1670 Australia
| | - Yalchin Oytam
- CSIRO Agriculture and Food, North Ryde, New South Wales 2113 Australia
| | - Robert A. Gibson
- FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, South Australia 5064 Australia
- Child Nutrition Research Centre, South Australian Health and Medical Research Institute Adelaide, Adelaide, South Australia 5006 Australia
| | - Andrew McPhee
- Department of Neonatal Medicine, Women’s and Children’s Hospital, Adelaide, South Australia 5006 Australia
| | - Lisa N. Yelland
- Child Nutrition Research Centre, South Australian Health and Medical Research Institute Adelaide, Adelaide, South Australia 5006 Australia
- School of Public Health, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Maria Makrides
- Child Nutrition Research Centre, South Australian Health and Medical Research Institute Adelaide, Adelaide, South Australia 5006 Australia
| | - Peter L. Molloy
- CSIRO Health and Biosecurity, PO Box 52, North Ryde, New South Wales 1670 Australia
| | - Beverly S. Muhlhausler
- FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, South Australia 5064 Australia
- Child Nutrition Research Centre, South Australian Health and Medical Research Institute Adelaide, Adelaide, South Australia 5006 Australia
| |
Collapse
|
11
|
RFPL3 and CBP synergistically upregulate hTERT activity and promote lung cancer growth. Oncotarget 2016; 6:27130-45. [PMID: 26318425 PMCID: PMC4694978 DOI: 10.18632/oncotarget.4825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/30/2015] [Indexed: 12/27/2022] Open
Abstract
hTERT is the key component of telomerase and its overactivation contributes to maintaining telomere length and cell immortalization. Previously, we identified RFPL3 as a new transcription activator of hTERT in lung cancers. However, the exact mechanism of RFPL3 in mediating hTERT activation and its associated signal regulatory network remain unclear. In this study, we found that RFPL3 colocalized and interacted directly with CBP in the nucleus of lung cancer cells. Immunohistochemical analysis of tissue microarrays of lung cancers revealed the simultaneous overexpression of both RFPL3 and CBP predicted relatively poor prognosis. Furthermore, we confirmed their synergistic stimulation on hTERT expression and tumor cell growth. The binding of RFPL3 to hTERT promoter was reduced markedly when CBP was knocked down by its specific siRNA or suppressed by its inhibitor in lung cancer cells with stable overexpression of RFPL3. When one of the two proteins RFPL3 and CBP was upregulated or downregulated, whereas the another remains unchanged, hTERT expression and telomerase activity were activated or repressed accordingly. In the meantime, the growth of lung cancer cells was also promoted or attenuated accordingly. Furthermore, we also found that RFPL3 coordinated with CBP to upregulate hTERT through the CBP-induced acetylation of RFPL3 protein and their co-anchoring at hTERT promoter region. Collectively, our results reveal a new mechanism of hTERT regulation in lung cancer cells and suggest the RFPL3/CBP/hTERT signaling pathway may be a new targets for lung cancer treatment.
Collapse
|
12
|
Chen W, Lu J, Qin Y, Wang J, Tian Y, Shi D, Wang S, Xiao Y, Dai M, Liu L, Wei G, Wu T, Jin B, Xiao X, Kang TB, Huang W, Deng W. Ret finger protein-like 3 promotes tumor cell growth by activating telomerase reverse transcriptase expression in human lung cancer cells. Oncotarget 2015; 5:11909-23. [PMID: 25481043 PMCID: PMC4322990 DOI: 10.18632/oncotarget.2557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/01/2014] [Indexed: 12/23/2022] Open
Abstract
In this study, we identified ret finger protein-like 3 (RFPL3) as a hTERT promoter binding protein in lung cancer cells. The high hTERT promoter-binding activity of RFPL3 was detected in lung cancer cells compared to normal cells. Chromatin immunoprecipitation confirmed RFPL3 as a tumor-specific hTERT promoter binding protein. Overexpression of RFPL3 activated hTERT promoter and up-regulated hTERT expression and telomerase activity. Inhibition of RFPL3 expression by siRNA suppressed hTERT promoter activation and telomerase activity. Inhibition of RFPL3 by siRNA or shRNA also significantly inhibited tumor cell growth in vitro and in a xenograft mouse model in vivo. Immunohistochemical analysis of 181 human lung adenocarcinomas specimens showed a significant correlation between RFPL3 and hTERT expression. The overexpression of RFPL3 was also associated significantly with lymph node metastasis. Univariate and multivariate Cox model analyses of NSCLC clinical specimens revealed a strong correlation between RFPL3 expression and overall survival. These results demonstrate that RFPL3 is an important cellular factor which promotes lung cancer growth by activating hTERT expression and may be a potential novel therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Wangbing Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China. Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Lu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Qin
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jingshu Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yun Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Dingbo Shi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Shusen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yao Xiao
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meng Dai
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lu Liu
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Guo Wei
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Taihua Wu
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Bilian Jin
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiangsheng Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Tie-Bang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China. State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China. State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| |
Collapse
|
13
|
Strong E, Butcher D, Singhania R, Mervis C, Morris C, De Carvalho D, Weksberg R, Osborne L. Symmetrical Dose-Dependent DNA-Methylation Profiles in Children with Deletion or Duplication of 7q11.23. Am J Hum Genet 2015; 97:216-27. [PMID: 26166478 DOI: 10.1016/j.ajhg.2015.05.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022] Open
Abstract
Epigenetic dysfunction has been implicated in a growing list of disorders that include cancer, neurodevelopmental disorders, and neurodegeneration. Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders with broad phenotypic spectra caused by deletion and duplication, respectively, of a 1.5-Mb region that includes several genes with a role in epigenetic regulation. We have identified striking differences in DNA methylation across the genome between blood cells from children with WS or Dup7 and blood cells from typically developing (TD) children. Notably, regions that were differentially methylated in both WS and Dup7 displayed a significant and symmetrical gene-dose-dependent effect, such that WS typically showed increased and Dup7 showed decreased DNA methylation. Differentially methylated genes were significantly enriched with genes in pathways involved in neurodevelopment, autism spectrum disorder (ASD) candidate genes, and imprinted genes. Using alignment with ENCODE data, we also found the differentially methylated regions to be enriched with CCCTC-binding factor (CTCF) binding sites. These findings suggest that gene(s) within 7q11.23 alter DNA methylation at specific sites across the genome and result in dose-dependent DNA-methylation profiles in WS and Dup7. Given the extent of DNA-methylation changes and the potential impact on CTCF binding and chromatin regulation, epigenetic mechanisms most likely contribute to the complex neurological phenotypes of WS and Dup7. Our findings highlight the importance of DNA methylation in the pathogenesis of WS and Dup7 and provide molecular mechanisms that are potentially shared by WS, Dup7, and ASD.
Collapse
|
14
|
Naito A, Yamamoto H, Kagawa Y, Naito Y, Okuzaki D, Otani K, Iwamoto Y, Maeda S, Kikuta J, Nishikawa K, Uemura M, Nishimura J, Hata T, Takemasa I, Mizushima T, Ishii H, Doki Y, Mori M, Ishii M. RFPL4A increases the G1 population and decreases sensitivity to chemotherapy in human colorectal cancer cells. J Biol Chem 2015; 290:6326-6337. [PMID: 25605732 PMCID: PMC4358269 DOI: 10.1074/jbc.m114.614859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/09/2015] [Indexed: 01/06/2023] Open
Abstract
Cell cycle-arrested cancer cells are resistant to conventional chemotherapy that acts on the mitotic phases of the cell cycle, although the molecular mechanisms involved in halting cell cycle progression remain unclear. Here, we demonstrated that RFPL4A, an uncharacterized ubiquitin ligase, induced G1 retention and thus conferred decreased sensitivity to chemotherapy in the human colorectal cancer cell line, HCT116. Long term time lapse observations in HCT116 cells bearing a "fluorescence ubiquitin-based cell cycle indicator" identified a characteristic population that is viable but remains in the G1 phase for an extended period of time (up to 56 h). Microarray analyses showed that expression of RFPL4A was significantly up-regulated in these G1-arrested cells, not only in HCT116 cells but also in other cancer cell lines, and overexpression of RFPL4A increased the G1 population and decreased sensitivity to chemotherapy. However, knockdown of RFPL4A expression caused the cells to resume mitosis and induced their susceptibility to anti-cancer drugs in vitro and in vivo. These results indicate that RFPL4A is a novel factor that increases the G1 population and decreases sensitivity to chemotherapy and thus may be a promising therapeutic target for refractory tumor conditions.
Collapse
Affiliation(s)
- Atsushi Naito
- From the Departments of Immunology and Cell Biology, Gastroenterological Surgery, and
| | | | - Yoshinori Kagawa
- From the Departments of Immunology and Cell Biology, Gastroenterological Surgery, and the WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoko Naito
- From the Departments of Immunology and Cell Biology, the WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- the DNA-chip Developmental Center for Infectious Diseases, Research Institute for Microbial Diseases, 3-1 Yamada-oka, Osaka University, Suita, Osaka 565-0871, Japan, and
| | | | | | - Sakae Maeda
- From the Departments of Immunology and Cell Biology, Gastroenterological Surgery, and the WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Junichi Kikuta
- From the Departments of Immunology and Cell Biology, the WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan, the Japan Science and Technology Agency (JST), CREST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Keizo Nishikawa
- From the Departments of Immunology and Cell Biology, the WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan, the Japan Science and Technology Agency (JST), CREST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
| | | | | | | | | | | | - Hideshi Ishii
- Cancer Profiling Discovery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | - Masaru Ishii
- From the Departments of Immunology and Cell Biology, the WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan, the Japan Science and Technology Agency (JST), CREST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
15
|
Ferri G, Huichalaf CH, Caccia R, Gabellini D. Direct interplay between two candidate genes in FSHD muscular dystrophy. Hum Mol Genet 2014; 24:1256-66. [PMID: 25326393 PMCID: PMC4321439 DOI: 10.1093/hmg/ddu536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders. The major form of the disease (FSHD1) is linked to decrease in copy number of a 3.3-kb tandem repeated macrosatellite (D4Z4), located on chromosome 4q35. D4Z4 deletion alters chromatin structure of the locus leading to aberrant expression of nearby 4q35 genes. Given the high variability in disease onset and progression, multiple factors could contribute to the pathogenesis of FSHD. Among the FSHD candidate genes are double homeobox 4 (DUX4), encoded by the most telomeric D4Z4 unit, and FSHD region gene 1 (FRG1). DUX4 is a sequence-specific transcription factor. Here, we located putative DUX4 binding sites in the human FRG1 genomic area and we show specific DUX4 association to these regions. We found also that ectopically expressed DUX4 up-regulates the endogenous human FRG1 gene in healthy muscle cells, while DUX4 knockdown leads to a decrease in FRG1 expression in FSHD muscle cells. Moreover, DUX4 binds directly and specifically to its binding site located in the human FRG1 gene and transactivates constructs containing FRG1 genomic regions. Intriguingly, the mouse Frg1 genomic area lacks DUX4 binding sites and DUX4 is unable to activate the endogenous mouse Frg1 gene providing a possible explanation for the lack of muscle phenotype in DUX4 transgenic mice. Altogether, our results demonstrate that FRG1 is a direct DUX4 transcriptional target uncovering a novel regulatory circuit contributing to FSHD.
Collapse
Affiliation(s)
- Giulia Ferri
- Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, DIBIT2, 5A3, Via Olgettina 58, 20132 Milan, Italy Università Vita-Salute San Raffaele, Milan, Italy
| | - Claudia H Huichalaf
- Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, DIBIT2, 5A3, Via Olgettina 58, 20132 Milan, Italy Università Vita-Salute San Raffaele, Milan, Italy
| | - Roberta Caccia
- Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, DIBIT2, 5A3, Via Olgettina 58, 20132 Milan, Italy
| | - Davide Gabellini
- Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute at San Raffaele Scientific Institute, DIBIT2, 5A3, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
16
|
Tan BH, Suzuki Y, Takahashi H, Ying PHR, Takahashi C, Han Q, Chin WX, Chao SH, Sawasaki T, Yamamoto N, Suzuki Y. Identification of RFPL3 protein as a novel E3 ubiquitin ligase modulating the integration activity of human immunodeficiency virus, type 1 preintegration complex using a microtiter plate-based assay. J Biol Chem 2014; 289:26368-26382. [PMID: 25107902 DOI: 10.1074/jbc.m114.561662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integration, one of the hallmarks of retrovirus replication, is mediated by a nucleoprotein complex called the preintegration complex (PIC), in which viral DNA is associated with many protein components that are required for completion of the early phase of infection. A striking feature of the PIC is its powerful integration activity in vitro. The PICs from a freshly isolated cytoplasmic extract of infected cells are able to insert viral DNA into exogenously added target DNA in vitro. Therefore, a PIC-based in vitro assay is a reliable system for assessing protein factors influencing retroviral integration. In this study, we applied a microtiter plate-based in vitro assay to a screening study using a protein library that was produced by the wheat germ cell-free protein synthesis system. Using a library of human E3 ubiquitin ligases, we identified RFPL3 as a potential stimulator of human immunodeficiency virus, type 1 (HIV-1) PIC integration activity in vitro. This enhancement of PIC activity by RFPL3 was likely to be attributed to its N-terminal RING domain. To further understand the functional role of RFPL3 in HIV infection, we created a human cell line overexpressing RFPL3. Immunoprecipitation analysis revealed that RFPL3 was associated with the human immunodeficiency virus, type 1 PICs in infected cells. More importantly, single-round HIV-1 infection was enhanced significantly by RFPL3 expression. Our proteomic approach displays an advantage in the identification of new cellular proteins affecting the integration activity of the PIC and, therefore, contributes to the understanding of functional interaction between retroviral integration complexes and host factors.
Collapse
Affiliation(s)
- Beng Hui Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Yasutsugu Suzuki
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Hirotaka Takahashi
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Pamela Ho Rui Ying
- Veterinary Bioscience, Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
| | - Chikako Takahashi
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Qi'En Han
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Wei Xin Chin
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore
| | - Sheng-Hao Chao
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan, and
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore,.
| | - Youichi Suzuki
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, #15-02, Singapore 117599, Singapore,; Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
17
|
Tan X, Anzick SL, Khan SG, Ueda T, Stone G, Digiovanna JJ, Tamura D, Wattendorf D, Busch D, Brewer CC, Zalewski C, Butman JA, Griffith AJ, Meltzer PS, Kraemer KH. Chimeric negative regulation of p14ARF and TBX1 by a t(9;22) translocation associated with melanoma, deafness, and DNA repair deficiency. Hum Mutat 2013; 34:1250-9. [PMID: 23661601 DOI: 10.1002/humu.22354] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/29/2013] [Indexed: 12/15/2022]
Abstract
Melanoma is the most deadly form of skin cancer and DiGeorge syndrome (DGS) is the most frequent interstitial deletion syndrome. We characterized a novel balanced t(9;22)(p21;q11.2) translocation in a patient with melanoma, DNA repair deficiency, and features of DGS including deafness and malformed inner ears. Using chromosome sorting, we located the 9p21 breakpoint in CDKN2A intron 1. This resulted in underexpression of the tumor suppressor p14 alternate reading frame (p14ARF); the reduced DNA repair was corrected by transfection with p14ARF. Ultraviolet radiation-type p14ARF mutations in his melanoma implicated p14ARF in its pathogenesis. The 22q11.2 breakpoint was located in a palindromic AT-rich repeat (PATRR22). We identified a new gene, FAM230A, that contains PATRR22 within an intron. The 22q11.2 breakpoint was located 800 kb centromeric to TBX1, which is required for inner ear development. TBX1 expression was greatly reduced. The translocation resulted in a chimeric transcript encoding portions of p14ARF and FAM230A. Inhibition of chimeric p14ARF-FAM230A expression increased p14ARF and TBX1 expression and improved DNA repair. Expression of the chimera in normal cells produced dominant negative inhibition of p14ARF. Similar chimeric mRNAs may mediate haploinsufficiency in DGS or dominant negative inhibition of other genes such as those involved in melanoma.
Collapse
Affiliation(s)
- Xiaohui Tan
- DNA Repair Section, Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4258, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dandapat A, Hartweck LM, Bosnakovski D, Kyba M. Expression of the human FSHD-linked DUX4 gene induces neurogenesis during differentiation of murine embryonic stem cells. Stem Cells Dev 2013; 22:2440-8. [PMID: 23560660 DOI: 10.1089/scd.2012.0643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Misexpression of the double homeodomain protein DUX4 in muscle is believed to cause facioscapulohumeral muscular dystrophy (FSHD). Although strategies are being devised to inhibit DUX4 activity in FSHD, there is little known about the normal function of this protein. Expression of DUX4 has been reported in pluripotent cells and testis. To test the idea that DUX4 may be involved in initiating a germ lineage program in pluripotent cells, we interrogated the effect of expressing the human DUX4 gene at different stages during in vitro differentiation of murine embryonic stem (ES) cells. We find that expression of even low levels of DUX4 is incompatible with pluripotency: DUX4-expressing ES cells downregulate pluripotency markers and rapidly differentiate even in the presence of leukemia inhibitory factor (LIF) and bone morphogenetic protein 4 (BMP4). Transcriptional profiling revealed unexpectedly that DUX4 induced a neurectodermal program. Embryoid bodies exposed to a pulse of DUX4 expression displayed severely inhibited mesodermal differentiation, but acquired neurogenic potential. In a serum-containing medium in which neurogenic differentiation is minimal, DUX4 expression served as a neural-inducing factor, enabling the differentiation of Tuj1+ neurites. These data suggest that besides effects in muscle and germ cells, the involvement of DUX4 in neurogenesis should be considered as anti-DUX4 therapies are developed.
Collapse
Affiliation(s)
- Abhijit Dandapat
- Department of Pediatrics, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
19
|
Krom YD, Dumonceaux J, Mamchaoui K, den Hamer B, Mariot V, Negroni E, Geng LN, Martin N, Tawil R, Tapscott SJ, van Engelen BGM, Mouly V, Butler-Browne GS, van der Maarel SM. Generation of isogenic D4Z4 contracted and noncontracted immortal muscle cell clones from a mosaic patient: a cellular model for FSHD. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1387-401. [PMID: 22871573 DOI: 10.1016/j.ajpath.2012.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 01/24/2023]
Abstract
In most cases facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of the D4Z4 repeat in the 4q subtelomere. This contraction is associated with local chromatin decondensation and derepression of the DUX4 retrogene. Its complex genetic and epigenetic cause and high clinical variability in disease severity complicate investigations on the pathogenic mechanism underlying FSHD. A validated cellular model bypassing the considerable heterogeneity would facilitate mechanistic and therapeutic studies of FSHD. Taking advantage of the high incidence of somatic mosaicism for D4Z4 repeat contraction in de novo FSHD, we have established a clonal myogenic cell model from a mosaic patient. Individual clones are genetically identical except for the size of the D4Z4 repeat array, being either normal or FSHD sized. These clones retain their myogenic characteristics, and D4Z4 contracted clones differ from the noncontracted clones by the bursts of expression of DUX4 in sporadic nuclei, showing that this burst-like phenomenon is a locus-intrinsic feature. Consequently, downstream effects of DUX4 expression can be observed in D4Z4 contracted clones, like differential expression of DUX4 target genes. We also show their participation to in vivo regeneration with immunodeficient mice, further expanding the potential of these clones for mechanistic and therapeutic studies. These cell lines will facilitate pairwise comparisons to identify FSHD-specific differences and are expected to create new opportunities for high-throughput drug screens.
Collapse
Affiliation(s)
- Yvonne D Krom
- Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell 2011; 22:38-51. [PMID: 22209328 DOI: 10.1016/j.devcel.2011.11.013] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/04/2011] [Accepted: 11/21/2011] [Indexed: 11/23/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is one of the most common inherited muscular dystrophies. The causative gene remains controversial and the mechanism of pathophysiology unknown. Here we identify genes associated with germline and early stem cell development as targets of the DUX4 transcription factor, a leading candidate gene for FSHD. The genes regulated by DUX4 are reliably detected in FSHD muscle but not in controls, providing direct support for the model that misexpression of DUX4 is a causal factor for FSHD. Additionally, we show that DUX4 binds and activates LTR elements from a class of MaLR endogenous primate retrotransposons and suppresses the innate immune response to viral infection, at least in part through the activation of DEFB103, a human defensin that can inhibit muscle differentiation. These findings suggest specific mechanisms of FSHD pathology and identify candidate biomarkers for disease diagnosis and progression.
Collapse
|
21
|
Bonnefont J, Laforge T, Plastre O, Beck B, Sorce S, Dehay C, Krause KH. Primate-specific RFPL1 gene controls cell-cycle progression through cyclin B1/Cdc2 degradation. Cell Death Differ 2010; 18:293-303. [PMID: 20725088 DOI: 10.1038/cdd.2010.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ret finger protein-like 1 (RFPL1) is a primate-specific target gene of Pax6, a key transcription factor for pancreas, eye and neocortex development. However, its cellular activity remains elusive. In this article, we report that Pax6-elicited expression of the human (h)RFPL1 gene in HeLa cells can be enhanced by in vivo p53 binding to its promoter and therefore investigated the hypothesis that hRFPL1 regulates cell-cycle progression. Upon expression in these cells, hRFPL1 decreased cell number through a kinase-dependent mechanism as PKC activates and Cdc2 inhibits hRFPL1 activity. hRFPL1 antiproliferative activity led to an increased cell population in G(2)/M phase and specific cyclin B1 and Cdc2 downregulations, which were precluded by a proteasome inhibitor. Specifically, cytoplasm-localized hRFPL1 prevented cyclin B1 and Cdc2 accumulation during interphase. Consequently, cells showed a delayed entry into mitosis and cell-cycle lengthening resulting from a threefold increase in G(2) phase duration. Given previous reports that RFPL1 is expressed during cell differentiation, its impact on cell-cycle lengthening therefore provides novel insights into primate-specific development.
Collapse
Affiliation(s)
- J Bonnefont
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Crespi B, Summers K, Dorus S. Genomic sister-disorders of neurodevelopment: an evolutionary approach. Evol Appl 2009; 2:81-100. [PMID: 25567849 PMCID: PMC3352408 DOI: 10.1111/j.1752-4571.2008.00056.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 11/26/2008] [Indexed: 02/06/2023] Open
Abstract
Genomic sister-disorders are defined here as diseases mediated by duplications versus deletions of the same region. Such disorders can provide unique information concerning the genomic underpinnings of human neurodevelopment because effects of diametric variation in gene copy number on cognitive and behavioral phenotypes can be inferred. We describe evidence from the literature on deletions versus duplications for the regions underlying the best-known human neurogenetic sister-disorders, including Williams syndrome, Velocardiofacial syndrome, and Smith-Magenis syndrome, as well as the X-chromosomal conditions Klinefelter and Turner syndromes. These data suggest that diametric copy-number alterations can, like diametric alterations to imprinted genes, generate contrasting phenotypes associated with autistic-spectrum and psychotic-spectrum conditions. Genomically based perturbations to the development of the human social brain are thus apparently mediated to a notable degree by effects of variation in gene copy number. We also conducted the first analyses of positive selection for genes in the regions affected by these disorders. We found evidence consistent with adaptive evolution of protein-coding genes, or selective sweeps, for three of the four sets of sister-syndromes analyzed. These studies of selection facilitate identification of candidate genes for the phenotypes observed and lend a novel evolutionary dimension to the analysis of human cognitive architecture and neurogenetic disorders.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser University Burnaby, BC, Canada
| | - Kyle Summers
- Department of Biology, East Carolina University Greenville, NC, USA
| | - Steve Dorus
- Department of Biology and Biochemistry, University of Bath Bath, UK
| |
Collapse
|