1
|
Sun W, Shahrajabian MH, Ma K, Wang S. Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals (Basel) 2025; 18:430. [PMID: 40143206 PMCID: PMC11945623 DOI: 10.3390/ph18030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Collagen is the main protein found in skin, bone, cartilage, ligaments, tendons and connective tissue, and it can exhibit properties ranging from compliant to rigid or form gradients between these states. The collagen family comprises 28 members, each containing at least one triple-helical domain. These proteins play critical roles in maintaining mechanical characteristics, tissue organization, and structural integrity. Collagens regulate cellular processes such as proliferation, migration, and differentiation through interactions with cell surface receptors. Fibrillar collagens, the most abundant extracellular matrix (ECM) proteins, provide organs and tissues with structural stability and connectivity. In the mammalian myocardial interstitium, types I and III collagens are predominant: collagen I is found in organs, tendons, and bones; collagen II is found in cartilage; collagen III is found in reticular fibers; collagen IV is found in basement membranes; and collagen V is found in nails and hair. Recombinant human collagens, particularly in sponge-like porous formats combined with bone morphogenetic proteins, serve as effective scaffolds for bone repair. Due to their biocompatibility and low immunogenicity, collagens are pivotal in tissue engineering applications for skin, bone, and wound regeneration. Recombinant technology enables the production of triple-helical collagens with amino acid sequences identical to human tissue-derived collagens. This review summarizes recent advances in the molecular functions and recombinant expression of human collagens, with a focus on their biomedical applications.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Kun Ma
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| | - Shubin Wang
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| |
Collapse
|
2
|
Chowdhury AS, Oxford JT. Collagen Alpha 1(XI) Amino-Terminal Domain Modulates Type I Collagen Fibril Assembly. Biochemistry 2025; 64:735-747. [PMID: 39841124 PMCID: PMC11800387 DOI: 10.1021/acs.biochem.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The amino-terminal domain of collagen α1(XI) plays a key role in controlling fibrillogenesis. However, the specific mechanisms through which various isoforms of collagen α1(XI) regulate this process are not fully understood. We measured the kinetics of collagen type I self-assembly in the presence of specific collagen α1(XI) isoforms. Molecular dynamics simulations, protein-protein docking studies, and molecular mechanics Poisson-Boltzmann surface area were utilized to understand the molecular mechanisms. In vitro, in silico, and thermodynamic studies demonstrated an isoform-specific effect on self-assembly kinetics. Our results indicate isoform-specific differences in the rate constants, activation energy, and free energy of binding. These differences may result from isoform-specific interaction dynamics and modulation of steric hindrance due to the chemically distinct variable regions. We show that isoform A interacts with collagen type I due in part to the acidic variable region, increasing the activation energy of fibril growth while decreasing the rate constant during the growth phase. In contrast, the basic variable region of isoform B may result in less steric hindrance than isoform A. Isoform 0 demonstrated the highest activation energy and the lowest rate constant during the growth phase. Although the presence of isoforms reduced the rate constants for fibril growth, an increase in total turbidity during the plateau phase was observed compared to controls. Overall, these results are consistent with collagen α1(XI) NTD isoforms facilitating fibrillogenesis by increasing the final yield by reducing the rate of the lag and/or growth phases, while extending the duration of the growth phase.
Collapse
Affiliation(s)
- Abu Sayeed Chowdhury
- Biomolecular
Sciences Graduate Program, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| | - Julia Thom Oxford
- Biomolecular
Research Institute, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| |
Collapse
|
3
|
Peschaut T, Michelitsch M, Brandner M, Kamper S, Ofner-Ziegenfuss L, Blatterer J, Tichy HA, Posch-Pertl L. An Unusual Retinal Presentation of a Novel COL11A1 Mutation: A Case Report. Case Rep Ophthalmol 2025; 16:62-67. [PMID: 39981533 PMCID: PMC11842027 DOI: 10.1159/000542708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/16/2024] [Indexed: 02/22/2025] Open
Abstract
Introduction Stickler syndrome is a rare collagenopathy, caused by mutations in various genes coding for fibrillar collagens II, IX, and XI. The disorder can be subdivided into different groups, depending on the genes affected and clinical features found in patients. Ocular symptoms, such as high myopia, retinal detachments, or anomalies in the vitreous, are present in most forms of Stickler syndrome. In this case report, we present a patient with an unusual retinal phenotype. Case Presentation Subject of this case report is a 33-year-old woman, who was examined at the Department of Ophthalmology at Medical University of Graz. A thorough ophthalmological examination was conducted, detailed medical and family history acquired, and genetic testing performed. Best corrected visual acuity was 20/20 on both eyes; however, impaired binocular vision associated with intermittent exotropia was found. Furthermore, dilated fundoscopy showed an unusual, hypopigmented spotted retinal phenotype. Fundus autofluorescence showed multiple hyperfluorescent spots corresponding with the spotted retinal appearance. Genetic testing revealed a novel variant in the gene COL11A1. No other ocular abnormalities which are associated with COL11A1 were found. Conclusion Several subtypes of Stickler syndrome have been reported in medical literature, greatly varying in clinical manifestations. Many different mutations in the gene COL11A1 have been discovered and are typically associated with Stickler syndrome type 2. To our best knowledge, this is the first report of a patient with a mutation in the COL11A1 gene presenting with a hypopigmented spotted retina.
Collapse
Affiliation(s)
- Tobias Peschaut
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Monja Michelitsch
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Martina Brandner
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Sandra Kamper
- Department of Medical Genetics, Medical University of Graz, Graz, Austria
| | | | - Jasmin Blatterer
- Department of Medical Genetics, Medical University of Graz, Graz, Austria
| | | | - Laura Posch-Pertl
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Boysen KB, Tümer Z, Bach-Holm D, Bisgaard AM, Kessel L. Microphthalmia and congenital cataract in two patients with Stickler syndrome type II: a case report. Ophthalmic Genet 2024; 45:313-318. [PMID: 38299479 DOI: 10.1080/13816810.2024.2309700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Stickler syndrome (STL) is a collagenopathy caused by pathogenic variants in collagen-coding genes, mainly COL2A1 or COL11A1 associated with Stickler syndrome type 1 (STL1) or type 2 (STL2), respectively. Affected individuals manifest ocular, auditory, articular, and craniofacial findings in varying degrees. Previous literature and case reports describe high variability in clinical findings for patients with STL. With this case report, we broaden the clinical spectrum of the phenotype. MATERIALS AND METHODS Case report on two members of a family (mother and son) including clinical examination and genetic testing using targeted trio whole exome sequencing (trio-WES). RESULTS A boy and his mother presented with microphthalmia, congenital cataract, ptosis, and moderate-to-severe sensorineural hearing loss. Trio-WES found a novel heterozygote missense variant, c.4526A>G; p(Gln1509Arg) in COL11A1 in both affected individuals. CONCLUSIONS We report a previously undescribed phenotype associated with a COL11A1-variant in a mother and son, expanding the spectrum for phenotype-genotype correlation in STL2, presenting with microphthalmia, congenital cataract, and ptosis not normally associated with Stickler syndrome.
Collapse
Affiliation(s)
- Kirstine Bolette Boysen
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zeynep Tümer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Daniella Bach-Holm
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Bisgaard
- Department of Paediatrics and Adolescent Medicine, Center for Rare Disease, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Anitha S, Nandhini S, Premnath D, Indiraleka M. Computational Approach to Identify the Key Genes for Invasive Lobular Carcinoma (ILC) Diagnosis and Therapies. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2024; 23:403-415. [DOI: 10.1142/s2737416523500692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Invasive Lobular Carcinoma (ILC) is a common form of breast cancer that begins in milk-producing glands lobules and spreads to other parts of the breast. According to the American Cancer Society, about 10–15% of breast cancer cases are ILC. ILC risk rises with age. The number of deaths caused by this cancer each year can be decreased through early diagnosis and if accurate therapy is given. However, diagnosis of ILC is difficult due to its development pattern as it grows as single file strands and not as lumps. Treatments of ILC involve chemotherapy, hormonal therapy and radiation therapy. Drugs that are being used for ILC, are commonly used to treat all types of breast cancer and there are no specific drugs that target receptors of ILC are available. Microarray technology’s emergence helps in finding the differentially expressed genes (DEGs) in malignant cells. From the DEGs, highly interacting genes were identified using the online tool, string. Seven key genes were identified based on the interaction and they are FN1, CDKN2A, COL1A1, COL3A1, COL11A1, LEF1 and IL1B. Thus, the drugs targeting these biomarkers were identified by doing molecular docking using the tool Autodock and molecular dynamic (MD) simulation using the tool iMODs. The response of the identified drugs to the ILC cell line was compared with the control drugs by in silico pharmacogenomic analysis and it was found that the identified drugs have a good response to the ILC cell line.
Collapse
Affiliation(s)
- S. Anitha
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | - S. Nandhini
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | - D. Premnath
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu 641114, India
| | - M. Indiraleka
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| |
Collapse
|
6
|
Jeon J, Kim M, Yoo S, Kim Y, Cheon CK. A novel compound heterozygous variant of the COL11A1 gene in a patient with fibrochondrogenesis type I: the first case in Korea. Ann Pediatr Endocrinol Metab 2024; 29:135-137. [PMID: 38712494 PMCID: PMC11076226 DOI: 10.6065/apem.2346150.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 12/12/2023] [Indexed: 05/08/2024] Open
Affiliation(s)
- Jaesung Jeon
- Department of Pediatrics, Pusan National University Children’s Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Minji Kim
- Department of Pediatrics, Pusan National University Children’s Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Sukdong Yoo
- Department of Pediatrics, Pusan National University Children’s Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Yoomi Kim
- Department of Pediatrics, Chungnam National University College of Medicine, Daejeon, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, Pusan National University Children’s Hospital, Pusan National University School of Medicine, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
7
|
Jacobsen KK, Børte S, Laborie LB, Kristiansen H, Schäfer A, Gundersen T, Zayats T, Slagsvold Winsvold BK, Rosendahl K. COL11A1 is associated with developmental dysplasia of the hip and secondary osteoarthritis in the HUNT study. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100424. [PMID: 38283578 PMCID: PMC10820335 DOI: 10.1016/j.ocarto.2023.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024] Open
Abstract
Objective Developmental dysplasia of the hip (DDH) is a congenital condition affecting 2-3% of all infants. DDH increases the risk of osteoarthritis, is the cause of 30 % of all total hip arthroplasties (THAs) in adults <40 years of age and can result in loss of life quality. Our aim was to explore the genetic background of DDH in order to improve diagnosis, management and longterm outcome. Design We used the large, ongoing, longitudinal Trøndelag Health Study (HUNT) database. Case definition was based on ICD-9/-10 diagnoses of DDH, or osteoarthritis secondary to DDH. Analyses were performed using SAIGE software, with covariates including sex, batch, birth year and principal components. We included only single nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) ≥ 0.01, R2≥ 0.8 and Hardy-Weinberg equilibrium (HWE) P-value ≥ 0.0001. Significance level was set at p < 5 × 10-8. Meta-analysis using data from DDH and primary osteoarthritis genome-wide association studies (GWASs) was done using METAL software. The study was approved by the regional ethical committee. Results Analysis included 69,500 individuals, of which 408 cases, and 8,531,386 SNPs. Two SNPs near COL11A1 were significantly associated with DDH; rs713162 (β = -0.43, SE = 0.07, p = 8.4 × 10-9) and rs6577334 (β = -0.43, SE = 0.08, p = 8.9 × 10-9). COL11A1 has previously been associated with acetabular dysplasia and osteoarthritis. Meta-analysis supported previous GWAS findings of both DDH and primary osteoarthritis. Conclusions This large, genome-wide case-control study indicates an association between COL11A1 and DDH and is an important contribution to investigating the etiology of DDH, with further research needed.
Collapse
Affiliation(s)
- Kaya Kvarme Jacobsen
- Department of Orthopedic Surgery, District General Hospital of Førde, Førde, Norway
| | - Sigrid Børte
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Ullevaal, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lene Bjerke Laborie
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Section for Pediatric Radiology, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Hege Kristiansen
- Department of Paediatrics, District General Hospital of Førde, Førde, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Annette Schäfer
- Department of Paediatrics, District General Hospital of Førde, Førde, Norway
| | - Trude Gundersen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway
| | - Tetyana Zayats
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- PROMENTA, Department of Psychology, University of Oslo, Oslo, Norway
| | - Bendik Kristoffer Slagsvold Winsvold
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Karen Rosendahl
- Department of Radiology, University Hospital of North-Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Sun Y, You Y, Wu Q, Hu R, Dai K. Genetically inspired organoids prevent joint degeneration and alleviate chondrocyte senescence via Col11a1-HIF1α-mediated glycolysis-OXPHOS metabolism shift. Clin Transl Med 2024; 14:e1574. [PMID: 38314968 PMCID: PMC10840017 DOI: 10.1002/ctm2.1574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Developmental dysplasia of hip (DDH) is a hip joint disorder leading to subsequent osteoarthritis. Previous studies suggested collagen XI alpha 1 (COL11A1) as a potential gene in hip dysplasia and chondrocyte degeneration. However, no genetic association has reported COL11A1-related cellular therapy as treatment of DDH and joint degeneration. METHODS AND RESULTS We report identified genetic association between COL11A1 locus and DDH with genome-wide association study (GWAS). Further exome sequencing for familial DDH patients was conducted in different populations to identify potential pathogenic Col11A1 variants for familiar DDH. Further studies demonstrated involvement of COL11A1 expression was down-regulated in femoral head cartilage of DDH patients and Col11a1-KO mice with induced DDH. Col11a1-KO mice demonstrated aggravated joint degeneration and severe OA phenotype. To explore the underlying mechanism of Col11a1 in cartilage and DDH development, we generated scRNA-seq profiles for DDH and Col11a1-KO cartilage, demonstrating disrupted chondrocyte homeostasis and cellular senescence caused by Col11a1-HIF1α-mediated glycolysis-OXPHOS shift in chondrocytes. Genetically and biologically inspired, we further fabricated an intra-articular injection therapy to preventing cartilage degeneration by generating a Col11a1-over-expressed (OE) SMSC mini-organoids. Col11a1-OE organoids demonstrated superior chondrogenesis and ameliorated cartilage degeneration in DDH mice via regulating cellular senescence by up-regulated Col11a1/HIF1α-mediated glycolysis in chondrocytes. CONCLUSION We reported association between COL11A1 loci and DDH with GWAS and exome sequencing. Further studies demonstrated involvement of COL11A1 in DDH patients and Col11a1-KO mice. ScRNA-seq for DDH and Col11a1-KO cartilage demonstrated disrupted chondrocyte homeostasis and cellular senescence caused by Col11a1-HIF1α-mediated glycolysis-OXPHOS shift in chondrocytes. Genetically and biologically inspired, an intra-articular injection therapy was fabricated to prevent cartilage degeneration with Col11a1-OE SMSC organoids. Col11a1-OE organoids ameliorated cartilage degeneration in DDH mice via regulating cellular senescence by up-regulated Col11a1/HIF1α-mediated glycolysis in chondrocytes.
Collapse
Affiliation(s)
- Ye Sun
- Department of OrthopaedicsThe First Affiliated Hospital of Nanjing Medical UniversityJiangsuChina
- Department of Orthopaedic SurgeryShanghai Key Laboratory of Orthopaedic ImplantsShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongqing You
- Department of Renal DiseasesAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Qiang Wu
- Department of Orthopaedic SurgeryShanghai Key Laboratory of Orthopaedic ImplantsShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Hu
- Department of OrthopaedicsThe First Affiliated Hospital of Nanjing Medical UniversityJiangsuChina
| | - Kerong Dai
- Department of Orthopaedic SurgeryShanghai Key Laboratory of Orthopaedic ImplantsShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
9
|
Szoszkiewicz A, Bukowska-Olech E, Jamsheer A. Molecular landscape of congenital vertebral malformations: recent discoveries and future directions. Orphanet J Rare Dis 2024; 19:32. [PMID: 38291488 PMCID: PMC10829358 DOI: 10.1186/s13023-024-03040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Vertebral malformations (VMs) pose a significant global health problem, causing chronic pain and disability. Vertebral defects occur as isolated conditions or within the spectrum of various congenital disorders, such as Klippel-Feil syndrome, congenital scoliosis, spondylocostal dysostosis, sacral agenesis, and neural tube defects. Although both genetic abnormalities and environmental factors can contribute to abnormal vertebral development, our knowledge on molecular mechanisms of numerous VMs is still limited. Furthermore, there is a lack of resource that consolidates the current knowledge in this field. In this pioneering review, we provide a comprehensive analysis of the latest research on the molecular basis of VMs and the association of the VMs-related causative genes with bone developmental signaling pathways. Our study identifies 118 genes linked to VMs, with 98 genes involved in biological pathways crucial for the formation of the vertebral column. Overall, the review summarizes the current knowledge on VM genetics, and provides new insights into potential involvement of biological pathways in VM pathogenesis. We also present an overview of available data regarding the role of epigenetic and environmental factors in VMs. We identify areas where knowledge is lacking, such as precise molecular mechanisms in which specific genes contribute to the development of VMs. Finally, we propose future research avenues that could address knowledge gaps.
Collapse
Affiliation(s)
- Anna Szoszkiewicz
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| | - Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
- Centers for Medical Genetics GENESIS, Dąbrowskiego 77A, 60-529, Poznan, Poland.
| |
Collapse
|
10
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
11
|
Zheng N, Wen R, Zhou L, Meng Q, Zheng K, Li Z, Cao F, Zhang W. Multiregion single cell analysis reveals a novel subtype of cancer-associated fibroblasts located in the hypoxic tumor microenvironment in colorectal cancer. Transl Oncol 2023; 27:101570. [PMID: 36371957 PMCID: PMC9660844 DOI: 10.1016/j.tranon.2022.101570] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a critical role in shaping tumor progression and determining the outcome of the therapeutic response. In this study, we aimed to generate a comprehensive cellular landscape of the colorectal cancer (CRC) TME. METHODS We generated a comprehensive single-cell atlas by collecting CRC cases that have been uploaded to the online database and conducting an in-depth secondary analysis. We then carried out spatial transcriptomic sequencing and multiple immunohistochemical analyses to verify the results of the single-cell analysis. Moreover, we applied our findings to the TCGA database and used tissue microarray (TMA) on CRC tissue specimens to validate clinical prognosis. FINDINGS We re-analyzed the transcriptomes of 23785 cells, revealing a pattern of cell heterogeneity in the tumor region, leading-edge region, and non-tumor region. A subtype of COL11A1+INHBA+ tumor-resident cancer-associated fibroblasts (CAFs) was identified, and marker genes, transcription factors, and tissue-specific expression differences were noted and suggested to have potential roles in promoting cancer. We further confirmed that COL11A1+INHBA+ tumor-resident CAFs are mainly located in the hypoxic TME and we propose that they interact with CD44+ CRC cells via INHBA. Elevation of INHBA in CRC is associated with a poor prognosis. INTERPRETATION Our results demonstrated a single cell landscape of CRC in different regions and identified in hypoxic TME a special subtype of CAFs producing INHBA, which promotes CRC development and correlates with poor prognosis. This special subtype of CAFs is a candidate target for translational research.
Collapse
Affiliation(s)
- Nanxin Zheng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rongbo Wen
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Leqi Zhou
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qingying Meng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kuo Zheng
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhixuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.
| | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
12
|
Turkyilmaz A, Donmez AS, Cayir A. A Genetic Approach in the Evaluation of Short Stature. Eurasian J Med 2022; 54:179-186. [PMID: 36655465 PMCID: PMC11163345 DOI: 10.5152/eurasianjmed.2022.22171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 01/19/2023] Open
Abstract
Short stature is considered a condition in which the height is 2 standard deviations below the mean height of a given age, sex, and population group. Human height is a polygenic and heterogeneous characteristic, and its heritability is reported to be approximately 80%. More than 600 variants associated with human growth were detected in the genome-wide association studies. Rare and common variants concurrently affect human height. The rare variations that play a role in human height determination and have a strong impact on protein functions lead to monogenic short stature phenotypes, which are a highly heterogeneous group. With rapidly developing technologies in the last decade, molecular genetic tests have begun to be used widely in clinical genetics, and thus, the genetic etiology of several rare diseases has been elucidated. Identifying the genetic etiology underlying idiopathic short stature which represents phenotypically heterogeneous group of diseases ranging from isolated short stature to severe and syndromic short stature has promoted the understanding of the genetic regulation of growth plate and longitudinal bone growth. In cases of short stature, definite molecular diagnosis based on genetic evaluation enables the patient and family to receive genetic counseling on the natural course of the disease, prognosis, genetic basis, and recurrence risk. The determination of the genetic etiology in growth disorders is essential for the development of novel targeted therapies and crucial in the development of mutation-specific treatments in the future.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Ayse Sena Donmez
- Department of Pediatrics, Regional Training and Research Hospital, Erzurum, Turkey
| | - Atilla Cayir
- Department of Pediatric Endocrinology, Regional Training and Research Hospital, Erzurum, Turkey
| |
Collapse
|
13
|
Saltarelli MA, Quarta A, Chiarelli F. Growth plate extracellular matrix defects and short stature in children. Ann Pediatr Endocrinol Metab 2022; 27:247-255. [PMID: 36567461 PMCID: PMC9816467 DOI: 10.6065/apem.2244120.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
Many etiological factors causing short stature have already been identified in humans. In the last few years, the advent of new techniques for the detection of chromosomal and molecular abnormalities has made it possible to better identify patients with genetic causes of growth failure. Some of these factors directly affect the development and growth of the skeleton, since they damage the epiphyseal growth plate, where linear growth occurs, influencing chondrogenesis. In particular, defects in genes involved in the organization and function of the growth plate are responsible for several well-known conditions with short stature. These genes play a pivotal role in various mechanisms involving the extracellular matrix, intracellular signaling, paracrine signaling, endocrine signaling, and epigenetic regulation. In this review, we will discuss the genes involved in extracellular matrix disorders. The identification of genetic defects in linear growth failure is important for clinicians and researchers in order to improve the care of children affected by growth disorders.
Collapse
Affiliation(s)
| | - Alessia Quarta
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy,Address for correspondence: Francesco Chiarelli Department of Pediatrics, University of Chieti, Via dei Vestini, 5 Chieti, I-66100, Italy
| |
Collapse
|
14
|
Mirtavoos‐Mahyari H, Ajami S, Mehrtash A, Marashiyan S, Bahreini F, Sheikhy K, Ghanbari S, Ardeshirdavani A. Clinical whole-exome sequencing analysis reveals a novel missense COL11A1 mutation resulting in an 18-week Iranian male aborted fetus with Fibrochondrogenesis 1: A case report. Clin Case Rep 2022; 10:e6574. [PMID: 36397853 PMCID: PMC9664532 DOI: 10.1002/ccr3.6574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 09/08/2024] Open
Abstract
Fibrochondrogenesis 1, an autosomal recessive syndrome, is a rare disease that causes short-limbed skeletal dysplasia. Mutations in the gene encoding the α1 chain of type XI collagen (COL11A1) are seen to be the main cause of this disease. We present an 18-week Iranian male aborted fetus with Fibrochondrogenesis 1 from consanguineous parents. Whole-exome sequencing revealed a novel missense variant from G to A in exon 45 of 68 in the COL11A1 gene (NM_080629.2: c.3440G > A, [p.G1147E, g.103404625]). The mutation was confirmed by Sanger sequencing and further, MutationTaster predicted this variant to be disease-causing. Bioinformatic analysis suggests that this variant is highly conserved in both nucleotide and protein levels, suggesting that it has an important function in the proper role of COL11A1 protein. In silico analysis suggests that this mutation alters the COL11A1 protein structure through a Glycine to Glutamic acid substitution.
Collapse
Affiliation(s)
- Hanifeh Mirtavoos‐Mahyari
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran
| | - Sanaz Ajami
- Medical Genetics DepartmentOmid Fertility ClinicTehranIran
| | | | - Seyedeh Mahya Marashiyan
- Department of Medical Nanotechnology, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farbod Bahreini
- Department of Biochemistry, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Kambiz Sheikhy
- Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran
| | - Sogol Ghanbari
- Molecular Genetics Department, Biological Sciences FacultyTarbiat Modares UniversityTehranIran
| | | |
Collapse
|
15
|
Reeck JC, Oxford JT. The Shape of the Jaw-Zebrafish Col11a1a Regulates Meckel's Cartilage Morphogenesis and Mineralization. J Dev Biol 2022; 10:jdb10040040. [PMID: 36278545 PMCID: PMC9590009 DOI: 10.3390/jdb10040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The expression of the col11a1a gene is essential for normal skeletal development, affecting both cartilage and bone. Loss of function mutations have been shown to cause abnormalities in the growth plate of long bones, as well as in craniofacial development. However, the specific effects on Meckel's cartilage have not been well studied. To further understand the effect of col11a1a gene function, we analyzed the developing jaw in zebrafish using gene knockdown by the injection of an antisense morpholino oligonucleotide using transgenic Tg(sp7:EGFP) and Tg(Fli1a:EGFP) EGFP reporter fish, as well as wildtype AB zebrafish. Our results demonstrate that zebrafish col11a1a knockdown impairs the cellular organization of Meckel's cartilage in the developing jaw and alters the bone formation that occurs adjacent to the Meckel's cartilage. These results suggest roles for Col11a1a protein in cartilage intermediates of bone development, the subsequent mineralization of the bony collar of long bones, and that which occurs adjacent to Meckel's cartilage in the developing jaw.
Collapse
|
16
|
Molecular Basis of Pathogenic Variants in the Fibrillar Collagens. Genes (Basel) 2022; 13:genes13071199. [PMID: 35885981 PMCID: PMC9320522 DOI: 10.3390/genes13071199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
The fibrillar collagen family is comprised of the quantitatively major types I, II and III collagens and the quantitatively minor types V and XI. These form heterotypic collagen fibrils (composed of more than a single collagen type) where the minor collagens have a regulatory role in controlling fibril formation and diameter. The structural pre-requisites for normal collagen biosynthesis and fibrillogenesis result in many places where this process can be disrupted, and consequently a wide variety of phenotypes result when pathogenic changes occur in these fibrillar collagen genes. Another contributing factor is alternative splicing, both naturally occurring and as the result of pathogenic DNA alterations. This article will discuss how these factors should be taken into account when assessing DNA sequencing results from a patient.
Collapse
|
17
|
Autosomal Recessive Stickler Syndrome. Genes (Basel) 2022; 13:genes13071135. [PMID: 35885918 PMCID: PMC9324312 DOI: 10.3390/genes13071135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Stickler syndrome (SS) is a genetic disorder with manifestations in the eye, ear, joints, face and palate. Usually inherited in a dominant fashion due to heterozygous pathogenic variants in the collagen genes COL2A1 and COL11A1, it can rarely be inherited in a recessive fashion from variants in COL9A1, COL9A2, and COL9A3, COL11A1, as well as the non-collagen genes LRP2, LOXL3 and GZF1. We review the published cases of recessive SS, which comprise 40 patients from 23 families. Both homozygous and compound heterozygous pathogenic variants are found. High myopia is near-universal, and sensorineural hearing loss is very common in patients with variants in genes for type IX or XI collagen, although hearing appears spared in the LRP2 and LOXL3 patients and is variable in GZF1. Cleft palate is associated with type XI collagen variants, as well as the non-collagen genes, but is so far unreported with type IX collagen variants. Retinal detachment has occurred in 18% of all cases, and joint pain in 15%. However, the mean age of this cohort is 11 years old, so the lifetime incidence of both problems may be underestimated. This paper reinforces the importance of screening for SS in congenital sensorineural hearing loss, particularly when associated with myopia, and the need to warn patients and parents of the warning signs of retinal detachment, with regular ophthalmic review.
Collapse
|
18
|
Dong Z, Ma Q, Zheng C, Huang Y, Dong X, Yang K, Tan Y, Hu H, Ren Z, Yan Y, Zhang D, Lin L. Identification of novel heterozygous missense variant in the COL11A1 causing fetal craniofacial anomalies. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2039784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Zhe Dong
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, People’s Republic of China
| | - Qiang Ma
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, People’s Republic of China
| | - Chunyan Zheng
- Department of Orthodontics, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Yanxia Huang
- Department of Orthodontics, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Xingyue Dong
- Department of Orthodontics, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Kai Yang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, People’s Republic of China
| | - Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, People’s Republic of China
| | - Huaying Hu
- School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, People’s Republic of China
| | - Zhuo Ren
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, People’s Republic of China
| | - Yousheng Yan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, People’s Republic of China
| | - Dongliang Zhang
- Department of Orthodontics, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Ciorba A, Corazzi V, Melegatti M, Morgan A, Pelliccione G, Girotto G, Bigoni S. Non-Syndromic Sensorineural Prelingual and Postlingual Hearing Loss due to COL11A1 Gene Mutation. J Int Adv Otol 2021; 17:81-83. [PMID: 33605226 DOI: 10.5152/iao.2020.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This paper aims to present a third world case of Non-Syndromic sensorineural hearing loss (NSHL) due to a novel missense variant in COL11A1 gene, defined as DFNA37 non-syndromic hearing loss. The clinical features of a 6-year-old boy affected by a bilateral moderate to severe down-sloping sensorineural hearing loss are presented, as well as the genetic analysis, the latter identifying a heterozygous missense variation in the COL11A1 gene. In addition, in families with autosomal dominant transmission, COL11A1 gene should be considered in the genetic workup of the NSHL with prelingual onset.
Collapse
Affiliation(s)
- Andrea Ciorba
- Department of ENT - Audiology, University Hospital of Ferrara, Ferrara, Italy
| | - Virginia Corazzi
- Department of ENT - Audiology, University Hospital of Ferrara, Ferrara, Italy
| | - Michela Melegatti
- Department of ENT - Audiology, University Hospital of Ferrara, Ferrara, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Giulia Pelliccione
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy;Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy;Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Stefania Bigoni
- Medical Genetic Unit, Ferrara University Hospital, Ferrara, Italy
| |
Collapse
|
20
|
Alexander P, Gomersall P, Stancel-Lewis J, Fincham GS, Poulson A, Richards A, McNinch A, Baguley DM, Snead M. Auditory dysfunction in type 2 Stickler Syndrome. Eur Arch Otorhinolaryngol 2021; 278:2261-2268. [PMID: 32901364 PMCID: PMC8165062 DOI: 10.1007/s00405-020-06306-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE To present the extent and site of lesion of auditory dysfunction in a large cohort of individuals with type 2 Stickler Syndrome. Type 2 Stickler Syndrome results from a mutation in the gene coding for α-1 type XI pro-collagen, which has been identified in the human vitreous, cartilage and the cochlea of the mouse. The condition is characterised by classic ocular abnormalities, auditory dysfunction, osteoarthropathy and oro-facial dysplasia. METHODS This is a population study which used a combination of audiometric, tympanometric, and self-report measures on a series of 65 individuals (mean age 29.2 years, range 3-70, female 63.1%) with genetically confirmed type 2 Stickler Syndrome. RESULTS Hearing impairment was identified in at least one ear for 69% of individuals. Analysis against age-matched normative data showed that reduced hearing sensitivity was present across all test frequencies. Sensorineural hearing loss was most common (77% of ears), with conductive (3%), mixed (7%) and no hearing loss (13%), respectively. The proportion of hypermobile tympanic membranes (24%) was less than previously documented in type 1 Stickler Syndrome. When present, this appears to arise as a direct result of collagen abnormalities in the middle ear. Self-report measures of speech and spatial hearing in sound were comparable to a non-syndromic cohort with similar audiometric thresholds. CONCLUSIONS Auditory impairment in type 2 Stickler Syndrome is predominantly associated with cochlear hearing loss of varying severities across affected individuals. The impact on hearing thresholds can be seen across the frequency range, suggesting a contribution of defective collagen throughout the cochlea. Self-report questionnaires showed that difficulties understanding speech, and spatial information in sound (such as that used for localisation), were worse than a young, normal-hearing population but comparable to a non-syndromic cohort with similar audiometric thresholds. Therefore, it is likely that hearing loss in type 2 Stickler Syndrome arises in the auditory periphery, without significant central processing deficits.
Collapse
Affiliation(s)
- Philip Alexander
- Vitreoretinal Service, Box 41, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
- NHS England Stickler Syndrome Diagnostic Service, Box 153, Cambridge University NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Philip Gomersall
- Ear, Nose and Throat (ENT) West Wing, Oxford Auditory Implant Programme, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Jack Stancel-Lewis
- NHS England and NHS Improvement, Wellington House 33-155 Waterloo Road, London, SE1 8UG, UK
| | - Gregory Scott Fincham
- Vitreoretinal Service, Box 41, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
- NHS England Stickler Syndrome Diagnostic Service, Box 153, Cambridge University NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Arabella Poulson
- Vitreoretinal Service, Box 41, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
- NHS England Stickler Syndrome Diagnostic Service, Box 153, Cambridge University NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Allan Richards
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
- Regional Molecular Genetics Laboratory, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Annie McNinch
- NHS England Stickler Syndrome Diagnostic Service, Box 153, Cambridge University NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
- Regional Molecular Genetics Laboratory, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - David M Baguley
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, NG1 5DU, UK.
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
- Nottingham Audiology Services, Nottingham University NHS Trust, Nottingham, NG1 3DU, UK.
- Nottingham Biomedical Research Centre, Ropewalk House, 113 Ropewalk, Nottingham, NG1 5DU, UK.
| | - Martin Snead
- Vitreoretinal Service, Box 41, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
- NHS England Stickler Syndrome Diagnostic Service, Box 153, Cambridge University NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
21
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
22
|
Murphy PA, Jailkhani N, Nicholas SA, Del Rosario AM, Balsbaugh JL, Begum S, Kimble A, Hynes RO. Alternative Splicing of FN (Fibronectin) Regulates the Composition of the Arterial Wall Under Low Flow. Arterioscler Thromb Vasc Biol 2021; 41:e18-e32. [PMID: 33207933 PMCID: PMC8428803 DOI: 10.1161/atvbaha.120.314013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exposure of the arterial endothelium to low and disturbed flow is a risk factor for the erosion and rupture of atherosclerotic plaques and aneurysms. Circulating and locally produced proteins are known to contribute to an altered composition of the extracellular matrix at the site of lesions, and to contribute to inflammatory processes within the lesions. We have previously shown that alternative splicing of FN (fibronectin) protects against flow-induced hemorrhage. However, the impact of alternative splicing of FN on extracellular matrix composition remains unknown. Approach and Results: Here, we perform quantitative proteomic analysis of the matrisome of murine carotid arteries in mice deficient in the production of FN splice isoforms containing alternative exons EIIIA and EIIIB (FN-EIIIAB null) after exposure to low and disturbed flow in vivo. We also examine serum-derived and endothelial-cell contributions to the matrisome in a simplified in vitro system. We found flow-induced differences in the carotid artery matrisome that were impaired in FN-EIIIAB null mice. One of the most interesting differences was reduced recruitment of FBLN1 (fibulin-1), abundant in blood and not locally produced in the intima. This defect was validated in our in vitro assay, where FBLN1 recruitment from serum was impaired by the absence of these alternatively spliced segments. CONCLUSIONS Our results reveal the extent of the dynamic alterations in the matrisome in the acute response to low and disturbed flow and show how changes in the splicing of FN, a common response in vascular inflammation and remodeling, can affect matrix composition.
Collapse
Affiliation(s)
- Patrick A. Murphy
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- UCONN Health, Farmington, CT 06030
| | - Noor Jailkhani
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
| | | | | | | | - Shahinoor Begum
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | | - Richard O. Hynes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
23
|
Gorski JP, Franz NT, Pernoud D, Keightley A, Eyre DR, Oxford JT. A repeated triple lysine motif anchors complexes containing bone sialoprotein and the type XI collagen A1 chain involved in bone mineralization. J Biol Chem 2021; 296:100436. [PMID: 33610546 PMCID: PMC8008188 DOI: 10.1016/j.jbc.2021.100436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 01/16/2023] Open
Abstract
While details remain unclear, initiation of woven bone mineralization is believed to be mediated by collagen and potentially nucleated by bone sialoprotein (BSP). Interestingly, our recent publication showed that BSP and type XI collagen form complexes in mineralizing osteoblastic cultures. To learn more, we examined the protein composition of extracellular sites of de novo hydroxyapatite deposition which were enriched in BSP and Col11a1 containing an alternatively spliced "6b" exonal sequence. An alternate splice variant "6a" sequence was not similarly co-localized. BSP and Col11a1 co-purify upon ion-exchange chromatography or immunoprecipitation. Binding of the Col11a1 "6b" exonal sequence to bone sialoprotein was demonstrated with overlapping peptides. Peptide 3, containing three unique lysine-triplet sequences, displayed the greatest binding to osteoblastic cultures; peptides containing fewer lysine triplet motifs or derived from the "6a" exon yielded dramatically lower binding. Similar results were obtained with 6-carboxyfluorescein (FAM)-conjugated peptides and western blots containing extracts from osteoblastic cultures. Mass spectroscopic mapping demonstrated that FAM-peptide 3 bound to 90 kDa BSP and its 18 to 60 kDa fragments, as well as to 110 kDa nucleolin. In osteoblastic cultures, FAM-peptide 3 localized to biomineralization foci (site of BSP) and to nucleoli (site of nucleolin). In bone sections, biotin-labeled peptide 3 bound to sites of new bone formation which were co-labeled with anti-BSP antibodies. These results establish the fluorescent peptide 3 conjugate as the first nonantibody-based method to identify BSP on western blots and in/on cells. Further examination of the "6b" splice variant interactions will likely reveal new insights into bone mineralization during development.
Collapse
Affiliation(s)
- Jeff P Gorski
- Center of Excellence in Mineralized Tissue Research, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA; Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| | - Nichole T Franz
- Center of Excellence in Mineralized Tissue Research, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA; Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Daniel Pernoud
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Andrew Keightley
- Department of Ophthalmology and Proteomics Core Facility, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - David R Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, USA
| | - Julia Thom Oxford
- Department of Biological Sciences, Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, Idaho, USA
| |
Collapse
|
24
|
Huang A, Guo G, Yu Y, Yao L. The roles of collagen in chronic kidney disease and vascular calcification. J Mol Med (Berl) 2020; 99:75-92. [PMID: 33236192 DOI: 10.1007/s00109-020-02014-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023]
Abstract
The extracellular matrix component collagen is widely expressed in human tissues and participates in various cellular biological processes. The collagen amount generally remains stable due to intricate regulatory networks, but abnormalities can lead to several diseases. During the development of renal fibrosis and vascular calcification, the expression of collagen is significantly increased, which promotes phenotypic changes in intrinsic renal cells and vascular smooth muscle cells, thereby exacerbating disease progression. Reversing the overexpression of collagen substantially prevents or slows renal fibrosis and vascular calcification in a wide range of animal models, suggesting a novel target for treating patients with these diseases. Stem cell therapy seems to be an effective strategy to alleviate these two conditions. However, recent findings indicate that the natural pore structure of collagen fibers is sufficient to induce the inappropriate differentiation of stem cells and thereby exacerbate renal fibrosis and vascular calcification. A comprehensive understanding of the role of collagen in these diseases and its effect on stem cell biology will assist in improving the unmet requirements for treating patients with kidney disease.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, 110013, China. .,Shenyang Engineering Technology R&D Center of Cell Therapy Co. LTD., Shenyang, 110169, China.
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
25
|
Handa A, Grigelioniene G, Nishimura G. Radiologic Features of Type II and Type XI Collagenopathies. Radiographics 2020; 41:192-209. [PMID: 33186059 DOI: 10.1148/rg.2021200075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type II collagen is a major component of the cartilage matrix. Pathogenic variants (ie, disease-causing aberrations) in the type II collagen gene (COL2A1) lead to an abnormal structure of type II collagen, causing a large group of skeletal dysplasias termed type II collagenopathies. Because type II collagen is also located in the vitreous body of the eyes and inner ears, type II collagenopathies are commonly associated with vitreoretinal degeneration and hearing impairment. Type II collagenopathies can be radiologically divided into two major groups: the spondyloepiphyseal dysplasia congenita (SEDC) group and the Kniest-Stickler group. The SEDC group is characterized by delayed ossification of the juxtatruncal bones, including pear-shaped vertebrae. These collagenopathies comprise achondrogenesis type 2, hypochondrogenesis, SEDC, and other uncommon subtypes. The Kniest-Stickler group is characterized by disordered tubular bone growth that leads to "dumbbell" deformities. It comprises Kniest dysplasia and Stickler dysplasia type 1, whose radiographic manifestations overlap with those of type XI collagenopathies (a group of disorders due to abnormal type XI collagen) such as Stickler dysplasia types 2 and 3. This phenotypic overlap is caused by type II and type XI collagen molecules sharing part of the same connective tissues. The authors describe the diagnostic pathways to type II and type XI collagenopathies and the associated differential diagnoses. In addition, they review the clinical features and genetic bases of these conditions, which radiologists should know to participate in multidisciplinary care and translational research. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Atsuhiko Handa
- From the Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, Iowa City, IA 52242 (A.H.); Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden (G.G.); and Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan (G.N.)
| | - Giedre Grigelioniene
- From the Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, Iowa City, IA 52242 (A.H.); Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden (G.G.); and Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan (G.N.)
| | - Gen Nishimura
- From the Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, Iowa City, IA 52242 (A.H.); Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden (G.G.); and Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan (G.N.)
| |
Collapse
|
26
|
Nixon T, Richards AJ, Lomas A, Abbs S, Vasudevan P, McNinch A, Alexander P, Snead MP. Inherited and de novo biallelic pathogenic variants in COL11A1 result in type 2 Stickler syndrome with severe hearing loss. Mol Genet Genomic Med 2020; 8:e1354. [PMID: 32578940 PMCID: PMC7507023 DOI: 10.1002/mgg3.1354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background Type 2 Stickler syndrome is usually a dominant disorder resulting from pathogenic variants in COL11A1 encoding the alpha 1 chain of type XI collagen. Typical molecular changes result in either substitution of an obligate glycine within the Gly‐Xaa‐Yaa amino acid sequence repeat region of the molecule, mRNA missplicing or deletions/duplications that typically leaves the message in‐frame. Clinical features include myopia, retinal detachment, craniofacial, joint, and hearing problems. Fibrochondrogenesis is also a COL11A1 related disorder, but here disease‐associated variants are recessive and may be either null alleles or substitutions of glycine, and the condition is usually lethal in infancy. Methods The patient was assessed in the NHS England Stickler syndrome diagnostic service. DNA from the patient and family were analyzed with Next Generation Sequencing on a panel of genes known to cause Stickler Syndrome. The effect of sequence variants was assessed using minigene analysis. Allele‐specific RT‐PCR was performed. Results This patient had clinical type 2 Stickler syndrome but with severe hearing loss and severe ocular features including retinal atrophy and retinal tears in childhood. We identified a de novo in frame deletion of COL11A1 (c.4109_4126del) consistent with dominantly inherited Stickler syndrome but also a second inherited variant (c.1245+2T>C), on the other allele, affecting normal splicing of COL11A1 exon 9. Conclusion Exon 9 of COL11A1 is alternatively expressed and disease causing changes affecting only this exon modify the phenotype resulting from biallelic COL11A1 disease‐associated variants and, instead of fibrochondrogenesis, produce a form of Stickler syndrome with severe hearing loss. Disease phenotypes from de novo pathogenic variants can be modified by inherited recessive variants on the other allele. This highlights the need for functional and family analysis to confirm the mode of inheritance in COL11A1‐related disorders, particularly for those variants that may alter normal pre‐mRNA splicing.
Collapse
Affiliation(s)
- Thomas Nixon
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Allan J Richards
- Department of Pathology, University of Cambridge, Cambridge, UK.,East Midlands and East of England NHS Genomic Laboratory Hub, Addenbrooke's Treatment Centre, Cambridge, UK
| | - Adrian Lomas
- East Midlands and East of England NHS Genomic Laboratory Hub, Addenbrooke's Treatment Centre, Cambridge, UK
| | - Stephen Abbs
- East Midlands and East of England NHS Genomic Laboratory Hub, Addenbrooke's Treatment Centre, Cambridge, UK
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Annie McNinch
- Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Department of Pathology, University of Cambridge, Cambridge, UK
| | - Philip Alexander
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Martin P Snead
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
27
|
Brizola E, Gnoli M, Tremosini M, Nucci P, Bargiacchi S, La Barbera A, Giglio S, Sangiorgi L. Variable clinical expression of Stickler Syndrome: A case report of a novel COL11A1 mutation. Mol Genet Genomic Med 2020; 8:e1353. [PMID: 32558342 PMCID: PMC7507508 DOI: 10.1002/mgg3.1353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 01/13/2023] Open
Abstract
Background Stickler Syndrome is a rare connective tissue disorder, characterized by clinical, and genetic heterogeneity. The clinical expression is highly variable, including moderate to severe myopia in childhood, hearing loss, facial dysmorphic features, cleft palate, and early osteoarthritis. COL2A1, COL11A1, and COL11A2 mutations account of the majority of autosomal dominant Stickler Syndrome and, in particular, a heterozygous mutation in COL11A1 gene is identified in about 10 to 20% of Stickler Syndrome patients. Methods Herein, we report a case of an 8‐year‐ old child with Stickler Syndrome, presenting with early‐onset of myopia with vitreal abnormalities, facial dysmorphic characteristics, and mild hearing loss later in childhood. To identify the underlying genetic cause, Whole Exome Sequencing was carried out for COL11A1 gene. Results A novel de novo heterozygous splice site variant (NM_001854: c.1845 + 5G> C) of the COL11A1 gene, which had not been previously reported, was identified by Whole Exome Sequencing. Conclusion We reported a novel COL11A1 mutation in a child with Stickler Syndrome presenting a phenotype of early‐onset of ocular anomalies and mild hearing loss later in childhood. Our findings confirm the variability of the expression of the disease, even in the contest of the same gene‐related disorder, thus, contributing to improve the knowledge on clinical and molecular basis of this rare disease.
Collapse
Affiliation(s)
- Evelise Brizola
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Gnoli
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Morena Tremosini
- Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Nucci
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Andrea La Barbera
- Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy.,Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy.,Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Florence, Italy
| | - Luca Sangiorgi
- Department of Rare Skeletal Disorders & CLIBI Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
28
|
Čopíková J, Paděrová J, Románková V, Havlovicová M, Balaščáková M, Zelinová M, Vejvalková Š, Simandlová M, Štěpánková J, Hořínová V, Kantorová E, Křečková G, Pospíšilová J, Boday A, Meszarosová AU, Turnovec M, Votýpka P, Lišková P, Kremlíková Pourová R. Expanding the phenotype spectrum associated with pathogenic variants in the COL2A1 and COL11A1 genes. Ann Hum Genet 2020; 84:380-392. [PMID: 32427345 DOI: 10.1111/ahg.12386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/15/2023]
Abstract
We report the clinical findings of 26 individuals from 16 unrelated families carrying variants in the COL2A1 or COL11A1 genes. Using Sanger and next-generation sequencing, 11 different COL2A1 variants (seven novel), were identified in 13 families (19 affected individuals), all diagnosed with Stickler syndrome (STL) type 1. In nine families, the COL2A1 disease-causing variant arose de novo. Phenotypically, we observed myopia (95%) and retinal detachment (47%), joint hyperflexibility (92%), midface retrusion (84%), cleft palate (53%), and various degrees of hearing impairment (50%). One patient had a splenic artery aneurysm. One affected individual carrying pathogenic variant in COL2A1 showed no ocular signs including no evidence of membranous vitreous anomaly. In three families (seven affected individuals), three novel COL11A1 variants were found. The propositus with a de novo variant showed an ultrarare Marshall/STL overlap. In the second family, the only common clinical sign was postlingual progressive sensorineural hearing impairment (DFNA37). Affected individuals from the third family had typical STL2 signs. The spectrum of disease phenotypes associated with COL2A1 or COL11A1 variants continues to expand and includes typical STL and various bone dysplasias, but also nonsyndromic hearing impairment, isolated myopia with or without retinal detachment, and STL phenotype without clinically detectable ocular pathology.
Collapse
Affiliation(s)
- Jana Čopíková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jana Paděrová
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Věra Románková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Markéta Havlovicová
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Miroslava Balaščáková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michaela Zelinová
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Šárka Vejvalková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Martina Simandlová
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jana Štěpánková
- Department of Ophthalmology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Eva Kantorová
- Department of Medical Genetics, Nemocnice České Budějovice, České Budějovice, Czech Republic
| | | | - Jana Pospíšilová
- Molecular Biology, AGEL Laboratories, Nový Jičín, Czech Republic
| | - Arpád Boday
- Molecular Biology, AGEL Laboratories, Nový Jičín, Czech Republic
| | - Anna Uhrová Meszarosová
- DNA Laboratory, Department of Child Neurology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marek Turnovec
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavel Votýpka
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Petra Lišková
- Research Unit for Rare Diseases, Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Radka Kremlíková Pourová
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
29
|
Ardani IGAW, Aulanni'am, Diyatri I. Single Nucleotide Polymorphisms (SNPs) of COL1A1 and COL11A1 in Class II Skeletal Malocclusion of Ethnic Javanese Patient. Clin Cosmet Investig Dent 2020; 12:173-179. [PMID: 32425611 PMCID: PMC7187937 DOI: 10.2147/ccide.s247729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Background The prevalence of malocclusion cases in the orthodontic specialist clinic in Airlangga University’s Dental Hospital in Surabaya, Indonesia, in 2014–2016 is fairly high, as 55.34% of the occurrences were identified as class II skeletal malocclusion. This type of skeletal malocclusion, which is usually recognized in adults, occurs as a result of variation during growth and development. Lately, there have been many reports on gene polymorphisms of COL1A1 and COL11A1, which are assumed to be associated with class II skeletal malocclusion in Caucasians. Purpose This study aims to analyze the relationship between single nucleotide polymorphisms (SNPs) of COL1A1 and COL11A1 with class II skeletal malocclusion in Javanese ethnic group patients with mandibular micrognathism. Materials and Methods The diagnosis of class II skeletal malocclusion was established using the lateral cephalometric radiographs (ANB angle ≥4°) (n=50). DNA was extracted from the patient’s peripheral blood. After that, PCR, electrophoresis, and DNA sequencing were conducted on the extracted DNA based on COL1A1 and COL11A1 primers. Results The SNPs in COL1A1 are c.20980G/A in 27 patients and c.20980G>A in 8 patients, whereas SNPs in COL11A1 are both c.134373C/A and c.134555C/T in 8 patients and both c.[134373A>C] and c.134582G>A in 10 patients. All samples show the deletion (c.[134227delA]) in COL11A1. Conclusion SNPs in COL1A1 and COL11A1 have been found in class II skeletal malocclusion of Javanese ethnic group patients. Seventy percent of SNPs in COL1A1 occur in rs.2249492, whereas 36% of newly discovered SNPs appear in COL11A1. All samples also have deletion in COL11A1.
Collapse
Affiliation(s)
| | - Aulanni'am
- Biochemistry Department, Faculty of Veterinary Medicine, Brawijaya University, Malang, Indonesia
| | - Indeswati Diyatri
- Oral Biology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
30
|
Razmara E, Azimi H, Bitaraf A, Daneshmand MA, Galehdari M, Dokhanchi M, Esmaeilzadeh‐Gharehdaghi E, Garshasbi M. Whole-exome sequencing identified a novel variant in an Iranian patient affected by pycnodysostosis. Mol Genet Genomic Med 2020; 8:e1118. [PMID: 31944631 PMCID: PMC7057126 DOI: 10.1002/mgg3.1118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) has emerged as a successful diagnostic tool in molecular genetics laboratories worldwide. In this study, we aimed to find the potential genetic cause of skeletal disease, a heterogeneous disease, revealing the obvious short stature phenotype. In an Iranian family, we used solo-WES in a suspected patient to decipher the potential genetic cause(s). METHODS A comprehensive clinical and genotyping examination was applied to suspect the disease of the patient. The solo clinical WES was exploited, and the derived data were filtered according to the standard pipelines. In order to validate the WES finding, the region harboring the candidate variant in the CTSK gene was amplified from genomic DNA and sequenced directly by Sanger sequencing. RESULTS Sequence analysis revealed a rare novel nonsense variant, p.(Trp320*); c.905G>A, in the CTSK gene (NM_000396.3). In silico analysis shed light on the contribution of the variant to the pathogenicity of pycnodysostosis. This variant was confirmed by Sanger sequencing and further clinical examinations of the patient confirmed the disease. CONCLUSION The present study shows a rare variant of the CTSK gene, which inherited as autosomal recessive, in an Iranian male patient with pycnodysostosis. Taken together, the novel nonsense CTSK variant meets the criteria of being likely pathogenic according to the American College of Medical Genetics and Genomics-the Association for Molecular Pathology (ACMG-AMP) variant interpretation guidelines.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | | | - Amirreza Bitaraf
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Mohammad Galehdari
- Department of BiologyFaculty of SciencesNorth Tehran BranchIslamic Azad UniversityTehranIran
| | - Maryam Dokhanchi
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Masoud Garshasbi
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
31
|
Toss MS, Miligy IM, Gorringe KL, Aleskandarany MA, Alkawaz A, Mittal K, Aneja R, Ellis IO, Green AR, Rakha EA. Collagen (XI) alpha-1 chain is an independent prognostic factor in breast ductal carcinoma in situ. Mod Pathol 2019; 32:1460-1472. [PMID: 31175327 DOI: 10.1038/s41379-019-0286-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/31/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
Abstract
Collagen11A1 (COL11A1) is a fibrillary type collagen constituting a minor component of the extracellular matrix and plays role in tissue tensile strength. Overexpression of COL11A1 expression is associated with aggressive behavior and poor outcome in several human malignancies. In this study, we evaluated the association between COL11A1 expression and clinicopathological parameters of the breast ductal carcinoma in situ (DCIS) and its prognostic value. COL11A1 protein expression was assessed immunohistochemically in a large well-characterized cohort of DCIS including pure (n = 776) and DCIS associated with invasive carcinoma (DCIS-mixed, n = 239). COL11A1 expression was assessed in tumor cells and surrounding stromal cells, and correlated with clinicopathological parameters, immunoprofile and disease outcome. In pure DCIS, high COL11A1 expression was observed in tumor cells and surrounding stromal cells in 25 and 13% of cases, respectively. Higher COL11A1 expression within the stromal cells was associated with hormone receptor negative, HER2 enriched and triple negative molecular subtypes and showed a positive linear correlation with proliferation index, dense tumor infiltrating lymphocytes and hypoxia-inducible factor 1 alpha. COL11A1 expression in tumor and stromal cells was significantly higher in DCIS associated with invasive carcinoma than in pure DCIS, and within the DCIS-mixed cohort, the invasive component showed higher COL11A1 expression than the DCIS component (all, p < 0.0001). Overexpression of stromal COL11A1 was an independent predictor of shorter local recurrence-free interval for all recurrences (HR = 13.2, 95% CI = 6.9-25.4, p < 0.0001) and for invasive recurrences (HR = 11.2, 95% CI = 4.9-25.8, p < 0.0001). When incorporated with other risk factors, stromal COL11A1 provided better patient risk stratification. DCIS with higher stromal COL11A1 expression showed poor outcome even with adjuvant radiotherapy management. In conclusion, overexpression of stromal COL11A1 is associated with invasive recurrence in DCIS and is a potential marker to predict the response to radiotherapy.
Collapse
Affiliation(s)
- Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK.,Histopathology department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Islam M Miligy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK.,Histopathology department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Kylie L Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK.,Histopathology department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Abdulbaqi Alkawaz
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | | | - Ritu Aneja
- Georgia State University, Atlanta, GA, USA
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK. .,Histopathology department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
32
|
Smith SM, Melrose J. Type XI collagen-perlecan-HS interactions stabilise the pericellular matrix of annulus fibrosus cells and chondrocytes providing matrix stabilisation and homeostasis. J Mol Histol 2019; 50:285-294. [PMID: 30993430 DOI: 10.1007/s10735-019-09823-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to ascertain whether, like many cell types in cartilaginous tissues if type XI collagen was a pericellular component of annulus fibrosus (AF) cells and chondrocytes. Fine fibrillar networks were visualised which were perlecan, HS (MAb 10E4) and type XI collagen positive. Heparitinase-III pre-digestion abolished the type XI collagen and 10E4 localisation in these fibrillar assemblies demonstrating a putative HS mediated interaction which localised the type XI collagen. Type XI collagen was confirmed to be present in the Heparitinase III treated AF monolayer media samples by immunoblotting. Heparitinase-III generated ΔHS stub epitopes throughout these fibrillar networks strongly visualised by MAb 3-G-10. Monolayers of murine hip articular chondrocytes from C57BL/6 and Hspg2 exon 3 null mice also displayed pericellular perlecan localisations, however type XI collagen was only evident in the Wild type mice. Perlecan was also immunolocalised in control and murine knee articular cartilage from the two mouse genotypes subjected to a medial meniscal destabilisation procedure which induces OA. This resulted in a severe depletion of perlecan levels particularly in the perlecan exon 3 null mice and was consistent with OA representing a disease of the pericellular matrix. A model was prepared to explain these observations between the NPP type XI collagen domain and HS chains of perlecan domain-I in the pericellular matrix of AF cells which likely contributed to cellular communication, tissue stabilization and the regulation of extracellular matrix homeostasis.
Collapse
Affiliation(s)
- Susan M Smith
- Raymond Purves Bone and Joint Research Laboratories, Level 10, Kolling Institute of Medical Research B6, The Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Level 10, Kolling Institute of Medical Research B6, The Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia. .,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia. .,Sydney Medical School, Northern, The University of Sydney, St. Leonards, 2065, NSW, Australia. .,Faculty of Medicine and Health, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW, 2065, Australia.
| |
Collapse
|
33
|
Yue S, Whalen P, Jee YH. Genetic regulation of linear growth. Ann Pediatr Endocrinol Metab 2019; 24:2-14. [PMID: 30943674 PMCID: PMC6449614 DOI: 10.6065/apem.2019.24.1.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Linear growth occurs at the growth plate. Therefore, genetic defects that interfere with the normal function of the growth plate can cause linear growth disorders. Many genetic causes of growth disorders have already been identified in humans. However, recent genome-wide approaches have broadened our knowledge of the mechanisms of linear growth, not only providing novel monogenic causes of growth disorders but also revealing single nucleotide polymorphisms in genes that affect height in the general population. The genes identified as causative of linear growth disorders are heterogeneous, playing a role in various growth-regulating mechanisms including those involving the extracellular matrix, intracellular signaling, paracrine signaling, endocrine signaling, and epigenetic regulation. Understanding the underlying genetic defects in linear growth is important for clinicians and researchers in order to provide proper diagnoses, management, and genetic counseling, as well as to develop better treatment approaches for children with growth disorders.
Collapse
Affiliation(s)
- Shanna Yue
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Philip Whalen
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Youn Hee Jee
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA,Address for correspondence: Youn Hee Jee, MD Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA Tel: +1-301-435-5834 Fax: +1-301-402-0574 E-mail:
| |
Collapse
|
34
|
Azaiez H, Booth KT, Ephraim SS, Crone B, Black-Ziegelbein EA, Marini RJ, Shearer AE, Sloan-Heggen CM, Kolbe D, Casavant T, Schnieders MJ, Nishimura C, Braun T, Smith RJ. Genomic Landscape and Mutational Signatures of Deafness-Associated Genes. Am J Hum Genet 2018; 103:484-497. [PMID: 30245029 PMCID: PMC6174355 DOI: 10.1016/j.ajhg.2018.08.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
The classification of genetic variants represents a major challenge in the post-genome era by virtue of their extraordinary number and the complexities associated with ascribing a clinical impact, especially for disorders exhibiting exceptional phenotypic, genetic, and allelic heterogeneity. To address this challenge for hearing loss, we have developed the Deafness Variation Database (DVD), a comprehensive, open-access resource that integrates all available genetic, genomic, and clinical data together with expert curation to generate a single classification for each variant in 152 genes implicated in syndromic and non-syndromic deafness. We evaluate 876,139 variants and classify them as pathogenic or likely pathogenic (more than 8,100 variants), benign or likely benign (more than 172,000 variants), or of uncertain significance (more than 695,000 variants); 1,270 variants are re-categorized based on expert curation and in 300 instances, the change is of medical significance and impacts clinical care. We show that more than 96% of coding variants are rare and novel and that pathogenicity is driven by minor allele frequency thresholds, variant effect, and protein domain. The mutational landscape we define shows complex gene-specific variability, making an understanding of these nuances foundational for improved accuracy in variant interpretation in order to enhance clinical decision making and improve our understanding of deafness biology.
Collapse
|
35
|
Splice-altering variant in COL11A1 as a cause of nonsyndromic hearing loss DFNA37. Genet Med 2018; 21:948-954. [PMID: 30245514 PMCID: PMC6431578 DOI: 10.1038/s41436-018-0285-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The aim of this study was to determine the genetic cause of autosomal dominant nonsyndromic hearing loss segregating in a multigenerational family. METHODS Clinical examination, genome-wide linkage analysis, and exome sequencing were carried out on the family. RESULTS Affected individuals presented with early-onset progressive mild hearing impairment with a fairly flat, gently downsloping or U-shaped audiogram configuration. Detailed clinical examination excluded any additional symptoms. Linkage analysis detected an interval on chromosome 1p21 with a logarithm of the odds (LOD) score of 8.29: designated locus DFNA37. Exome sequencing identified a novel canonical acceptor splice-site variant c.652-2A>C in the COL11A1 gene within the DFNA37 locus. Genotyping of all 48 family members confirmed segregation of this variant with the deafness phenotype in the extended family. The c.652-2A>C variant is novel, highly conserved, and confirmed in vitro to alter RNA splicing. CONCLUSION We have identified COL11A1 as the gene responsible for deafness at the DFNA37 locus. Previously, COL11A1 was solely associated with Marshall and Stickler syndromes. This study expands its phenotypic spectrum to include nonsyndromic deafness. The implications of this discovery are valuable in the clinical diagnosis, prognosis, and treatment of patients with COL11A1 pathogenic variants.
Collapse
|
36
|
Fidler AL, Boudko SP, Rokas A, Hudson BG. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution. J Cell Sci 2018; 131:jcs203950. [PMID: 29632050 PMCID: PMC5963836 DOI: 10.1242/jcs.203950] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution.
Collapse
Affiliation(s)
- Aaron L Fidler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
37
|
Genes uniquely expressed in human growth plate chondrocytes uncover a distinct regulatory network. BMC Genomics 2017; 18:983. [PMID: 29262782 PMCID: PMC5738906 DOI: 10.1186/s12864-017-4378-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
Background Chondrogenesis is the earliest stage of skeletal development and is a highly dynamic process, integrating the activities and functions of transcription factors, cell signaling molecules and extracellular matrix proteins. The molecular mechanisms underlying chondrogenesis have been extensively studied and multiple key regulators of this process have been identified. However, a genome-wide overview of the gene regulatory network in chondrogenesis has not been achieved. Results In this study, employing RNA sequencing, we identified 332 protein coding genes and 34 long non-coding RNA (lncRNA) genes that are highly selectively expressed in human fetal growth plate chondrocytes. Among the protein coding genes, 32 genes were associated with 62 distinct human skeletal disorders and 153 genes were associated with skeletal defects in knockout mice, confirming their essential roles in skeletal formation. These gene products formed a comprehensive physical interaction network and participated in multiple cellular processes regulating skeletal development. The data also revealed 34 transcription factors and 11,334 distal enhancers that were uniquely active in chondrocytes, functioning as transcriptional regulators for the cartilage-selective genes. Conclusions Our findings revealed a complex gene regulatory network controlling skeletal development whereby transcription factors, enhancers and lncRNAs participate in chondrogenesis by transcriptional regulation of key genes. Additionally, the cartilage-selective genes represent candidate genes for unsolved human skeletal disorders. Electronic supplementary material The online version of this article (10.1186/s12864-017-4378-y) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Abstract
Short stature is a common and heterogeneous condition that is often genetic in etiology. For most children with genetic short stature, the specific molecular causes remain unknown; but with advances in exome/genome sequencing and bioinformatics approaches, new genetic causes of growth disorders have been identified, contributing to the understanding of the underlying molecular mechanisms of longitudinal bone growth and growth failure. Identifying new genetic causes of growth disorders has the potential to improve diagnosis, prognostic accuracy, and individualized management, and help avoid unnecessary testing for endocrine and other disorders.
Collapse
Affiliation(s)
- Youn Hee Jee
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA.
| | - Anenisia C Andrade
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Solnavägen 1, Solna 171 77, Sweden
| | - Jeffrey Baron
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Solnavägen 1, Solna 171 77, Sweden; University Hospital, Örebro University, Södra Grev Rosengatan, Örebro 701 85, Sweden
| |
Collapse
|
39
|
Seet LF, Toh LZ, Chu SWL, Finger SN, Chua JLL, Wong TT. Upregulation of distinct collagen transcripts in post-surgery scar tissue: a study of conjunctival fibrosis. Dis Model Mech 2017; 10:751-760. [PMID: 28331057 PMCID: PMC5483006 DOI: 10.1242/dmm.028555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/09/2017] [Indexed: 01/07/2023] Open
Abstract
Excessive accumulation of collagen is often used to assess the development of fibrosis. This study aims to identify collagen genes that define fibrosis in the conjunctiva following glaucoma filtration surgery (GFS). Using the mouse model of GFS, we have identified collagen transcripts that were upregulated in the fibrotic phase of wound healing via RNA-seq. The collagen transcripts that were increased the most were encoded by Col8a1, Col11a1 and Col8a2. Further analysis of the Col8a1, Col11a1 and Col8a2 transcripts revealed their increase by 67-, 54- and 18-fold, respectively, in the fibrotic phase, compared with 12-fold for Col1a1, the most commonly evaluated collagen gene for fibrosis. However, only type I collagen was significantly upregulated at the protein level in the fibrotic phase. Type VIII and type I collagens colocalized in fibrous structures and in ACTA2-positive pericytes, and appeared to compensate for each other in expression levels. Type XI collagen showed low colocalization with both type VIII and type I collagens but can be found in association with macrophages. Furthermore, we show that both mouse and human conjunctival fibroblasts expressed elevated levels of the most highly expressed collagen genes in response to TGFβ2 treatment. Importantly, conjunctival tissues from individuals whose GF surgeries have failed due to scarring showed 3.60- and 2.78-fold increases in type VIII and I collagen transcripts, respectively, compared with those from individuals with no prior surgeries. These data demonstrate that distinct collagen transcripts are expressed at high levels in the conjunctiva after surgery and their unique expression profiles may imply differential influences on the fibrotic outcome. Summary: As well as providing an objective quantitative measure, distinct collagen genes may further aid in the characterization and definition of the development of fibrosis.
Collapse
Affiliation(s)
- Li-Fong Seet
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road, Singapore 169856 .,Duke-NUS Medical School, 8 College Road, Singapore 169857.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Rd, National University Hospital, Singapore 119074
| | - Li Zhen Toh
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road, Singapore 169856
| | - Stephanie W L Chu
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road, Singapore 169856
| | - Sharon N Finger
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road, Singapore 169856
| | - Jocelyn L L Chua
- Glaucoma Service, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751
| | - Tina T Wong
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road, Singapore 169856 .,Duke-NUS Medical School, 8 College Road, Singapore 169857.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Rd, National University Hospital, Singapore 119074.,Glaucoma Service, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751.,School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, Singapore 639977
| |
Collapse
|
40
|
Weinstein MM, Kang T, Lachman RS, Bamshad M, Nickerson DA, Krakow D, Cohn DH. Somatic mosaicism for a lethal TRPV4 mutation results in non-lethal metatropic dysplasia. Am J Med Genet A 2016; 170:3298-3302. [PMID: 27530454 DOI: 10.1002/ajmg.a.37942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/07/2016] [Indexed: 11/06/2022]
Abstract
Dominant mutations in TRPV4, which encodes the Transient Receptor Potential Cation Channel Subfamily V Member 4 calcium channel, result in a series of musculoskeletal disorders that include a set of peripheral neuropathies and a broad phenotypic spectrum of skeletal dysplasias. The skeletal phenotypes range from brachyolmia, in which there is scoliosis with mild short stature, through perinatal lethal metatropic dysplasia. We describe a case with phenotypic findings consistent with metatropic dysplasia, but in whom no TRPV4 mutation was detected by Sanger sequence analysis. Exome sequence analysis identified a known lethal metatropic dysplasia mutation, TRPV4L618P , which was present at lower frequency than would be expected for a heterozygous change. The affected individual was shown to be a somatic mosaic for the mutation, providing an explanation for the milder than expected phenotype. The data illustrate that high-throughput sequencing of genomic DNA can facilitate detection of mosaicism with higher sensitivity than Sanger sequence analysis and identify a new genetic mechanism for metatropic dysplasia. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael M Weinstein
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles
| | - Taekyu Kang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles
| | - Ralph S Lachman
- International Skeletal Dysplasia Registry, University of California Los Angeles, Los Angeles
| | - Michael Bamshad
- Department of Genome Sciences, University of Washington, Seattle.,University of Washington Center for Mendelian Genomics, University of Washington, Seattle.,Department of Pediatrics, University of Washington, Seattle.,Division of Genetic Medicine, Seattle Children's Hospital, Seattle
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle.,University of Washington Center for Mendelian Genomics, University of Washington, Seattle
| | - Deborah Krakow
- International Skeletal Dysplasia Registry, University of California Los Angeles, Los Angeles.,Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles.,Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles.,Orthopaedic Hospital Research Center, David Geffen School of Medicine at UCLA, Los Angeles
| | - Daniel H Cohn
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles.,International Skeletal Dysplasia Registry, University of California Los Angeles, Los Angeles.,Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles.,Orthopaedic Hospital Research Center, David Geffen School of Medicine at UCLA, Los Angeles
| |
Collapse
|
41
|
Hafez A, Squires R, Pedracini A, Joshi A, Seegmiller RE, Oxford JT. Col11a1 Regulates Bone Microarchitecture during Embryonic Development. J Dev Biol 2015; 3:158-176. [PMID: 26779434 PMCID: PMC4711924 DOI: 10.3390/jdb3040158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Collagen XI alpha 1 (Col11a1) is an extracellular matrix molecule required for embryonic development with a role in both nucleating the formation of fibrils and regulating the diameter of heterotypic fibrils during collagen fibrillar assembly. Although found in many different tissues throughout the vertebrate body, Col11a1 plays an essential role in endochondral ossification. To further understand the function of Col11a1 in the process of bone formation, we compared skeletal mineralization in wild-type (WT) mice and Col11a1-deficient mice using X-ray microtomography (micro-CT) and histology. Changes in trabecular bone microstructure were observed and are presented here. Additionally, changes to the periosteal bone collar of developing long bones were observed and resulted in an increase in thickness in the case of Col11a1-deficient mice compared to WT littermates. Vertebral bodies were incompletely formed in the absence of Col11a1. The data demonstrate that Col11a1 depletion results in alteration to newly-formed bone and is consistent with a role for Col11a1 in mineralization. These findings indicate that expression of Col11a1 in the growth plate and perichondrium is essential for trabecular bone and bone collar formation during endochondral ossification. The observed changes to mineralized tissues further define the function of Col11a1.
Collapse
Affiliation(s)
- Anthony Hafez
- Biomolecular Research Center, Boise State University, 1910 University Drive, Boise, ID 83706-1511, USA
| | - Ryan Squires
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Amber Pedracini
- Biomolecular Research Center, Boise State University, 1910 University Drive, Boise, ID 83706-1511, USA
| | - Alark Joshi
- Biomolecular Research Center, Boise State University, 1910 University Drive, Boise, ID 83706-1511, USA
| | - Robert E. Seegmiller
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
- College of Dental Medicine, Roseman University, South Jordan, UT 84095, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, 1910 University Drive, Boise, ID 83706-1511, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-208-426-2395; Fax: +1-208-426-1040
| |
Collapse
|
42
|
Sp1 upregulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes. In Vitro Cell Dev Biol Anim 2015; 52:235-42. [PMID: 26487428 DOI: 10.1007/s11626-015-9959-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/10/2015] [Indexed: 10/22/2022]
Abstract
Type XI collagen is a cartilage-specific extracellular matrix, and is important for collagen fibril formation and skeletal morphogenesis. We have previously reported that NF-Y regulated the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes (Hida et. al. In Vitro Cell. Dev. Biol. Anim. 2014). However, the mechanism of the Col11a1 gene regulation in chondrocytes has not been fully elucidated. In this study, we further characterized the proximal promoter activity of the mouse Col11a1 gene in chondrocytes. Cell transfection experiments with deletion and mutation constructs indicated that the downstream region of the NF-Y binding site (-116 to +1) is also necessary to regulate the proximal promoter activity of the mouse Col11a1 gene. This minimal promoter region has no TATA box and GC-rich sequence; we therefore examined whether the GC-rich sequence (-96 to -67) is necessary for the transcription regulation of the Col11a1 gene. Luciferase assays using a series of mutation constructs exhibited that the GC-rich sequence is a critical element of Col11a1 promoter activity in chondrocytes. Moreover, in silico analysis of this region suggested that one of the most effective candidates was transcription factor Sp1. Consistent with the prediction, overexpression of Sp1 significantly increased the promoter activity. Furthermore, knockdown of Sp1 expression by siRNA transfection suppressed the proximal promoter activity and the expression of endogenous transcript of the mouse Col11a1 gene. Taken together, these results indicate that the transcription factor Sp1 upregulates the proximal promoter activity of the mouse Col11a1 gene in chondrocytes.
Collapse
|
43
|
Ramos YFM, Bos SD, van der Breggen R, Kloppenburg M, Ye K, Lameijer EWEMW, Nelissen RGHH, Slagboom PE, Meulenbelt I. A gain of function mutation in TNFRSF11B encoding osteoprotegerin causes osteoarthritis with chondrocalcinosis. Ann Rheum Dis 2015; 74:1756-62. [PMID: 24743232 DOI: 10.1136/annrheumdis-2013-205149] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/23/2014] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To identify pathogenic mutations that reveal underlying biological mechanisms driving osteoarthritis (OA). METHODS Exome sequencing was applied to two distant family members with dominantly inherited early onset primary OA at multiple joint sites with chondrocalcinosis (familial generalised osteoarthritis, FOA). Confirmation of mutations occurred by genotyping and linkage analyses across the extended family. The functional effect of the mutation was investigated by means of a cell-based assay. To explore generalisability, mRNA expression analysis of the relevant genes in the discovered pathway was explored in preserved and osteoarthritic articular cartilage of independent patients undergoing joint replacement surgery. RESULTS We identified a heterozygous, probably damaging, read-through mutation (c.1205A=>T; p.Stop402Leu) in TNFRSF11B encoding osteoprotegerin that is likely causal to the OA phenotype in the extended family. In a bone resorption assay, the mutant form of osteoprotegerin showed enhanced capacity to inhibit osteoclastogenesis and bone resorption. Expression analyses in preserved and affected articular cartilage of independent OA patients showed that upregulation of TNFRSF11B is a general phenomenon in the pathophysiological process. CONCLUSIONS Albeit that the role of the molecular pathway of osteoprotegerin has been studied in OA, we are the first to demonstrate that enhanced osteoprotegerin function could be a directly underlying cause. We advocate that agents counteracting the function of osteoprotegerin could comply with new therapeutic interventions of OA.
Collapse
Affiliation(s)
- Yolande F M Ramos
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Steffan D Bos
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Ruud van der Breggen
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Margreet Kloppenburg
- Department of Rheumatology & Department of Clinical Epidemiology, Leiden, The Netherlands
| | - Kai Ye
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric-Wubbo E M W Lameijer
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - P Eline Slagboom
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Department of Medical Statistics and Bioinformatics, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| |
Collapse
|
44
|
Johnsson M, Jonsson KB, Andersson L, Jensen P, Wright D. Genetic regulation of bone metabolism in the chicken: similarities and differences to Mammalian systems. PLoS Genet 2015; 11:e1005250. [PMID: 26023928 PMCID: PMC4449198 DOI: 10.1371/journal.pgen.1005250] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone. In this work we seek to further the understanding of bone genetics by mapping bone traits and gene expression in the chicken. Bone in female birds is special due to egg production. In this study, we combine the genetic mapping of bone traits with bone gene expression to find candidate quantitative trait genes that explain the differences between wild and domestic chickens in terms of bone production. The concept of combining genetic mapping and gene expression mapping is not new, and has already been successful in isolating bone-related genes in mammals, however this is the first time it has been applied to an avian system with such unique bone modelling processes. We aim to reveal new molecular mechanisms of bone regulation, and many of the candidates we find are new, highlighting the potential this technique has to identify the potential differences between avian and mammalian bone biology.
Collapse
Affiliation(s)
- Martin Johnsson
- AVIAN Behavioural Genomics and Physiology group, IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Kenneth B. Jonsson
- Department of Surgical Sciences, Orthopaedics, Akademiska Sjukhuset, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology group, IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology group, IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
45
|
Freire J, Domínguez-Hormaetxe S, Pereda S, De Juan A, Vega A, Simón L, Gómez-Román J. Collagen, type XI, alpha 1: An accurate marker for differential diagnosis of breast carcinoma invasiveness in core needle biopsies. Pathol Res Pract 2014; 210:879-84. [DOI: 10.1016/j.prp.2014.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/06/2014] [Accepted: 07/22/2014] [Indexed: 12/01/2022]
|
46
|
Zahnleiter D, Hauer NN, Kessler K, Uebe S, Sugano Y, Neuhauss SC, Giessl A, Ekici AB, Blessing H, Sticht H, Dörr HG, Reis A, Thiel CT. MAP4-Dependent Regulation of Microtubule Formation Affects Centrosome, Cilia, and Golgi Architecture as a Central Mechanism in Growth Regulation. Hum Mutat 2014; 36:87-97. [DOI: 10.1002/humu.22711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Diana Zahnleiter
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Nadine N. Hauer
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Kristin Kessler
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Steffen Uebe
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Yuya Sugano
- Institute of Molecular Life Sciences; University of Zurich; Zurich Switzerland
| | | | - Andreas Giessl
- Animal Physiology; Friedrich-Alexander Universität Erlangen-Nürnberg; Erlangen Germany
| | - Arif B. Ekici
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Holger Blessing
- Department of Pediatrics and Adolescent Medicine; Friedrich-Alexander Universität Erlangen-Nürnberg; Erlangen Germany
| | - Heinrich Sticht
- Institute of Biochemistry; Friedrich-Alexander Universität Erlangen-Nürnberg; Erlangen Germany
| | - Helmuth-Günther Dörr
- Department of Pediatrics and Adolescent Medicine; Friedrich-Alexander Universität Erlangen-Nürnberg; Erlangen Germany
| | - André Reis
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Christian T. Thiel
- Institute of Human Genetics; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
47
|
Hufnagel SB, Weaver KN, Hufnagel RB, Bader PI, Schorry EK, Hopkin RJ. A novel dominant COL11A1 mutation resulting in a severe skeletal dysplasia. Am J Med Genet A 2014; 164A:2607-12. [PMID: 25091507 DOI: 10.1002/ajmg.a.36688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 05/22/2014] [Indexed: 11/06/2022]
Abstract
Mutations in the type XI collagen alpha-1 chain gene (COL11A1) cause a change in protein structure that alters its interactions with collagens II and V, resulting in abnormalities in cartilage and ocular vitreous. The most common type XI collagenopathies are dominantly inherited Stickler or Marshall syndromes, while severe recessive skeletal dysplasias, such as fibrochondrogenesis, occur less frequently. We describe a family with a severe skeletal dysplasia caused by a novel dominantly inherited COL11A1 mutation. The siblings each presented with severe myopia, hearing loss, micromelia, metaphyseal widening of the long bones, micrognathia, and airway compromise requiring tracheostomy. The first child lived for over 2 years, while the second succumbed at 5 months of age. Their mother has mild rhizomelic shortening of the limbs, brachydactyly, and severe myopia. Sequencing of COL11A1 revealed a novel deleterious heterozygous mutation in COL11A1 involving the triple helical domain in both siblings, and a mosaic mutation in their mother, indicating germline mosaicism with subsequent dominant inheritance. These are the first reported individuals with a dominantly inherited mutation in COL11A1 associated with a severe skeletal dysplasia. The skeletal involvement is similar to, yet milder than fibrochondrogenesis and allowed for survival beyond the perinatal period. These cases highlight both a novel dominant COL11A1 mutation causing a significant skeletal dysplasia and the phenotypic heterogeneity of collagenopathies.
Collapse
Affiliation(s)
- Sophia B Hufnagel
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | | | | | | |
Collapse
|
48
|
Bekdache GN, Begam MA, Chedid F, Al-Gazali L, Mirghani H. Fibrochondrogenesis: prenatal diagnosis and outcome. J OBSTET GYNAECOL 2014; 33:663-8. [PMID: 24127948 DOI: 10.3109/01443615.2013.817977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We studied 20 cases with fibrochondrogenesis (FCG) diagnosed prenatally. Four cases were diagnosed at our fetal unit, and 16 cases were identified through a review of literature (in English). The prenatal diagnosis of FCG was made in 4/20 (20%). Six (30%) patients opted for termination of pregnancy (TOP). A total of 13 cases delivered at term. Four (30.8%) had a caesarean section. Four neonates (30.7%) were stillborn and seven (53.8%) neonates died within 3 months. Two infants survived beyond 3 years of age, but both had severe global developmental delay. A molecular study of the surviving children revealed two null homozygous mutations in COL11A1 [c.4084C > T (p.R1362X) and c.3708 + c.437T > G]. We concluded that the prenatal diagnosis of fibrochondrogenesis is feasible. Fibrochondrogenesis is usually a fatal disease and survivors suffer from severe physical and neurological impairment.
Collapse
Affiliation(s)
- G N Bekdache
- Fetal Medicine Unit, Department of Obstetrics and Gynecology
| | | | | | | | | |
Collapse
|
49
|
Berner D, Moser D, Roesti M, Buescher H, Salzburger W. GENETIC ARCHITECTURE OF SKELETAL EVOLUTION IN EUROPEAN LAKE AND STREAM STICKLEBACK. Evolution 2014; 68:1792-805. [DOI: 10.1111/evo.12390] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/11/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Daniel Berner
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Dario Moser
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Marius Roesti
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Heinz Buescher
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| | - Walter Salzburger
- Zoological Institute; University of Basel; Vesalgasse 1, CH-4051 Basel Switzerland
| |
Collapse
|
50
|
Hida M, Hamanaka R, Okamoto O, Yamashita K, Sasaki T, Yoshioka H, Matsuo N. Nuclear factor Y (NF-Y) regulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes. In Vitro Cell Dev Biol Anim 2013; 50:358-66. [PMID: 24092017 DOI: 10.1007/s11626-013-9692-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022]
Abstract
Type XI collagen, a heterotrimer composed of α1(XI), α2(XI), and α3(XI), plays a critical role in cartilage formation and in skeletal morphogenesis. However, the transcriptional regulation of α1(XI) collagen gene (Col11a1) in chondrocyte is poorly characterized. In this study, we investigated the proximal promoter of mouse Col11a1 gene in chondrocytes. Major transcription start site was located at -299 bp upstream of the translation start site, and the proximal promoter lacks a TATA sequence but has a high guanine-cytosine (GC) content. Cell transfection experiments demonstrated that the segment from -116 to -256 is necessary for activation of the proximal Col11a1 promoter, and an electrophoretic mobility shift assay showed that a nuclear protein is bound to the segment from -116 to -176 in this promoter. Additional comparative and in silico analyses demonstrated that an ATTGG sequence, which is critical for binding to nuclear factor Y (NF-Y), is within the highly conserved region from -135 to -145. Interference assays using wild-type and mutant oligonucleotide or with specific antibody revealed that NF-Y protein is bound to this region. Cell transfection experiments with reporter constructs in the absence of NF-Y binding sequence exhibited the suppression of the promoter activity. Furthermore, chromatin immunoprecipitation assay demonstrated that NF-Y protein is directly bound to this region in vivo, and overexpression of dominant-negative NF-Y A mutant also inhibited the proximal promoter activity. Taken together, these results indicate that the transcription factor NF-Y regulates the proximal promoter activity of mouse Col11a1 gene in chondrocytes.
Collapse
Affiliation(s)
- Mariko Hida
- Department of Matrix Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | | | | | | | | | | | | |
Collapse
|