1
|
Stephens CA, van Hilten N, Zheng L, Grabe M. Simulation-based survey of TMEM16 family reveals that robust lipid scrambling requires an open groove. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.25.615027. [PMID: 39386458 PMCID: PMC11463437 DOI: 10.1101/2024.09.25.615027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Biological membranes are complex and dynamic structures with different populations of lipids in their inner and outer leaflets. The Ca2+-activated TMEM16 family of membrane proteins plays an important role in collapsing this asymmetric lipid distribution by spontaneously, and bidirectionally, scrambling phospholipids between the two leaflets, which can initiate signaling and alter the physical properties of the membrane. While evidence shows that lipid scrambling can occur via an open hydrophilic pathway ("groove") that spans the membrane, it remains unclear if all family members facilitate lipid movement in this manner. Here we present a comprehensive computational study of lipid scrambling by all TMEM16 members with experimentally solved structures. We performed coarse-grained molecular dynamics (MD) simulations of 27 structures from five different family members solved under activating and non-activating conditions, and we captured over 700 scrambling events in aggregate. This enabled us to directly compare scrambling rates, mechanisms, and protein-lipid interactions for fungal and mammalian TMEM16s, in both open (Ca2+-bound) and closed (Ca2+-free) conformations with statistical rigor. We show that all TMEM16 structures thin the membrane and that the majority of scrambling (>90%) occurs at the groove only when TM4 and TM6 have sufficiently separated. Surprisingly, we also observed 60 scrambling events that occurred outside the canonical groove, over 90% of which took place at the dimer-dimer interface in mammalian TMEM16s. This new site suggests an alternative mechanism for lipid scrambling in the absence of an open groove.
Collapse
Affiliation(s)
- Christina A. Stephens
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Graduate Group in Biophysics, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Niek van Hilten
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Lisa Zheng
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Graduate Group in Biophysics, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| |
Collapse
|
2
|
Silva TYT, Braga VL, Procaci VR, Gouvêa LA, Freitas LF, Villela DCM, Migliavacca MP, Ceroni JRM, Silva AMS, Oliveira JB, Sobreira CFDR, Barsottini OGP, Pedroso JL. Pendular Nystagmus: a Novel Feature of ANO10-Related Disorders. CEREBELLUM (LONDON, ENGLAND) 2025; 24:73. [PMID: 40128498 DOI: 10.1007/s12311-025-01828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
ANO10-related ataxia is characterized by cerebellar and pyramidal signs, with prominent oculomotor abnormalities, including saccadic abnormalities, strabismus, and ptosis. While nystagmus is frequently observed, the specific subtype of horizontal pendular nystagmus has not been emphasized. This report describes two siblings with early-onset spastic-ataxia with horizontal pendular nystagmus, ultimately diagnosed with SCAR10. This report details the ocular abnormalities spectrum of ANO10-related ataxia by highlighting horizontal pendular nystagmus as a significant clinical feature in early-onset presentations. We also restate the importance of neurological examination, including detailed assessment of ocular movements, for accurate diagnosis and management of hereditary ataxias.
Collapse
Affiliation(s)
- Thiago Yoshinaga Tonholo Silva
- Departament of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Laboratório Clínico, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Vinícius Lopes Braga
- Departament of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Luane Abdalla Gouvêa
- Departament of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Darine Christina Maia Villela
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- DASA genômica, DASA, São Paulo, Brazil
| | | | | | | | - João Bosco Oliveira
- Laboratório Clínico, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Orlando Graziani Povoas Barsottini
- Departament of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Pedro Toledo Street, 650, Vila Clementino, São Paulo, SP, ZIP CODE: 04039-002, Brazil.
| | - José Luiz Pedroso
- Departament of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Boccaccio A. HEK293 Cell-Based Assay to Measure the Lipid Scrambling Activity of TMEM16 Family Members. Methods Mol Biol 2025; 2888:119-132. [PMID: 39699728 DOI: 10.1007/978-1-0716-4318-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
In recent years, the elucidation of molecular mechanisms underlying lipid scrambling has raised significant attention to its implications in various physiological processes, such as blood coagulation, viral infection, cell fusion processes, and removal of apoptotic cells. This chapter focuses on a HEK293 cell-based assay tailored to assess the lipid scrambling activity of the Ca2+-activated scramblases of the TMEM16/Anoctamin family. It relies on the capacity of Annexin-V to detect the presence of negatively charged lipids and, in particular, phosphatidylserine, on the extracellular surface of the plasma membrane. Although most TMEM16 scramblases, with the exception of TMEM16F, have an intracellular localization, some of them partially localize at the plasma membrane, allowing a direct functional characterization. Annexin-V-based scrambling assay offers a versatile platform for investigating the lipid scrambling properties of TMEM16 family members and their mutants associated with genetic diseases, facilitating the elucidation of their roles in cellular physiology and pathology.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genoa, Italy.
- RAISE Ecosystem, Genoa, Italy.
| |
Collapse
|
4
|
Li X, Yang Y, Xu S, Gui Y, Chen J, Xu J. Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning. Neural Regen Res 2024; 19:2723-2734. [PMID: 38595290 PMCID: PMC11168503 DOI: 10.4103/1673-5374.391306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00028/figure1/v/2024-04-08T165401Z/r/image-tiff Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal cord injury. They can greatly affect nerve regeneration and functional recovery. However, there is still limited understanding of the peripheral immune inflammatory response in spinal cord injury. In this study, we obtained microRNA expression profiles from the peripheral blood of patients with spinal cord injury using high-throughput sequencing. We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus (GEO) database (GSE151371). We identified 54 differentially expressed microRNAs and 1656 differentially expressed genes using bioinformatics approaches. Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways, such as neutrophil extracellular trap formation pathway, T cell receptor signaling pathway, and nuclear factor-κB signal pathway, were abnormally activated or inhibited in spinal cord injury patient samples. We applied an integrated strategy that combines weighted gene co-expression network analysis, LASSO logistic regression, and SVM-RFE algorithm and identified three biomarkers associated with spinal cord injury: ANO10, BST1, and ZFP36L2. We verified the expression levels and diagnostic performance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve. Quantitative polymerase chain reaction results showed that ANO10 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients. We also constructed a small RNA-mRNA interaction network using Cytoscape. Additionally, we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal cord injury patients using the CIBERSORT tool. The proportions of naïve B cells, plasma cells, monocytes, and neutrophils were increased while the proportions of memory B cells, CD8+ T cells, resting natural killer cells, resting dendritic cells, and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects, and ANO10, BST1 and ZFP26L2 were closely related to the proportion of certain immune cell types. The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal cord injury and suggest that ANO10, BST1, and ZFP36L2 are potential biomarkers for spinal cord injury. The study was registered in the Chinese Clinical Trial Registry (registration No. ChiCTR2200066985, December 12, 2022).
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ye Yang
- Department of Rehabilitation Medicine, Guilin People’s Hospital, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Senming Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuchang Gui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jianmin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jianwen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. CHARON: An Imaging-Based Diagnostic Algorithm to Navigate Through the Sea of Hereditary Degenerative Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2122-2129. [PMID: 38436911 PMCID: PMC11489197 DOI: 10.1007/s12311-024-01677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
The complexity in diagnosing hereditary degenerative ataxias lies not only in their rarity, but also in the variety of different genetic conditions that can determine sometimes similar and overlapping clinical findings. In this light, Magnetic Resonance Imaging (MRI) plays a key role in the evaluation of these conditions, being a fundamental diagnostic tool needed not only to exclude other causes determining the observed clinical phenotype, but also to proper guide to an adequate genetic testing. Here, we propose an MRI-based diagnostic algorithm named CHARON (Characterization of Hereditary Ataxias Relying On Neuroimaging), to help in disentangling among the numerous, and apparently very similar, hereditary degenerative ataxias. Being conceived from a neuroradiological standpoint, it is based primarily on an accurate evaluation of the observed MRI findings, with the first and most important being the pattern of cerebellar atrophy. Along with the evaluation of the presence, or absence, of additional signal changes and/or supratentorial involvement, CHARON allows for the identification of a small groups of ataxias sharing similar imaging features. The integration of additional MRI findings, demographic, clinical and laboratory data allow then for the identification of typical, and in some cases pathognomonic, phenotypes of hereditary ataxias.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
6
|
Yang F, Begemann A, Reichhart N, Haeckel A, Steindl K, Schellenberger E, Sturm RF, Barth M, Bassani S, Boonsawat P, Courtin T, Delobel B, Gunning B, Hardies K, Jennesson M, Legoff L, Linnankivi T, Prouteau C, Smal N, Spodenkiewicz M, Toelle SP, Van Gassen K, Van Paesschen W, Verbeek N, Ziegler A, Zweier M, Horn AHC, Sticht H, Lerche H, Weckhuysen S, Strauß O, Rauch A. Missense variants in ANO4 cause sporadic encephalopathic or familial epilepsy with evidence for a dominant-negative effect. Am J Hum Genet 2024; 111:1184-1205. [PMID: 38744284 PMCID: PMC11179416 DOI: 10.1016/j.ajhg.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.
Collapse
Affiliation(s)
- Fang Yang
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Anais Begemann
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Akvile Haeckel
- Institute for Radiology and Children's Radiology, Charité-Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Eyk Schellenberger
- Institute for Radiology and Children's Radiology, Charité-Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Ronja Fini Sturm
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Magalie Barth
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Sissy Bassani
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Paranchai Boonsawat
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Thomas Courtin
- Sorbonne Université, INSERM, CNRS, Institut du Cerveau - Paris Brain Institute - ICM, 75013 Paris, France; Hôpital Pitié-Salpêtrière, DMU BioGe'M, AP-HP, 75013 Paris, France
| | - Bruno Delobel
- Service de Cytogénétique, GH de l'Institut Catholique de Lille, Hopital Saint Vincent de Paul, Lille, France
| | | | - Katia Hardies
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Louis Legoff
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Tarja Linnankivi
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland; Department of Pediatric Neurology and Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, 00029 HUS Helsinki, Finland
| | - Clément Prouteau
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Noor Smal
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerp, Belgium
| | - Marta Spodenkiewicz
- Department of Genetics, La Réunion University Hospital, Saint-Pierre, France
| | - Sandra P Toelle
- Department of Pediatric Neurology, Children's University Hospital Zurich, Zurich, Switzerland
| | - Koen Van Gassen
- University Medical Center Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, and Neurology Department, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Nienke Verbeek
- University Medical Center Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Alban Ziegler
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Anselm H C Horn
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Antwerp, Belgium; Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, 2610 Antwerp, Belgium
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; Children's University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Milovanović A, Westenberger A, Stanković I, Tamaš O, Branković M, Marjanović A, Laabs BH, Brand M, Rajalingam R, Marras C, Lohmann K, Branković V, Novaković I, Petrović I, Svetel M, Klein C, Kostić VS, Dragašević-Mišković N. ANO10-Related Spinocerebellar Ataxia: MDSGene Systematic Literature Review and a Romani Case Series. Mov Disord 2024; 39:887-892. [PMID: 38469933 DOI: 10.1002/mds.29729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Biallelic pathogenic variants in the ANO10 gene cause autosomal recessive progressive ataxia (ATX-ANO10). METHODS Following the MDSGene protocol, we systematically investigated genotype-phenotype relationships in ATX-ANO10 based on the clinical and genetic data from 82 published and 12 newly identified patients. RESULTS Most patients (>80%) had loss-of-function (LOF) variants. The most common variant was c.1150_1151del, found in all 29 patients of Romani ancestry, who had a 14-year earlier mean age at onset than patients homozygous for other LOF variants. We identified previously undescribed clinical features of ATX-ANO10 (e.g., facial muscle involvement and strabismus) suggesting the involvement of brainstem pathology, and we propose a diagnostic algorithm that may aid clinical ATX-ANO10 diagnosis. CONCLUSIONS The early disease onset in patients with c.1150_1151del may indicate the existence of genetic/environmental disease-modifying factors in the Romani population. Our findings will inform patient counseling and may improve our understanding of the disease mechanism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Andona Milovanović
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Iva Stanković
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Olivera Tamaš
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Branković
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ana Marjanović
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Max Brand
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rajasumi Rajalingam
- Department of Medicine, Division of Neurology, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada
| | - Connie Marras
- Department of Medicine, Division of Neurology, Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vesna Branković
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivana Novaković
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Igor Petrović
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Svetel
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Vladimir S Kostić
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Natasa Dragašević-Mišković
- Clinic for Neurology, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Wang Y, Yang J. ER-organelle contacts: A signaling hub for neurological diseases. Pharmacol Res 2024; 203:107149. [PMID: 38518830 DOI: 10.1016/j.phrs.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
9
|
Moran O, Tammaro P. Identification of determinants of lipid and ion transport in TMEM16/anoctamin proteins through a Bayesian statistical analysis. Biophys Chem 2024; 308:107194. [PMID: 38401241 DOI: 10.1016/j.bpc.2024.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/26/2024]
Abstract
The TMEM16/Anoctamin protein family (TMEM16x) is composed of members with different functions; some members form Ca2+-activated chloride channels, while others are lipid scramblases or combine the two functions. TMEM16x proteins are typically activated in response to agonist-induced rises of intracellular Ca2+; thus, they couple Ca2+-signalling with cell electrical activity or plasmalemmal lipid homeostasis. The structural domains underlying these functions are not fully defined. We used a Naïve Bayes classifier to gain insights into these domains. The method enabled identification of regions involved in either ion or lipid transport, and suggested domains for possible pharmacological exploitation. The method allowed the prediction of the transport property of any given TMEM16x. We envisage this strategy could be exploited to illuminate the structure-function relationship of any protein family composed of members playing different molecular roles.
Collapse
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Paolo Tammaro
- Department Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
10
|
Nuzhnyi EP, Protopopova AO, Abramycheva NY, Protsenko AR, Illarioshkin SN. [Rare forms of autosomal recessive spinocerebellar ataxia associated with mutations in the ANO10 (ATX-ANO10) and SYNE1 (ATX-SYNE1) genes]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:32-38. [PMID: 39269294 DOI: 10.17116/jnevro202412408132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
OBJECTIVE To analyze clinical and genetic characteristics of patients with the verified rare forms of autosomal recessive spinocerebellar ataxias, ATX-ANO10 and ATX-SYNE1. MATERIAL AND METHODS Six unrelated patients with established diagnoses were examined: 4 patients with ATX-ANO10 and 2 patients with ATX-SYNE1. Brain MRI and nerve conduction study were performed. To screen for cognitive impairment, the scale for the Assessment and Rating of Ataxia (SARA), and the Montreal Cognitive Assessment Scale (MoCA) were used. Mutation screening included panel sequencing on the Illumina MiSeq platform. RESULTS Six variants were found in the ANO10 gene: the previously described pathogenic nonsense mutations c.G1025A (p.W342X) and c.C1244G (p.S415X), as well as novel probably pathogenic variants c.1477-2A>G and c.G101T (p.W34L) and missense mutations c.A110C (p.N37T) and c.T104C (p.L35P) of undetermined significance. A novel nonsense mutation c.C8911T (p.Q2971X) and a previously described pathogenic variant c.C4939T (p.Q1647X) were found in the SYNE1 gene. The clinical presentation of the ATX-ANO10 and ATX-SYNE1 was typical presenting with slowly progressive cerebellar ataxia with pyramidal signs, with young onset and cerebellar atrophy according to brain MRI study. CONCLUSION We provided first-ever data on clinical features and mutation spectrum In Russian patients with ATX-ANO10 and ATX-SYNE1. The phenotype of these ataxias is nonspecific, so the method of choice for molecular diagnostics is massive parallel sequencing.
Collapse
Affiliation(s)
- E P Nuzhnyi
- Research Center of Neurology, Moscow, Russia
| | | | | | | | | |
Collapse
|
11
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
12
|
Taylor RL, Antunovich T, Chang TMH, Rodrigues M, Baker A, Bergin P, McGuinness B, Roxburgh RH. Hyperactive vestibular and visually enhanced vestibulo-ocular reflexes in autosomal recessive cerebellar ataxia type 3: a case report. J Neurol 2023; 270:1154-1158. [PMID: 36271925 DOI: 10.1007/s00415-022-11422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Rachael L Taylor
- Centre for Brain Research, Neurogenetics Clinic, University of Auckland, Auckland, New Zealand.,Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Tonci Antunovich
- Centre for Brain Research, Neurogenetics Clinic, University of Auckland, Auckland, New Zealand
| | - Thomas Ming Hong Chang
- Centre for Brain Research, Neurogenetics Clinic, University of Auckland, Auckland, New Zealand
| | - Miriam Rodrigues
- Centre for Brain Research, Neurogenetics Clinic, University of Auckland, Auckland, New Zealand.,Neurology Department, Auckland City Hospital, Auckland, New Zealand
| | - Ashleigh Baker
- Centre for Brain Research, Neurogenetics Clinic, University of Auckland, Auckland, New Zealand
| | - Peter Bergin
- Neurology Department, Auckland City Hospital, Auckland, New Zealand
| | - Ben McGuinness
- Radiology Department, Auckland City Hospital, Auckland, New Zealand
| | - Richard H Roxburgh
- Centre for Brain Research, Neurogenetics Clinic, University of Auckland, Auckland, New Zealand. .,Neurology Department, Auckland City Hospital, Auckland, New Zealand.
| |
Collapse
|
13
|
Massey S, Guo Y, Riley LG, Van Bergen NJ, Sandaradura SA, McCusker E, Tchan M, Thauvin-Robinet C, Thomas Q, Moreau T, Davis M, Smits D, Mancini GMS, Hakonarson H, Cooper S, Christodoulou J. Expanding the Allelic Heterogeneity of ANO10-Associated Autosomal Recessive Cerebellar Ataxia. Neurol Genet 2023; 9:e200051. [PMID: 36698452 PMCID: PMC9872716 DOI: 10.1212/nxg.0000000000200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/15/2022] [Indexed: 01/24/2023]
Abstract
Background and Objectives The term autosomal recessive cerebellar ataxia (ARCA) encompasses a diverse group of heterogeneous degenerative disorders of the cerebellum. Spinocerebellar ataxia autosomal recessive 10 (SCAR10) is a distinct classification of cerebellar ataxia caused by variants in the ANO10 gene. Little is known about the molecular role of ANO10 or its role in disease. There is a wide phenotypic spectrum among patients, even among those with the same or similar genetic variants. This study aimed to characterize the molecular consequences of variants in ANO10 and determine their pathologic significance in patients diagnosed with SCAR10. Methods We presented 4 patients from 4 families diagnosed with spinocerebellar ataxia with potential pathogenic variants in the ANO10 gene. Patients underwent either clinical whole-exome sequencing or screening of a panel of known neuromuscular disease genes. Effects on splicing were studied using reverse transcriptase PCR to analyze complementary DNA. Western blots were used to examine protein expression. Results One individual who presented clinically at a much earlier age than typical was homozygous for an ANO10 variant (c.1864A > G [p.Met622Val]) that produces 2 transcription products by altering an exonic enhancer site. Two patients, both of Lebanese descent, had a homozygous intronic splicing variant in ANO10 (c.1163-9A > G) that introduced a cryptic splice site acceptor, producing 2 alternative transcription products and no detectable wild-type protein. Both these variants have not yet been associated with SCAR10. The remaining patient was found to have compound heterozygous variants in ANO10 previously associated with SCAR10 (c.132dupA [p.Asp45Argfs*9] and c.1537T > C [p.Cys513Arg]). Discussion We presented rare pathogenic variants adding to the growing list of ANO10 variants associated with SCAR10. In addition, we described an individual with a much earlier age at onset than usually associated with ANO10 variants. This expands the phenotypic and allelic heterogeneity of ANO10-associated ARCA.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Yiran Guo
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Lisa G Riley
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Sarah A Sandaradura
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Elizabeth McCusker
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Michel Tchan
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Christel Thauvin-Robinet
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Quentin Thomas
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Thibault Moreau
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Mark Davis
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Daphne Smits
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Grazia M S Mancini
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Hakon Hakonarson
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - Sandra Cooper
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| | - John Christodoulou
- Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands
| |
Collapse
|
14
|
Noted Tension Headache, Anxiety, and Depression in a Chinese Patient with Spinocerebellar Ataxia, Autosomal Recessive 10 Caused by a Novel Anoctamin 10 Mutation. J Transl Int Med 2023; 10:373-375. [PMID: 36860629 PMCID: PMC9969569 DOI: 10.2478/jtim-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
15
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
16
|
Khelashvili G, Kots E, Cheng X, Levine MV, Weinstein H. The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase. Commun Biol 2022; 5:990. [PMID: 36123525 PMCID: PMC9484709 DOI: 10.1038/s42003-022-03930-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
TMEM16F is a Ca2+-activated phospholipid scramblase in the TMEM16 family of membrane proteins. Unlike other TMEM16s exhibiting a membrane-exposed hydrophilic groove that serves as a translocation pathway for lipids, the experimentally determined structures of TMEM16F shows the groove in a closed conformation even under conditions of maximal scramblase activity. It is currently unknown if/how TMEM16F groove can open for lipid scrambling. Here we describe the analysis of ~400 µs all-atom molecular dynamics (MD) simulations of the TMEM16F revealing an allosteric mechanism leading to an open-groove, lipid scrambling competent state of the protein. The groove opens into a continuous hydrophilic conduit that is highly similar in structure to that seen in other activated scramblases. The allosteric pathway connects this opening to an observed destabilization of the Ca2+ ion bound at the distal site near the dimer interface, to the dynamics of specific protein regions that produces the open-groove state to scramble phospholipids.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Ekaterina Kots
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiaolu Cheng
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Michael V Levine
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
17
|
Aida I, Ozawa T, Ohta K, Fujinaka H, Goto K, Nakajima T. Autosomal Recessive Spinocerebellar Ataxia Type 10: A Report of a New Case in Japan. Intern Med 2022; 61:2517-2521. [PMID: 35110481 PMCID: PMC9449628 DOI: 10.2169/internalmedicine.8608-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autosomal recessive spinocerebellar ataxia of type 10 (SCAR10) is a very rare neurodegenerative disease caused by mutations in the TMEM16K (ANO10) gene. This disorder is characterized by slowly progressive cerebellar ataxia and pyramidal signs inconstantly associated with cognitive decline, polyneuropathy, epilepsy, and vesicorectal dysfunction. To date, more than 40 cases have been reported in Europe. In contrast, only three cases have been identified in Asian countries. We herein report the third Japanese case of SCAR10 harboring a novel homozygous deletion mutation (c.616delG, p.Glu206Lysfs*17). This case presented with adult-onset slowly progressive spastic ataxia with cerebellar atrophy and mild cognitive decline.
Collapse
Affiliation(s)
- Izumi Aida
- Department of Neurology, National Hospital Organization Niigata National Hospital, Japan
| | - Tetsuo Ozawa
- Department of Internal Medicine, National Hospital Organization Niigata National Hospital, Japan
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
| | - Kentaro Ohta
- Department of Neurology, National Hospital Organization Niigata National Hospital, Japan
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
| | - Hidehiko Fujinaka
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
- Department of Pediatrics, National Hospital Organization Niigata National Hospital, Japan
- Department of Clinical Research, National Hospital Organization Niigata National Hospital, Japan
| | - Kiyoe Goto
- Department of Genetic Counseling, National Hospital Organization Niigata National Hospital, Japan
| | - Takashi Nakajima
- Department of Neurology, National Hospital Organization Niigata National Hospital, Japan
| |
Collapse
|
18
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
19
|
Abstract
Anoctamin 10 (ANO10), also known as TMEM16K, is a transmembrane protein and member of the anoctamin family characterized by functional duality. Anoctamins manifest ion channel and phospholipid scrambling activities and are involved in many physiological processes such as cell division, migration, apoptosis, cell signalling, and developmental processes. Several diseases, including neurological, muscle, blood disorders, and cancer, have been associated with the anoctamin family proteins. ANO10, which is the main focus of the present review, exhibits both scrambling and chloride channel activity; calcium availability is necessary for protein activation in either case. Additional processes implicating ANO10 include endosomal sorting, spindle assembly, and calcium signalling. Dysregulation of calcium signalling in Purkinje cells due to ANO10 defects is proposed as the main mechanism leading to spinocerebellar ataxia autosomal recessive type 10 (SCAR10), a rare, slowly progressive spinocerebellar ataxia. Regulation of the endolysosomal pathway is an additional ANO10 function linked to SCAR10 aetiology. Further functional investigation is essential to unravel the ANO10 mechanism of action and involvement in disease development.
Collapse
|
20
|
Falzone ME, Feng Z, Alvarenga OE, Pan Y, Lee B, Cheng X, Fortea E, Scheuring S, Accardi A. TMEM16 scramblases thin the membrane to enable lipid scrambling. Nat Commun 2022; 13:2604. [PMID: 35562175 PMCID: PMC9095706 DOI: 10.1038/s41467-022-30300-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
TMEM16 scramblases dissipate the plasma membrane lipid asymmetry to activate multiple eukaryotic cellular pathways. Scrambling was proposed to occur with lipid headgroups moving between leaflets through a membrane-spanning hydrophilic groove. Direct information on lipid-groove interactions is lacking. We report the 2.3 Å resolution cryogenic electron microscopy structure of the nanodisc-reconstituted Ca2+-bound afTMEM16 scramblase showing how rearrangement of individual lipids at the open pathway results in pronounced membrane thinning. Only the groove's intracellular vestibule contacts lipids, and mutagenesis suggests scrambling does not require specific protein-lipid interactions with the extracellular vestibule. We find scrambling can occur outside a closed groove in thinner membranes and is inhibited in thicker membranes, despite an open pathway. Our results show afTMEM16 thins the membrane to enable scrambling and that an open hydrophilic pathway is not a structural requirement to allow rapid transbilayer movement of lipids. This mechanism could be extended to other scramblases lacking a hydrophilic groove.
Collapse
Affiliation(s)
- Maria E Falzone
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | - Zhang Feng
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Omar E Alvarenga
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Yangang Pan
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - ByoungCheol Lee
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Xiaolu Cheng
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Eva Fortea
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
21
|
Molecular Characterization of Portuguese Patients with Hereditary Cerebellar Ataxia. Cells 2022; 11:cells11060981. [PMID: 35326432 PMCID: PMC8946949 DOI: 10.3390/cells11060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023] Open
Abstract
Hereditary cerebellar ataxia (HCA) comprises a clinical and genetic heterogeneous group of neurodegenerative disorders characterized by incoordination of movement, speech, and unsteady gait. In this study, we performed whole-exome sequencing (WES) in 19 families with HCA and presumed autosomal recessive (AR) inheritance, to identify the causal genes. A phenotypic classification was performed, considering the main clinical syndromes: spastic ataxia, ataxia and neuropathy, ataxia and oculomotor apraxia (AOA), ataxia and dystonia, and ataxia with cognitive impairment. The most frequent causal genes were associated with spastic ataxia (SACS and KIF1C) and with ataxia and neuropathy or AOA (PNKP). We also identified three families with autosomal dominant (AD) forms arising from de novo variants in KIF1A, CACNA1A, or ATP1A3, reinforcing the importance of differential diagnosis (AR vs. AD forms) in families with only one affected member. Moreover, 10 novel causal-variants were identified, and the detrimental effect of two splice-site variants confirmed through functional assays. Finally, by reviewing the molecular mechanisms, we speculated that regulation of cytoskeleton function might be impaired in spastic ataxia, whereas DNA repair is clearly associated with AOA. In conclusion, our study provided a genetic diagnosis for HCA families and proposed common molecular pathways underlying cerebellar neurodegeneration.
Collapse
|
22
|
Ásbjörnsdóttir B, Henriksen OM, Lindquist S, Møller LB, Sidaros A, Nielsen JE. Widening the spectrum of spinocerebellar ataxia autosomal recessive type 10 (SCAR10). BMJ Case Rep 2022; 15:e248228. [PMID: 35256372 PMCID: PMC8905945 DOI: 10.1136/bcr-2021-248228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 11/04/2022] Open
Abstract
Biallelic pathogenic variants in the ANO10 gene cause spinocerebellar ataxia recessive type 10. We report two patients, both compound heterozygous for ANO10 variants, including two novel variants. Both patients had onset of cerebellar ataxia in adulthood with slow progression and presented corticospinal tract signs, eye movement abnormalities and cognitive executive impairment. One of them had temporal lobe epilepsy and she also carried a heterozygous variant in CACNB4, a potential risk gene for epilepsy. Both patients had pronounced cerebellar atrophy on cerebral magnetic resonance imaging (MRI) and reduced metabolic activity in cerebellum as well as in the frontal lobes on 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ((18F)FDG PET) scans. We provide comprehensive clinical, radiological and genetic data on two patients carrying likely pathogenic ANO10 gene variants. Furthermore, we provide evidence for a cerebellar as well as a frontal involvement on brain (18F)FDG PET scans which has not previously been reported.
Collapse
Affiliation(s)
- Birna Ásbjörnsdóttir
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Otto Mølby Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Suzanne Lindquist
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Birk Møller
- Department of Genetics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Sidaros
- Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Erik Nielsen
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Pifferi S, Boccaccio A. Ca 2+-Activated Chloride Channels and Phospholipid Scramblases. Int J Mol Sci 2022; 23:ijms23042158. [PMID: 35216275 PMCID: PMC8875746 DOI: 10.3390/ijms23042158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Simone Pifferi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
- Correspondence: (S.P.); (A.B.)
| | - Anna Boccaccio
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy
- Correspondence: (S.P.); (A.B.)
| |
Collapse
|
24
|
Polymodal Control of TMEM16x Channels and Scramblases. Int J Mol Sci 2022; 23:ijms23031580. [PMID: 35163502 PMCID: PMC8835819 DOI: 10.3390/ijms23031580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors—including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins—also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.
Collapse
|
25
|
Leitzke S, Seidel J, Ahrens B, Schreiber R, Kunzelmann K, Sperrhacke M, Bhakdi S, Reiss K. Influence of Anoctamin-4 and -9 on ADAM10 and ADAM17 Sheddase Function. MEMBRANES 2022; 12:membranes12020123. [PMID: 35207044 PMCID: PMC8879676 DOI: 10.3390/membranes12020123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Ca2+-activated Cl− channels (TMEM16, also known as anoctamins) perform important functions in cell physiology, including modulation of cell proliferation and cancer growth. Many members, including TMEM16F/ANO6, additionally act as Ca2+-activated phospholipid scramblases. We recently presented evidence that ANO6-dependent surface exposure of phosphatidylserine (PS) is pivotal for the disintegrin-like metalloproteases ADAM10 and ADAM17 to exert their sheddase function. Here, we compared the influence of seven ANO family members (ANO1, 4, 5, 6, 7, 9, and 10) on ADAM sheddase activity. Similar to ANO6, overexpression of ANO4 and ANO9 led to increased release of ADAM10 and ADAM17 substrates, such as betacellulin, TGFα, and amphiregulin (AREG), upon ionophore stimulation in HEK cells. Inhibitor experiments indicated that ANO4/ANO9-mediated enhancement of TGFα-cleavage broadened the spectrum of participating metalloproteinases. Annexin V-staining demonstrated increased externalisation of PS in ANO4/ANO9-overexpressing cells. Competition experiments with the soluble PS-headgroup phosphorylserine indicated that the ANO4/ANO9 effects were due to increased PS exposure. Overexpression of ANO4 or ANO9 in human cervical cancer cells (HeLa), enhanced constitutive shedding of the growth factor AREG and increased cell proliferation. We conclude that ANO4 and ANO9, by virtue of their scramblase activity, may play a role as important regulators of ADAM-dependent cellular functions.
Collapse
Affiliation(s)
- Sinje Leitzke
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany; (S.L.); (J.S.); (B.A.); (M.S.)
| | - Jana Seidel
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany; (S.L.); (J.S.); (B.A.); (M.S.)
| | - Björn Ahrens
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany; (S.L.); (J.S.); (B.A.); (M.S.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (R.S.); (K.K.)
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (R.S.); (K.K.)
| | - Maria Sperrhacke
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany; (S.L.); (J.S.); (B.A.); (M.S.)
| | | | - Karina Reiss
- Department of Dermatology, University of Kiel, 24105 Kiel, Germany; (S.L.); (J.S.); (B.A.); (M.S.)
- Correspondence:
| |
Collapse
|
26
|
Jean S, Nassari S. Regulation of Endosomal Sorting and Maturation by ER-Endosome Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:25152564221106046. [PMID: 37366507 PMCID: PMC10243584 DOI: 10.1177/25152564221106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Endosomes are a heterogeneous population of intracellular organelles responsible for sorting, recycling, or transporting internalized materials for degradation. Endosomal sorting and maturation are controlled by a complex interplay of regulators, with RAB GTPases and phosphoinositides playing key roles. In this decade, another layer of regulation surfaced with the role played by membrane contact sites between the endoplasmic reticulum (ER) and endosomes. Specific regulators of ER-endosome contact sites or proteins localized at these sites are emerging as modulators of this complex endosomal ballet. In particular, lipid transfer or recruitment of various complexes and enzymes at ER-endosome contact sites play an active role in endosome sorting, scission, and maturation. In this short review, we focus on studies describing ER-endosome contact sites in these three endosomal processes.
Collapse
Affiliation(s)
- Steve Jean
- Faculté de médecine et des sciences de la santé,
Département d’immunologie et de biologie cellulaire, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sonya Nassari
- Faculté de médecine et des sciences de la santé,
Département d’immunologie et de biologie cellulaire, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
27
|
Vaughan D, Affendi A, Sheahan P, Sweeney B. Vocal cord paralysis as a presenting sign of autosomal recessive spinocerebellar atrophy type 10. BMJ Case Rep 2021; 14:e245484. [PMID: 34969792 PMCID: PMC8719124 DOI: 10.1136/bcr-2021-245484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/03/2022] Open
Abstract
Acquired vocal cord paralysis (VCP) is caused by dysfunction or injury of one or both recurrent laryngeal nerves. Here we report a 41-year-old man with spinocerebellar atrophy, autosomal recessive type 10 (SCAR10) due to an autosomal recessive mutation in the ANO10 gene, with VCP as the presenting symptom. He later developed ataxia and speech disturbance.
Collapse
Affiliation(s)
| | - Adrinda Affendi
- ORL-HNS, South Infirmary Victoria University Hospital, Cork, Ireland
| | - Patrick Sheahan
- ORL-HNS, South Infirmary Victoria University Hospital, Cork, Ireland
| | - Brian Sweeney
- Neurology, Cork University Hospital Group, Cork, Ireland
| |
Collapse
|
28
|
Dragašević-Mišković N, Stanković I, Milovanović A, Kostić VS. Autosomal recessive adult onset ataxia. J Neurol 2021; 269:504-533. [PMID: 34499204 DOI: 10.1007/s00415-021-10763-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Autosomal recessive ataxias (ARCA) represent a complex group of diseases ranging from primary ataxias to rare and complex metabolic disorders in which ataxia is a part of the clinical picture. Small number of ARCA manifest exclusively in adulthood, while majority of typical childhood onset ARCA may also start later with atypical clinical presentation. We have systematically searched the literature for ARCA with adult onset, both in the group of primary ataxias including those that are less frequently described in isolated or in a small number of families, and also in the group of complex and metabolic diseases in which ataxia is only part of the clinical picture. We propose an algorithm that could be used when encountering a patient with adult onset sporadic or recessive ataxia in whom the acquired causes are excluded. ARCA are frequently neglected in the differential diagnosis of adult-onset ataxias. Rising awareness of their clinical significance is important, not only because some of these disorders may be potentially treatable, but also for prognostic implications and inclusion of patients to future clinical trials with disease modifying agents.
Collapse
Affiliation(s)
- Nataša Dragašević-Mišković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia.
| | - Iva Stanković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Andona Milovanović
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Vladimir S Kostić
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| |
Collapse
|
29
|
Kostritskii AY, Machtens JP. Molecular mechanisms of ion conduction and ion selectivity in TMEM16 lipid scramblases. Nat Commun 2021; 12:2826. [PMID: 33990555 PMCID: PMC8121942 DOI: 10.1038/s41467-021-22724-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
TMEM16 lipid scramblases transport lipids and also operate as ion channels with highly variable ion selectivities and various physiological functions. However, their molecular mechanisms of ion conduction and selectivity remain largely unknown. Using computational electrophysiology simulations at atomistic resolution, we identified the main ion-conductive state of TMEM16 lipid scramblases, in which an ion permeation pathway is lined by lipid headgroups that directly interact with permeating ions in a voltage polarity-dependent manner. We found that lipid headgroups modulate the ion-permeability state and regulate ion selectivity to varying degrees in different scramblase isoforms, depending on the amino-acid composition of the pores. Our work has defined the structural basis of ion conduction and selectivity in TMEM16 lipid scramblases and uncovered the mechanisms responsible for the direct effects of membrane lipids on the conduction properties of ion channels.
Collapse
Affiliation(s)
- Andrei Y. Kostritskii
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany ,grid.1957.a0000 0001 0728 696XInstitute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany ,grid.1957.a0000 0001 0728 696XDepartment of Physics, RWTH Aachen University, Aachen, Germany
| | - Jan-Philipp Machtens
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany ,grid.1957.a0000 0001 0728 696XInstitute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
30
|
Devyatkin VA, Redina OE, Kolosova NG, Muraleva NA. Single-Nucleotide Polymorphisms Associated with the Senescence-Accelerated Phenotype of OXYS Rats: A Focus on Alzheimer's Disease-Like and Age-Related-Macular-Degeneration-Like Pathologies. J Alzheimers Dis 2021; 73:1167-1183. [PMID: 31929160 DOI: 10.3233/jad-190956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are two complex incurable neurodegenerative disorders the common pathogenesis of which is actively discussed. There are overlapping risk factors and molecular mechanisms of the two diseases; at the same time, there are arguments in favor of the notion that susceptibility to each of these diseases is associated with a distinct genetic background. Here we identified single-nucleotide polymorphisms (SNPs) that are specific for senescence-accelerated OXYS rats, which simulate key characteristics of both sporadic AD and AMD. Transcriptomes of the hippocampus, prefrontal cortex, and retina (data of RNA-Seq) were analyzed. We detected SNPs in genes Rims2, AABR07072639.2, Lemd2, and AABR07045405.1, which thus can express significantly truncated proteins lacking functionally important domains. Additionally, 33 mutations in genes-which are related to various metabolic and signaling pathways-cause nonsynonymous amino acid substitutions presumably leading to disturbances in protein structure or functions. Some of the genes carrying these SNPs are associated with aging, neurodegenerative, and mental diseases. Thus, we revealed the SNPs can lead to abnormalities in protein structure or functions and affect the development of the senescence-accelerated phenotype of OXYS rats. Our data are consistent with the latest results of genome-wide association studies that highlight the importance of multiple pathways for the pathogenesis of AD and AMD. Identified SNPs can serve as promising research objects for further studies on the molecular mechanisms underlying this particular rat model as well as for the prediction of potential biomarkers of AD and AMD.
Collapse
Affiliation(s)
- Vasiliy A Devyatkin
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga E Redina
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | |
Collapse
|
31
|
ANO7: Insights into topology, function, and potential applications as a biomarker and immunotherapy target. Tissue Cell 2021; 72:101546. [PMID: 33940566 DOI: 10.1016/j.tice.2021.101546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/21/2021] [Accepted: 04/11/2021] [Indexed: 01/01/2023]
Abstract
Anoctamin 7 (ANO7) is a member of the transmembrane protein TMEM16 family. It has a conservative topology similar to other members in this family, such as the typical eight-transmembrane domain, but it also has unique features. Although the ion channel role of ANO7 has been well accepted, evolutionary analyses and relevant studies suggest that ANO7 may be a multi-facet protein in function. Studies have shown that ANO7 may also function as a scramblase. ANO7 is highly expressed in prostate cancer as well as normal prostate tissues. A considerable amount of evidence has confirmed that ANO7 is associated with human physiology and pathology, particularly with the development of prostate cancer, which makes ANO7 a good candidate as a diagnostic and prognostic biomarker. In addition, ANO7 may be a potential target for prostate cancer immunotherapy. Antibody-based or T cell-mediated immunotherapies against prostate cancer by targeting ANO7 have been highly anticipated. ANO7 may also correlate with several other types of cancers or diseases, where further studies are warranted.
Collapse
|
32
|
Abstract
Our cells are comprised of billions of proteins, lipids, and other small molecules packed into their respective subcellular organelles, with the daunting task of maintaining cellular homeostasis over a lifetime. However, it is becoming increasingly evident that organelles do not act as autonomous discrete units but rather as interconnected hubs that engage in extensive communication through membrane contacts. In the last few years, our understanding of how these contacts coordinate organelle function has redefined our view of the cell. This review aims to present novel findings on the cellular interorganelle communication network and how its dysfunction may contribute to aging and neurodegeneration. The consequences of disturbed interorganellar communication are intimately linked with age-related pathologies. Given that both aging and neurodegenerative diseases are characterized by the concomitant failure of multiple cellular pathways, coordination of organelle communication and function could represent an emerging regulatory mechanism critical for long-term cellular homeostasis. We anticipate that defining the relationships between interorganelle communication, aging, and neurodegeneration will open new avenues for therapeutics.
Collapse
Affiliation(s)
- Maja Petkovic
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| | - Caitlin E O'Brien
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
33
|
Cocozza S, Pontillo G, De Michele G, Di Stasi M, Guerriero E, Perillo T, Pane C, De Rosa A, Ugga L, Brunetti A. Conventional MRI findings in hereditary degenerative ataxias: a pictorial review. Neuroradiology 2021; 63:983-999. [PMID: 33733696 PMCID: PMC8213578 DOI: 10.1007/s00234-021-02682-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Purpose Cerebellar ataxias are a large and heterogeneous group of disorders. The evaluation of brain parenchyma via MRI plays a central role in the diagnostic assessment of these conditions, being mandatory to exclude the presence of other underlying causes in determining the clinical phenotype. Once these possible causes are ruled out, the diagnosis is usually researched in the wide range of hereditary or sporadic ataxias. Methods We here propose a review of the main clinical and conventional imaging findings of the most common hereditary degenerative ataxias, to help neuroradiologists in the evaluation of these patients. Results Hereditary degenerative ataxias are all usually characterized from a neuroimaging standpoint by the presence, in almost all cases, of cerebellar atrophy. Nevertheless, a proper assessment of imaging data, extending beyond the mere evaluation of cerebellar atrophy, evaluating also the pattern of volume loss as well as concomitant MRI signs, is crucial to achieve a proper diagnosis. Conclusion The integration of typical neuroradiological characteristics, along with patient’s clinical history and laboratory data, could allow the neuroradiologist to identify some conditions and exclude others, addressing the neurologist to the more appropriate genetic testing.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy.,Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Martina Di Stasi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Elvira Guerriero
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
34
|
The Groovy TMEM16 Family: Molecular Mechanisms of Lipid Scrambling and Ion Conduction. J Mol Biol 2021; 433:166941. [PMID: 33741412 DOI: 10.1016/j.jmb.2021.166941] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022]
Abstract
The TMEM16 family of membrane proteins displays a remarkable functional dichotomy - while some family members function as Ca2+-activated anion channels, the majority of characterized TMEM16 homologs are Ca2+-activated lipid scramblases, which catalyze the exchange of phospholipids between the two membrane leaflets. Furthermore, some TMEM16 scramblases can also function as channels. Due to their involvement in important physiological processes, the family has been actively studied ever since their molecular identity was unraveled. In this review, we will summarize the recent advances in the field and how they influenced our view of TMEM16 family function and evolution. Structural, functional and computational studies reveal how relatively small rearrangements in the permeation pathway are responsible for the observed functional duality: while TMEM16 scramblases can adopt both ion- and lipid conductive conformations, TMEM16 channels can only populate the former. Recent data further provides the molecular details of a stepwise activation mechanism, which is initiated by Ca2+ binding and modulated by various cellular factors, including lipids. TMEM16 function and the surrounding membrane properties are inextricably intertwined, with the protein inducing bilayer deformations associated with scrambling, while the surrounding lipids modulate TMEM16 conformation and activity.
Collapse
|
35
|
Mei C, Dong H, Nisenbaum E, Thielhelm T, Nourbakhsh A, Yan D, Smeal M, Lundberg Y, Hoffer ME, Angeli S, Telischi F, Nie G, Blanton SH, Liu X. Genetics and the Individualized Therapy of Vestibular Disorders. Front Neurol 2021; 12:633207. [PMID: 33613440 PMCID: PMC7892966 DOI: 10.3389/fneur.2021.633207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Vestibular disorders (VDs) are a clinically divergent group of conditions that stem from pathology at the level of the inner ear, vestibulocochlear nerve, or central vestibular pathway. No etiology can be identified in the majority of patients with VDs. Relatively few families have been reported with VD, and so far, no causative genes have been identified despite the fact that more than 100 genes have been identified for inherited hearing loss. Inherited VDs, similar to deafness, are genetically heterogeneous and follow Mendelian inheritance patterns with all modes of transmission, as well as multifactorial inheritance. With advances in genetic sequencing, evidence of familial clustering in VD has begun to highlight the genetic causes of these disorders, potentially opening up new avenues of treatment, particularly in Meniere's disease and disorders with comorbid hearing loss, such as Usher syndrome. In this review, we aim to present recent findings on the genetics of VDs, review the role of genetic sequencing tools, and explore the potential for individualized medicine in the treatment of these disorders. Methods: A search of the PubMed database was performed for English language studies relevant to the genetic basis of and therapies for vestibular disorders, using search terms including but not limited to: “genetics,” “genomics,” “vestibular disorders,” “hearing loss with vestibular dysfunction,” “individualized medicine,” “genome-wide association studies,” “precision medicine,” and “Meniere's syndrome.” Results: Increasing numbers of studies on vestibular disorder genetics have been published in recent years. Next-generation sequencing and new genetic tools are being utilized to unearth the significance of the genomic findings in terms of understanding disease etiology and clinical utility, with growing research interest being shown for individualized gene therapy for some disorders. Conclusions: The genetic knowledge base for vestibular disorders is still in its infancy. Identifying the genetic causes of balance problems is imperative in our understanding of the biology of normal function of the vestibule and the disease etiology and process. There is an increasing effort to use new and efficient genetic sequencing tools to discover the genetic causes for these diseases, leading to the hope for precise and personalized treatment for these patients.
Collapse
Affiliation(s)
- Christine Mei
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Hongsong Dong
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States.,Shenzhen Second People's Hospital, Shenzhen, China
| | - Eric Nisenbaum
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Torin Thielhelm
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Molly Smeal
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Yesha Lundberg
- Department of Otolaryngology, Boys Town National Research Hospital, Omaha, NE, United States
| | - Michael E Hoffer
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Simon Angeli
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Fred Telischi
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Guohui Nie
- Shenzhen Second People's Hospital, Shenzhen, China
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
36
|
CCDC66 frameshift variant associated with a new form of early-onset progressive retinal atrophy in Portuguese Water Dogs. Sci Rep 2020; 10:21162. [PMID: 33273526 PMCID: PMC7712861 DOI: 10.1038/s41598-020-77980-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Aberrant photoreceptor function or morphogenesis leads to blinding retinal degenerative diseases, the majority of which have a genetic aetiology. A variant in PRCD previously identified in Portuguese Water Dogs (PWDs) underlies prcd (progressive rod-cone degeneration), an autosomal recessive progressive retinal atrophy (PRA) with a late onset at 3–6 years of age or older. Herein, we have identified a new form of early-onset PRA (EOPRA) in the same breed. Pedigree analysis suggested an autosomal recessive inheritance. Four PWD full-siblings affected with EOPRA diagnosed at 2–3 years of age were genotyped (173,661 SNPs) along with 2 unaffected siblings, 2 unaffected parents, and 15 unrelated control PWDs. GWAS, linkage analysis and homozygosity mapping defined a 26-Mb candidate region in canine chromosome 20. Whole-genome sequencing in one affected dog and its obligatory carrier parents identified a 1 bp insertion (CFA20:g.33,717,704_33,717,705insT (CanFam3.1); c.2262_c.2263insA) in CCDC66 predicted to cause a frameshift and truncation (p.Val747SerfsTer8). Screening of an extended PWD population confirmed perfect co-segregation of this genetic variant with the disease. Western blot analysis of COS-1 cells transfected with recombinant mutant CCDC66 expression constructs showed the mutant transcript translated into a truncated protein. Furthermore, in vitro studies suggest that the mutant CCDC66 is mislocalized to the nucleus relative to wild type CCDC66. CCDC66 variants have been associated with inherited retinal degenerations (RDs) including canine and murine ciliopathies. As genetic variants affecting the primary cilium can cause ciliopathies in which RD may be either the sole clinical manifestation or part of a syndrome, our findings further support a role for CCDC66 in retinal function and viability, potentially through its ciliary function.
Collapse
|
37
|
Petkovic M, Oses-Prieto J, Burlingame A, Jan LY, Jan YN. TMEM16K is an interorganelle regulator of endosomal sorting. Nat Commun 2020; 11:3298. [PMID: 32620747 PMCID: PMC7335067 DOI: 10.1038/s41467-020-17016-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Communication between organelles is essential for their cellular homeostasis. Neurodegeneration reflects the declining ability of neurons to maintain cellular homeostasis over a lifetime, where the endolysosomal pathway plays a prominent role by regulating protein and lipid sorting and degradation. Here we report that TMEM16K, an endoplasmic reticulum lipid scramblase causative for spinocerebellar ataxia (SCAR10), is an interorganelle regulator of the endolysosomal pathway. We identify endosomal transport as a major functional cluster of TMEM16K in proximity biotinylation proteomics analyses. TMEM16K forms contact sites with endosomes, reconstituting split-GFP with the small GTPase RAB7. Our study further implicates TMEM16K lipid scrambling activity in endosomal sorting at these sites. Loss of TMEM16K function led to impaired endosomal retrograde transport and neuromuscular function, one of the symptoms of SCAR10. Thus, TMEM16K-containing ER-endosome contact sites represent clinically relevant platforms for regulating endosomal sorting.
Collapse
Affiliation(s)
- Maja Petkovic
- Departments of Physiology, Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, 94158, USA.
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Lily Yeh Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Yuh Nung Jan
- Departments of Physiology, Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, 94158, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
38
|
Targeting of Intracellular TMEM16 Proteins to the Plasma Membrane and Activation by Purinergic Signaling. Int J Mol Sci 2020; 21:ijms21114065. [PMID: 32517157 PMCID: PMC7312528 DOI: 10.3390/ijms21114065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 11/22/2022] Open
Abstract
Anoctamins such as TMEM16A and TMEM16B are Ca2+-dependent Cl− channels activated through purinergic receptor signaling. TMEM16A (ANO1), TMEM16B (ANO2) and TMEM16F (ANO6) are predominantly expressed at the plasma membrane and are therefore well accessible for functional studies. While TMEM16A and TMEM16B form halide-selective ion channels, TMEM16F and probably TMEM16E operate as phospholipid scramblases and nonselective ion channels. Other TMEM16 paralogs are expressed mainly in intracellular compartments and are therefore difficult to study at the functional level. Here, we report that TMEM16E (ANO5), -H (ANO8), -J (ANO9) and K (ANO10) are targeted to the plasma membrane when fused to a C-terminal CAAX (cysteine, two aliphatic amino acids plus methionin, serine, alanin, cystein or glutamin) motif. These paralogs produce Ca2+-dependent ion channels. Surprisingly, expression of the TMEM16 paralogs in the plasma membrane did not produce additional scramblase activity. In contrast, endogenous scrambling induced by stimulation of purinergic P2X7 receptors was attenuated, in parallel with reduced plasma membrane blebbing. This could suggest that intracellular TMEM16 paralogs operate differently when compared to plasma membrane-localized TMEM16F, and may even stabilize intracellular membranes. Alternatively, CAAX tagging, which leads to expression in non-raft compartments of the plasma membrane, may antagonize phosphatidylserine exposure by endogenous raft-located TMEM16F. CAAX-containing constructs may be useful to further investigate the molecular properties of intracellular TMEM16 proteins.
Collapse
|
39
|
Yang SL, Chen SF, Jiao YQ, Dong ZY, Dong Q, Han X. Autosomal Recessive Spinocerebellar Ataxia Caused by a Novel Homozygous ANO10 Mutation in a Consanguineous Chinese Family. J Clin Neurol 2020; 16:333-335. [PMID: 32319254 PMCID: PMC7174130 DOI: 10.3988/jcn.2020.16.2.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/17/2022] Open
Affiliation(s)
- Shi Lin Yang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shu Fen Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Qiong Jiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi Yuan Dong
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
41
|
Nieto A, Pérez-Flores J, Corral-Juan M, Matilla-Dueñas A, Martínez-Burgallo F, Montón F. Cognitive characterization of SCAR10 caused by a homozygous c.132dupA mutation in the ANO10 gene. Neurocase 2019; 25:195-201. [PMID: 31423897 DOI: 10.1080/13554794.2019.1655064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Autosomal recessive spinocerebellar ataxia type 10 (SCAR10) caused by a homozygous c.132dupA mutation in the anoctamin 10 gene is infrequent and little is known about its cognitive profile. Three siblings (1 male) with this mutation were assessed with a neuropsychological battery measuring multiple cognitive domains. The deficits observed in one patient were in executive functions whereas the other two patients showed deficits in practically all the functions. Cognitive impairment seems to be a characteristic of the SCAR10 produced by this mutation, with a range from mild impairment, especially involving prefrontal systems, to a severe cognitive impairment suggesting widespread cerebral involvement.
Collapse
Affiliation(s)
- Antonieta Nieto
- School of Psychology, Universidad de La Laguna , San Cristóbal de La Laguna , Spain
| | - Javier Pérez-Flores
- School of Psychology, Universidad de La Laguna , San Cristóbal de La Laguna , Spain
| | - Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Francisco Martínez-Burgallo
- Human Genetic Unit, Clinical Analyses Service, Hospital Ntra Sra de la Candelaria , Santa Cruz de Tenerife , Spain
| | - Fernando Montón
- Service of Neurology, Hospital Ntra. Sra. de la Candelaria , Santa Cruz de Tenerife , Spain
| |
Collapse
|
42
|
Bushell SR, Pike ACW, Falzone ME, Rorsman NJG, Ta CM, Corey RA, Newport TD, Christianson JC, Scofano LF, Shintre CA, Tessitore A, Chu A, Wang Q, Shrestha L, Mukhopadhyay SMM, Love JD, Burgess-Brown NA, Sitsapesan R, Stansfeld PJ, Huiskonen JT, Tammaro P, Accardi A, Carpenter EP. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat Commun 2019; 10:3956. [PMID: 31477691 PMCID: PMC6718402 DOI: 10.1038/s41467-019-11753-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 08/01/2019] [Indexed: 11/20/2022] Open
Abstract
Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity. TMEM16K is a member of the TMEM16 family of integral membrane proteins that are either lipid scramblases or chloride channels. Here the authors combine cell biology, electrophysiology measurements, X-ray crystallography, cryo-EM and MD simulations to structurally characterize TMEM16K and show that it is an ER-resident lipid scramblase.
Collapse
Affiliation(s)
- Simon R Bushell
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Ashley C W Pike
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA
| | - Nils J G Rorsman
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,OxSyBio, Atlas Building, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Chau M Ta
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.,Department of Cardiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Thomas D Newport
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK.,Oxford Nanopore Technologies, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - John C Christianson
- Nuffield Department of Rheumatology, Orthopaedics and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Lara F Scofano
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Chitra A Shintre
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Vertex Pharmaceuticals Ltd, Milton Park, Oxfordshire, OX14 4RW, UK
| | - Annamaria Tessitore
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Nuffield Division of Clinical Laboratory Sciences, Oxford University, Oxford, OX3 9DU, UK
| | - Amy Chu
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Department of Biochemistry, Oxford University, Oxford, OX1 3QT, UK
| | - Qinrui Wang
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Leela Shrestha
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Shubhashish M M Mukhopadhyay
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - James D Love
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461-1602, USA.,Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Nicola A Burgess-Brown
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Rebecca Sitsapesan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Alessio Accardi
- Department of Biochemistry, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA.,Department of Anesthesiology, Weill Cornell Medical School, 25 East 68th Street, New York, NY, 10065, USA.,Department of Physiology and Biophysics, Weill Cornell Medical School, 1300 York Avenue, New York, NY, 10065, USA
| | - Elisabeth P Carpenter
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
43
|
Tsuji T, Cheng J, Tatematsu T, Ebata A, Kamikawa H, Fujita A, Gyobu S, Segawa K, Arai H, Taguchi T, Nagata S, Fujimoto T. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc Natl Acad Sci U S A 2019; 116:13368-13373. [PMID: 31217287 PMCID: PMC6613088 DOI: 10.1073/pnas.1822025116] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TMEM16K, a membrane protein carrying 10 transmembrane regions, has phospholipid scramblase activity. TMEM16K is localized to intracellular membranes, but whether it actually scrambles phospholipids inside cells has not been demonstrated, due to technical difficulties in studying intracellular lipid distributions. Here, we developed a freeze-fracture electron microscopy method that enabled us to determine the phosphatidylserine (PtdSer) distribution in the individual leaflets of cellular membranes. Using this method, we found that the endoplasmic reticulum (ER) of mammalian cells harbored abundant PtdSer in its cytoplasmic leaflet and much less in the luminal leaflet, whereas the outer and inner nuclear membranes (NMs) had equivalent amounts of PtdSer in both leaflets. The ER and NMs of budding yeast also harbored PtdSer in their cytoplasmic leaflet, but asymmetrical distribution in the ER was not observed. Treating mouse embryonic fibroblasts with the Ca2+ ionophore A23187 compromised the cytoplasmic leaflet-dominant PtdSer asymmetry in the ER and increased PtdSer in the NMs, especially in the nucleoplasmic leaflet of the inner NM. This Ca2+-induced PtdSer redistribution was not observed in TMEM16K-null fibroblasts, but was recovered in these cells by reexpressing TMEM16K. These results indicate that, similar to the plasma membrane, PtdSer in the ER of mammalian cells is predominantly localized to the cytoplasmic leaflet, and that TMEM16K directly or indirectly mediates Ca2+-dependent phospholipid scrambling in the ER.
Collapse
Affiliation(s)
- Takuma Tsuji
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Tsuyako Tatematsu
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Aoi Ebata
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Hiroki Kamikawa
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Akikazu Fujita
- Field of Veterinary Pathobiology, Joint Faculty of Veterinary Medicine, Kagoshima University, 890-0065 Kagoshima, Japan
| | - Sayuri Gyobu
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Katsumori Segawa
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Hiroyuki Arai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Shigekazu Nagata
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan;
| |
Collapse
|
44
|
Arias M. Keys to overcoming the challenge of diagnosing autosomal recessive spinocerebellar ataxia. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
45
|
Nanetti L, Sarto E, Castaldo A, Magri S, Mongelli A, Rossi Sebastiano D, Canafoglia L, Grisoli M, Malaguti C, Rivieri F, D’Amico MC, Di Bella D, Franceschetti S, Mariotti C, Taroni F. ANO10 mutational screening in recessive ataxia: genetic findings and refinement of the clinical phenotype. J Neurol 2018; 266:378-385. [DOI: 10.1007/s00415-018-9141-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 12/22/2022]
|
46
|
Kakouri AC, Christodoulou CC, Zachariou M, Oulas A, Minadakis G, Demetriou CA, Votsi C, Zamba-Papanicolaou E, Christodoulou K, Spyrou GM. Revealing Clusters of Connected Pathways Through Multisource Data Integration in Huntington's Disease and Spastic Ataxia. IEEE J Biomed Health Inform 2018; 23:26-37. [PMID: 30176611 DOI: 10.1109/jbhi.2018.2865569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The advancement of scientific and medical research over the past years has generated a wealth of experimental data from multiple technologies, including genomics, transcriptomics, proteomics, and other forms of -omics data, which are available for a number of diseases. The integration of such multisource data is a key component toward the success of precision medicine. In this paper, we are investigating a multisource data integration method developed by our group, regarding its ability to drive to clusters of connected pathways under two different approaches: first, a disease-centric approach, where we integrate data around a disease, and second, a gene-centric approach, where we integrate data around a gene. We have used as a paradigm for the first approach Huntington's disease (HD), a disease with a plethora of available data, whereas for the second approach the GBA2, a gene that is related to spastic ataxia (SA), a phenotype with sparse availability of data. Our paper shows that valuable information at the level of disease-related pathway clusters can be obtained for both HD and SA. New pathways that classical pathway analysis methods were unable to reveal, emerged as necessary "connectors" to build connected pathway stories formed as pathway clusters. The capability to integrate multisource molecular data, concluding to something more than the sum of the existing information, empowers precision and personalized medicine approaches.
Collapse
|
47
|
Rossi M, Anheim M, Durr A, Klein C, Koenig M, Synofzik M, Marras C, van de Warrenburg BP. The genetic nomenclature of recessive cerebellar ataxias. Mov Disord 2018; 33:1056-1076. [PMID: 29756227 DOI: 10.1002/mds.27415] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022] Open
Abstract
The recessive cerebellar ataxias are a large group of degenerative and metabolic disorders, the diagnostic management of which is difficult because of the enormous clinical and genetic heterogeneity. Because of several limitations, the current classification systems provide insufficient guidance for clinicians and researchers. Here, we propose a new nomenclature for the genetically confirmed recessive cerebellar ataxias according to the principles and criteria laid down by the International Parkinson and Movement Disorder Society Task Force on Classification and Nomenclature of Genetic Movement Disorders. We apply stringent criteria for considering an association between gene and phenotype to be established. The newly proposed list of recessively inherited cerebellar ataxias includes 62 disorders that were assigned an ATX prefix, followed by the gene name, because these typically present with ataxia as a predominant and/or consistent feature. An additional 30 disorders that often combine ataxia with a predominant or consistent other movement disorder received a double prefix (e.g., ATX/HSP). We also identified a group of 89 entities that usually present with complex nonataxia phenotypes, but may occasionally present with cerebellar ataxia. These are listed separately without the ATX prefix. This new, transparent and adaptable nomenclature of the recessive cerebellar ataxias will facilitate the clinical recognition of recessive ataxias, guide diagnostic testing in ataxia patients, and help in interpreting genetic findings. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research, Buenos Aires, Argentina
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Alexandra Durr
- Brain and Spine Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Pitié-Salpêtrière University Hospital, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 7501, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
48
|
Rahmati N, Hoebeek FE, Peter S, De Zeeuw CI. Chloride Homeostasis in Neurons With Special Emphasis on the Olivocerebellar System: Differential Roles for Transporters and Channels. Front Cell Neurosci 2018; 12:101. [PMID: 29765304 PMCID: PMC5938380 DOI: 10.3389/fncel.2018.00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
The intraneuronal ionic composition is an important determinant of brain functioning. There is growing evidence that aberrant homeostasis of the intracellular concentration of Cl- ([Cl-]i) evokes, in addition to that of Na+ and Ca2+, robust impairments of neuronal excitability and neurotransmission and thereby neurological conditions. More specifically, understanding the mechanisms underlying regulation of [Cl-]i is crucial for deciphering the variability in GABAergic and glycinergic signaling of neurons, in both health and disease. The homeostatic level of [Cl-]i is determined by various regulatory mechanisms, including those mediated by plasma membrane Cl- channels and transporters. This review focuses on the latest advances in identification, regulation and characterization of Cl- channels and transporters that modulate neuronal excitability and cell volume. By putting special emphasis on neurons of the olivocerebellar system, we establish that Cl- channels and transporters play an indispensable role in determining their [Cl-]i and thereby their function in sensorimotor coordination.
Collapse
Affiliation(s)
- Negah Rahmati
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- NIDOD Institute, Wilhelmina Children's Hospital, University Medical Center Utrecht and Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
49
|
Medrano-Soto A, Moreno-Hagelsieb G, McLaughlin D, Ye ZS, Hendargo KJ, Saier MH. Bioinformatic characterization of the Anoctamin Superfamily of Ca2+-activated ion channels and lipid scramblases. PLoS One 2018; 13:e0192851. [PMID: 29579047 PMCID: PMC5868767 DOI: 10.1371/journal.pone.0192851] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
Our laboratory has developed bioinformatic strategies for identifying distant phylogenetic relationships and characterizing families and superfamilies of transport proteins. Results using these tools suggest that the Anoctamin Superfamily of cation and anion channels, as well as lipid scramblases, includes three functionally characterized families: the Anoctamin (ANO), Transmembrane Channel (TMC) and Ca2+-permeable Stress-gated Cation Channel (CSC) families; as well as four families of functionally uncharacterized proteins, which we refer to as the Anoctamin-like (ANO-L), Transmembrane Channel-like (TMC-L), and CSC-like (CSC-L1 and CSC-L2) families. We have constructed protein clusters and trees showing the relative relationships among the seven families. Topological analyses suggest that the members of these families have essentially the same topologies. Comparative examination of these homologous families provides insight into possible mechanisms of action, indicates the currently recognized organismal distributions of these proteins, and suggests drug design potential for the disease-related channel proteins.
Collapse
Affiliation(s)
- Arturo Medrano-Soto
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | | | - Daniel McLaughlin
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Zachary S. Ye
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Kevin J. Hendargo
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Abstract
The autosomal-recessive cerebellar ataxias comprise more than half of the known genetic forms of ataxia and represent an extensive group of clinically heterogeneous disorders that can occur at any age but whose onset is typically prior to adulthood. In addition to ataxia, patients often present with polyneuropathy and clinical symptoms outside the nervous system. The most common of these diseases is Friedreich ataxia, caused by mutation of the frataxin gene, but recent advances in genetic analysis have greatly broadened the ever-expanding number of causative genes to over 50. In this review, the clinical neurogenetics of the recessive cerebellar ataxias will be discussed, including updates on recently identified novel ataxia genes, advancements in unraveling disease-specific molecular pathogenesis leading to ataxia, potential treatments under development, technologic improvements in diagnostic testing such as clinical exome sequencing, and what the future holds for clinicians and geneticists.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|