1
|
Pinales BE, Palomino CE, Rosas-Acosta G, Francia G, Quintana AM. Dissecting the role of vitamin B 12 metabolism in craniofacial development through analysis of clinical phenotypes and model organism discoveries. Differentiation 2025; 142:100831. [PMID: 39676000 DOI: 10.1016/j.diff.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Vitamin B12, otherwise known as cobalamin, is an essential water-soluble vitamin that is obtained from animal derived dietary sources. Mutations in the genes that encode proteins responsible for cobalamin uptake, transport, or processing cause inborn errors of cobalamin metabolism, a group of disorders characterized by accumulation of homocysteine and methylmalonic acid, neurodevelopmental defects, ocular dysfunction, anemia, and failure to thrive. Mild to moderate craniofacial phenotypes have been observed but these phenotypes are not completely penetrant and have not been consistently recognized in the literature. However, in the most recent decade, animal models of cblX and cblC, two cobalamin disorder complementation groups, have documented craniofacial phenotypes. These data indicate a function for cobalamin in facial development. In this review, we performed a literature review of all cobalamin complementation groups to identify which groups, and which human variants, are associated with dysmorphic features, microcephaly, or marfanoid phenotypes. We identified dysmorphic facial features in cblC, cblX, cblG, cblF, and cblJ, which are caused by mutations in MMACHC, HCFC1, MTR, LMBRD1, and ABCD4, respectively. Other complementation groups were associated primarily with microcephaly. Animal models (zebrafish and mouse) of cblC and cblX support these clinical phenotypes and have demonstrated neural crest cell deficits that include reduced expression of prdm1a, sox10, and sox9, key molecular markers of neural crest development. Characterization of a zebrafish mmachc germline mutant also suggests atypical chondrocyte development. Collectively, these data demonstrate an essential role for cobalamin in facial development and warrant future mechanistic inquiries that dissect the cellular and molecular mechanisms underlying human facial phenotypes in cobalamin disorders.
Collapse
Affiliation(s)
- Briana E Pinales
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - Carlos E Palomino
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - German Rosas-Acosta
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - Giulio Francia
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA
| | - Anita M Quintana
- Department of Biological Sciences, University of Texas El Paso, 500 W. University Ave 79968, El Paso, TX, USA.
| |
Collapse
|
2
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
3
|
Hussain SI, Muhammad N, Shah SA, Rehman AU, Khan SA, Saleha S, Khan YM, Muhammad N, Khan S, Wasif N. Variants in HCFC1 and MN1 genes causing intellectual disability in two Pakistani families. BMC Med Genomics 2024; 17:176. [PMID: 38956580 PMCID: PMC11221130 DOI: 10.1186/s12920-024-01943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Intellectual disability (ID) is a neurodevelopmental condition affecting around 2% of children and young adults worldwide, characterized by deficits in intellectual functioning and adaptive behavior. Genetic factors contribute to the development of ID phenotypes, including mutations and structural changes in chromosomes. Pathogenic variants in the HCFC1 gene cause X-linked mental retardation syndrome, also known as Siderius type X-linked mental retardation. The MN1 gene is necessary for palate development, and mutations in this gene result in a genetic condition called CEBALID syndrome. METHODS Exome sequencing was used to identify the disease-causing variants in two affected families, A and B, from various regions of Pakistan. Affected individuals in these two families presented ID, developmental delay, and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS In an X-linked family A, a novel hemizygous missense variant (c.5705G > A; p.Ser1902Asn) in the HCFC1 gene (NM_005334.3) was identified, while in family B exome sequencing revealed a heterozygous nonsense variant (c.3680 G > A; p. Trp1227Ter) in exon-1 of the MN1 gene (NM_032581.4). Sanger sequencing confirmed the segregation of these variants with ID in each family. CONCLUSIONS The investigation of two Pakistani families revealed pathogenic genetic variants in the HCFC1 and MN1 genes, which cause ID and expand the mutational spectrum of these genes.
Collapse
Affiliation(s)
- Syeda Iqra Hussain
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Nazif Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shahbaz Ali Shah
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Adil U Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
- Department of Computer Science and Bioinformatics, Khushal Khan Khatak University, Karak, Pakistan
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Yar Muhammad Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Naveed Wasif
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany.
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
4
|
Cheng YHH, Bohaczuk SC, Stergachis AB. Functional categorization of gene regulatory variants that cause Mendelian conditions. Hum Genet 2024; 143:559-605. [PMID: 38436667 PMCID: PMC11078748 DOI: 10.1007/s00439-023-02639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
Much of our current understanding of rare human diseases is driven by coding genetic variants. However, non-coding genetic variants play a pivotal role in numerous rare human diseases, resulting in diverse functional impacts ranging from altered gene regulation, splicing, and/or transcript stability. With the increasing use of genome sequencing in clinical practice, it is paramount to have a clear framework for understanding how non-coding genetic variants cause disease. To this end, we have synthesized the literature on hundreds of non-coding genetic variants that cause rare Mendelian conditions via the disruption of gene regulatory patterns and propose a functional classification system. Specifically, we have adapted the functional classification framework used for coding variants (i.e., loss-of-function, gain-of-function, and dominant-negative) to account for features unique to non-coding gene regulatory variants. We identify that non-coding gene regulatory variants can be split into three distinct categories by functional impact: (1) non-modular loss-of-expression (LOE) variants; (2) modular loss-of-expression (mLOE) variants; and (3) gain-of-ectopic-expression (GOE) variants. Whereas LOE variants have a direct corollary with coding loss-of-function variants, mLOE and GOE variants represent disease mechanisms that are largely unique to non-coding variants. These functional classifications aim to provide a unified terminology for categorizing the functional impact of non-coding variants that disrupt gene regulatory patterns in Mendelian conditions.
Collapse
Affiliation(s)
- Y H Hank Cheng
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Stephanie C Bohaczuk
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
5
|
Alberca CD, Papale LA, Madrid A, Alisch RS. Hippocampal and peripheral blood DNA methylation signatures correlate at the gene and pathway level in a mouse model of autism. Hum Mol Genet 2023; 32:3312-3322. [PMID: 37658766 DOI: 10.1093/hmg/ddad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Autism spectrum disorders (ASD) are polygenic multifactorial disorders influenced by environmental factors. ASD-related differential DNA methylation has been found in human peripheral tissues, such as placenta, paternal sperm, buccal epithelium, and blood. However, these data lack direct comparison of DNA methylation levels with brain tissue from the same individual to determine the extent that peripheral tissues are surrogates for behavior-related disorders. Here, whole genome methylation profiling at all the possible sites throughout the mouse genome (>25 million) from both brain and blood tissues revealed novel insights into the systemic contributions of DNA methylation to ASD. Sixty-six differentially methylated regions (DMRs) share the same genomic coordinates in these two tissues, many of which are linked to risk genes for neurodevelopmental disorders and intellectual disabilities (e.g. Prkch, Ptn, Hcfc1, Mid1, and Nfia). Gene ontological pathways revealed a significant number of common terms between brain and blood (N = 65 terms), and nearly half (30/65) were associated with brain/neuronal development. Furthermore, seven DMR-associated genes among these terms contain methyl-sensitive transcription factor sequence motifs within the DMRs of both tissues; four of them (Cux2, Kcnip2, Fgf13, and Mrtfa) contain the same methyl-sensitive transcription factor binding sequence motifs (HES1/2/5, TBX2 and TFAP2C), suggesting DNA methylation influences the binding of common transcription factors required for gene expression. Together, these findings suggest that peripheral blood is a good surrogate tissue for brain and support that DNA methylation contributes to altered gene regulation in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Carolina D Alberca
- Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53705, United States
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53705, United States
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53705, United States
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53705, United States
| |
Collapse
|
6
|
Gupta V, Ben-Mahmoud A, Ku B, Velayutham D, Jan Z, Yousef Aden A, Kubbar A, Alshaban F, Stanton LW, Jithesh PV, Layman LC, Kim HG. Identification of two novel autism genes, TRPC4 and SCFD2, in Qatar simplex families through exome sequencing. Front Psychiatry 2023; 14:1251884. [PMID: 38025430 PMCID: PMC10644705 DOI: 10.3389/fpsyt.2023.1251884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
This study investigated the genetic underpinnings of autism spectrum disorder (ASD) in a Middle Eastern cohort in Qatar using exome sequencing. The study identified six candidate autism genes in independent simplex families, including both four known and two novel autosomal dominant and autosomal recessive genes associated with ASD. The variants consisted primarily of de novo and homozygous missense and splice variants. Multiple individuals displayed more than one candidate variant, suggesting the potential involvement of digenic or oligogenic models. These variants were absent in the Genome Aggregation Database (gnomAD) and exhibited extremely low frequencies in the local control population dataset. Two novel autism genes, TRPC4 and SCFD2, were discovered in two Qatari autism individuals. Furthermore, the D651A substitution in CLCN3 and the splice acceptor variant in DHX30 were identified as likely deleterious mutations. Protein modeling was utilized to evaluate the potential impact of three missense variants in DEAF1, CLCN3, and SCFD2 on their respective structures and functions, which strongly supported the pathogenic natures of these variants. The presence of multiple de novo mutations across trios underscored the significant contribution of de novo mutations to the genetic etiology of ASD. Functional assays and further investigations are necessary to confirm the pathogenicity of the identified genes and determine their significance in ASD. Overall, this study sheds light on the genetic factors underlying ASD in Qatar and highlights the importance of considering diverse populations in ASD research.
Collapse
Affiliation(s)
- Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Afif Ben-Mahmoud
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dinesh Velayutham
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Zainab Jan
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Abdi Yousef Aden
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Ahmad Kubbar
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fouad Alshaban
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Lawrence W. Stanton
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Puthen Veettil Jithesh
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Hyung-Goo Kim
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- College of Health & Life Sciences, Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
7
|
Omelková M, Fenger CD, Murray M, Hammer TB, Pravata VM, Bartual SG, Czajewski I, Bayat A, Ferenbach AT, Stavridis MP, van Aalten DMF. An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Dis Model Mech 2023; 16:dmm049132. [PMID: 37334838 PMCID: PMC10309585 DOI: 10.1242/dmm.049132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins with O-GlcNAc. Inborn OGT genetic variants were recently shown to mediate a novel type of congenital disorder of glycosylation (OGT-CDG), which is characterised by X-linked intellectual disability (XLID) and developmental delay. Here, we report an OGTC921Y variant that co-segregates with XLID and epileptic seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying OGTC921Y showed decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4 (encoded by Pou5f1), Sox2 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the developmental aetiology of this syndrome.
Collapse
Affiliation(s)
- Michaela Omelková
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christina Dühring Fenger
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
- Amplexa Genetics A/S, Odense 5000, Denmark
| | - Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Veronica M. Pravata
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sergio Galan Bartual
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Ignacy Czajewski
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Allan Bayat
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Andrew T. Ferenbach
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Marios P. Stavridis
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M. F. van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
8
|
Castro VL, Paz D, Virrueta V, Estevao IL, Grajeda BI, Ellis CC, Quintana AM. Missense and nonsense mutations of the zebrafish hcfc1a gene result in contrasting mTor and radial glial phenotypes. Gene 2023; 864:147290. [PMID: 36804358 PMCID: PMC11373874 DOI: 10.1016/j.gene.2023.147290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/20/2023]
Abstract
Mutations in the HCFC1 transcriptional co-factor protein are the cause of cblX syndrome and X-linked intellectual disability (XLID). cblX is the more severe disorder associated with intractable epilepsy, abnormal cobalamin metabolism, facial dysmorphia, cortical gyral malformations, and intellectual disability. In vitro, murine Hcfc1 regulates neural precursor (NPCs) proliferation and number, which has been validated in zebrafish. However, conditional deletion of mouse Hcfc1 in Nkx2.1 + cells increased cell death, reduced Gfap expression, and reduced numbers of GABAergic neurons. Thus, the role of this gene in brain development is not completely understood. Recently, knock-in of both a cblX (HCFC1) and cblX-like (THAP11) allele were created in mice. Knock-in of the cblX-like allele was associated with increased expression of proteins required for ribosome biogenesis. However, the brain phenotypes were not comprehensively studied due to sub-viability. Therefore, a mechanism underlying increased ribosome biogenesis was not described. We used a missense, a nonsense, and two conditional zebrafish alleles to further elucidate this mechanism during brain development. We observed contrasting phenotypes at the level of Akt/mTor activation, the number of radial glial cells, and the expression of two downstream target genes of HCFC1, asxl1 and ywhab. Despite these divergent phenotypes, each allele studied demonstrates with a high degree of face validity when compared to the phenotypes reported in the literature. Collectively, these data suggest that individual mutations in the HCFC1 protein result in differential mTOR activity which may be associated with contrasting cellular phenotypes.
Collapse
Affiliation(s)
- Victoria L Castro
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA.
| | - David Paz
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Valeria Virrueta
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Igor L Estevao
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Brian I Grajeda
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Cameron C Ellis
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
9
|
Paz D, Pinales BE, Castellanos BS, Perez I, Gil CB, Madrigal LJ, Reyes-Nava NG, Castro VL, Sloan JL, Quintana AM. Abnormal chondrocyte development in a zebrafish model of cblC syndrome restored by an MMACHC cobalamin binding mutant. Differentiation 2023; 131:74-81. [PMID: 37167860 PMCID: PMC11373873 DOI: 10.1016/j.diff.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described. Mouse models of Mmachc deletion are embryonic lethal but cause severe craniofacial phenotypes such as facial clefts. MMACHC encodes an enzyme required for cobalamin processing and variants in this gene result in the accumulation of two metabolites: methylmalonic acid (MMA) and homocysteine (HC). Interestingly, other inborn errors of cobalamin metabolism, such as cblX syndrome, are associated with mild facial phenotypes. However, the presence and severity of MMA and HC accumulation in cblX syndrome is not consistent with the presence or absence of facial phenotypes. Thus, the mechanisms by which mutations in MMACHC cause craniofacial defects are yet to be completely elucidated. Here we have characterized the craniofacial phenotypes in a zebrafish model of cblC (hg13) and performed restoration experiments with either a wildtype or a cobalamin binding deficient MMACHC protein. Homozygous mutants did not display gross morphological defects in facial development but did have abnormal chondrocyte nuclear organization and an increase in the average number of neighboring cell contacts, both phenotypes were fully penetrant. Abnormal chondrocyte nuclear organization was not associated with defects in the localization of neural crest specific markers, sox10 (RFP transgene) or barx1. Both nuclear angles and the number of neighboring cell contacts were fully restored by wildtype MMACHC and a cobalamin binding deficient variant of the MMACHC protein. Collectively, these data suggest that mutation of MMACHC causes mild to moderate craniofacial phenotypes that are independent of cobalamin binding.
Collapse
Affiliation(s)
- David Paz
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Briana E Pinales
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Barbara S Castellanos
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Isaiah Perez
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Claudia B Gil
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Lourdes Jimenez Madrigal
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Victoria L Castro
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Jennifer L Sloan
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
10
|
Fu L, Lu K, Jiao Q, Chen X, Jia F. The Regulation and Double-Edged Roles of the Deubiquitinase OTUD5. Cells 2023; 12:cells12081161. [PMID: 37190070 DOI: 10.3390/cells12081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
OTUD5 (OTU Deubiquitinase 5) is a functional cysteine protease with deubiquitinase activity and is a member of the ovarian tumor protease (OTU) family. OTUD5 is involved in the deubiquitination of many key proteins in various cellular signaling pathways and plays an important role in maintaining normal human development and physiological functions. Its dysfunction can affect physiological processes, such as immunity and DNA damage repair, and it can even lead to tumors, inflammatory diseases and genetic disorders. Therefore, the regulation of OTUD5 activity and expression has become a hot topic of research. A comprehensive understanding of the regulatory mechanisms of OTUD5 and its use as a therapeutic target for diseases is of great value. Herein, we review the physiological processes and molecular mechanisms of OTUD5 regulation, outline the specific regulatory processes of OTUD5 activity and expression, and link OTUD5 to diseases from the perspective of studies on signaling pathways, molecular interactions, DNA damage repair and immune regulation, thus providing a theoretical basis for future studies.
Collapse
Affiliation(s)
- Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Qian Jiao
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Xi Chen
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Fengju Jia
- School of Nursing, Qingdao University, Qingdao 266072, China
| |
Collapse
|
11
|
Paz D, Pinales BE, Castellanos BS, Perez I, Gil CB, Madrigal LJ, Reyes-Nava NG, Castro VL, Sloan JL, Quintana AM. Abnormal chondrocyte intercalation in a zebrafish model of cblC syndrome restored by an MMACHC cobalamin binding mutant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524982. [PMID: 36711998 PMCID: PMC9882310 DOI: 10.1101/2023.01.20.524982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described. Mouse models of Mmachc deletion are embryonic lethal but cause severe craniofacial phenotypes such as facial clefts. MMACHC encodes an enzyme required for cobalamin processing and variants in this gene result in the accumulation of two metabolites: methylmalonic acid (MMA) and homocysteine (HC). Interestingly, other inborn errors of cobalamin metabolism, such as cblX syndrome, are associated with mild facial phenotypes. However, the presence and severity of MMA and HC accumulation in cblX syndrome is not consistent with the presence or absence of facial phenotypes. Thus, the mechanisms by which mutation of MMACHC cause craniofacial defects have not been completely elucidated. Here we have characterized the craniofacial phenotypes in a zebrafish model of cblC ( hg13 ) and performed restoration experiments with either wildtype or a cobalamin binding deficient MMACHC protein. Homozygous mutants did not display gross morphological defects in facial development, but did have abnormal chondrocyte intercalation, which was fully penetrant. Abnormal chondrocyte intercalation was not associated with defects in the expression/localization of neural crest specific markers, sox10 or barx1 . Most importantly, chondrocyte organization was fully restored by wildtype MMACHC and a cobalamin binding deficient variant of MMACHC protein. Collectively, these data suggest that mutation of MMACHC causes mild to moderate craniofacial phenotypes that are independent of cobalamin binding.
Collapse
Affiliation(s)
- David Paz
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Briana E Pinales
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Barbara S Castellanos
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Isaiah Perez
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Claudia B Gil
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Lourdes Jimenez Madrigal
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Victoria L Castro
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Jennifer L Sloan
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| |
Collapse
|
12
|
Bukhari-Parlakturk N, Frucht SJ. Isolated and combined dystonias: Update. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:425-442. [PMID: 37620082 DOI: 10.1016/b978-0-323-98817-9.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Dystonia is a hyperkinetic movement disorder with a unique motor phenomenology that can manifest as an isolated clinical syndrome or combined with other neurological features. This chapter reviews the characteristic features of dystonia phenomenology and the syndromic approach to evaluating the disorders that may allow us to differentiate the isolated and combined syndromes. We also present the most common types of isolated and combined dystonia syndromes. Since accelerated gene discoveries have increased our understanding of the molecular mechanisms of dystonia pathogenesis, we also present isolated and combined dystonia syndromes by shared biological pathways. Examples of these converging mechanisms of the isolated and combined dystonia syndromes include (1) disruption of the integrated response pathway through eukaryotic initiation factor 2 alpha signaling, (2) disease of dopaminergic signaling, (3) alterations in the cerebello-thalamic pathway, and (4) disease of protein mislocalization and stability. The discoveries that isolated and combined dystonia syndromes converge in shared biological pathways will aid in the development of clinical trials and therapeutic strategies targeting these convergent molecular pathways.
Collapse
Affiliation(s)
- Noreen Bukhari-Parlakturk
- Department of Neurology, Movement Disorders Division, Duke University (NBP), Durham, NC, United States.
| | - Steven J Frucht
- Department of Neurology, NYU Grossman School of Medicine (SJF), New York, NY, United States
| |
Collapse
|
13
|
Downes DJ, Hughes JR. Natural and Experimental Rewiring of Gene Regulatory Regions. Annu Rev Genomics Hum Genet 2022; 23:73-97. [PMID: 35472292 DOI: 10.1146/annurev-genom-112921-010715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The successful development and ongoing functioning of complex organisms depend on the faithful execution of the genetic code. A critical step in this process is the correct spatial and temporal expression of genes. The highly orchestrated transcription of genes is controlled primarily by cis-regulatory elements: promoters, enhancers, and insulators. The medical importance of this key biological process can be seen by the frequency with which mutations and inherited variants that alter cis-regulatory elements lead to monogenic and complex diseases and cancer. Here, we provide an overview of the methods available to characterize and perturb gene regulatory circuits. We then highlight mechanisms through which regulatory rewiring contributes to disease, and conclude with a perspective on how our understanding of gene regulation can be used to improve human health.
Collapse
Affiliation(s)
- Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
14
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
15
|
Wang F, Liang L, Ling S, Yu Y, Chen T, Xu F, Gong Z, Han L. Clinical characteristics and genotype analysis of five infants with cblX type of methylmalonic acidemia. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:298-305. [PMID: 36207831 PMCID: PMC9511482 DOI: 10.3724/zdxbyxb-2022-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the clinical and genetic characteristics of infants with cobalamin (cbl) X type of methylmalonic acidemia (MMA). METHODS The clinical data of 5 infants with cblX type of MMA diagnosed in Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and Shanghai Children's Hospital from the year 2016 to 2020 were collected. The levels of blood acylcarnitines were detected by tandem mass spectrometry, the levels of urinary organic acids were detected by gas-chromatography mass spectrometry, the pathogenic genes were detected by whole exon gene sequencing, and the effect of new pathogenic mutations on three-dimensional protein structure was predicted by bioinformatics analysis. RESULTS Five infants with cblX type were diagnosed, including 4 males and 1 female, and the onset age was 0-6 months. The main clinical manifestations of 4 males were intractable epilepsy, mental and motor retardation, metabolic abnormalities presented mild increase of blood homocysteine level. Among them, 3 cases were accompanied by slight increase of urinary methylmalonic acid, and 1 case was accompanied by increase of blood propionylcarnitine (C3) and C3/acetylcarnitine (C2). Gene detection found that 2 cases carried a same hemizygous mutation c.344C>T (p.A115V) of HCFC1 gene, which was the most reported mutation, and the other 2 cases carried novel pathogenic mutations, c.92G>A (p.R31Q) and c.166G>C (p.V56L). These 3 gene mutations located in the Kelch domain of HCFC1 protein. One female infant carried a benign mutation of c.3731G>T (p.R1244L). Her clinical symptoms were mild, and only the urinary methylmalonic acid was slightly increased. CONCLUSIONS The clinical manifestations of children with cblX type of MMA are intractable epilepsy, mental and motor retardation, and other serious neurological symptoms. Their metabolic abnormalities present the increase of blood homocysteine with methylmalonic acid (urinary methylmalonic acid or/and blood C3, C3/C2). The clinical and biochemical phenotypes are separated, so the diagnosis should be in combination with the results of gene testing.
Collapse
Affiliation(s)
- Fei Wang
- 1. Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| | - Lili Liang
- 2. Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Shiying Ling
- 2. Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Yue Yu
- 2. Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Ting Chen
- 2. Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Feng Xu
- 2. Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Zhuwen Gong
- 2. Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lianshu Han
- 2. Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| |
Collapse
|
16
|
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M. Ying Yang 1 engagement in brain pathology. J Neurochem 2022; 161:236-253. [PMID: 35199341 DOI: 10.1111/jnc.15594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. Better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Aneta Bragiel-Pieczonka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, Warsaw, Poland
| |
Collapse
|
17
|
Shen Y, Hu Z, Yang J, Yang R, Huang X. A case of methylmalonic acidemia and homocysteinemia cblX type with negative tandem mass spectrometry testing. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:795-798. [PMID: 35347920 PMCID: PMC8931597 DOI: 10.3724/zdxbyxb-2021-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/10/2021] [Indexed: 06/14/2023]
Abstract
A child with methylmalonic acidemia and homocysteinemia cblX type presented focal seizures and epileptic spasms in early infancy, but the tandem mass spectrometry tests showed negative results during neonatal screening or acute attack. Despite treated with a variety of antiepileptic drugs, the child died at age of The blood spot sample of the patient was retrospectively tested with ultrahigh performance liquid chromatography-tandem mass spectrometry, and the increased levels of methylmalonic acid and homocysteine were revealed. Whole exome sequencing showed that the proband had a c.202C>G(p.Q68E) hemizygous mutation in gene, which was inherited from his mother.
Collapse
|
18
|
Goel M, Aponte AM, Wistow G, Badea TC. Molecular studies into cell biological role of Copine-4 in Retinal Ganglion Cells. PLoS One 2021; 16:e0255860. [PMID: 34847148 PMCID: PMC8631636 DOI: 10.1371/journal.pone.0255860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
The molecular mechanisms underlying morphological diversity in retinal cell types are poorly understood. We have previously reported that several members of the Copine family of Ca-dependent membrane adaptors are expressed in Retinal Ganglion Cells and transcriptionally regulated by Brn3 transcription factors. Several Copines are enriched in the retina and their over-expression leads to morphological changes -formation of elongated processes-, reminiscent of neurites, in HEK293 cells. However, the role of Copines in the retina is largely unknown. We now investigate Cpne4, a Copine whose expression is restricted to Retinal Ganglion Cells. Over-expression of Cpne4 in RGCs in vivo led to formation of large varicosities on the dendrites but did not otherwise visibly affect dendrite or axon formation. Protein interactions studies using yeast two hybrid analysis from whole retina cDNA revealed two Cpne4 interacting proteins-Host Cell Factor 1 and Morn2. Mass Spectrometry analysis of retina lysate pulled down using Cpne4 or its vonWillebrand A domain showed 207 interacting proteins. A Gene Ontology analysis of the discovered proteins suggests that Cpne4 is involved in several metabolic and signaling pathways in the retina.
Collapse
Affiliation(s)
- Manvi Goel
- Retinal Circuit Development & Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Angel M. Aponte
- Proteomics Core, NHLBI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, NEI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tudor C. Badea
- Retinal Circuit Development & Genetics Unit, Neurobiology Neurodegeneration & Repair Laboratory, NEI, National Institutes of Health, Bethesda, Maryland, United States of America
- Faculty of Medicine, Research and Development Institute, Transilvania University of Brasov, Brasov, Romania
| |
Collapse
|
19
|
Pan X, Zhao J, Zhou Z, Chen J, Yang Z, Wu Y, Bai M, Jiao Y, Yang Y, Hu X, Cheng T, Lu Q, Wang B, Li CL, Lu YJ, Diao L, Zhong YQ, Pan J, Zhu J, Xiao HS, Qiu ZL, Li J, Wang Z, Hui J, Bao L, Zhang X. 5'-UTR SNP of FGF13 causes translational defect and intellectual disability. eLife 2021; 10:63021. [PMID: 34184986 PMCID: PMC8241442 DOI: 10.7554/elife.63021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The congenital intellectual disability (ID)-causing gene mutations remain largely unclear, although many genetic variations might relate to ID. We screened gene mutations in Chinese Han children suffering from severe ID and found a single-nucleotide polymorphism (SNP) in the 5′-untranslated region (5′-UTR) of fibroblast growth factor 13 (FGF13) mRNA (NM_001139500.1:c.-32c>G) shared by three male children. In both HEK293 cells and patient-derived induced pluripotent stem cells, this SNP reduced the translation of FGF13, which stabilizes microtubules in developing neurons. Mice carrying the homologous point mutation in 5′-UTR of Fgf13 showed delayed neuronal migration during cortical development, and weakened learning and memory. Furthermore, this SNP reduced the interaction between FGF13 5′-UTR and polypyrimidine-tract-binding protein 2 (PTBP2), which was required for FGF13 translation in cortical neurons. Thus, this 5′-UTR SNP of FGF13 interferes with the translational process of FGF13 and causes deficits in brain development and cognitive functions.
Collapse
Affiliation(s)
- Xingyu Pan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Brain-Intelligence Project Center, Shanghai, China
| | - Jingrong Zhao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiying Zhou
- Shanghai Clinical Center, Chinese Academy of Sciences/Xu-Hui Central Hospital, Shanghai, China
| | - Jijun Chen
- Shanghai Brain-Intelligence Project Center, Shanghai, China
| | - Zhenxing Yang
- Shanghai Clinical Center, Chinese Academy of Sciences/Xu-Hui Central Hospital, Shanghai, China
| | - Yuxuan Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Meizhu Bai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Jiao
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yun Yang
- CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xuye Hu
- Shanghai Brain-Intelligence Project Center, Shanghai, China.,Shanghai Clinical Center, Chinese Academy of Sciences/Xu-Hui Central Hospital, Shanghai, China
| | - Tianling Cheng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianyun Lu
- CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bin Wang
- Shanghai Brain-Intelligence Project Center, Shanghai, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chang-Lin Li
- Shanghai Brain-Intelligence Project Center, Shanghai, China.,Shanghai Clinical Center, Chinese Academy of Sciences/Xu-Hui Central Hospital, Shanghai, China
| | - Ying-Jin Lu
- Shanghai Brain-Intelligence Project Center, Shanghai, China.,Shanghai Clinical Center, Chinese Academy of Sciences/Xu-Hui Central Hospital, Shanghai, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Qing Zhong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Pan
- Shanghai Brain-Intelligence Project Center, Shanghai, China
| | - Jianmin Zhu
- Shanghai Clinical Center, Chinese Academy of Sciences/Xu-Hui Central Hospital, Shanghai, China
| | - Hua-Sheng Xiao
- Shanghai Clinical Center, Chinese Academy of Sciences/Xu-Hui Central Hospital, Shanghai, China
| | - Zi-Long Qiu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Zefeng Wang
- CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Brain-Intelligence Project Center, Shanghai, China.,Shanghai Clinical Center, Chinese Academy of Sciences/Xu-Hui Central Hospital, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Zwaka TP, Skowronska M, Richman R, Dejosez M. Ronin overexpression induces cerebellar degeneration in a mouse model of ataxia. Dis Model Mech 2021; 14:269269. [PMID: 34165550 PMCID: PMC8246265 DOI: 10.1242/dmm.044834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of genetically heterogeneous inherited neurodegenerative disorders characterized by progressive ataxia and cerebellar degeneration. Here, we used a mouse model to test a possible connection between SCA and Ronin (Thap11), a polyglutamine-containing transcriptional regulator encoded in a region of human chromosome 16q22.1 that has been genetically linked to SCA type 4. We report that transgenic expression of Ronin in mouse cerebellar Purkinje cells leads to detrimental loss of these cells and the development of severe ataxia as early as 10 weeks after birth. Mechanistically, we find that several SCA-causing genes harbor Ronin DNA-binding motifs and are transcriptionally deregulated in transgenic animals. In addition, ectopic expression of Ronin in embryonic stem cells significantly increases the protein level of Ataxin-1, the protein encoded by Atxn1, alterations of which cause SCA type 1. This increase is also seen in the cerebellum of transgenic animals, although the latter was not statistically significant. Hence, our data provide evidence for a link between Ronin and SCAs, and suggest that Ronin may be involved in the development of other neurodegenerative diseases. Summary: Ronin is a polyglutamine protein encoded in a region of human chromosome 16q22.1 linked to spinocerebellar ataxia type 4. Overexpression of Ronin in mouse cerebellar Purkinje cells leads to their loss and ataxia.
Collapse
Affiliation(s)
- Thomas P Zwaka
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Skowronska
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ronald Richman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marion Dejosez
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
21
|
Roos D, de Boer M. Mutations in cis that affect mRNA synthesis, processing and translation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166166. [PMID: 33971252 DOI: 10.1016/j.bbadis.2021.166166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Genetic mutations that cause hereditary diseases usually affect the composition of the transcribed mRNA and its encoded protein, leading to instability of the mRNA and/or the protein. Sometimes, however, such mutations affect the synthesis, the processing or the translation of the mRNA, with similar disastrous effects. We here present an overview of mRNA synthesis, its posttranscriptional modification and its translation into protein. We then indicate which elements in these processes are known to be affected by pathogenic mutations, but we restrict our review to mutations in cis, in the DNA of the gene that encodes the affected protein. These mutations can be in enhancer or promoter regions of the gene, which act as binding sites for transcription factors involved in pre-mRNA synthesis. We also describe mutations in polyadenylation sequences and in splice site regions, exonic and intronic, involved in intron removal. Finally, we include mutations in the Kozak sequence in mRNA, which is involved in protein synthesis. We provide examples of genetic diseases caused by mutations in these DNA regions and refer to databases to help identify these regions. The over-all knowledge of mRNA synthesis, processing and translation is essential for improvement of the diagnosis of patients with genetic diseases.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Martin de Boer
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Field MJ, Kumar R, Hackett A, Kayumi S, Shoubridge CA, Ewans LJ, Ivancevic AM, Dudding-Byth T, Carroll R, Kroes T, Gardner AE, Sullivan P, Ha TT, Schwartz CE, Cowley MJ, Dinger ME, Palmer EE, Christie L, Shaw M, Roscioli T, Gecz J, Corbett MA. Different types of disease-causing noncoding variants revealed by genomic and gene expression analyses in families with X-linked intellectual disability. Hum Mutat 2021; 42:835-847. [PMID: 33847015 DOI: 10.1002/humu.24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 11/06/2022]
Abstract
The pioneering discovery research of X-linked intellectual disability (XLID) genes has benefitted thousands of individuals worldwide; however, approximately 30% of XLID families still remain unresolved. We postulated that noncoding variants that affect gene regulation or splicing may account for the lack of a genetic diagnosis in some cases. Detecting pathogenic, gene-regulatory variants with the same sensitivity and specificity as structural and coding variants is a major challenge for Mendelian disorders. Here, we describe three pedigrees with suggestive XLID where distinctive phenotypes associated with known genes guided the identification of three different noncoding variants. We used comprehensive structural, single-nucleotide, and repeat expansion analyses of genome sequencing. RNA-Seq from patient-derived cell lines, reverse-transcription polymerase chain reactions, Western blots, and reporter gene assays were used to confirm the functional effect of three fundamentally different classes of pathogenic noncoding variants: a retrotransposon insertion, a novel intronic splice donor, and a canonical splice variant of an untranslated exon. In one family, we excluded a rare coding variant in ARX, a known XLID gene, in favor of a regulatory noncoding variant in OFD1 that correlated with the clinical phenotype. Our results underscore the value of genomic research on unresolved XLID families to aid novel, pathogenic noncoding variant discovery.
Collapse
Affiliation(s)
- Michael J Field
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia
| | - Raman Kumar
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Anna Hackett
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Sayaka Kayumi
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Cheryl A Shoubridge
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa J Ewans
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Atma M Ivancevic
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Tracy Dudding-Byth
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Renée Carroll
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Thessa Kroes
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Alison E Gardner
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Patricia Sullivan
- Children's Cancer Institute, University of New South Wales, Kensington, New South Wales, Australia
| | - Thuong T Ha
- Molecular Pathology Department, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | - Mark J Cowley
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,Children's Cancer Institute, University of New South Wales, Kensington, New South Wales, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Elizabeth E Palmer
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Kensington, Sydney, New South Wales, Australia
| | - Louise Christie
- NSW Genetics of Learning Disability Service, Newcastle, New South Wales, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tony Roscioli
- NeuRA, University of New South Wales, Sydney, New South Wales, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, Sydney, New South Wales, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Abstract
Shadow enhancers are seemingly redundant transcriptional cis-regulatory elements that regulate the same gene and drive overlapping expression patterns. Recent studies have shown that shadow enhancers are remarkably abundant and control most developmental gene expression in both invertebrates and vertebrates, including mammals. Shadow enhancers might provide an important mechanism for buffering gene expression against mutations in non-coding regulatory regions of genes implicated in human disease. Technological advances in genome editing and live imaging have shed light on how shadow enhancers establish precise gene expression patterns and confer phenotypic robustness. Shadow enhancers can interact in complex ways and may also help to drive the formation of transcriptional hubs within the nucleus. Despite their apparent redundancy, the prevalence and evolutionary conservation of shadow enhancers underscore their key role in emerging metazoan gene regulatory networks.
Collapse
|
24
|
Stephen HM, Praissman JL, Wells L. Generation of an Interactome for the Tetratricopeptide Repeat Domain of O-GlcNAc Transferase Indicates a Role for the Enzyme in Intellectual Disability. J Proteome Res 2021; 20:1229-1242. [PMID: 33356293 PMCID: PMC8577549 DOI: 10.1021/acs.jproteome.0c00604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The O-GlcNAc transferase (OGT) modifies nuclear and cytoplasmic proteins with β-N-acetyl-glucosamine (O-GlcNAc). With thousands of O-GlcNAc-modified proteins but only one OGT encoded in the mammalian genome, a prevailing question is how OGT selects its substrates. Prior work has indicated that the tetratricopeptide repeat (TPR) domain of OGT is involved in substrate selection. Furthermore, several variants of OGT causal for X-linked intellectual disability (XLID) occur in the TPR domain. Therefore, we adapted the BioID labeling method to identify interactors of a TPR-BirA* fusion protein in HeLa cells. We identified 115 interactors representing known and novel O-GlcNAc-modified proteins and OGT interactors (raw data deposited in MassIVE, Dataset ID MSV000085626). The interactors are enriched in known OGT processes (e.g., chromatin remodeling) as well as processes in which OGT has yet to be implicated (e.g., pre-mRNA processing). Importantly, the identified TPR interactors are linked to several disease states but most notably are enriched in pathologies featuring intellectual disability that may underlie the mechanism by which mutations in OGT lead to XLID. This interactome for the TPR domain of OGT serves as a jumping-off point for future research exploring the role of OGT, the TPR domain, and its protein interactors in multiple cellular processes and disease mechanisms, including intellectual disability.
Collapse
Affiliation(s)
- Hannah M. Stephen
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| | - Jeremy L. Praissman
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, United States of America
| |
Collapse
|
25
|
Basar MA, Beck DB, Werner A. Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ 2021; 28:538-556. [PMID: 33335288 PMCID: PMC7862630 DOI: 10.1038/s41418-020-00697-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Metazoan development from a one-cell zygote to a fully formed organism requires complex cellular differentiation and communication pathways. To coordinate these processes, embryos frequently encode signaling information with the small protein modifier ubiquitin, which is typically attached to lysine residues within substrates. During ubiquitin signaling, a three-step enzymatic cascade modifies specific substrates with topologically unique ubiquitin modifications, which mediate changes in the substrate's stability, activity, localization, or interacting proteins. Ubiquitin signaling is critically regulated by deubiquitylases (DUBs), a class of ~100 human enzymes that oppose the conjugation of ubiquitin. DUBs control many essential cellular functions and various aspects of human physiology and development. Recent genetic studies have identified mutations in several DUBs that cause developmental disorders. Here we review principles controlling DUB activity and substrate recruitment that allow these enzymes to regulate ubiquitin signaling during development. We summarize key mechanisms of how DUBs control embryonic and postnatal differentiation processes, highlight developmental disorders that are caused by mutations in particular DUB members, and describe our current understanding of how these mutations disrupt development. Finally, we discuss how emerging tools from human disease genetics will enable the identification and study of novel congenital disease-causing DUBs.
Collapse
Affiliation(s)
- Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Novel exon-skipping variant disrupting the basic domain of HCFC1 causes intellectual disability without metabolic abnormalities in both male and female patients. J Hum Genet 2021; 66:717-724. [PMID: 33517344 DOI: 10.1038/s10038-020-00892-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022]
Abstract
HCFC1, a global transcriptional regulator, has been shown to associate with MMACHC expression. Pathogenic variants in HCFC1 cause X-linked combined methylmalonic acidemia and hyperhomocysteinemia, CblX type (MIM# 309541). Recent studies showed that certain variants in HCFC1 are associated with X-linked intellectual disability with mild or absent metabolic abnormalities. Here, we report five subjects (three males, two females) from the same family with a novel predicted loss of function HCFC1 variant. All five patients exhibit developmental delay or intellectual disability/learning difficulty and some dysmorphic features; findings were milder in the female as compared to male subjects. Biochemical studies in all patients did not show methylmalonic acidemia or hyperhomocysteinemia but revealed elevated vitamin B12 levels. Trio exome sequencing of the proband and his parents revealed a maternally inherited novel variant in HCFC1 designated as c.1781_1803 + 3del26insCA (NM_005334). Targeted testing confirmed the presence of the same variant in two half-siblings and maternal great uncle. In silico analysis showed that the variant is expected to reduce the quality of the splice donor site in intron 10 and causes abnormal splicing. Sequencing of proband's cDNA revealed exon 10 skipping. Further molecular studies in the two manifesting females revealed moderate and high skewing of X inactivation. Our results support previous observation that HCFC1 variants located outside the Kelch domain exhibit dissociation of the clinical and biochemical phenotype and cause milder or no metabolic changes. We also show that this novel variant can be associated with a phenotype in females, although with milder severity, but further studies are needed to understand the role of skewed X inactivation among females in this rare disorder. Our work expands the genotypes and phenotypes associated with HCFC1-related disorder.
Collapse
|
27
|
Gonzalez-Latapi P, Marotta N, Mencacci NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021; 128:483-498. [DOI: 10.1007/s00702-020-02290-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|
28
|
Beck DB, Basar MA, Asmar AJ, Thompson JJ, Oda H, Uehara DT, Saida K, Pajusalu S, Talvik I, D'Souza P, Bodurtha J, Mu W, Barañano KW, Miyake N, Wang R, Kempers M, Tamada T, Nishimura Y, Okada S, Kosho T, Dale R, Mitra A, Macnamara E, Matsumoto N, Inazawa J, Walkiewicz M, Õunap K, Tifft CJ, Aksentijevich I, Kastner DL, Rocha PP, Werner A. Linkage-specific deubiquitylation by OTUD5 defines an embryonic pathway intolerant to genomic variation. SCIENCE ADVANCES 2021; 7:7/4/eabe2116. [PMID: 33523931 PMCID: PMC7817106 DOI: 10.1126/sciadv.abe2116] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/07/2020] [Indexed: 05/09/2023]
Abstract
Reversible modification of proteins with linkage-specific ubiquitin chains is critical for intracellular signaling. Information on physiological roles and underlying mechanisms of particular ubiquitin linkages during human development are limited. Here, relying on genomic constraint scores, we identify 10 patients with multiple congenital anomalies caused by hemizygous variants in OTUD5, encoding a K48/K63 linkage-specific deubiquitylase. By studying these mutations, we find that OTUD5 controls neuroectodermal differentiation through cleaving K48-linked ubiquitin chains to counteract degradation of select chromatin regulators (e.g., ARID1A/B, histone deacetylase 2, and HCF1), mutations of which underlie diseases that exhibit phenotypic overlap with OTUD5 patients. Loss of OTUD5 during differentiation leads to less accessible chromatin at neuroectodermal enhancers and aberrant gene expression. Our study describes a previously unidentified disorder we name LINKED (LINKage-specific deubiquitylation deficiency-induced Embryonic Defects) syndrome and reveals linkage-specific ubiquitin cleavage from chromatin remodelers as an essential signaling mode that coordinates chromatin remodeling during embryogenesis.
Collapse
Affiliation(s)
- David B Beck
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirotsugu Oda
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniela T Uehara
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Inga Talvik
- Department of Neurology and Rehabilitation, Tallinn Children's Hospital, Tallinn, Estonia
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joann Bodurtha
- Department of Genetic Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Weiyi Mu
- Department of Genetic Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Raymond Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA 92868, USA
- Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA 92967, USA
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tomoko Tamada
- Department of Pediatrics, Hiroshima Prefectural Rehabilitation Center, Hiroshima, Japan
| | - Yutaka Nishimura
- Department of General Perinatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Nagano, Japan
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellen Macnamara
- Undiagnosed Diseases Program, The Common Fund, Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Magdalena Walkiewicz
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Cynthia J Tifft
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Undiagnosed Diseases Program, The Common Fund, Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivona Aksentijevich
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Kastner
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Karunakaran KB, Chaparala S, Lo CW, Ganapathiraju MK. Cilia interactome with predicted protein-protein interactions reveals connections to Alzheimer's disease, aging and other neuropsychiatric processes. Sci Rep 2020; 10:15629. [PMID: 32973177 PMCID: PMC7515907 DOI: 10.1038/s41598-020-72024-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cilia are dynamic microtubule-based organelles present on the surface of many eukaryotic cell types and can be motile or non-motile primary cilia. Cilia defects underlie a growing list of human disorders, collectively called ciliopathies, with overlapping phenotypes such as developmental delays and cognitive and memory deficits. Consistent with this, cilia play an important role in brain development, particularly in neurogenesis and neuronal migration. These findings suggest that a deeper systems-level understanding of how ciliary proteins function together may provide new mechanistic insights into the molecular etiologies of nervous system defects. Towards this end, we performed a protein-protein interaction (PPI) network analysis of known intraflagellar transport, BBSome, transition zone, ciliary membrane and motile cilia proteins. Known PPIs of ciliary proteins were assembled from online databases. Novel PPIs were predicted for each ciliary protein using a computational method we developed, called High-precision PPI Prediction (HiPPIP) model. The resulting cilia "interactome" consists of 165 ciliary proteins, 1,011 known PPIs, and 765 novel PPIs. The cilia interactome revealed interconnections between ciliary proteins, and their relation to several pathways related to neuropsychiatric processes, and to drug targets. Approximately 184 genes in the cilia interactome are targeted by 548 currently approved drugs, of which 103 are used to treat various diseases of nervous system origin. Taken together, the cilia interactome presented here provides novel insights into the relationship between ciliary protein dysfunction and neuropsychiatric disorders, for e.g. interconnections of Alzheimer's disease, aging and cilia genes. These results provide the framework for the rational design of new therapeutic agents for treatment of ciliopathies and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Srilakshmi Chaparala
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
- Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA.
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Castro VL, Quintana AM. The role of HCFC1 in syndromic and non-syndromic intellectual disability. ACTA ACUST UNITED AC 2020; 8. [PMID: 34164576 DOI: 10.18103/mra.v8i6.2122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the HCFC1 gene are associated with cases of syndromic (cblX) and non-syndromic intellectual disability. Syndromic individuals present with severe neurological defects including intractable epilepsy, facial dysmorphia, and intellectual disability. Non-syndromic individuals have also been described and implicate a role for HCFC1 during brain development. The penetrance of phenotypes and the presence of an overall syndrome is associated with the location of the mutation within the HCFC1 protein. Thus, one could hypothesize that the positioning of HCFC1 mutations lead to different neurological phenotypes that include but are not restricted to intellectual disability. The HCFC1 protein is comprised of multiple domains that function in cellular proliferation/metabolism. Several reports of HCFC1 disease variants have been identified, but a comprehensive review of each variant and its associated phenotypes has not yet been compiled. Here we perform a detailed review of HCFC1 function, model systems, variant location, and accompanying phenotypes to highlight current knowledge and the future status of the field.
Collapse
Affiliation(s)
- Victoria L Castro
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968
| | - Anita M Quintana
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968
| |
Collapse
|
31
|
Castro VL, Reyes JF, Reyes-Nava NG, Paz D, Quintana AM. Hcfc1a regulates neural precursor proliferation and asxl1 expression in the developing brain. BMC Neurosci 2020; 21:27. [PMID: 32522152 PMCID: PMC7288482 DOI: 10.1186/s12868-020-00577-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Precise regulation of neural precursor cell (NPC) proliferation and differentiation is essential to ensure proper brain development and function. The HCFC1 gene encodes a transcriptional co-factor that regulates cell proliferation, and previous studies suggest that HCFC1 regulates NPC number and differentiation. However, the molecular mechanism underlying these cellular deficits has not been completely characterized. Methods Here we created a zebrafish harboring mutations in the hcfc1a gene (the hcfc1aco60/+ allele), one ortholog of HCFC1, and utilized immunohistochemistry and RNA-sequencing technology to understand the function of hcfc1a during neural development. Results The hcfc1aco60/+ allele results in an increased number of NPCs and increased expression of neuronal and glial markers. These neural developmental deficits are associated with larval hypomotility and the abnormal expression of asxl1, a polycomb transcription factor, which we identified as a downstream effector of hcfc1a. Inhibition of asxl1 activity and/or expression in larvae harboring the hcfc1aco60/+ allele completely restored the number of NPCs to normal levels. Conclusion Collectively, our data demonstrate that hcfc1a regulates NPC number, NPC proliferation, motor behavior, and brain development.
Collapse
Affiliation(s)
- Victoria L Castro
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Joel F Reyes
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - David Paz
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Anita M Quintana
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
32
|
Pravata VM, Omelková M, Stavridis MP, Desbiens CM, Stephen HM, Lefeber DJ, Gecz J, Gundogdu M, Õunap K, Joss S, Schwartz CE, Wells L, van Aalten DMF. An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Eur J Hum Genet 2020; 28:706-714. [PMID: 32080367 PMCID: PMC7253464 DOI: 10.1038/s41431-020-0589-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 12/30/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
Intellectual disability (ID) is a neurodevelopmental condition that affects ~1% of the world population. In total 5-10% of ID cases are due to variants in genes located on the X chromosome. Recently, variants in OGT have been shown to co-segregate with X-linked intellectual disability (XLID) in multiple families. OGT encodes O-GlcNAc transferase (OGT), an essential enzyme that catalyses O-linked glycosylation with β-N-acetylglucosamine (O-GlcNAc) on serine/threonine residues of thousands of nuclear and cytosolic proteins. In this review, we compile the work from the last few years that clearly delineates a new syndromic form of ID, which we propose to classify as a novel Congenital Disorder of Glycosylation (OGT-CDG). We discuss potential hypotheses for the underpinning molecular mechanism(s) that provide impetus for future research studies geared towards informed interventions.
Collapse
Affiliation(s)
- Veronica M. Pravata
- 0000 0004 0397 2876grid.8241.fDivision of Gene Regulation and Expression and School of Life Sciences, University of Dundee, Dundee, UK
| | - Michaela Omelková
- 0000 0004 0397 2876grid.8241.fDivision of Gene Regulation and Expression and School of Life Sciences, University of Dundee, Dundee, UK
| | - Marios P. Stavridis
- 0000 0004 0397 2876grid.8241.fDivision of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chelsea M. Desbiens
- 0000 0004 1936 738Xgrid.213876.9Department of Biochemistry and Molecular Biology and Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Hannah M. Stephen
- 0000 0004 1936 738Xgrid.213876.9Department of Biochemistry and Molecular Biology and Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Dirk J. Lefeber
- 0000 0004 0444 9382grid.10417.33Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jozef Gecz
- 0000 0004 1936 7304grid.1010.0Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, SA Australia
| | - Mehmet Gundogdu
- 0000 0001 2193 314Xgrid.8756.cInstitute of Molecular Cell and System Biology, University of Glasgow, Glasgow, UK
| | - Katrin Õunap
- 0000 0001 0585 7044grid.412269.aDepartment of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia ,0000 0001 0943 7661grid.10939.32Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Shelagh Joss
- West of Scotland Genetic Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Charles E. Schwartz
- 0000 0000 8571 0933grid.418307.9Greenwood Genetic Center, Greenwood, SC 29646 USA
| | - Lance Wells
- 0000 0004 1936 738Xgrid.213876.9Department of Biochemistry and Molecular Biology and Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, GA USA
| | - Daan M. F. van Aalten
- 0000 0004 0397 2876grid.8241.fDivision of Gene Regulation and Expression and School of Life Sciences, University of Dundee, Dundee, UK ,0000 0001 0379 7164grid.216417.7Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Pravata VM, Muha V, Gundogdu M, Ferenbach AT, Kakade PS, Vandadi V, Wilmes AC, Borodkin VS, Joss S, Stavridis MP, van Aalten DMF. Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proc Natl Acad Sci U S A 2019; 116:14961-14970. [PMID: 31296563 PMCID: PMC6660750 DOI: 10.1073/pnas.1900065116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein-protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T > A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.
Collapse
Affiliation(s)
- Veronica M Pravata
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Villo Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Mehmet Gundogdu
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Andrew T Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Poonam S Kakade
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vasudha Vandadi
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Ariane C Wilmes
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Vladimir S Borodkin
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Shelagh Joss
- West of Scotland Genetic Service, Queen Elizabeth University Hospital, G51 4TF Glasgow, United Kingdom
| | - Marios P Stavridis
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, United Kingdom;
| |
Collapse
|
34
|
Hu H, Kahrizi K, Musante L, Fattahi Z, Herwig R, Hosseini M, Oppitz C, Abedini SS, Suckow V, Larti F, Beheshtian M, Lipkowitz B, Akhtarkhavari T, Mehvari S, Otto S, Mohseni M, Arzhangi S, Jamali P, Mojahedi F, Taghdiri M, Papari E, Soltani Banavandi MJ, Akbari S, Tonekaboni SH, Dehghani H, Ebrahimpour MR, Bader I, Davarnia B, Cohen M, Khodaei H, Albrecht B, Azimi S, Zirn B, Bastami M, Wieczorek D, Bahrami G, Keleman K, Vahid LN, Tzschach A, Gärtner J, Gillessen-Kaesbach G, Varaghchi JR, Timmermann B, Pourfatemi F, Jankhah A, Chen W, Nikuei P, Kalscheuer VM, Oladnabi M, Wienker TF, Ropers HH, Najmabadi H. Genetics of intellectual disability in consanguineous families. Mol Psychiatry 2019; 24:1027-1039. [PMID: 29302074 DOI: 10.1038/s41380-017-0012-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 01/17/2023]
Abstract
Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.
Collapse
Affiliation(s)
- Hao Hu
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany.,Guangzhou Women and Children's Medical Center, 510623, Guangzhou, China
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Luciana Musante
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Ralf Herwig
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Masoumeh Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Cornelia Oppitz
- IMP-Research Institute of Molecular Pathology, 1030, Vienna, Austria
| | - Seyedeh Sedigheh Abedini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Vanessa Suckow
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Farzaneh Larti
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | | | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sepideh Mehvari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sabine Otto
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Payman Jamali
- Shahrood Genetic Counseling Center, Welfare Office, Semnan, 36156, Iran
| | - Faezeh Mojahedi
- Mashhad Medical Genetic Counseling Center, Mashhad, 91767, Iran
| | - Maryam Taghdiri
- Shiraz Genetic Counseling Center, Welfare Office, Shiraz, Iran
| | - Elaheh Papari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | | | - Saeide Akbari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15468, Iran
| | - Hossein Dehghani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Mohammad Reza Ebrahimpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Ingrid Bader
- Kinderzentrum München, Technische Universität München, 81377, München, Germany
| | - Behzad Davarnia
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Monika Cohen
- Children's Center Munich, 81377, Munich, Germany
| | - Hossein Khodaei
- Meybod Genetics Research Center, Welfare Organization, Yazd, 89651, Iran
| | - Beate Albrecht
- Institute of Human Genetics, University Hospital Essen, 45122, Essen, Germany
| | - Sarah Azimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Birgit Zirn
- Genetikum Counseling Center, 70173, Stuttgart, Germany
| | - Milad Bastami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Dagmar Wieczorek
- Institute of Human Genetics and Anthropology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gholamreza Bahrami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Krystyna Keleman
- IMP-Research Institute of Molecular Pathology, 1030, Vienna, Austria.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Leila Nouri Vahid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Andreas Tzschach
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany.,Institute of Clinical Genetics, Technische Universität Dresden, Dresden, Germany
| | - Jutta Gärtner
- University Medical Center, Georg August University Göttingen, 37075, Göttingen, Germany
| | | | | | - Bernd Timmermann
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | | | - Aria Jankhah
- Shiraz Genetic Counseling Center, Shiraz, 71346, Iran
| | - Wei Chen
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Morteza Oladnabi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Thomas F Wienker
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Hans-Hilger Ropers
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany. .,Institute of Human Genetics, University Medicine, Mainz, Germany.
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran. .,Kariminejad - Najmabadi Pathology & Genetics Centre, Tehran, 14667-13713, Iran.
| |
Collapse
|
35
|
Minocha S, Herr W. Cortical and Commissural Defects Upon HCF-1 Loss in Nkx2.1-Derived Embryonic Neurons and Glia. Dev Neurobiol 2019; 79:578-595. [PMID: 31207118 PMCID: PMC6771735 DOI: 10.1002/dneu.22704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 11/28/2022]
Abstract
Formation of the cerebral cortex and commissures involves a complex developmental process defined by multiple molecular mechanisms governing proliferation of neuronal and glial precursors, neuronal and glial migration, and patterning events. Failure in any of these processes can lead to malformations. Here, we study the role of HCF-1 in these processes. HCF-1 is a conserved metazoan transcriptional co-regulator long implicated in cell proliferation and more recently in human metabolic disorders and mental retardation. Loss of HCF-1 in a subset of ventral telencephalic Nkx2.1-positive progenitors leads to reduced numbers of GABAergic interneurons and glia, owing not to decreased proliferation but rather to increased apoptosis before cell migration. The loss of these cells leads to development of severe commissural and cortical defects in early postnatal mouse brains. These defects include mild and severe structural defects of the corpus callosum and anterior commissure, respectively, and increased folding of the cortex resembling polymicrogyria. Hence, in addition to its well-established role in cell proliferation, HCF-1 is important for organ development, here the brain.
Collapse
Affiliation(s)
- Shilpi Minocha
- Center for Integrative Genomics, GénopodeUniversity of LausanneLausanneCH‐1015Switzerland
| | - Winship Herr
- Center for Integrative Genomics, GénopodeUniversity of LausanneLausanneCH‐1015Switzerland
| |
Collapse
|
36
|
Shapson-Coe A, Valeiras B, Wall C, Rada C. Aicardi-Goutières Syndrome associated mutations of RNase H2B impair its interaction with ZMYM3 and the CoREST histone-modifying complex. PLoS One 2019; 14:e0213553. [PMID: 30889214 PMCID: PMC6424451 DOI: 10.1371/journal.pone.0213553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/24/2019] [Indexed: 11/18/2022] Open
Abstract
DNA-RNA hybrids arise in all cell types, and are removed by multiple enzymes, including the trimeric ribonuclease, RNase H2. Mutations in human RNase H2 result in Aicardi–Goutières syndrome (AGS), an inflammatory brain disorder notable for being a Mendelian mimic of congenital viral infection. Previous studies have shown that several AGS-associated mutations of the RNase H2B subunit do not affect trimer stability or catalytic activity and are clustered on the surface of the complex, leading us to speculate that these mutations might impair important interactions of RNase H2 with so far unidentified proteins. In this study, we show that AGS mutations in this cluster impair the interaction of RNase H2 with several members of the CoREST chromatin-silencing complex that include the histone deacetylase HDAC2 and the demethylase KDM1A, the transcriptional regulators RCOR1 and GTFII-I as well as ZMYM3, an MYM-type zinc finger protein. We also show that the interaction is mediated by the zinc finger protein ZMYM3, suggesting that ZMYM3 acts as a novel type of scaffold protein coordinating interactions between deacetylase, demethylase and RNase H type enzymes, raising the question of whether coordination between histone modifications and the degradation of RNA-DNA hybrids may be required to prevent inflammation in humans.
Collapse
Affiliation(s)
- Alexander Shapson-Coe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- * E-mail: (ASC); (CR)
| | - Brenda Valeiras
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Christopher Wall
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Cristina Rada
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- * E-mail: (ASC); (CR)
| |
Collapse
|
37
|
Rapid Recapitulation of Nonalcoholic Steatohepatitis upon Loss of Host Cell Factor 1 Function in Mouse Hepatocytes. Mol Cell Biol 2019; 39:MCB.00405-18. [PMID: 30559308 PMCID: PMC6379584 DOI: 10.1128/mcb.00405-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Host cell factor 1 (HCF-1), encoded by the ubiquitously expressed X-linked gene Hcfc1, is an epigenetic coregulator important for mouse development and cell proliferation, including during liver regeneration. We used a hepatocyte-specific inducible Hcfc1 knockout allele (called Hcfc1hepKO) to induce HCF-1 loss in hepatocytes of hemizygous Hcfc1hepKO/Y males by 4 days. Host cell factor 1 (HCF-1), encoded by the ubiquitously expressed X-linked gene Hcfc1, is an epigenetic coregulator important for mouse development and cell proliferation, including during liver regeneration. We used a hepatocyte-specific inducible Hcfc1 knockout allele (called Hcfc1hepKO) to induce HCF-1 loss in hepatocytes of hemizygous Hcfc1hepKO/Y males by 4 days. In heterozygous Hcfc1hepKO/+ females, owing to random X-chromosome inactivation, upon Hcfc1hepKO allele induction, a 50/50 mix of HCF-1-positive and -negative hepatocyte clusters is engineered. The livers with Hcfc1hepKO/Y hepatocytes displayed a 21- to 24-day terminal nonalcoholic fatty liver (NAFL), followed by nonalcoholic steatohepatitis (NASH) disease progression typical of severe NAFL disease (NAFLD). In contrast, in livers with heterozygous Hcfc1hepKO/+ hepatocytes, HCF-1-positive hepatocytes replaced HCF-1-negative hepatocytes and revealed only mild NAFL development. Loss of HCF-1 led to loss of PGC1α protein, probably owing to its destabilization, and deregulation of gene expression, particularly of genes involved in mitochondrial structure and function, likely explaining the severe Hcfc1hepKO/Y liver pathology. Thus, HCF-1 is essential for hepatocyte function, likely playing both transcriptional and nontranscriptional roles. These genetically engineered loss-of-HCF-1 mice can be used to study NASH as well as NAFLD resolution.
Collapse
|
38
|
Zablotskaya A, Van Esch H, Verstrepen KJ, Froyen G, Vermeesch JR. Mapping the landscape of tandem repeat variability by targeted long read single molecule sequencing in familial X-linked intellectual disability. BMC Med Genomics 2018; 11:123. [PMID: 30567555 PMCID: PMC6299999 DOI: 10.1186/s12920-018-0446-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The etiology of more than half of all patients with X-linked intellectual disability remains elusive, despite array-based comparative genomic hybridization, whole exome or genome sequencing. Since short read massive parallel sequencing approaches do not allow the detection of larger tandem repeat expansions, we hypothesized that such expansions could be a hidden cause of X-linked intellectual disability. METHODS We selectively captured over 1800 tandem repeats on the X chromosome and characterized them by long read single molecule sequencing in 3 families with idiopathic X-linked intellectual disability. RESULTS In male DNA samples, full tandem repeat length sequences were obtained for 88-93% of the targets and up to 99.6% of the repeats with a moderate guanine-cytosine content. Read length and analysis pipeline allow to detect cases of > 900 bp tandem repeat expansion. In one family, one repeat expansion co-occurs with down-regulation of the neighboring MIR222 gene. This gene has previously been implicated in intellectual disability and is apparently linked to FMR1 and NEFH overexpression associated with neurological disorders. CONCLUSIONS This study demonstrates the power of single molecule sequencing to measure tandem repeat lengths and detect expansions, and suggests that tandem repeat mutations may be a hidden cause of X-linked intellectual disability.
Collapse
Affiliation(s)
- Alena Zablotskaya
- Department of Human Genetics and Center for Human Genetics, Laboratory for Cytogenetics and Genome Research, University Hospitals Leuven, KU Leuven, O&N I Herestraat 49 - box 606, 3000, Leuven, Belgium
| | - Hilde Van Esch
- Department of Human Genetics and Center for Human Genetics, Laboratory for Genetics of Cognition, University Hospitals Leuven, KU Leuven, O&N I Herestraat 49 - box 606, 3000, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB Center for Microbiology and CMPG Lab for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1 - box 2471, 3001, Leuven, Belgium
| | - Guy Froyen
- Clinical Biology, Laboratory for Molecular Diagnostics, Jessa Hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Joris R Vermeesch
- Department of Human Genetics and Center for Human Genetics, Laboratory for Cytogenetics and Genome Research, University Hospitals Leuven, KU Leuven, O&N I Herestraat 49 - box 606, 3000, Leuven, Belgium.
| |
Collapse
|
39
|
Schirwani S, McConnell V, Willoughby J, Balasubramanian M. Exploring the association between SRPX2 variants and neurodevelopment: How causal is it? Gene 2018; 685:50-54. [PMID: 30393191 DOI: 10.1016/j.gene.2018.10.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/15/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022]
Abstract
The SRPX2 gene (Sushi-repeat-containing protein, X-linked, 2, OMIM*300642), located on Xq22.1, encodes a secreted protein that is highly expressed in neurons of cerebral cortex. SRPX2 was first implicated in neurodevelopment, learning and rolandic seizure when two patients with potentially pathogenic variants, c.980A>G (p.Asn327Ser) and c.215A>C (p.Tyr72Ser), in SRPX2 gene were identified. Subsequent experimental studies demonstrated that SRPX2 is needed for vocalization and synapse formation in mice, and that both silencing SRPX2 and injecting (p.Asn327Ser) in mouse models results in alteration in neuronal migration in cerebral cortex and epilepsy. A number of studies demonstrated that SRPX2 interacts with FOXP2 (Foxhead box protein P2), a gene responsible for speech and language disorder, and that FoxP2 controls timing and level of expression of SRPX2. Despite the supportive evidence for the role of SRPX2 in speech and language development and disorders, there are questions over its definitive association with neurodevelopmental disorders and epilepsy. In this paper, the role of SRPX2 as one in a network of many genes involved in speech and language is discussed. The goal of this paper is to examine the role of SRPX2 variants through describing two patients with potentially pathogenic variants in SRPX2, c.751G>C (p.Ala251Pro) and c.762G>T (p.Lys254Asn) presenting with language and motor delay, intellectual disability as well as congenital anomalies. We explore the contribution of SRPX2 variants to clinical phenotype in our patients and conclude that these variants at least partially explain the phenotype. Further studies are necessary to establish and confirm the association between SRPX2 and neurodevelopment particularly speech and language development.
Collapse
Affiliation(s)
- Schaida Schirwani
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Vivienne McConnell
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, Northern Ireland BT9 7AB, UK
| | - Josh Willoughby
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, UK
| | -
- DDD Study, Welcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Meena Balasubramanian
- Academic Unit of Child Health, Department of Oncology & Metabolism, University of Sheffield, UK; Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, UK.
| |
Collapse
|
40
|
Tzschach A. X-chromosomale Intelligenzminderung. MED GENET-BERLIN 2018. [DOI: 10.1007/s11825-018-0207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zusammenfassung
X-chromosomale Intelligenzminderung („X-linked intellectual disability“, XLID) ist eine heterogene Krankheitsgruppe; inzwischen sind mehr als 100 XLID-Gene identifiziert worden. Das Fragile-X-Syndrom mit CGG-Repeatexpansion in der 5’-UTR des FMR1-Gens ist die häufigste monogene Ursache für Intelligenzminderung. Weitere X‑chromosomale Gene mit vergleichsweise hohen Mutationsprävalenzen sind ATRX, RPS6KA3, GPC3, SLC16A2, SLC6A8 und ARX. Die Ursachen für XLID verteilen sich zu ca. 90 % auf molekulargenetisch nachweisbare Mutationen und zu ca. 10 % auf chromosomale Kopienzahlvarianten („copy-number variants“, CNVs). Häufige CNVs sind Duplikationen in Xq28 unter Einschluss von MECP2 sowie das Xp11.22-Duplikations-Syndrom mit Überexpression von HUWE1. Mit den aktuellen Untersuchungsmethoden kann bei ca. 10 % der männlichen Patienten mit Intelligenzminderung eine X‑chromosomale Ursache nachgewiesen werden. Neue Erkenntnisse zu XLID sind für die nächsten Jahre am ehesten in den nicht kodierenden Regionen zu erwarten, wo wahrscheinlich ein weiterer Teil der Ursachen für das bislang nicht vollständig erklärte Überwiegen männlicher Patienten zu suchen ist.
Collapse
Affiliation(s)
- Andreas Tzschach
- Aff1 0000 0001 2111 7257 grid.4488.0 Institut für Klinische Genetik Technische Universität Dresden Fetscherstr. 74 01307 Dresden Deutschland
| |
Collapse
|
41
|
Du J, Kirk B, Zeng J, Ma J, Wang Q. Three classes of response elements for human PRC2 and MLL1/2-Trithorax complexes. Nucleic Acids Res 2018; 46:8848-8864. [PMID: 29992232 PMCID: PMC6158500 DOI: 10.1093/nar/gky595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins are essential for maintaining epigenetic memory in both embryonic stem cells and differentiated cells. To date, how they are localized to hundreds of specific target genes within a vertebrate genome had remained elusive. Here, by focusing on short cis-acting DNA elements of single functions, we discovered three classes of response elements in human genome: Polycomb response elements (PREs), Trithorax response elements (TREs) and Polycomb/Trithorax response elements (P/TREs). In particular, the four PREs (PRE14, 29, 39 and 48) are the first set of, to our knowledge, bona fide vertebrate PREs ever discovered, while many previously reported Drosophila or vertebrate PREs are likely P/TREs. We further demonstrated that YY1 and CpG islands are specifically enriched in the four TREs (PRE30, 41, 44 and 55), but not in the PREs. The three classes of response elements as unraveled in this study should guide further global investigation and open new doors for a deeper understanding of PcG and TrxG mechanisms in vertebrates.
Collapse
Affiliation(s)
- Junqing Du
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Brian Kirk
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jia Zeng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jianpeng Ma
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
42
|
Bioinformatics analysis of Ronin gene and their potential role in pluripotency control. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|
44
|
Selvan N, George S, Serajee FJ, Shaw M, Hobson L, Kalscheuer V, Prasad N, Levy SE, Taylor J, Aftimos S, Schwartz CE, Huq AM, Gecz J, Wells L. O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. J Biol Chem 2018; 293:10810-10824. [PMID: 29769320 DOI: 10.1074/jbc.ra118.002583] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/27/2018] [Indexed: 01/17/2023] Open
Abstract
It is estimated that ∼1% of the world's population has intellectual disability, with males affected more often than females. OGT is an X-linked gene encoding for the enzyme O-GlcNAc transferase (OGT), which carries out the reversible addition of N-acetylglucosamine (GlcNAc) to Ser/Thr residues of its intracellular substrates. Three missense mutations in the tetratricopeptide (TPR) repeats of OGT have recently been reported to cause X-linked intellectual disability (XLID). Here, we report the discovery of two additional novel missense mutations (c.775 G>A, p.A259T, and c.1016 A>G, p.E339G) in the TPR domain of OGT that segregate with XLID in affected families. Characterization of all five of these XLID missense variants of OGT demonstrates modest declines in thermodynamic stability and/or activities of the variants. We engineered each of the mutations into a male human embryonic stem cell line using CRISPR/Cas9. Investigation of the global O-GlcNAc profile as well as OGT and O-GlcNAc hydrolase levels by Western blotting showed no gross changes in steady-state levels in the engineered lines. However, analyses of the differential transcriptomes of the OGT variant-expressing stem cells revealed shared deregulation of genes involved in cell fate determination and liver X receptor/retinoid X receptor signaling, which has been implicated in neuronal development. Thus, here we reveal two additional mutations encoding residues in the TPR regions of OGT that appear causal for XLID and provide evidence that the relatively stable and active TPR variants may share a common, unelucidated mechanism of altering gene expression profiles in human embryonic stem cells.
Collapse
Affiliation(s)
- Nithya Selvan
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Stephan George
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Fatema J Serajee
- the Departments of Pediatrics and of Neurology, Wayne State University, Detroit, Michigan 48201
| | - Marie Shaw
- the Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide South Australia 5006, Australia
| | - Lynne Hobson
- the Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
| | - Vera Kalscheuer
- the Research Group Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Nripesh Prasad
- the Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Shawn E Levy
- the Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Juliet Taylor
- the Genetic Health Services New Zealand-Northern Hub, Auckland City Hospital, Auckland 1142, New Zealand
| | - Salim Aftimos
- the Genetic Health Services New Zealand-Northern Hub, Auckland City Hospital, Auckland 1142, New Zealand
| | | | - Ahm M Huq
- the Departments of Pediatrics and of Neurology, Wayne State University, Detroit, Michigan 48201
| | - Jozef Gecz
- the Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide South Australia 5006, Australia.,the South Australian Health and Medical Research Institute, Adelaide, South Australia 5006, Australia
| | - Lance Wells
- From the Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602,
| |
Collapse
|
45
|
Neri G, Schwartz CE, Lubs HA, Stevenson RE. X-linked intellectual disability update 2017. Am J Med Genet A 2018; 176:1375-1388. [PMID: 29696803 DOI: 10.1002/ajmg.a.38710] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 03/23/2018] [Indexed: 12/28/2022]
Abstract
The X-chromosome comprises only about 5% of the human genome but accounts for about 15% of the genes currently known to be associated with intellectual disability. The early progress in identifying the X-linked intellectual disability (XLID)-associated genes through linkage analysis and candidate gene sequencing has been accelerated with the use of high-throughput technologies. In the 10 years since the last update, the number of genes associated with XLID has increased by 96% from 72 to 141 and duplications of all 141 XLID genes have been described, primarily through the application of high-resolution microarrays and next generation sequencing. The progress in identifying genetic and genomic alterations associated with XLID has not been matched with insights that improve the clinician's ability to form differential diagnoses, that bring into view the possibility of curative therapies for patients, or that inform scientists of the impact of the genetic alterations on cell organization and function.
Collapse
Affiliation(s)
- Giovanni Neri
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina.,Istituto di Medicina Genomica, Università Cattolica del S. Cuore, Rome, Italy
| | - Charles E Schwartz
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Herbert A Lubs
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| | - Roger E Stevenson
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina
| |
Collapse
|
46
|
Mariappa D, Ferenbach AT, van Aalten DMF. Effects of hypo- O-GlcNAcylation on Drosophila development. J Biol Chem 2018; 293:7209-7221. [PMID: 29588363 PMCID: PMC5950000 DOI: 10.1074/jbc.ra118.002580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/21/2018] [Indexed: 01/12/2023] Open
Abstract
Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc (O-GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila, null mutants of the Polycomb gene O-GlcNAc transferase (OGT; also known as super sex combs (sxc)) display homeotic phenotypes. To dissect the requirement for O-GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxcK872M, was recessive lethal, whereas a second mutant, the hypomorphic sxcH537A, was homozygous viable. We observed that reduced total protein O-GlcNAcylation in the sxcH537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxcH537A and a null allele of Drosophila host cell factor (dHcf), encoding an extensively O-GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxcH537A flies lacking a copy of skuld (skd), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxcH537A enabled us to identify pleiotropic effects of globally reduced protein O-GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development.
Collapse
Affiliation(s)
- Daniel Mariappa
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| | - Andrew T Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
47
|
Quintana AM, Yu HC, Brebner A, Pupavac M, Geiger EA, Watson A, Castro VL, Cheung W, Chen SH, Watkins D, Pastinen T, Skovby F, Appel B, Rosenblatt DS, Shaikh TH. Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities. Hum Mol Genet 2018; 26:2838-2849. [PMID: 28449119 DOI: 10.1093/hmg/ddx157] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/20/2017] [Indexed: 11/14/2022] Open
Abstract
CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development.
Collapse
Affiliation(s)
- Anita M Quintana
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Hung-Chun Yu
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alison Brebner
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Elizabeth A Geiger
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Abigail Watson
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Victoria L Castro
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Warren Cheung
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Shu-Huang Chen
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Flemming Skovby
- Department of Clinical Genetics, Rigshospitalet, and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Bruce Appel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Tamim H Shaikh
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
48
|
Grassi E, Mariella E, Forneris M, Marotta F, Catapano M, Molineris I, Provero P. A functional strategy to characterize expression Quantitative Trait Loci. Hum Genet 2017; 136:1477-1487. [PMID: 29101457 DOI: 10.1007/s00439-017-1849-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023]
Abstract
The study of genetic variation has been revolutionized by the advent of high-throughput technologies able to determine the complete genomic sequence of thousands of individuals. Understanding the functional relevance of variants is, however, still a difficult task, especially when focusing on non-coding variants. Most of the variants associated with disease by Genome-Wide Association Studies (GWAS) are indeed non-coding, and presumably exert their effects by altering gene regulation. Expression Quantitative Trait Loci (eQTL) studies represent an important step in understanding the functional relevance of regulatory variants. We propose a new strategy to detect and characterize eQTLs, based on the effect of variants on the Total Binding Affinity (TBA) profiles of regulatory regions. Using a large dataset of coupled genome and expression data, we show that TBA-based inference allows the identification of eQTLs not revealed by traditional methods and helps in their interpretation in terms of altered transcription factor binding.
Collapse
Affiliation(s)
- Elena Grassi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Elisa Mariella
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Mattia Forneris
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Federico Marotta
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Marika Catapano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy.,Deptartment of Medical and Molecular Genetics, King's College, London, UK
| | - Ivan Molineris
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy. .,Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute IRCCS, Milan, Italy.
| |
Collapse
|
49
|
Willems AP, Gundogdu M, Kempers MJE, Giltay JC, Pfundt R, Elferink M, Loza BF, Fuijkschot J, Ferenbach AT, van Gassen KLI, van Aalten DMF, Lefeber DJ. Mutations in N-acetylglucosamine ( O-GlcNAc) transferase in patients with X-linked intellectual disability. J Biol Chem 2017; 292:12621-12631. [PMID: 28584052 PMCID: PMC5535036 DOI: 10.1074/jbc.m117.790097] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/23/2017] [Indexed: 11/30/2022] Open
Abstract
N-Acetylglucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential and dynamic post-translational modification. The O-GlcNAc modification is present on numerous nuclear and cytosolic proteins and has been implicated in essential cellular functions such as signaling and gene expression. Accordingly, altered levels of protein O-GlcNAcylation have been associated with developmental defects and neurodegeneration. However, mutations in the OGT gene have not yet been functionally confirmed in humans. Here, we report on two hemizygous mutations in OGT in individuals with X-linked intellectual disability (XLID) and dysmorphic features: one missense mutation (p.Arg284Pro) and one mutation leading to a splicing defect (c.463–6T>G). Both mutations reside in the tetratricopeptide repeats of OGT that are essential for substrate recognition. We observed slightly reduced levels of OGT protein and reduced levels of its opposing enzyme O-GlcNAcase in both patient-derived fibroblasts, but global O-GlcNAc levels appeared to be unaffected. Our data suggest that mutant cells attempt to maintain global O-GlcNAcylation by down-regulating O-GlcNAcase expression. We also found that the c.463–6T>G mutation leads to aberrant mRNA splicing, but no stable truncated protein was detected in the corresponding patient-derived fibroblasts. Recombinant OGT bearing the p.Arg284Pro mutation was prone to unfolding and exhibited reduced glycosylation activity against a complex array of glycosylation substrates and proteolytic processing of the transcription factor host cell factor 1, which is also encoded by an XLID-associated gene. We conclude that defects in O-GlcNAc homeostasis and host cell factor 1 proteolysis may play roles in mediation of XLID in individuals with OGT mutations.
Collapse
Affiliation(s)
- Anke P Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mehmet Gundogdu
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, Scotland, United Kingdom
| | - Marlies J E Kempers
- Department of Genetics, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jacques C Giltay
- Department of Genetics, University Medical Centre Utrecht, 3508 AB Utrecht, The Netherlands
| | - Rolph Pfundt
- Department of Genetics, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Martin Elferink
- Department of Genetics, University Medical Centre Utrecht, 3508 AB Utrecht, The Netherlands
| | - Bettina F Loza
- Department of Paediatrics, VieCuri Hospital, 5900 BX Venlo, The Netherlands
| | - Joris Fuijkschot
- Department of Paediatrics, Radboud University Medical Centre and Amalia Children's Hospital, 6500 HB Nijmegen, The Netherlands
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, Scotland, United Kingdom
| | - Koen L I van Gassen
- Department of Genetics, University Medical Centre Utrecht, 3508 AB Utrecht, The Netherlands
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, DD1 5EH Dundee, Scotland, United Kingdom.
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
50
|
Gabriele M, Vulto-van Silfhout AT, Germain PL, Vitriolo A, Kumar R, Douglas E, Haan E, Kosaki K, Takenouchi T, Rauch A, Steindl K, Frengen E, Misceo D, Pedurupillay CRJ, Stromme P, Rosenfeld JA, Shao Y, Craigen WJ, Schaaf CP, Rodriguez-Buritica D, Farach L, Friedman J, Thulin P, McLean SD, Nugent KM, Morton J, Nicholl J, Andrieux J, Stray-Pedersen A, Chambon P, Patrier S, Lynch SA, Kjaergaard S, Tørring PM, Brasch-Andersen C, Ronan A, van Haeringen A, Anderson PJ, Powis Z, Brunner HG, Pfundt R, Schuurs-Hoeijmakers JHM, van Bon BWM, Lelieveld S, Gilissen C, Nillesen WM, Vissers LELM, Gecz J, Koolen DA, Testa G, de Vries BBA. YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction. Am J Hum Genet 2017; 100:907-925. [PMID: 28575647 DOI: 10.1016/j.ajhg.2017.05.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/04/2017] [Indexed: 01/06/2023] Open
Abstract
Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals' cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators.
Collapse
Affiliation(s)
- Michele Gabriele
- Laboratory of Stem Cell Epigenetics, Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | | | - Pierre-Luc Germain
- Laboratory of Stem Cell Epigenetics, Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Alessandro Vitriolo
- Laboratory of Stem Cell Epigenetics, Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Raman Kumar
- School of Medicine and Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Evelyn Douglas
- SA Clinical Genetics Service, SA Pathology, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Eric Haan
- SA Clinical Genetics Service, SA Pathology, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Toshiki Takenouchi
- Center for Medical Genetics, Keio University School of Medicine, 160-8582 Tokyo, Japan
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren-Zurich, Switzerland
| | - Eirik Frengen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0315 Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0315 Oslo, Norway
| | | | - Petter Stromme
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital and University of Oslo, 0313 Oslo, Norway
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yunru Shao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Rodriguez-Buritica
- Division of Genetics, Department of Pediatrics, University of Texas Health, Houston, TX 77030, USA
| | - Laura Farach
- Division of Genetics, Department of Pediatrics, University of Texas Health, Houston, TX 77030, USA
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California, San Diego, and Rady Children's Hospital, San Diego, CA 92123, USA
| | - Perla Thulin
- Department of Neurology, University of Utah, San Diego, CA 92123, USA
| | - Scott D McLean
- Clinical Genetics Section, Children's Hospital of San Antonio, San Antonio, TX 78207, USA
| | - Kimberly M Nugent
- Clinical Genetics Section, Children's Hospital of San Antonio, San Antonio, TX 78207, USA
| | - Jenny Morton
- Birmingham Women's Hospital, B15 2TG Birmingham, UK
| | - Jillian Nicholl
- SA Clinical Genetics Service, SA Pathology, Adelaide, SA 5000, Australia; School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Joris Andrieux
- Institut de Génétique Médicale, Hopital Jeanne de Flandre, 59000 Lille, France
| | | | - Pascal Chambon
- Laboratory of Cytogenetics, Rouen University Hospital, 76031 Rouen, France
| | - Sophie Patrier
- Service d'Anatomie Pathologique, Rouen University Hospital, 76031 Rouen, France
| | - Sally A Lynch
- National Centre for Medical Genetics, Our Lady's Children's Hospital, D12 V004 Dublin, Ireland
| | - Susanne Kjaergaard
- Department of Clinical Genetics, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Pernille M Tørring
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | | | - Anne Ronan
- Hunter Genetics, Waratah, NSW 2298, Australia
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Peter J Anderson
- Australian Craniofacial Unit, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Zöe Powis
- Ambry Genetics, Aliso Viejo, CA 92656, USA
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | | | - Bregje W M van Bon
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Stefan Lelieveld
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Willy M Nillesen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Jozef Gecz
- School of Medicine and Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - David A Koolen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy.
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|