1
|
Aref F, Shaaban A, Ahmed A, Gubari M, Hassan J, Alharbi M, Alsubhi K, Alsalhi K, Albalawi S, Ali M, Ali H, Filfilan N, Shmailah E, Ahmed A. Walker-Warburg syndrome: A case report of congenital muscular dystrophy with hydrocephalus. Radiol Case Rep 2024; 19:5063-5065. [PMID: 39253050 PMCID: PMC11381981 DOI: 10.1016/j.radcr.2024.07.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
Walker-Warburg Syndrome is a genetically heterogeneous disease with autosomal recessive inheritance characterized by brain and eye deformities, profound mental retardation, congenital muscular dystrophy, and early death. This case study demonstrates a mutation on chromosome 12q14 in the TMEM5 gene (RXYLT1; 605862), which encodes a transmembrane protein with glycosyltransferase function. We present a case of a full-term male baby delivered by Cesarean section due to macrocephaly. At birth, the newborn had hypotonia and respiratory distress, requiring mechanical ventilation. On examination the patient was found to have macrocephaly, generalized hypotonia, hyporeflexia, and retinal degeneration. Genetic testing revealed a homozygous variant in the RXYLT1 gene, consistent with the diagnosis of autosomal recessive muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies) type A10. The patient underwent a ventriculoperitoneal shunt and received supportive management. WWS is a fatal disease, and most affected children do not survive beyond the age of 3. Prenatal screening, ultrasonography and magnetic resonance imaging can aid in the detection and confirmation of abnormal brain development in WWS cases.
Collapse
Affiliation(s)
- Fawzya Aref
- Department of Pediatrics, Saudi German Hospital, Jeddah, Saudi Arabia
| | - Amin Shaaban
- Department of Pediatrics, Saudi German Hospital, Jeddah, Saudi Arabia
| | | | - Maram Gubari
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Jood Hassan
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mussaed Alharbi
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Kholod Alsubhi
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Kareem Alsalhi
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Shama Albalawi
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mohamad Ali
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Hiba Ali
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Najla Filfilan
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Elaf Shmailah
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Attallah Ahmed
- Department of Medicine, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Sönmezler E, Stuani C, Hız Kurul S, Güngör S, Buratti E, Oktay Y. Characterization and Engineered U1 snRNA Rescue of Splicing Variants in a Turkish Neurodevelopmental Disease Cohort. Hum Mutat 2024; 2024:7760556. [PMID: 40225931 PMCID: PMC11925005 DOI: 10.1155/2024/7760556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 04/15/2025]
Abstract
Although they are rare in the population, rare neurodevelopmental disorders (RNDDs) constitute a significant portion of all rare diseases. While advancements in sequencing technologies led to improvements in diagnosing and managing rare neurodevelopmental diseases, accurate pathogenicity classification of the identified variants is still challenging. Sequence variants altering pre-mRNA splicing make up a significant part of pathogenic variants. Despite advances in the in silico prediction tools, noncanonical splice site variants are one of the groups of variants that pose a challenge in their clinical interpretation. In this study, we analyzed the effects of seven splicing variants we had previously proposed as disease-causing and demonstrated that all but one of the seven variants had a strong or moderate effect on splicing, as assessed by a minigene assay. Next, applying U1 snRNAs engineered for different splicing variants in the corresponding genes and expressed with minigene plasmids in HeLa cells provided a partial correction in four of the studied genes to varying degrees. Findings from our study highlight the importance of in vitro minigene-based assays for the reclassification of putative splice-altering variants of uncertain significance and the therapeutic potential of modified U1 snRNAs in RNDDs.
Collapse
Affiliation(s)
- Ece Sönmezler
- Izmir Biomedicine and Genome CenterDokuz Eylul University Health Campus35340 Izmir, Türkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylul University35340 Izmir, Türkiye
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB)34149 Trieste, Italy
| | - Semra Hız Kurul
- Izmir Biomedicine and Genome CenterDokuz Eylul University Health Campus35340 Izmir, Türkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylul University35340 Izmir, Türkiye
- Department of Paediatric NeurologySchool of MedicineDokuz Eylul University35340 Izmir, Türkiye
| | - Serdal Güngör
- Department of Paediatric NeurologySchool of MedicineInonu UniversityMalatya 44210, Türkiye
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB)34149 Trieste, Italy
| | - Yavuz Oktay
- Izmir Biomedicine and Genome CenterDokuz Eylul University Health Campus35340 Izmir, Türkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylul University35340 Izmir, Türkiye
- Department of Medical BiologySchool of MedicineDokuz Eylul UniversityIzmir 35340, Türkiye
| |
Collapse
|
3
|
Jung EE, Nagiel A. RETINAL MANIFESTATIONS OF WALKER-WARBURG SYNDROME IN TWO SIBLINGS WITH RXYLT1 MUTATIONS. Retin Cases Brief Rep 2024; 18:6-10. [PMID: 36007194 PMCID: PMC10874297 DOI: 10.1097/icb.0000000000001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE We report two siblings with genetically confirmed Walker-Warburg syndrome (WWS), studied with multimodal imaging, who presented with different retinal manifestations. METHODS This is a retrospective report of two WWS cases with ultra-widefield fundus photography, fluorescein angiography, and ultrasound. Molecular diagnosis was achieved using panel testing and targeted variant testing. RESULTS Two siblings, one male and one female, born 17 months apart with a diagnosis of WWS underwent retinal examination with imaging. The 3-month-old female infant exhibited microphthalmia, persistent hyaloidal arteries, and retrolental membranes with total tractional retinal detachments on ultrasound in both eyes. The 22-day-old male newborn exhibited persistent hyaloidal arteries and extensive peripheral avascular retina on angiography in both eyes. Both were found to be positive for the same two pathogenic variants in the RXYLT1/TMEM5 gene, which accounts for approximately 9% of cases of genetically confirmed WWS. CONCLUSION Siblings with genetically confirmed WWS can have variable presentations despite identical genotype. This highlights the phenotypic disease spectrum of WWS, which may be similar to that seen in familial exudative vitreoretinopathy.
Collapse
Affiliation(s)
- Eric E. Jung
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Surgery, The Vision Center, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Aaron Nagiel
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Surgery, The Vision Center, Children’s Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
4
|
Koff M, Monagas-Valentin P, Novikov B, Chandel I, Panin V. Protein O-mannosylation: one sugar, several pathways, many functions. Glycobiology 2023; 33:911-926. [PMID: 37565810 PMCID: PMC10859634 DOI: 10.1093/glycob/cwad067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Recent research has unveiled numerous important functions of protein glycosylation in development, homeostasis, and diseases. A type of glycosylation taking the center stage is protein O-mannosylation, a posttranslational modification conserved in a wide range of organisms, from yeast to humans. In animals, protein O-mannosylation plays a crucial role in the nervous system, whereas protein O-mannosylation defects cause severe neurological abnormalities and congenital muscular dystrophies. However, the molecular and cellular mechanisms underlying protein O-mannosylation functions and biosynthesis remain not well understood. This review outlines recent studies on protein O-mannosylation while focusing on the functions in the nervous system, summarizes the current knowledge about protein O-mannosylation biosynthesis, and discusses the pathologies associated with protein O-mannosylation defects. The evolutionary perspective revealed by studies in the Drosophila model system are also highlighted. Finally, the review touches upon important knowledge gaps in the field and discusses critical questions for future research on the molecular and cellular mechanisms associated with protein O-mannosylation functions.
Collapse
Affiliation(s)
- Melissa Koff
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Pedro Monagas-Valentin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Boris Novikov
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Ishita Chandel
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| | - Vladislav Panin
- Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, College Station, TX 77843, United States
| |
Collapse
|
5
|
Keith J, Shannon P. Brain pathology of lissencephaly type 2 with an ISPD pathogenic variant. Neuropathol Appl Neurobiol 2023; 49:e12939. [PMID: 37766395 DOI: 10.1111/nan.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Affiliation(s)
- Julia Keith
- Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Shannon
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Wong W, Estep JA, Treptow AM, Rajabli N, Jahncke JN, Ubina T, Wright KM, Riccomagno MM. An adhesion signaling axis involving Dystroglycan, β1-Integrin, and Cas adaptor proteins regulates the establishment of the cortical glial scaffold. PLoS Biol 2023; 21:e3002212. [PMID: 37540708 PMCID: PMC10431685 DOI: 10.1371/journal.pbio.3002212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/16/2023] [Accepted: 06/23/2023] [Indexed: 08/06/2023] Open
Abstract
The mature mammalian cortex is composed of 6 architecturally and functionally distinct layers. Two key steps in the assembly of this layered structure are the initial establishment of the glial scaffold and the subsequent migration of postmitotic neurons to their final position. These processes involve the precise and timely regulation of adhesion and detachment of neural cells from their substrates. Although much is known about the roles of adhesive substrates during neuronal migration and the formation of the glial scaffold, less is understood about how these signals are interpreted and integrated within these neural cells. Here, we provide in vivo evidence that Cas proteins, a family of cytoplasmic adaptors, serve a functional and redundant role during cortical lamination. Cas triple conditional knock-out (Cas TcKO) mice display severe cortical phenotypes that feature cobblestone malformations. Molecular epistasis and genetic experiments suggest that Cas proteins act downstream of transmembrane Dystroglycan and β1-Integrin in a radial glial cell-autonomous manner. Overall, these data establish a new and essential role for Cas adaptor proteins during the formation of cortical circuits and reveal a signaling axis controlling cortical scaffold formation.
Collapse
Affiliation(s)
- Wenny Wong
- Neuroscience Graduate Program, University of California, Riverside, California, United States of America
| | - Jason A. Estep
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| | - Alyssa M. Treptow
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| | - Niloofar Rajabli
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| | - Jennifer N. Jahncke
- Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Teresa Ubina
- Neuroscience Graduate Program, University of California, Riverside, California, United States of America
| | - Kevin M. Wright
- Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Martin M. Riccomagno
- Neuroscience Graduate Program, University of California, Riverside, California, United States of America
- Cell, Molecular and Developmental Biology Graduate Program, Department of Molecular, Cell & Systems Biology, University of California, Riverside, California, United States of America
| |
Collapse
|
7
|
Schaeffer RD, Zhang J, Kinch LN, Pei J, Cong Q, Grishin NV. Classification of domains in predicted structures of the human proteome. Proc Natl Acad Sci U S A 2023; 120:e2214069120. [PMID: 36917664 PMCID: PMC10041065 DOI: 10.1073/pnas.2214069120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
Recent advances in protein structure prediction have generated accurate structures of previously uncharacterized human proteins. Identifying domains in these predicted structures and classifying them into an evolutionary hierarchy can reveal biological insights. Here, we describe the detection and classification of domains from the human proteome. Our classification indicates that only 62% of residues are located in globular domains. We further classify these globular domains and observe that the majority (65%) can be classified among known folds by sequence, with a smaller fraction (33%) requiring structural data to refine the domain boundaries and/or to support their homology. A relatively small number (966 domains) cannot be confidently assigned using our automatic pipelines, thus demanding manual inspection. We classify 47,576 domains, of which only 23% have been included in experimental structures. A portion (6.3%) of these classified globular domains lack sequence-based annotation in InterPro. A quarter (23%) have not been structurally modeled by homology, and they contain 2,540 known disease-causing single amino acid variations whose pathogenesis can now be inferred using AF models. A comparison of classified domains from a series of model organisms revealed expansions of several immune response-related domains in humans and a depletion of olfactory receptors. Finally, we use this classification to expand well-known protein families of biological significance. These classifications are presented on the ECOD website (http://prodata.swmed.edu/ecod/index_human.php).
Collapse
Affiliation(s)
- R. Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lisa N. Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jimin Pei
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Nick V. Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
8
|
A novel pathogenic deletion in ISPD causes Walker-Warburg syndrome in a Chinese family. Genes Genomics 2023; 45:359-365. [PMID: 35951155 DOI: 10.1007/s13258-022-01296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Walker-Warburg syndrome (WWS) is a genetically heterogeneous disease that often presents with complex brain and eye malformations and congenital muscular dystrophy. Mutations of the ISPD gene have been identified as one of the most frequent causes of WWS. OBJECTIVE The current study aimed to identify the cause of severe congenital hydrocephalus and brain dysplasia in our subject. METHODS Genomic DNA was extracted from the fetus's umbilical cord blood and peripheral venous blood of the parents. The genetic analysis included whole-exome sequencing and qPCR. Additionally, in silico analysis and cellular experiments were performed. RESULTS We identified a novel homozygous deletion of exons 7 to 9 in the ISPD gene of the fetus with WWS. In silico analysis revealed a defective domain structure in the C-terminus domain of the ISPD. Analysis of the electrostatic potential energy showed the formation of a new binding pocket formation on the surface of the mutant ISPD gene (ISPD-del ex7-9). Cellular study of the mutant ISPD revealed a significant change in its cellular localization, with the ISPD-del ex7-9 protein translocating from the cytoplasm to the nucleus compared to wild-type ISPD, which is mostly present in the cytoplasm. CONCLUSION The present study expands the mutational spectrum of WWS caused by ISPD mutations. Importantly, our work suggests that whole-exome sequencing could be considered as a diagnostic option for fetuses with congenital hydrocephalus and brain malformations when karyotype or chromosomal microarray analysis fails to provide a definitive diagnosis.
Collapse
|
9
|
Cubilla M, Papazoglu G, Asteggiano C. Dystroglycanopathies: Genetic Bases of Muscular Dystrophies Due to Alteration in the O-Glycosylation of α-Dystroglycan. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2023; 11. [DOI: 10.1590/2326-4594-jiems-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Affiliation(s)
- M.A. Cubilla
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - G.M. Papazoglu
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - C.G. Asteggiano
- Hospital de Niños de la Santísima Trinidad, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; Universidad Católica de Córdoba, Argentina
| |
Collapse
|
10
|
Younger DS. Childhood muscular dystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:461-496. [PMID: 37562882 DOI: 10.1016/b978-0-323-98818-6.00024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Infancy- and childhood-onset muscular dystrophies are associated with a characteristic distribution and progression of motor dysfunction. The underlying causes of progressive childhood muscular dystrophies are heterogeneous involving diverse genetic pathways and genes that encode proteins of the plasma membrane, extracellular matrix, sarcomere, and nuclear membrane components. The prototypical clinicopathological features in an affected child may be adequate to fully distinguish it from other likely diagnoses based on four common features: (1) weakness and wasting of pelvic-femoral and scapular muscles with involvement of heart muscle; (2) elevation of serum muscle enzymes in particular serum creatine kinase; (3) necrosis and regeneration of myofibers; and (4) molecular neurogenetic assessment particularly utilizing next-generation sequencing of the genome of the likeliest candidates genes in an index case or family proband. A number of different animal models of therapeutic strategies have been developed for gene transfer therapy, but so far these techniques have not yet entered clinical practice. Treatment remains for the most part symptomatic with the goal of ameliorating locomotor and cardiorespiratory manifestations of the disease.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
11
|
Guo L, Zhang S, Xu Y, Huang Y, Luo W, Wen Q, Liu G, Huang W, Xu H, Chen B, Nie Q. A missense mutation in ISPD contributes to maintain muscle fiber stability. Poult Sci 2022; 101:102143. [PMID: 36167018 PMCID: PMC9513258 DOI: 10.1016/j.psj.2022.102143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 06/11/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
Abstract
Background Results Conclusion
Collapse
|
12
|
Seizures and EEG characteristics in a cohort of pediatric patients with dystroglycanopathies. Seizure 2022; 101:39-47. [PMID: 35863218 DOI: 10.1016/j.seizure.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To delineate the seizure type, phenotype and V-EEG patterns of dystroglycanopathy (DGP) and correlate them with the neuroradiological and genetic results. METHODS Patients with seizures were screened from our dystroglycanopathy database from January 2010 to March 2021. Detailed clinical information, including seizure type, brain magnetic resonance imaging (MRI), EEG and genetic analysis, was collected. RESULTS Thirteen patients (15.1%, 13/86) had seizures. Most patients had a severe phenotype. The mean age at first seizure onset was 2 years and 8 months. The most common seizure type was generalized tonic-clonic seizure (GTCS), with 92.3% (12/13) induced by fever. Three patients were diagnosed with epilepsy. Most patients did not take any medicine. A few patients had irregular use of antiseizure medications (ASMs). Of the 13 patients, seven patients were diagnosed with MEB, four patients with POMGNT1 mutations, two with ISPD mutations, and one with POMT1 mutation. Three patients were diagnosed with FCMD with FKTN mutations. Two patients were diagnosed with CMD-MR, one patient with ISPD mutation, and one with POMT1 mutation. One patient was diagnosed with LGMD with FKRP mutation. Nine patients underwent EEG examination, and eight patients had abnormal EEG results, including abnormal background activities in three patients, abnormal background activities combined with paroxysmal discharges in three patients, pure paroxysmal discharges in one patient and positive phase sharp waves in the occipital region in one patient. For radiology, brain MRI was available for 12 patients. The brain MRI of nine patients showed type II lissencephaly. Two patients showed cerebellar hypoplasia and brainstem hypoplasia. One patient had a normal brain MRI result. Patients with type II lissencephaly usually had abnormal background activities and paroxysmal discharges. CONCLUSION The seizure phenotype of dystroglycanopathy (DGP) is characterized by GTCS, which was the most common seizure type, while focal seizures and epileptic spasms could also occur in DGP patients. Most seizures were induced by fever. Seizures were relatively more frequent in severe phenotypes of DGP, such as FCMD and MEB. Abnormal background activities were the most common EEG patterns, which were closely related to type II lissencephaly.
Collapse
|
13
|
Awotoye W, Mossey PA, Hetmanski JB, Gowans LJJ, Eshete MA, Adeyemo WL, Alade A, Zeng E, Adamson O, Naicker T, Anand D, Adeleke C, Busch T, Li M, Petrin A, Aregbesola BS, Braimah RO, Oginni FO, Oladele AO, Oladayo A, Kayali S, Olotu J, Hassan M, Pape J, Donkor P, Arthur FKN, Obiri-Yeboah S, Sabbah DK, Agbenorku P, Plange-Rhule G, Oti AA, Gogal RA, Beaty TH, Taub M, Marazita ML, Schnieders MJ, Lachke SA, Adeyemo AA, Murray JC, Butali A. Whole-genome sequencing reveals de-novo mutations associated with nonsyndromic cleft lip/palate. Sci Rep 2022; 12:11743. [PMID: 35817949 PMCID: PMC9273634 DOI: 10.1038/s41598-022-15885-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
The majority (85%) of nonsyndromic cleft lip with or without cleft palate (nsCL/P) cases occur sporadically, suggesting a role for de novo mutations (DNMs) in the etiology of nsCL/P. To identify high impact protein-altering DNMs that contribute to the risk of nsCL/P, we conducted whole-genome sequencing (WGS) analyses in 130 African case-parent trios (affected probands and unaffected parents). We identified 162 high confidence protein-altering DNMs some of which are based on available evidence, contribute to the risk of nsCL/P. These include novel protein-truncating DNMs in the ACTL6A, ARHGAP10, MINK1, TMEM5 and TTN genes; as well as missense variants in ACAN, DHRS3, DLX6, EPHB2, FKBP10, KMT2D, RECQL4, SEMA3C, SEMA4D, SHH, TP63, and TULP4. Many of these protein-altering DNMs were predicted to be pathogenic. Analysis using mouse transcriptomics data showed that some of these genes are expressed during the development of primary and secondary palate. Gene-set enrichment analysis of the protein-altering DNMs identified palatal development and neural crest migration among the few processes that were significantly enriched. These processes are directly involved in the etiopathogenesis of clefting. The analysis of the coding sequence in the WGS data provides more evidence of the opportunity for novel findings in the African genome.
Collapse
Affiliation(s)
- Waheed Awotoye
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA.
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.
| | - Peter A Mossey
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - Jacqueline B Hetmanski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lord J J Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mekonen A Eshete
- Surgical Department, School Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Olawale Adamson
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - Thirona Naicker
- Department of Pediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, USA
| | - Chinyere Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Mary Li
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Aline Petrin
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
- Department of Orthodontics, University of Iowa, Iowa City, IA, USA
| | - Babatunde S Aregbesola
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Ramat O Braimah
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Fadekemi O Oginni
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Ayodeji O Oladele
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Abimbola Oladayo
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Sami Kayali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Joy Olotu
- Department of Anatomy, University of Port Harcourt, Choba, Nigeria
| | - Mohaned Hassan
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - John Pape
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Peter Donkor
- Department of Surgery, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Solomon Obiri-Yeboah
- Department of Maxillofacial Sciences, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel K Sabbah
- Department of Child Oral Health and Orthodontics, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Pius Agbenorku
- Department of Surgery, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gyikua Plange-Rhule
- Department of Child Health, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Acheampong Oti
- Department of Maxillofacial Sciences, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rose A Gogal
- Center for Biocatalysis and Bioprocessing (CBB), University of Iowa, Iowa City, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Margaret Taub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Schnieders
- Center for Biocatalysis and Bioprocessing (CBB), University of Iowa, Iowa City, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA
| | | | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Azeez Butali
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA.
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
14
|
Saini N, Venkatapuram VS, Vineeth VS, Kulkarni A, Tandon A, Koppolu G, Patil SJ, Dalal A, Aggarwal S. Fetal phenotypes of Mendelian disorders: A descriptive study from India. Prenat Diagn 2022; 42:911-926. [PMID: 35587316 DOI: 10.1002/pd.6172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Exome sequencing(ES) based diagnosis of Mendelian diseases in the fetus is limited by paucity of phenotypic information. This study reports the comprehensive phenotypes of some fetuses with Mendelian disorders. METHODS Next generation technology based sequencing of all coding regions of the genome(Exome sequencing) or targeted gene sequencing using Sanger or next generation platforms was performed in a cohort of deeply phenotyped, cytogenetically normal fetuses with morphological defects. Prenatal ultrasonographic phenotypes and Postmortem details including dysmorphology, histopathology, radiography were ascertained. Novel candidate genes, novel/ unusual findings and unusual genotypes in cases with confirmed Mendelian disorders are described. RESULTS Of the 102 fetuses sequenced, 45 (44%) achieved definitive diagnosis of a Mendelian disorder with 50 pathogenic/likely pathogenic variants. The majority (87%) were autosomal recessive, 69% families were consanguineous and 54% variants were novel. Dysmorphic syndromes, skeletal dysplasias and metabolic disorders were the commonest disease categories, ciliopathies and dystroglycanopathies commonest molecular categories. We describe the first fetal description of six monogenic diseases, and nine cases with novel histological findings. Nineteen cases had novel/ unusual findings. CONCLUSION This cohort demonstrates how deep fetal phenotypes of some Mendelian disorders can show novel/unusual findings which have important implications for prenatal diagnosis of these conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Neelam Saini
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | | | | | | | - Ashwani Tandon
- Department of Pathology, All India Institute of Medical Sciences, Bhopal, India
| | | | - Siddaramappa Jagdish Patil
- Division of Medical Genetics, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospitals, Bangalore, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | - Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| |
Collapse
|
15
|
Tokuoka H, Imae R, Nakashima H, Manya H, Masuda C, Hoshino S, Kobayashi K, Lefeber DJ, Matsumoto R, Okada T, Endo T, Kanagawa M, Toda T. CDP-ribitol prodrug treatment ameliorates ISPD-deficient muscular dystrophy mouse model. Nat Commun 2022; 13:1847. [PMID: 35422047 PMCID: PMC9010444 DOI: 10.1038/s41467-022-29473-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/17/2022] [Indexed: 01/05/2023] Open
Abstract
Ribitol-phosphate modification is crucial for the functional maturation of α-dystroglycan. Its dysfunction is associated with muscular dystrophy, cardiomyopathy, and central nervous system abnormalities; however, no effective treatments are currently available for diseases caused by ribitol-phosphate defects. In this study, we demonstrate that prodrug treatments can ameliorate muscular dystrophy caused by defects in isoprenoid synthase domain containing (ISPD), which encodes an enzyme that synthesizes CDP-ribitol, a donor substrate for ribitol-phosphate modification. We generated skeletal muscle-selective Ispd conditional knockout mice, leading to a pathogenic reduction in CDP-ribitol levels, abnormal glycosylation of α-dystroglycan, and severe muscular dystrophy. Adeno-associated virus-mediated gene replacement experiments suggested that the recovery of CDP-ribitol levels rescues the ISPD-deficient pathology. As a prodrug treatment strategy, we developed a series of membrane-permeable CDP-ribitol derivatives, among which tetraacetylated CDP-ribitol ameliorated the dystrophic pathology. In addition, the prodrug successfully rescued abnormal α-dystroglycan glycosylation in patient fibroblasts. Consequently, our findings provide proof-of-concept for supplementation therapy with CDP-ribitol and could accelerate the development of therapeutic agents for muscular dystrophy and other diseases caused by glycosylation defects.
Collapse
Affiliation(s)
- Hideki Tokuoka
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan ,grid.31432.370000 0001 1092 3077Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Rieko Imae
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Hitomi Nakashima
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Hiroshi Manya
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Chiaki Masuda
- grid.410821.e0000 0001 2173 8328Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Shunsuke Hoshino
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Kazuhiro Kobayashi
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Dirk J. Lefeber
- grid.10417.330000 0004 0444 9382Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Riki Matsumoto
- grid.31432.370000 0001 1092 3077Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Takashi Okada
- grid.26999.3d0000 0001 2151 536XDivision of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639 Japan
| | - Tamao Endo
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Motoi Kanagawa
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan ,grid.255464.40000 0001 1011 3808Department of Cell Biology and Molecular Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| | - Tatsushi Toda
- grid.26999.3d0000 0001 2151 536XDepartment of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
16
|
Malformations of cerebral development and clues from the peripheral nervous system: A systematic literature review. Eur J Paediatr Neurol 2022; 37:155-164. [PMID: 34535379 DOI: 10.1016/j.ejpn.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Clinical manifestations of malformations of cortical development (MCD) are variable and can range from mild to severe intellectual disability, cerebral palsy and drug-resistant epilepsy. Besides common clinical features, non-specific or more subtle clinical symptoms may be present in association with different types of MCD. Especially in severely affected individuals, subtle but specific underlying clinical symptoms can be overlooked or overshadowed by the global clinical presentation. To facilitate the interpretation of genetic variants detailed clinical information is indispensable. Detailed (neurological) examination can be helpful in assisting with the diagnostic trajectory, both when referring for genetic work-up as well as when interpreting data from molecular genetic testing. This systematic literature review focusses on different clues derived from the neurological examination and potential further work-up triggered by these signs and symptoms in genetically defined MCDs. A concise overview of specific neurological findings and their associations with MCD subtype and genotype are presented, easily applicable in daily clinical practice. The following pathologies will be discussed: neuropathy, myopathy, muscular dystrophies and spastic paraplegia. In the discussion section, tips and pitfalls are illustrated to improve clinical outcome in the future.
Collapse
|
17
|
Hang J, Wang J, Lu M, Xue Y, Qiao J, Tao L. Protein O-mannosylation across kingdoms and related diseases: From glycobiology to glycopathology. Biomed Pharmacother 2022; 148:112685. [PMID: 35149389 DOI: 10.1016/j.biopha.2022.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
The post-translational glycosylation of proteins by O-linked α-mannose is conserved from bacteria to humans. Due to advances in high-throughput mass spectrometry-based approaches, a variety of glycoproteins are identified to be O-mannosylated. Various proteins with O-mannosylation are involved in biological processes, providing essential necessity for proper growth and development. In this review, we summarize the process and regulation of O-mannosylation. The multi-step O-mannosylation procedures are quite dynamic and complex, especially when considering the structural and functional inspection of the involved enzymes. The widely studied O-mannosylated proteins in human include α-Dystroglycan (α-DG), cadherins, protocadherins, and plexin, and their aberrant O-mannosylation are associated with many diseases. In addition, O-mannosylation also contributes to diverse functions in lower eukaryotes and prokaryotes. Finally, we present the relationship between O-mannosylation and gut microbiota (GM), and elucidate that O-mannosylation in microbiome is of great importance in the dynamic balance of GM. Our study provides an overview of the processes of O-mannosylation in mammalian cells and other organisms, and also associated regulated enzymes and biological functions, which could contribute to the understanding of newly discovered O-mannosylated glycoproteins.
Collapse
Affiliation(s)
- Jing Hang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang 110001, China
| | - Minzhen Lu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang 110001, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
18
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
19
|
Chen Q, Fang J, Shen H, Chen L, Shi M, Huang X, Miao Z, Gong Y. Roles, molecular mechanisms, and signaling pathways of TMEMs in neurological diseases. Am J Transl Res 2021; 13:13273-13297. [PMID: 35035675 PMCID: PMC8748174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Transmembrane protein family members (TMEMs) span the entire lipid bilayer and act as channels that allow the transport of specific substances through biofilms. The functions of most TMEMs are unexplored. Numerous studies have shown that TMEMs are involved in the pathophysiological processes of various nervous system diseases, but the specific mechanisms of TMEMs in the pathogenesis of diseases remain unclear. In this review, we discuss the expression, physiological functions, and molecular mechanisms of TMEMs in brain tumors, psychiatric disorders, abnormal motor activity, cobblestone lissencephaly, neuropathic pain, traumatic brain injury, and other disorders of the nervous system. Additionally, we propose that TMEMs may be used as prognostic markers and potential therapeutic targets in patients with various neurological diseases.
Collapse
Affiliation(s)
- Qinghong Chen
- Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchang 330006, Jiangxi, China
| | - Junlin Fang
- Department of Acupuncture and Moxibustion, Banan Hospital of Traditional Chinese MedicineChongqing 401320, China
| | - Hui Shen
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Liping Chen
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Mengying Shi
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Xianbao Huang
- Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchang 330006, Jiangxi, China
| | - Zhiwei Miao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| | - Yating Gong
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineSuzhou 215600, Jiangsu, China
| |
Collapse
|
20
|
Wang P, Jia X, Xiao X, Li S, Long Y, Liu M, Li Y, Li J, Xu Y, Zhang Q. An Early Diagnostic Clue for COL18A1- and LAMA1-Associated Diseases: High Myopia With Alopecia Areata in the Cranial Midline. Front Cell Dev Biol 2021; 9:644947. [PMID: 34249907 PMCID: PMC8267009 DOI: 10.3389/fcell.2021.644947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background High myopia with alopecia areata in the occipital region has been observed in patients with Knobloch syndrome caused by COL18A1 mutations. This study investigated other possible genetic causes of high myopia in patients with alopecia areata in the cranial midline. Methods Six patients with early onset high myopia and alopecia areata in the cranial midline were recruited. Targeted high-throughput sequencing was performed on the proband’s DNA to detect potential pathogenic variants. Cosegregation analysis was performed for available family members. Minigene assay and RNA Sequencing were used to validate the abnormality of possible splicing change and gross deletion. Ophthalmological and neuroimaging examinations were performed. Results Eight novel and one known loss-of-function mutants were detected in all six patients, including a gross deletion detected by RNA sequencing. Four COL18A1 mutants in three patients with scalp leisure in the occipital region; and five LAMA1 mutations in three patients with scalp leisure in the parietal region. Further assessments indicated that patients with COL18A1 mutations had Knobloch syndrome, and the patients with LAMA1 mutations had Poretti–Boltshauser syndrome. Conclusion Our study found that early onset high myopia with midline alopecia areata could be caused not only by mutations of the COL18A1 gene but also by mutations in the LAMA1 gene. To our knowledge, we are the first to observe scalp defects in patients with LAMA1 mutations. High myopia with alopecia areata in the cranial midline could be treated as an early diagnostic clue for ophthalmologists to consider the two kinds of rare diseases.
Collapse
Affiliation(s)
- Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mengchu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yongyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Alharbi S, Alhashem A, Alkuraya F, Kashlan F, Tlili-Graiess K. Neuroimaging manifestations and genetic heterogeneity of Walker-Warburg syndrome in Saudi patients. Brain Dev 2021; 43:380-388. [PMID: 33199158 DOI: 10.1016/j.braindev.2020.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/08/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Walker-Warburg syndrome (WWS), an autosomal recessive disease, is the most severe phenotype of congenital muscular dystrophies. Its diagnosis remains primarily clinical and radiological. Identification of its causative variants will assist genetic counseling. We aim to describe genetic and neuroimaging findings of WWS and investigate the correlation between them. METHODS We retrospectively reviewed the clinical, genetic and neuroimaging findings of eleven Saudi neonates diagnosed with WWS between April 2012 and December 2018 in a single tertiary care center. Correlation between neuroimaging and genetic findings was investigated. RESULTS All patients had macrocephaly except one who had intrauterine growth restriction. Dysmorphic features were identified in nearly half of the patients. Creatine kinase levels were available in nine patients and were always elevated. Homozygous pathogenic variants were identified in all patients spanning POMT1 (n = 5), TMEM5 (n = 3), ISPD (n = 2) and POMT2 (n = 1) including one patient who had a dual molecular diagnosis of ISPD and PGAP2. On neuroimaging, all patients showed cobblestone cortex, classical infratentorial findings, and hydrocephalus. Other cerebral cortical malformations included subependymal heterotopia, polymicrogyria and open-lip schizencephaly in four, two and one patients, respectively. Buphthalmos and microphthalmia were the most prevalent orbital findings and found in all patients either unilaterally or bilaterally. CONCLUSION WWS is a genetically heterogeneous disorder among Saudis. The case with an additional PGAP2-related phenotype exemplifies the increased risk of dual autosomal recessive disorders in consanguineous populations. MRI is excellent in demonstrating spectrum of WWS brain and orbital malformations; however, no definite correlation could be found between the MRI findings and the genetic variant.
Collapse
Affiliation(s)
- Sara Alharbi
- Neuroradiology Section, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Fowzan Alkuraya
- Division of Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fawaz Kashlan
- Division of Neonatology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Kalthoum Tlili-Graiess
- Neuroradiology Section, Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Brock S, Cools F, Jansen AC. Neuropathology of genetically defined malformations of cortical development-A systematic literature review. Neuropathol Appl Neurobiol 2021; 47:585-602. [PMID: 33480109 PMCID: PMC8359484 DOI: 10.1111/nan.12696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/23/2022]
Abstract
AIMS Malformations of cortical development (MCD) include a heterogeneous spectrum of clinical, imaging, molecular and histopathological entities. While the understanding of genetic causes of MCD has improved with the availability of next-generation sequencing modalities, genotype-histopathological correlations remain limited. This is the first systematic review of molecular and neuropathological findings in patients with MCD to provide a comprehensive overview of the literature. METHODS A systematic review was performed between November 2019 and February 2020. A MEDLINE search was conducted for 132 genes previously linked to MCD in order to identify studies reporting macroscopic and/or microscopic findings in patients with a confirmed genetic cause. RESULTS Eighty-one studies were included in this review reporting neuropathological features associated with pathogenic variants in 46 genes (46/132 genes, 34.8%). Four groups emerged, consisting of (1) 13 genes with well-defined histological-genotype correlations, (2) 27 genes for which neuropathological reports were limited, (3) 5 genes with conflicting neuropathological features, and (4) 87 genes for which no histological data were available. Lissencephaly and polymicrogyria were reported most frequently. Associated brain malformations were variably present, with abnormalities of the corpus callosum as most common associated feature. CONCLUSIONS Neuropathological data in patients with MCD with a defined genetic cause are available only for a small number of genes. As each genetic cause might lead to unique histopathological features of MCD, standardised thorough neuropathological assessment and reporting should be encouraged. Histological features can help improve the understanding of the pathogenesis of MCD and generate hypotheses with impact on further research directions.
Collapse
Affiliation(s)
- Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Neurogenetics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Filip Cools
- Department of Neonatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Pediatric Neurology Unit, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
23
|
Yang H, Cai F, Liao H, Gan S, Xiao T, Wu L. Case Report: ISPD Gene Mutation Leads to Dystroglycanopathies: Genotypic Phenotype Analysis and Treatment Exploration. Front Pediatr 2021; 9:710553. [PMID: 34485198 PMCID: PMC8416436 DOI: 10.3389/fped.2021.710553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
ISPD gene mutation-related diseases have high clinical and genetic heterogeneity, and no studies have yet reported any effective treatments. We describe six patients with dystroglycanopathies caused by ISPD gene mutations and analyze their genotypes and phenotypes to explore possible effective treatments. Our results confirm that the phenotype of limb-girdle muscular dystrophies can be easily misdiagnosed as Duchenne muscular dystrophy and that exon deletions of ISPD gene are relatively common. Moreover, low-dose prednisone therapy can improve patients' exercise ability and prolong survival and may be a promising new avenue for ISPD therapy.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Fang Cai
- Department of Neurology, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Siyi Gan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Xiao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
24
|
Zaganas I, Mastorodemos V, Spilioti M, Mathioudakis L, Latsoudis H, Michaelidou K, Kotzamani D, Notas K, Dimitrakopoulos K, Skoula I, Ioannidis S, Klothaki E, Erimaki S, Stavropoulos G, Vassilikos V, Amoiridis G, Efthimiadis G, Evangeliou A, Mitsias P. Genetic cause of heterogeneous inherited myopathies in a cohort of Greek patients. Mol Genet Metab Rep 2020; 25:100682. [PMID: 33304817 PMCID: PMC7711282 DOI: 10.1016/j.ymgmr.2020.100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inherited muscle disorders are caused by pathogenic changes in numerous genes. Herein, we aimed to investigate the etiology of muscle disease in 24 consecutive Greek patients with myopathy suspected to be genetic in origin, based on clinical presentation and laboratory and electrophysiological findings and absence of known acquired causes of myopathy. Of these, 16 patients (8 females, median 24 years-old, range 7 to 67 years-old) were diagnosed by Whole Exome Sequencing as suffering from a specific type of inherited muscle disorder. Specifically, we have identified causative variants in 6 limb-girdle muscular dystrophy genes (6 patients; ANO5, CAPN3, DYSF, ISPD, LAMA2, SGCA), 3 metabolic myopathy genes (4 patients; CPT2, ETFDH, GAA), 1 congenital myotonia gene (1 patient; CLCN1), 1 mitochondrial myopathy gene (1 patient; MT-TE) and 3 other myopathy-associated genes (4 patients; CAV3, LMNA, MYOT). In 6 additional family members affected by myopathy, we reached genetic diagnosis following identification of a causative variant in an index patient. In our patients, genetic diagnosis ended a lengthy diagnostic process and, in the case of Multiple acyl-CoA dehydrogenase deficiency and Pompe's disease, it enabled specific treatment to be initiated. These results further expand the genotypic and phenotypic spectrum of inherited myopathies.
Collapse
Affiliation(s)
- Ioannis Zaganas
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | | | - Martha Spilioti
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kleita Michaelidou
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitra Kotzamani
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Konstantinos Notas
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Irene Skoula
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Stefanos Ioannidis
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Eirini Klothaki
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Sophia Erimaki
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Stavropoulos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilios Vassilikos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Amoiridis
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Efthimiadis
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Evangeliou
- Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panayiotis Mitsias
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
- Department of Neurology, Henry Ford Hospital/Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
25
|
Ferent J, Zaidi D, Francis F. Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Front Cell Dev Biol 2020; 8:578341. [PMID: 33178693 PMCID: PMC7596222 DOI: 10.3389/fcell.2020.578341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
During the development of the cortex, newly generated neurons migrate long-distances in the expanding tissue to reach their final positions. Pyramidal neurons are produced from dorsal progenitors, e.g., radial glia (RGs) in the ventricular zone, and then migrate along RG processes basally toward the cortex. These neurons are hence dependent upon RG extensions to support their migration from apical to basal regions. Several studies have investigated how intracellular determinants are required for RG polarity and subsequent formation and maintenance of their processes. Fewer studies have identified the influence of the extracellular environment on this architecture. This review will focus on extracellular factors which influence RG morphology and pyramidal neuronal migration during normal development and their perturbations in pathology. During cortical development, RGs are present in different strategic positions: apical RGs (aRGs) have their cell bodies located in the ventricular zone with an apical process contacting the ventricle, while they also have a basal process extending radially to reach the pial surface of the cortex. This particular conformation allows aRGs to be exposed to long range and short range signaling cues, whereas basal RGs (bRGs, also known as outer RGs, oRGs) have their cell bodies located throughout the cortical wall, limiting their access to ventricular factors. Long range signals impacting aRGs include secreted molecules present in the embryonic cerebrospinal fluid (e.g., Neuregulin, EGF, FGF, Wnt, BMP). Secreted molecules also contribute to the extracellular matrix (fibronectin, laminin, reelin). Classical short range factors include cell to cell signaling, adhesion molecules and mechano-transduction mechanisms (e.g., TAG1, Notch, cadherins, mechanical tension). Changes in one or several of these components influencing the RG extracellular environment can disrupt the development or maintenance of RG architecture on which neuronal migration relies, leading to a range of cortical malformations. First, we will detail the known long range signaling cues impacting RG. Then, we will review how short range cell contacts are also important to instruct the RG framework. Understanding how RG processes are structured by their environment to maintain and support radial migration is a critical part of the investigation of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Julien Ferent
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Donia Zaidi
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Fiona Francis
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| |
Collapse
|
26
|
Fetal Anomalies Associated with Novel Pathogenic Variants in TMEM94. Genes (Basel) 2020; 11:genes11090967. [PMID: 32825426 PMCID: PMC7565137 DOI: 10.3390/genes11090967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Intellectual developmental disorder with cardiac defects and dysmorphic facies (IDDCDF, MIM 618316) is a newly described disorder. It is characterized by global developmental delay, intellectual disability and speech delay, congenital cardiac malformations, and dysmorphic facial features. Biallelic pathogenic variants of TMEM94 are associated with IDDCDF. Methods and Results: In a prenatal setting, where fetal abnormalities were detected using antenatal sonography, we used trio-exome sequencing (trio-ES) in conjunction with chromosomal microarray analysis (CMA) to identify two novel homozygous loss of function variants in the TMEM94 gene (c.606dupG and c.2729-2A>G) in two unrelated Saudi Arabian families. Conclusions: This study provides confirmation that TMEM94 variants may cause IDDCDF. For the first time we describe the pathogenicity of TMEM94 defects detected during the prenatal period.
Collapse
|
27
|
Mandel H, Cohen Kfir N, Fedida A, Shuster Biton E, Odeh M, Kalfon L, Ben-Harouch S, Fleischer Sheffer V, Hoffman Y, Goldberg Y, Dinwiddie A, Dumin E, Eran A, Apel-Sarid L, Tiosano D, Falik-Zaccai TC. COG6-CDG: Expanding the phenotype with emphasis on glycosylation defects involved in the causation of male disorders of sex development. Clin Genet 2020; 98:402-407. [PMID: 32683677 DOI: 10.1111/cge.13816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
COG6-congenital disorder of glycosylation (COG6-CDG) is caused by biallelic mutations in COG6. To-date, 12 variants causing COG6-CDG in less than 20 patients have been reported. Using whole exome sequencing we identified two siblings with a novel homozygous deletion of 26 bp in COG6, creating a splicing variant (c.518_540 + 3del) and a shift in the reading frame. The phenotype of COG6-CDG includes growth and developmental retardation, microcephaly, liver and gastrointestinal disease, hypohydrosis and recurrent infections. We report two patients with novel phenotypic features including bowel malrotation and ambiguous genitalia, directing attention to the role of glycoprotein metabolism in the causation of disorders of sex development (DSD). Searching the glycomic literature, we identified 14 CDGs including males with DSD, a feature not previously accentuated. This study broadens the genetic and phenotypic spectrum of COG6-CDG and calls for increasing awareness to the central role of glycosylation processes in development of human sex and genitalia.
Collapse
Affiliation(s)
- Hanna Mandel
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Nehama Cohen Kfir
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ayalla Fedida
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Marwan Odeh
- Ultra-Sound Unit, Galilee Medical Center, Nahariya, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Shani Ben-Harouch
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | | | | | - Yael Goldberg
- Ultrasound Unit, Carmel Medical Center, Haifa, Israel
| | - April Dinwiddie
- Diagnostics Department, Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Tübingen, Germany
| | - Elena Dumin
- Clinical Biochemistry Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Ayelet Eran
- Neuroradiology Unit, Radiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Liat Apel-Sarid
- Department of Pathology, Galilee Medical Center, Nahariya, Israel
| | - Dov Tiosano
- Pediatric Endocrinology Department, Rambam Health Care Campus, Haifa, Israel
| | - Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
28
|
Gençpınar P, Uyanık G, Haspolat Ş, Oygür N, Duman Ö. Clinical and Molecular Manifestations of Congenital Muscular Alpha-Dystroglycanopathy due to an ISPD Gene Mutation. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09831-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Yatsenko AS, Kucherenko MM, Xie Y, Aweida D, Urlaub H, Scheibe RJ, Cohen S, Shcherbata HR. Profiling of the muscle-specific dystroglycan interactome reveals the role of Hippo signaling in muscular dystrophy and age-dependent muscle atrophy. BMC Med 2020; 18:8. [PMID: 31959160 PMCID: PMC6971923 DOI: 10.1186/s12916-019-1478-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dystroglycanopathies are a group of inherited disorders characterized by vast clinical and genetic heterogeneity and caused by abnormal functioning of the ECM receptor dystroglycan (Dg). Remarkably, among many cases of diagnosed dystroglycanopathies, only a small fraction can be linked directly to mutations in Dg or its regulatory enzymes, implying the involvement of other, not-yet-characterized, Dg-regulating factors. To advance disease diagnostics and develop new treatment strategies, new approaches to find dystroglycanopathy-related factors should be considered. The Dg complex is highly evolutionarily conserved; therefore, model genetic organisms provide excellent systems to address this challenge. In particular, Drosophila is amenable to experiments not feasible in any other system, allowing original insights about the functional interactors of the Dg complex. METHODS To identify new players contributing to dystroglycanopathies, we used Drosophila as a genetic muscular dystrophy model. Using mass spectrometry, we searched for muscle-specific Dg interactors. Next, in silico analyses allowed us to determine their association with diseases and pathological conditions in humans. Using immunohistochemical, biochemical, and genetic interaction approaches followed by the detailed analysis of the muscle tissue architecture, we verified Dg interaction with some of the discovered factors. Analyses of mouse muscles and myocytes were used to test if interactions are conserved in vertebrates. RESULTS The muscle-specific Dg complexome revealed novel components that influence the efficiency of Dg function in the muscles. We identified the closest human homologs for Dg-interacting partners, determined their significant enrichment in disease-associations, and verified some of the newly identified Dg interactions. We found that Dg associates with two components of the mechanosignaling Hippo pathway: the WW domain-containing proteins Kibra and Yorkie. Importantly, this conserved interaction manages adult muscle size and integrity. CONCLUSIONS The results presented in this study provide a new list of muscle-specific Dg interactors, further analysis of which could aid not only in the diagnosis of muscular dystrophies, but also in the development of new therapeutics. To regulate muscle fitness during aging and disease, Dg associates with Kibra and Yorkie and acts as a transmembrane Hippo signaling receptor that transmits extracellular information to intracellular signaling cascades, regulating muscle gene expression.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Present Address: Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Institute of Physiology, Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Yuanbin Xie
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Present Address: University Medical Center, Centre for Anatomy, Institute of Neuroanatomy, Georg-August-University Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Dina Aweida
- Faculty of Biology, Technion, 32000, Haifa, Israel
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Bioanalytics Institute for Clinical Chemistry, University Medical Center Goettingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Renate J Scheibe
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | - Halyna R Shcherbata
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
30
|
|
31
|
Kim J, Lana B, Torelli S, Ryan D, Catapano F, Ala P, Luft C, Stevens E, Konstantinidis E, Louzada S, Fu B, Paredes‐Redondo A, Chan AWE, Yang F, Stemple DL, Liu P, Ketteler R, Selwood DL, Muntoni F, Lin Y. A new patient-derived iPSC model for dystroglycanopathies validates a compound that increases glycosylation of α-dystroglycan. EMBO Rep 2019; 20:e47967. [PMID: 31566294 PMCID: PMC6832011 DOI: 10.15252/embr.201947967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
Dystroglycan, an extracellular matrix receptor, has essential functions in various tissues. Loss of α-dystroglycan-laminin interaction due to defective glycosylation of α-dystroglycan underlies a group of congenital muscular dystrophies often associated with brain malformations, referred to as dystroglycanopathies. The lack of isogenic human dystroglycanopathy cell models has limited our ability to test potential drugs in a human- and neural-specific context. Here, we generated induced pluripotent stem cells (iPSCs) from a severe dystroglycanopathy patient with homozygous FKRP (fukutin-related protein gene) mutation. We showed that CRISPR/Cas9-mediated gene correction of FKRP restored glycosylation of α-dystroglycan in iPSC-derived cortical neurons, whereas targeted gene mutation of FKRP in wild-type cells disrupted this glycosylation. In parallel, we screened 31,954 small molecule compounds using a mouse myoblast line for increased glycosylation of α-dystroglycan. Using human FKRP-iPSC-derived neural cells for hit validation, we demonstrated that compound 4-(4-bromophenyl)-6-ethylsulfanyl-2-oxo-3,4-dihydro-1H-pyridine-5-carbonitrile (4BPPNit) significantly augmented glycosylation of α-dystroglycan, in part through upregulation of LARGE1 glycosyltransferase gene expression. Together, isogenic human iPSC-derived cells represent a valuable platform for facilitating dystroglycanopathy drug discovery and therapeutic development.
Collapse
Affiliation(s)
- Jihee Kim
- Centre for Genomics and Child HealthBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Stem Cell LaboratoryNational Bowel Research CentreBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Beatrice Lana
- Centre for Genomics and Child HealthBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Stem Cell LaboratoryNational Bowel Research CentreBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Silvia Torelli
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - David Ryan
- Wellcome Sanger InstituteHinxtonCambridgeUK
| | | | - Pierpaolo Ala
- UCL Great Ormond Street Institute of Child HealthLondonUK
| | - Christin Luft
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | | | - Evangelos Konstantinidis
- Centre for Genomics and Child HealthBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Stem Cell LaboratoryNational Bowel Research CentreBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | | | - Beiyuan Fu
- Wellcome Sanger InstituteHinxtonCambridgeUK
| | - Amaia Paredes‐Redondo
- Centre for Genomics and Child HealthBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Stem Cell LaboratoryNational Bowel Research CentreBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - AW Edith Chan
- The Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | | | | | - Pentao Liu
- Wellcome Sanger InstituteHinxtonCambridgeUK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - David L Selwood
- The Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Francesco Muntoni
- UCL Great Ormond Street Institute of Child HealthLondonUK
- NIHR Biomedical Research Centre at Great Ormond Street HospitalLondonUK
| | - Yung‐Yao Lin
- Centre for Genomics and Child HealthBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Stem Cell LaboratoryNational Bowel Research CentreBlizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
32
|
Geis T, Rödl T, Topaloğlu H, Balci-Hayta B, Hinreiner S, Müller-Felber W, Schoser B, Mehraein Y, Hübner A, Zirn B, Hoopmann M, Reutter H, Mowat D, Schuierer G, Schara U, Hehr U, Kölbel H. Clinical long-time course, novel mutations and genotype-phenotype correlation in a cohort of 27 families with POMT1-related disorders. Orphanet J Rare Dis 2019; 14:179. [PMID: 31311558 PMCID: PMC6636095 DOI: 10.1186/s13023-019-1119-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/04/2019] [Indexed: 12/04/2022] Open
Abstract
Background The protein O-mannosyltransferase 1, encoded by the POMT1 gene, is a key enzyme in the glycosylation of α-dystroglycan. POMT1–related disorders belong to the group of dystroglycanopathies characterized by a proximally pronounced muscular dystrophy with structural or functional involvement of the brain and/or the eyes. The phenotypic spectrum ranges from the severe Walker-Warburg syndrome (WWS) to milder forms of limb girdle muscular dystrophy (LGMD). The phenotypic severity of POMT1-related dystroglycanopathies depends on the residual enzyme activity. A genotype-phenotype correlation can be assumed. Results The clinical, neuroradiological, and genetic findings of 35 patients with biallelic POMT1 mutations (15 WWS, 1 MEB (muscle-eye-brain disease), 19 LGMD) from 27 independent families are reported. The representative clinical course of an infant with WWS and the long-term course of a 32 years old patient with LGMD are described in more detail. Specific features of 15 patients with the homozygous founder mutation p.Ala200Pro are defined as a distinct and mildly affected LGMD subgroup. Ten previously reported and 8 novel POMT1 mutations were identified. Type and location of each of the POMT1 mutations are evaluated in detail and a list of all POMT1 mutations reported by now is provided. Patients with two mutations leading to premature protein termination had a WWS phenotype, while the presence of at least one missense mutation was associated with milder phenotypes. In the patient with MEB-like phenotype two missense mutations were observed within the catalytic active domain of the enzyme. Conclusions Our large cohort confirms the importance of type and location of each POMT1 mutation for the individual clinical manifestation and thereby expands the knowledge on the genotype-phenotype correlation in POMT1-related dystroglycanopathies. This genotype-phenotype correlation is further supported by the observation of an intrafamiliar analogous clinical manifestation observed in all affected 13 siblings from 5 independent families. Our data confirm the progressive nature of the disease also in milder LGMD phenotypes, ultimately resulting in loss of ambulation at a variable age. Our data define two major clinical POMT1 phenotypes, which should prompt genetic testing including the POMT1 gene: patients with a severe WWS manifestation predominantly present with profound neonatal muscular hypotonia and a severe and progressive hydrocephalus with involvement of brainstem and/or cerebellum. The presence of an occipital encephalocele in a WWS patient might point to POMT1 as causative gene within the different genes associated with WWS. The milder LGMD phenotypes constantly show markedly elevated creatine kinase values in combination with microcephaly and cognitive impairment. Electronic supplementary material The online version of this article (10.1186/s13023-019-1119-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Geis
- Department of Pediatric Neurology, Klinik St. Hedwig, University Children's Hospital Regensburg (KUNO), Steinmetzstr. 1-3, 93049, Regensburg, Germany.
| | - Tanja Rödl
- Center for Human Genetics, Regensburg, Germany
| | - Haluk Topaloğlu
- Department of Pediatric Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Burcu Balci-Hayta
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | - Benedikt Schoser
- Friedrich-Baur-Institut, Neurologische Klinik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yasmin Mehraein
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Angela Hübner
- Pediatrics, University Hospital, Technical University Dresden, Dresden, Germany
| | - Birgit Zirn
- Genetic Counselling and Diagnostic, Genetikum Stuttgart, Stuttgart, Germany
| | - Markus Hoopmann
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Heiko Reutter
- Department of Neonatology, University Hospital of Bonn, Bonn, Germany
| | - David Mowat
- Department of Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Gerhard Schuierer
- Department of Neuroradiology, University of Regensburg, Regensburg, Germany
| | - Ulrike Schara
- Department of Pediatric Neurology, University Hospital Essen, Essen, Germany
| | - Ute Hehr
- Center for Human Genetics, Regensburg, Germany.,Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Heike Kölbel
- Department of Pediatric Neurology, University Hospital Essen, Essen, Germany
| |
Collapse
|
33
|
Kanagawa M, Toda T. Muscular Dystrophy with Ribitol-Phosphate Deficiency: A Novel Post-Translational Mechanism in Dystroglycanopathy. J Neuromuscul Dis 2019; 4:259-267. [PMID: 29081423 PMCID: PMC5701763 DOI: 10.3233/jnd-170255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Muscular dystrophy is a group of genetic disorders characterized by progressive muscle weakness. In the early 2000s, a new classification of muscular dystrophy, dystroglycanopathy, was established. Dystroglycanopathy often associates with abnormalities in the central nervous system. Currently, at least eighteen genes have been identified that are responsible for dystroglycanopathy, and despite its genetic heterogeneity, its common biochemical feature is abnormal glycosylation of alpha-dystroglycan. Abnormal glycosylation of alpha-dystroglycan reduces its binding activities to ligand proteins, including laminins. In just the last few years, remarkable progress has been made in determining the sugar chain structures and gene functions associated with dystroglycanopathy. The normal sugar chain contains tandem structures of ribitol-phosphate, a pentose alcohol that was previously unknown in humans. The dystroglycanopathy genes fukutin, fukutin-related protein (FKRP), and isoprenoid synthase domain-containing protein (ISPD) encode essential enzymes for the synthesis of this structure: fukutin and FKRP transfer ribitol-phosphate onto sugar chains of alpha-dystroglycan, and ISPD synthesizes CDP-ribitol, a donor substrate for fukutin and FKRP. These findings resolved long-standing questions and established a disease subgroup that is ribitol-phosphate deficient, which describes a large population of dystroglycanopathy patients. Here, we review the history of dystroglycanopathy, the properties of the sugar chain structure of alpha-dystroglycan, dystroglycanopathy gene functions, and therapeutic strategies.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
34
|
van Tol W, Wessels H, Lefeber DJ. O-glycosylation disorders pave the road for understanding the complex human O-glycosylation machinery. Curr Opin Struct Biol 2019; 56:107-118. [PMID: 30708323 DOI: 10.1016/j.sbi.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
Abstract
Over 100 human Congenital Disorders of Glycosylation (CDG) have been described. Of these, about 30% reside in the O-glycosylation pathway. O-glycosylation disorders are characterized by a high phenotypic variability, reflecting the large diversity of O-glycan structures. In contrast to N-glycosylation disorders, a generic biochemical screening test is lacking, which limits the identification of novel O-glycosylation disorders. The emergence of next generation sequencing (NGS) and O-glycoproteomics technologies have changed this situation, resulting in significant progress to link disease phenotypes with underlying biochemical mechanisms. Here, we review the current knowledge on O-glycosylation disorders, and discuss the biochemical lessons that we can learn on 1) novel glycosyltransferases and metabolic pathways, 2) tissue-specific O-glycosylation mechanisms, 3) O-glycosylation targets and 4) structure-function relationships. Additionally, we provide an outlook on how genetic disorders, O-glycoproteomics and biochemical methods can be combined to answer fundamental questions regarding O-glycan synthesis, structure and function.
Collapse
Affiliation(s)
- Walinka van Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Arora V, Puri RD, Bijarnia-Mahay S, Verma IC. Antenatal Presentation of TMEM5 Gene-Associated Congenital Muscular Dystrophy Expanding the Phenotypic and Genotypic Spectrum. JOURNAL OF FETAL MEDICINE 2019. [DOI: 10.1007/s40556-019-00199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Borisovna KO, Yurievna KA, Yurievich TK, Igorevna KO, Olegovich KD, Igorevna DA, Timofeevna BT, Vyacheslavovna ZN, Ivanovna SE, Alekseevich SP, Vladimirovich IV. Compound heterozygous POMGNT1 mutations leading to muscular dystrophy-dystroglycanopathy type A3: a case report. BMC Pediatr 2019; 19:98. [PMID: 30961548 PMCID: PMC6454623 DOI: 10.1186/s12887-019-1470-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 03/24/2019] [Indexed: 12/30/2022] Open
Abstract
Background Dystroglycanopathies, which are caused by reduced glycosylation of alpha-dystroglycan, are a heterogeneous group of neurodegenerative disorders characterized by variable brain and skeletal muscle involvement. Muscle-eye-brain disease (or muscular dystrophy-dystroglycanopathy type 3 A) is an autosomal recessive disorder characterized by congenital muscular dystrophy, ocular abnormalities, and lissencephaly. Case presentation We report clinical and genetic characteristics of a 6-year-old boy affected by muscular dystrophy-dystroglycanopathy. He has severe a delay in psychomotor and speech development, muscle hypotony, congenital myopia, partial atrophy of the optic nerve disc, increased level of creatine kinase, primary-muscle lesion, polymicrogyria, ventriculomegaly, hypoplasia of the corpus callosum, cysts of the cerebellum. Exome sequencing revealed compound heterozygous mutations in POMGNT1 gene (transcript NM_001243766.1): c.1539 + 1G > A and c.385C > T. Conclusions The present case report shows diagnostic algorithm step by step and helps better understand the clinical and genetic features of congenital muscular dystrophy.
Collapse
Affiliation(s)
- Kondakova Olga Borisovna
- Scientific and Practical Centre of Pediatric psychoneurology of Moscow Healthcare Department, Michurinsky prospect, 74, 119602, Moscow, Russia
| | - Krasnenko Anna Yurievna
- Genotek Ltd, Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia.,Pirogov Russian National Research Medical University, Ostrovitianova street 1, 117997, Moscow, Russia
| | | | | | - Korostin Dmitriy Olegovich
- Genotek Ltd, Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia.,Pirogov Russian National Research Medical University, Ostrovitianova street 1, 117997, Moscow, Russia
| | | | - Batysheva Tatyana Timofeevna
- Scientific and Practical Centre of Pediatric psychoneurology of Moscow Healthcare Department, Michurinsky prospect, 74, 119602, Moscow, Russia
| | | | | | - Shatalov Peter Alekseevich
- Genotek Ltd, Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia.,Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Taldomskaya str 2, 125412, Moscow, Russia
| | - Ilinsky Valery Vladimirovich
- Genotek Ltd, Nastavnicheskii pereulok 17/1, 105120, Moscow, Russia.,Pirogov Russian National Research Medical University, Ostrovitianova street 1, 117997, Moscow, Russia.,Institute of Biomedical Chemistry, Pogodinskaya street 10 building 8, 119121, Moscow, Russia.,Vavilov Institute of General Genetics, Gubkina street 3, 119333, Moscow, Russia
| |
Collapse
|
37
|
Dasgupta K, Jeong J. Developmental biology of the meninges. Genesis 2019; 57:e23288. [PMID: 30801905 DOI: 10.1002/dvg.23288] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/14/2023]
Abstract
The meninges are membranous layers surrounding the central nervous system. In the head, the meninges lie between the brain and the skull, and interact closely with both during development. The cranial meninges originate from a mesenchymal sheath on the surface of the developing brain, called primary meninx, and undergo differentiation into three layers with distinct histological characteristics: the dura mater, the arachnoid mater, and the pia mater. While genetic regulation of meningeal development is still poorly understood, mouse mutants and other models with meningeal defects have demonstrated the importance of the meninges to normal development of the calvaria and the brain. For the calvaria, the interactions with the meninges are necessary for the progression of calvarial osteogenesis during early development. In later stages, the meninges control the patterning of the skull and the fate of the sutures. For the brain, the meninges regulate diverse processes including cell survival, cell migration, generation of neurons from progenitors, and vascularization. Also, the meninges serve as a stem cell niche for the brain in the postnatal life. Given these important roles of the meninges, further investigation into the molecular mechanisms underlying meningeal development can provide novel insights into the coordinated development of the head.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- New York University College of Dentistry, Department of Basic Science and Craniofacial Biology, New York, New York
| | - Juhee Jeong
- New York University College of Dentistry, Department of Basic Science and Craniofacial Biology, New York, New York
| |
Collapse
|
38
|
Juric-Sekhar G, Hevner RF. Malformations of Cerebral Cortex Development: Molecules and Mechanisms. ANNUAL REVIEW OF PATHOLOGY 2019; 14:293-318. [PMID: 30677308 PMCID: PMC6938687 DOI: 10.1146/annurev-pathmechdis-012418-012927] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malformations of cortical development encompass heterogeneous groups of structural brain anomalies associated with complex neurodevelopmental disorders and diverse genetic and nongenetic etiologies. Recent progress in understanding the genetic basis of brain malformations has been driven by extraordinary advances in DNA sequencing technologies. For example, somatic mosaic mutations that activate mammalian target of rapamycin signaling in cortical progenitor cells during development are now recognized as the cause of hemimegalencephaly and some types of focal cortical dysplasia. In addition, research on brain development has begun to reveal the cellular and molecular bases of cortical gyrification and axon pathway formation, providing better understanding of disorders involving these processes. New neuroimaging techniques with improved resolution have enhanced our ability to characterize subtle malformations, such as those associated with intellectual disability and autism. In this review, we broadly discuss cortical malformations and focus on several for which genetic etiologies have elucidated pathogenesis.
Collapse
Affiliation(s)
- Gordana Juric-Sekhar
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; ,
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Robert F Hevner
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA; ,
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98105, USA
- Current affiliation: Department of Pathology, University of California, San Diego, California 92093, USA
| |
Collapse
|
39
|
Francisco R, Pascoal C, Marques-da-Silva D, Morava E, Gole GA, Coman D, Jaeken J, Dos Reis Ferreira V. Keeping an eye on congenital disorders of O-glycosylation: A systematic literature review. J Inherit Metab Dis 2019; 42:29-48. [PMID: 30740740 DOI: 10.1002/jimd.12025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing family comprising >100 genetic diseases. Some 25 CDG are pure O-glycosylation defects. Even among this CDG subgroup, phenotypic diversity is broad, ranging from mild to severe poly-organ/system dysfunction. Ophthalmic manifestations are present in 60% of these CDG. The ophthalmic manifestations in N-glycosylation-deficient patients have been described elsewhere. The present review documents the spectrum and incidence of eye disorders in patients with pure O-glycosylation defects with the aim of assisting diagnosis and management and promoting research.
Collapse
Affiliation(s)
- Rita Francisco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Carlota Pascoal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Dorinda Marques-da-Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Eva Morava
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Glen A Gole
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Discipline of Paediatrics and Child Health, University of Queensland, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David Coman
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| |
Collapse
|
40
|
Vannoy CH, Blaeser A, Lu QL. Dystroglycanopathy Gene Therapy: Unlocking the Potential of Genetic Engineering. MUSCLE GENE THERAPY 2019:469-490. [DOI: 10.1007/978-3-030-03095-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech 2018; 11:11/12/dmm035931. [PMID: 30578246 PMCID: PMC6307911 DOI: 10.1242/dmm.035931] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dystroglycan is a cell membrane protein that binds to the extracellular matrix in a variety of mammalian tissues. The α-subunit of dystroglycan (αDG) is heavily glycosylated, including a special O-mannosyl glycoepitope, relying upon this unique glycosylation to bind its matrix ligands. A distinct group of muscular dystrophies results from specific hypoglycosylation of αDG, and they are frequently associated with central nervous system involvement, ranging from profound brain malformation to intellectual disability without evident morphological defects. There is an expanding literature addressing the function of αDG in the nervous system, with recent reports demonstrating important roles in brain development and in the maintenance of neuronal synapses. Much of these data are derived from an increasingly rich array of experimental animal models. This Review aims to synthesize the information from such diverse models, formulating an up-to-date understanding about the various functions of αDG in neurons and glia of the central and peripheral nervous systems. Where possible, we integrate these data with our knowledge of the human disorders to promote translation from basic mechanistic findings to clinical therapies that take the neural phenotypes into account. Summary: Dystroglycan is a ubiquitous matrix receptor linked to brain and muscle disease. Unraveling the functions of this protein will inform basic and translational research on neural development and muscular dystrophies.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Almeida M, Peralta J, Garcia J, Diego V, Goring H, Williams-Blangero S, Blangero J. Modeling methylation data as an additional genetic variance component. BMC Proc 2018; 12:29. [PMID: 30263043 PMCID: PMC6157027 DOI: 10.1186/s12919-018-0128-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
High-throughput platforms allow the characterization of thousands of previously known methylation sites. These platforms have great potential for investigating the epigenetic effects that are partially responsible for gene expression control. Methylation sites provide a bridge for the investigation of real-time environmental contributions on genomic events by the alteration of methylation status of those sites. Using the data provided by GAW20's organization committee, we calculated the heritability estimates of each cytosine-phosphate-guanine (CpG) island before and after the use of fenofibrate, a lipid-control drug. Surprisingly, we detected substantially high heritability estimates before drug usage. This somewhat unexpected high sample correlation was corrected by the use of principal components and the distributions of heritability estimates before and after fenofibrate treatment, which made the distributions comparable. The methylation sites located near a gene were collected and a genetic relationship matrix estimated to represent the overall correlation between samples. We implemented a random-effect association test to screen genes whose methylation patterns partially explain the observable high-density lipoprotein (HDL) heritability. Our leading association was observed for the TMEM52 gene that encodes a transmembrane protein, and is largely expressed in the liver, had not been previously associated with HDL until this manuscript. Using a variance component decomposition framework with the linear mixed model allows the integration of data from different sources, such as methylation, gene expression, metabolomics, and proteomics. The decomposition of the genetic variance component decomposition provides a flexible analytical approach for the challenges of this new omics era.
Collapse
Affiliation(s)
- Marcio Almeida
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd., STDOI Modular Building #100, Brownsville, TX 78520 USA
| | - Juan Peralta
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd., STDOI Modular Building #100, Brownsville, TX 78520 USA
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS Australia
| | - Jose Garcia
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd., STDOI Modular Building #100, Brownsville, TX 78520 USA
| | - Vincent Diego
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd., STDOI Modular Building #100, Brownsville, TX 78520 USA
| | - Harald Goring
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd., STDOI Modular Building #100, Brownsville, TX 78520 USA
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd., STDOI Modular Building #100, Brownsville, TX 78520 USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd., STDOI Modular Building #100, Brownsville, TX 78520 USA
| |
Collapse
|
43
|
A new case expanding the mutation and phenotype spectrum of TMEM5-related alpha-dystroglycanopathy. Neuromuscul Disord 2018; 28:671-674. [PMID: 30017359 DOI: 10.1016/j.nmd.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/10/2018] [Accepted: 06/13/2018] [Indexed: 11/22/2022]
Abstract
Dystroglycanopathies are a diverse group of neuromuscular disorders caused by aberrant glycosylation of alpha-dystroglycan. TMEM5 is one of many glycosyltransferases recently described to be associated with alpha-dystroglycanopathies. We report the case of a 15-year-old boy suffering from a congenital muscular dystrophy with elevated serum creatine kinase levels and an almost complete absence of alpha-dystroglycan in muscle biopsy. The clinical course was milder than any previously reported case and did not include brain or eye defects. Standard next-generation sequencing analysis revealed a homozygous mutation in the donor splice site region of exon 5 in TMEM5 (c.914+6 T>G). Available in-silico prediction tools anticipated a reduced efficiency of the splice site. Subsequent cDNA sequencing confirmed the expression of a truncated transcript of TMEM5 lacking exon 5, hence leading to an in-frame deletion in the exostosin domain of the protein. This report expands the clinical and mutation spectrum of alpha-dystroglycanopathies.
Collapse
|
44
|
Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol 2018; 76:33-75. [DOI: 10.1016/j.semcdb.2017.09.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
|
45
|
Ng BG, Freeze HH. Perspectives on Glycosylation and Its Congenital Disorders. Trends Genet 2018; 34:466-476. [PMID: 29606283 DOI: 10.1016/j.tig.2018.03.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly expanding group of metabolic disorders that result from abnormal protein or lipid glycosylation. They are often difficult to clinically diagnose because they broadly affect many organs and functions and lack clinical uniformity. However, recent technological advances in next-generation sequencing have revealed a treasure trove of new genetic disorders, expanded the knowledge of known disorders, and showed a critical role in infectious diseases. More comprehensive genetic tools specifically tailored for mammalian cell-based models have revealed a critical role for glycosylation in pathogen-host interactions, while also identifying new CDG susceptibility genes. We highlight recent advancements that have resulted in a better understanding of human glycosylation disorders, perspectives for potential future therapies, and mysteries for which we continue to seek new insights and solutions.
Collapse
Affiliation(s)
- Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
46
|
Nishihara R, Kobayashi K, Imae R, Tsumoto H, Manya H, Mizuno M, Kanagawa M, Endo T, Toda T. Cell endogenous activities of fukutin and FKRP coexist with the ribitol xylosyltransferase, TMEM5. Biochem Biophys Res Commun 2018; 497:1025-1030. [PMID: 29477842 DOI: 10.1016/j.bbrc.2018.02.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/19/2018] [Indexed: 01/28/2023]
Abstract
Dystroglycanopathies are a group of muscular dystrophies that are caused by abnormal glycosylation of dystroglycan; currently 18 causative genes are known. Functions of the dystroglycanopathy genes fukutin, fukutin-related protein (FKRP), and transmembrane protein 5 (TMEM5) were most recently identified; fukutin and FKRP are ribitol-phosphate transferases and TMEM5 is a ribitol xylosyltransferase. In this study, we show that fukutin, FKRP, and TMEM5 form a complex while maintaining each of their enzyme activities. Immunoprecipitation and immunofluorescence experiments demonstrated protein interactions between these 3 proteins. A protein complex consisting of endogenous fukutin and FKRP, and exogenously expressed TMEM5 exerts activities of each enzyme. Our data showed for the first time that endogenous fukutin and FKRP enzyme activities coexist with TMEM5 enzyme activity, and suggest the possibility that formation of this enzyme complex may contribute to specific and prompt biosynthesis of glycans that are required for dystroglycan function.
Collapse
Affiliation(s)
- Ryuta Nishihara
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-chou, Chuo-ku, Kobe 650-0017, Japan
| | - Kazuhiro Kobayashi
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-chou, Chuo-ku, Kobe 650-0017, Japan
| | - Rieko Imae
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroki Tsumoto
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, Itabashi, Tokyo 173-0003, Japan
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-chou, Chuo-ku, Kobe 650-0017, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-chou, Chuo-ku, Kobe 650-0017, Japan; Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
47
|
Kanagawa M, Toda T. Ribitol-phosphate—a newly identified posttranslational glycosylation unit in mammals: structure, modification enzymes and relationship to human diseases. J Biochem 2018; 163:359-369. [DOI: 10.1093/jb/mvy020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Motoi Kanagawa
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tatsushi Toda
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
48
|
Blaeser A, Awano H, Lu P, Lu QL. Distinct expression of functionally glycosylated alpha-dystroglycan in muscle and non-muscle tissues of FKRP mutant mice. PLoS One 2018; 13:e0191016. [PMID: 29320543 PMCID: PMC5761899 DOI: 10.1371/journal.pone.0191016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/27/2017] [Indexed: 01/06/2023] Open
Abstract
The glycosylation of alpha-dystroglycan (α-DG) is crucial in maintaining muscle cell membrane integrity. Dystroglycanopathies are identified by the loss of this glycosylation leading to a breakdown of muscle cell membrane integrity and eventual degeneration. However, a small portion of fibers expressing functionally glycosylated α-DG (F-α-DG) (revertant fibers, RF) have been identified. These fibers are generally small in size, centrally nucleated and linked to regenerating fibers. Examination of different muscles have shown various levels of RFs but it is unclear the extent of which they are present. Here we do a body-wide examination of muscles from the FKRP-P448L mutant mouse for the prevalence of RFs. We have identified great variation in the distribution of RF in different muscles and tissues. Triceps shows a large increase in RFs and together with centrally nucleated fibers whereas the pectoralis shows a reduction in revertant but increase in centrally nucleated fibers from 6 weeks to 6 months of age. We have also identified that the sciatic nerve with near normal levels of F-α-DG in the P448Lneo- mouse with reduced levels in the P448Lneo+ and absent in LARGEmyd. The salivary gland of LARGEmyd mice expresses high levels of F-α-DG. Interestingly the same glands in the P448Lneo-and to a lesser degree in P448Lneo+ also maintain considerable amount of F-α-DG, indicating the non-proliferating epithelial cells have a molecular setting permitting glycosylation.
Collapse
Affiliation(s)
- Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
- * E-mail: (QL); (AB)
| | - Hiroyuki Awano
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Pei Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Qi-Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
- * E-mail: (QL); (AB)
| |
Collapse
|
49
|
Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis 2017; 23:1048-1080. [PMID: 29386878 PMCID: PMC5757860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.
Collapse
Affiliation(s)
- Jiali Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Goffinet AM. The evolution of cortical development: the synapsid-diapsid divergence. Development 2017; 144:4061-4077. [PMID: 29138289 DOI: 10.1242/dev.153908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cerebral cortex covers the rostral part of the brain and, in higher mammals and particularly humans, plays a key role in cognition and consciousness. It is populated with neuronal cell bodies distributed in radially organized layers. Understanding the common and lineage-specific molecular mechanisms that orchestrate cortical development and evolution are key issues in neurobiology. During evolution, the cortex appeared in stem amniotes and evolved divergently in two main branches of the phylogenetic tree: the synapsids (which led to present day mammals) and the diapsids (reptiles and birds). Comparative studies in organisms that belong to those two branches have identified some common principles of cortical development and organization that are possibly inherited from stem amniotes and regulated by similar molecular mechanisms. These comparisons have also highlighted certain essential features of mammalian cortices that are absent or different in diapsids and that probably evolved after the synapsid-diapsid divergence. Chief among these is the size and multi-laminar organization of the mammalian cortex, and the propensity to increase its area by folding. Here, I review recent data on cortical neurogenesis, neuronal migration and cortical layer formation and folding in this evolutionary perspective, and highlight important unanswered questions for future investigation.
Collapse
Affiliation(s)
- Andre M Goffinet
- University of Louvain, Avenue Mounier, 73 Box B1.73.16, B1200 Brussels, Belgium
| |
Collapse
|