1
|
Lin P, Huang X. Recent Advances in Enzymes and Chemoenzymatic Synthesis of Tetrasaccharide Linkage Region of Proteoglycans. Chembiochem 2025; 26:e202500095. [PMID: 40267247 PMCID: PMC12118331 DOI: 10.1002/cbic.202500095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/25/2025]
Abstract
Proteoglycans (PGs) play roles in many important biological events, including growth factor signaling, wound repair, blood coagulation, brain development, and neural stem cell migration. As the glycosaminoglycan chain of PGs is attached to the core protein through a tetrasaccharide linkage region, it is important to decipher the intricate control of the multitude of enzymes engaged in biosynthesis of the linkage region. During the past two decades, significant advances have been achieved in our understanding of the identity and interactions of these enzymes as well as the control of their activities. Furthermore, the knowledge gained on biosynthesis of the linkage region has enabled the synthesis of structurally well-defined proteoglycan-associated glycopeptides. The expression, activity, and substrate profile of enzymes and the latest development of chemoenzymatic synthesis of linkage region-bearing glycopeptides are summarized in this review.
Collapse
Affiliation(s)
- Po‐han Lin
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI48824USA
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Xuefei Huang
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI48824USA
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
2
|
Maheshati A, Xu K, Li Z, Li G, Yin X, Li Q, Liu D, Wang S, Wu Z, Qiu G, Zhang B, Zhang TJ, Wang Y, Wu N. Selecting the Substantially Touched Vertebra as the Lowest Instrumented Vertebra in Spinal Surgeries for B3GALT6-Related Disorders: Clinical Experience and Literature Review. Orthop Surg 2025. [PMID: 40371684 DOI: 10.1111/os.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/12/2025] [Accepted: 04/27/2025] [Indexed: 05/16/2025] Open
Abstract
OBJECTIVES B3GALT6-related disorders are characterized by severe early-onset spinal deformities requiring surgical corrections but are associated with increased risks of perioperative complications. This study reports the clinical experience and outcomes of selecting the substantially touched vertebra (STV) as the lowest instrumented vertebra (LIV) in spinal surgeries for patients with B3GALT6-related disorders, a group of extremely rare skeletal and connective tissue disorders. METHODS This retrospective study included patients who were molecularly diagnosed with B3GALT6-related disorders and received spinal surgeries for (kypho)scoliosis between 2017 and June 2023. Their medical records were reviewed. We also conducted a systematic literature review to identify (kypho)scoliosis management in patients with B3GALT6-related disorders. RESULTS We identified a total of four patients. Patient 1 presented with severe kyphoscoliosis and segmentation defects and received a pedicle subtraction osteotomy with short fusion and dual growing rods from T3 to L3. However, coronal imbalance was observed at the 18-month follow-up. Genetic testing revealed biallelic disease-causing variants in B3GALT6. A revision surgery was successfully performed, with the level of the LIV extended to the STV (L4). The LIV was similarly extended to the STV in the index surgery for subsequent Patients 2 and 3 who received preoperative genetic testing results, and no complication has been observed. Patient 4 underwent preoperative Halo-pelvic traction to minimize complications, followed by posterior spinal fusion. The curves were successfully reduced without complications. A systematic literature review identified 86 articles reporting (kypho) scoliosis management in 12 of the 63 patients with B3GALT6-related disorders. Limited surgical experience has been reported, with an increased rate of complications, including death. CONCLUSIONS Selecting the STV as the LIV is recommended in spinal surgeries for patients with B3GALT6-related disorders, considering the characteristic joint hypermobility associated with the condition. Additionally, preoperative Halo-pelvic traction may also be safe and effective. Furthermore, preoperative molecular diagnosis is essential for enabling precision medicine and minimizing complications.
Collapse
Affiliation(s)
- Aoran Maheshati
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Kexin Xu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziquan Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Guozhuang Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangjie Yin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Di Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- Stem Cell Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Baozhong Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Wang
- Department of Orthopedics, Peking University First Hospital, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Slater AS, McDonald AG, Hickey RM, Davey GP. Glycosyltransferases: glycoengineers in human milk oligosaccharide synthesis and manufacturing. Front Mol Biosci 2025; 12:1587602. [PMID: 40370521 PMCID: PMC12074965 DOI: 10.3389/fmolb.2025.1587602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of complex carbohydrates that play crucial roles in infant health, promoting a beneficial gut microbiota, modulating immune responses, and protecting against pathogens. Central to the synthesis of HMOs are glycosyltransferases, a specialized class of enzymes that catalyse the transfer of sugar moieties to form the complex glycan structures characteristic of HMOs. This review provides an in-depth analysis of glycosyltransferases, beginning with their classification based on structural and functional characteristics. The catalytic activity of these enzymes is explored, highlighting the mechanisms by which they facilitate the precise addition of monosaccharides in HMO biosynthesis. Structural insights into glycosyltransferases are also discussed, shedding light on how their conformational features enable specific glycosidic bond formations. This review maps out the key biosynthetic pathways involved in HMO production, including the synthesis of lactose, and subsequent fucosylation and sialylation processes, all of which are intricately regulated by glycosyltransferases. Industrial methods for HMO synthesis, including chemical, enzymatic, and microbial approaches, are examined, emphasizing the role of glycosyltransferases in these processes. Finally, the review discusses future directions in glycosyltransferase research, particularly in enhancing the efficiency of HMO synthesis and developing advanced analytical techniques to better understand the structural complexity and biological functions of HMOs.
Collapse
Affiliation(s)
- Alanna S. Slater
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Andrew G. McDonald
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Bilgeç N, Çalişkan B, Eravci SY, Güven AS, Çaksen H. Cerebellar infarction due to atlantoaxial subluxation in spondyloepimetaphyseal dysplasia-joint laxity type 1 case. Clin Dysmorphol 2024:00019605-990000000-00083. [PMID: 39807608 DOI: 10.1097/mcd.0000000000000512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1) is an extremely rare skeletal dysplasia belonging to a group of disorders called linkeropathies. It is characterized by skeletal and connective tissue abnormalities. Biallelic variants in genes encoding enzymes that synthesize the tetrasaccharide linker region of glycosaminoglycans lead to linkeropathies, which exhibit clinical and phenotypic features that overlap with each other. SEMD-JL1 results in impaired growth and short stature, along with increased joint flexibility leading to limb joint dislocations and progressive spinal deformity. METHODS AND RESULT Whole exome sequencing was performed on the patient's genomic DNA. A novel variant in the B3GALT6 gene was detected as homozygous. During the patient's follow-up, signs of cerebellar infarction was observed due to atlantoaxial subluxation. Posterior circulation ischemic strokes have not been described with SEMD-JL1 and it was the second case in the skeletal dysplasia group to develop posterior circulation ischemic stroke due to atlantoaxial luxation. CONCLUSION Linkeropathies present with varying clinical manifestations and necessitate comprehensive genetic testing for accurate diagnosis of this complex patient group. Skeletal dysplasias, such as spondyloepimetaphyseal dysplasia, may be accompanied by atlantoaxial instability that can lead to serious spinal symptoms and even sudden death.
Collapse
Affiliation(s)
| | - Burcu Çalişkan
- Department of Pediatric Neurology, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Saliha Yavuz Eravci
- Department of Pediatric Neurology, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | - Ahmet Sami Güven
- Department of Pediatric Neurology, Necmettin Erbakan University Faculty of Medicine, Konya, Turkey
| | | |
Collapse
|
5
|
Daşar T, Kolkıran A, Sezer A, Bal E, Kılıç E. A Recurrent c.416C>T Variant in the B3GAT3 Gene in the Turkish Population: Report of Two Siblings and Expanding the Clinical Spectrum. Mol Syndromol 2024; 15:409-420. [PMID: 39359951 PMCID: PMC11444697 DOI: 10.1159/000537869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/14/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Linkeropathies are a group of rare multi-systemic genetic disorders primarily affecting the skeletal and cardiac systems due to defects in the enzymes responsible for proteoglycan synthesis. Case Presentation We present a case of two siblings with the B3GAT3 variant. The 14-year-old boy exhibited short stature, severe kyphoscoliosis, splenomegaly, and aortic root dilatation, along with several physical abnormalities including bifid uvula, blue sclera, limited elbow extension, and pectus carinatum. His 6-year-old sister also exhibited comparable yet less pronounced physical features. Clinical exome sequencing analysis revealed a homozygous c.416C>T variant in the B3GAT3 gene for the sister; the same variant was also present in the boy patient. The boy underwent preoperative halo-gravity traction for severe kyphoscoliosis, followed by posterior instrumentation and fusion surgery without complications. Discussion/Conclusion B3GAT3-related linkeropathy syndrome is a rare disorder and we further expand the clinical spectrum with novel findings.
Collapse
Affiliation(s)
- Tuğba Daşar
- Department of Pediatric Genetics, Bilkent City Hospital, Ankara, Turkey
| | | | - Abdullah Sezer
- Department of Medical Genetics, Etlik City Hospital, Ankara, Turkey
| | - Ercan Bal
- Department of Neurosurgery, Ankara Yildirim Beyazit University, School of Medicine Ankara, Ankara, Turkey
| | - Esra Kılıç
- Department of Pediatric Genetics, Bilkent City Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
6
|
Khan SA, Nidhi F, Leal AF, Celik B, Herreño-Pachón AM, Saikia S, Benincore-Flórez E, Ago Y, Tomatsu S. Glycosaminoglycans in mucopolysaccharidoses and other disorders. Adv Clin Chem 2024; 122:1-52. [PMID: 39111960 DOI: 10.1016/bs.acc.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Glycosaminoglycans (GAGs) are sulfated polysaccharides comprising repeating disaccharides, uronic acid (or galactose) and hexosamines, including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate. Hyaluronan is an exception in the GAG family because it is a non-sulfated polysaccharide. Lysosomal enzymes are crucial for the stepwise degradation of GAGs to provide a normal function of tissues and extracellular matrix (ECM). The deficiency of one or more lysosomal enzyme(s) results in the accumulation of undegraded GAGs, causing cell, tissue, and organ dysfunction. Accumulation of GAGs in various tissues and ECM results in secretion into the circulation and then excretion in urine. GAGs are biomarkers of certain metabolic disorders, such as mucopolysaccharidoses (MPS) and mucolipidoses. GAGs are also elevated in patients with various conditions such as respiratory and renal disorders, fatty acid metabolism disorders, viral infections, vomiting disorders, liver disorders, epilepsy, hypoglycemia, myopathy, developmental disorders, hyperCKemia, heart disease, acidosis, and encephalopathy. MPS are a group of inherited metabolic diseases caused by the deficiency of enzymes required to degrade GAGs in the lysosome. Eight types of MPS are categorized based on lack or defect in one of twelve specific lysosomal enzymes and are described as MPS I through MPS X (excluding MPS V and VIII). Clinical features vary with the type of MPS and clinical severity of the disease. This chapter addresses the historical overview, synthesis, degradation, distribution, biological role, and method for measurement of GAGs.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours Children's Health, Wilmington, DE, United States
| | - Fnu Nidhi
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | - Andrés Felipe Leal
- Nemours Children's Health, Wilmington, DE, United States; Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Betul Celik
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Sampurna Saikia
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Yasuhiko Ago
- Nemours Children's Health, Wilmington, DE, United States
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Blue EE, Moore KJ, North KE, Desrosiers TA, Carmichael SL, White JJ, Chong JX, Bamshad MJ, Jenkins MM, Almli LM, Brody LC, Freedman SF, Reefhuis J, Romitti PA, Shaw GM, Werler M, Kay DM, Browne ML, Feldkamp ML, Finnell RH, Nembhard WN, Pangilinan F, Olshan AF. Exome sequencing identifies novel genes underlying primary congenital glaucoma in the National Birth Defects Prevention Study. Birth Defects Res 2024; 116:e2384. [PMID: 38990107 PMCID: PMC11245170 DOI: 10.1002/bdr2.2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Primary congenital glaucoma (PCG) affects approximately 1 in 10,000 live born infants in the United States (U.S.). PCG has a autosomal recessive inheritance pattern, and variable expressivity and reduced penetrance have been reported. Likely causal variants in the most commonly mutated gene, CYP1B1, are less prevalent in the U.S., suggesting that alternative genes may contribute to the condition. This study utilized exome sequencing to investigate the genetic architecture of PCG in the U.S. and to identify novel genes and variants. METHODS We studied 37 family trios where infants had PCG and were part of the National Birth Defects Prevention Study (births 1997-2011), a U.S. multicenter study of birth defects. Samples underwent exome sequencing and sequence reads were aligned to the human reference sample (NCBI build 37/hg19). Variant filtration was conducted under de novo and Mendelian inheritance models using GEMINI. RESULTS Among candidate variants, CYP1B1 was most represented (five trios, 13.5%). Twelve probands (32%) had potentially pathogenic variants in other genes not previously linked to PCG but important in eye development and/or to underlie Mendelian conditions with potential phenotypic overlap (e.g., CRYBB2, RXRA, GLI2). CONCLUSION Variation in the genes identified in this population-based study may help to further explain the genetics of PCG.
Collapse
Affiliation(s)
- Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Kristin J Moore
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tania A Desrosiers
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Suzan L Carmichael
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Janson J White
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jessica X Chong
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Michael J Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mary M Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lynn M Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lawrence C Brody
- Division of Genomics and Society, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sharon F Freedman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Martha Werler
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts, USA
- Slone Epidemiology Center at Boston University, Boston, Massachusetts, USA
| | - Denise M Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Marilyn L Browne
- New York State Department of Health, Birth Defects Registry, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, USA
| | - Marcia L Feldkamp
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Wendy N Nembhard
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Faith Pangilinan
- Division of Genomics and Society, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Abu Obaid A, Ivandic I, Korsching SI. Deciphering the function of the fifth class of Gα proteins: regulation of ionic homeostasis as unifying hypothesis. Cell Mol Life Sci 2024; 81:213. [PMID: 38727814 PMCID: PMC11087313 DOI: 10.1007/s00018-024-05228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/13/2024]
Abstract
Trimeric G proteins transduce signals from a superfamily of receptors and each G protein controls a wide range of cellular and systemic functions. Their highly conserved alpha subunits fall in five classes, four of which have been well investigated (Gs, Gi, G12, Gq). In contrast, the function of the fifth class, Gv is completely unknown, despite its broad occurrence and evolutionary ancient origin (older than metazoans). Here we show a dynamic presence of Gv mRNA in several organs during early development of zebrafish, including the hatching gland, the pronephros and several cartilage anlagen, employing in situ hybridisation. Next, we generated a Gv frameshift mutation in zebrafish and observed distinct phenotypes such as reduced oviposition, premature hatching and craniofacial abnormalities in bone and cartilage of larval zebrafish. These phenotypes could suggest a disturbance in ionic homeostasis as a common denominator. Indeed, we find reduced levels of calcium, magnesium and potassium in the larvae and changes in expression levels of the sodium potassium pump atp1a1a.5 and the sodium/calcium exchanger ncx1b in larvae and in the adult kidney, a major osmoregulatory organ. Additionally, expression of sodium chloride cotransporter slc12a3 and the anion exchanger slc26a4 is altered in complementary ways in adult kidney. It appears that Gv may modulate ionic homeostasis in zebrafish during development and in adults. Our results constitute the first insight into the function of the fifth class of G alpha proteins.
Collapse
Affiliation(s)
- Asmaa Abu Obaid
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
- Department of Optometry, Faculty of Modern Sciences, The Arab American University, Yousef Asfour Street, Ramallah, Palestine
| | - Ivan Ivandic
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
9
|
Sreekumar A, Lu M, Choudhury B, Pan TC, Pant DK, Lawrence-Paul MR, Sterner CJ, Belka GK, Toriumi T, Benz BA, Escobar-Aguirre M, Marino FE, Esko JD, Chodosh LA. B3GALT6 promotes dormant breast cancer cell survival and recurrence by enabling heparan sulfate-mediated FGF signaling. Cancer Cell 2024; 42:52-69.e7. [PMID: 38065100 PMCID: PMC10872305 DOI: 10.1016/j.ccell.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
Breast cancer mortality results from incurable recurrences thought to be seeded by dormant, therapy-refractory residual tumor cells (RTCs). Understanding the mechanisms enabling RTC survival is therefore essential for improving patient outcomes. Here, we derive a dormancy-associated RTC signature that mirrors the transcriptional response to neoadjuvant therapy in patients and is enriched for extracellular matrix-related pathways. In vivo CRISPR-Cas9 screening of dormancy-associated candidate genes identifies the galactosyltransferase B3GALT6 as a functional regulator of RTC fitness. B3GALT6 is required for glycosaminoglycan (GAG) linkage to proteins to generate proteoglycans, and its germline loss of function in patients causes skeletal dysplasias. We find that B3GALT6-mediated biosynthesis of heparan sulfate GAGs predicts poor patient outcomes and promotes tumor recurrence by enhancing dormant RTC survival in multiple contexts, and does so via a B3GALT6-heparan sulfate/HS6ST1-heparan 6-O-sulfation/FGF1-FGFR2 signaling axis. These findings implicate B3GALT6 in cancer and nominate FGFR2 inhibition as a promising approach to eradicate dormant RTCs and prevent recurrence.
Collapse
Affiliation(s)
- Amulya Sreekumar
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Lu
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Biswa Choudhury
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tien-Chi Pan
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dhruv K Pant
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Lawrence-Paul
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Sterner
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George K Belka
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Toriumi
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian A Benz
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matias Escobar-Aguirre
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco E Marino
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lewis A Chodosh
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Coetzer KC, Dieckerhoff J, Wollnik B, Moosa S. B3GALT6-linkeropathy: Three illustrative patients spanning the disease spectrum. Eur J Med Genet 2023; 66:104829. [PMID: 37657630 DOI: 10.1016/j.ejmg.2023.104829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 05/09/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The linkeropathies are a group of rare disorders, characterized by overlapping clinical features involving the skeletal and connective tissues. Each "linker" gene encodes an enzyme responsible for the addition of glycosaminoglycan chains to proteoglycans via a common tertrasaccharine linker region. The original descriptions of the autosomal recessive B3GALT6-related disorder showed that the associated clinical features are pleiotropic, spanning the skeletal dysplasia (Spondyloepimetaphyseal dysplasia with joint laxity) (SEMD-JL1) and connective tissue disorder (Ehlers-Danlos syndrome) (EDS spondylodysplastic Type 2) spectrum. Here, we describe three patients with biallelic B3GALT6 variants: each had different clinical presentations, and the two older patients initially received alternative clinical diagnoses (Larsen syndrome and Osteogenesis imperfecta, respectively). We describe the clinico-radiological features of these patients to highlight the spectrum of disease associated with the B3GALT6-linkeropathy.
Collapse
Affiliation(s)
| | | | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Shahida Moosa
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa; Medical Genetics, Tygerberg Hospital, Cape Town, South Africa.
| |
Collapse
|
11
|
Maciej-Hulme ML, Melrose J, Farrugia BL. Arthritis and Duchenne muscular dystrophy: the role of chondroitin sulfate and its associated proteoglycans in disease pathology and as a diagnostic marker. Am J Physiol Cell Physiol 2023; 324:C142-C152. [PMID: 36409173 PMCID: PMC9829464 DOI: 10.1152/ajpcell.00103.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Chondroitin sulfate (CS) is a ubiquitous glycosaminoglycan covalently attached to the core proteins of cell surface, extracellular, and intracellular proteoglycans. The multistep and highly regulated biosynthesis of chondroitin sulfate and its degradation products give rise to a diverse species of molecules with functional regulatory properties in biological systems. This review will elucidate and expand on the most recent advances in understanding the role of chondroitin sulfate and its associate proteoglycans, in arthritis and Duchenne muscular dystrophy (DMD), two different and discrete pathologies. Highlighting not only the biodiverse nature of this family of molecules but also the utilization of CS proteoglycans, CS, and its catabolic fragments as biomarkers and potential therapeutic targets for disease pathologies.
Collapse
Affiliation(s)
- Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and The Faculty of Medicine and Health, The University of Sydney, St. Leonard's, New South Wales, Australia
| | - Brooke L Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Han S, Xu X, Wen J, Wang J, Xiao S, Pan L, Wang J. New genetic mutations in a Chinese child with Ehlers-Danlos syndrome-like spondyloepimetaphyseal dysplasia: A case report. Front Pediatr 2022; 10:1073748. [PMID: 36619506 PMCID: PMC9811192 DOI: 10.3389/fped.2022.1073748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ehlers-Danlos syndrome (EDS) spinal deformity type 2 has clinical features similar to those of spondyloepimetaphyseal dysplasia with joint laxity, type 1 (SEMDJL1). They have similar clinical manifestations and a similar genetic basis, both of which can be caused by mutations in the B3GALT6 gene. Hence, genetic screening and careful clinical examination are key to the differential diagnosis of these two diseases. CASE PRESENTATION A 4-month-old boy was admitted to our hospital in order to find the causes of developmental delay. The clinical examination revealed that the child was delayed, with an excessive range of motion of joints, patent foramen ovale, and was accompanied by skin aging; the child was suspected to have EDS. However, unlike EDS, the child had normal muscle tension, and at the same time had a spinal deformity, mild kyphosis, widened right hip joint space, as well as a special face, joint laxity, and slender fingers, which were typical characteristics of SEMDJL1. A gene analysis showed two suspicious mutations in the B3GALT6 gene: c.808G > A(p.(G270S)) and c.942G > C(p.(W314C)), which were verified to be compound heterozygous mutations by analyzing genes in his parents. This mutation was not included in the HGMD, ClinVar, and other mutation databases, and thus was a newly discovered mutation. CONCLUSION Using the clinical and genetic analyses, this study reported a Chinese case with EDS-like SEMDJL1 for the first time. Two pathogenic mutations were discovered in the B3GALT6 gene: c.808G > A(p.(G270S)) and c.942G > C(p.(W314C)).
Collapse
Affiliation(s)
- Shu Han
- Children's Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xuan Xu
- Children's Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jianzhou Wang
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Sheng Xiao
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Li Pan
- Children's Medical Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jiang Wang
- Department of Pediatric General Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
13
|
Zhu X, Gao Z, Wang Y, Huang W, Li Q, Jiao Z, Liu N, Kong X. Utility of trio-based prenatal exome sequencing incorporating splice-site and mitochondrial genome assessment in pregnancies with fetal ultrasound anomalies: prospective cohort study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:780-792. [PMID: 35726512 DOI: 10.1002/uog.24974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the utility of trio-based prenatal exome sequencing (pES), incorporating splice-site and mitochondrial genome assessment, in the prenatal diagnosis of fetuses with ultrasound anomalies and normal copy-number variant sequencing (CNV-seq) results. METHODS This was a prospective study of 90 ongoing pregnancies with ultrasound anomalies that underwent trio-based pES after receiving normal CNV-seq results, from September 2020 to November 2021, in a single center in China. By using pES with a panel encompassing exome coding and splicing regions as well as mitochondrial genome for fetuses and parents, we identified the underlying genetic causes of fetal anomalies, incidental fetal findings and parental carrier status. Information on pregnancy outcome and the impact of pES findings on parental decision-making was collected. RESULTS Of the 90 pregnancies included, 28 (31.1%) received a diagnostic result that could explain the fetal ultrasound anomalies. The highest diagnostic yield was noted for brain abnormalities (3/6 (50.0%)), followed by hydrops (4/9 (44.4%)) and skeletal abnormalities (13/34 (38.2%)). Collectively, 34 variants of 20 genes were detected in the 28 diagnosed cases, with 55.9% (19/34) occurring de novo. Variants of uncertain significance (VUS) associated with fetal phenotypes were detected in six (6.7%) fetuses. Interestingly, fetal (n = 4) and parental (n = 3) incidental findings (IFs) were detected in seven (7.8%) cases. These included two fetuses carrying a de-novo likely pathogenic (LP) variant of the CIC and FBXO11 genes, respectively, associated with neurodevelopmental disorders, and one fetus with a LP variant in a mitochondrial gene. The remaining fetus presented with unilateral renal dysplasia and was incidentally found to carry a pathogenic PKD1 gene variant resulting in adult-onset polycystic kidney, which was later confirmed to be inherited from the mother. In addition, parental heterozygous variants associated with autosomal recessive diseases were detected in three families, including one with additional fetal diagnostic findings. Diagnostic results or fetal IFs contributed to parental decision-making about termination of the pregnancy in 26 families (26/72 (36.1%)), while negative pES results or identification of VUS encouraged 40 families (40/72 (55.6%)) to continue their pregnancy, which ended in a live birth in all cases. CONCLUSION Trio-based pES can provide additional genetic information for pregnancies with fetal ultrasound anomalies without a CNV-seq diagnosis. The incidental findings and parental carrier status reported by trio-based pES with splice-site and mitochondrial genome analysis extend its clinical application, but careful genetic counseling is warranted. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- X Zhu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Z Gao
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y Wang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - W Huang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Q Li
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Z Jiao
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - N Liu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - X Kong
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Syx D, Delbaere S, Bui C, De Clercq A, Larson G, Mizumoto S, Kosho T, Fournel-Gigleux S, Malfait F. Alterations in glycosaminoglycan biosynthesis associated with the Ehlers-Danlos syndromes. Am J Physiol Cell Physiol 2022; 323:C1843-C1859. [PMID: 35993517 DOI: 10.1152/ajpcell.00127.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteoglycans consist of a core protein substituted with one or more glycosaminoglycan (GAG) chains and execute versatile functions during many physiological and pathological processes. The biosynthesis of GAG chains is a complex process that depends on the concerted action of a variety of enzymes. Central to the biosynthesis of heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) GAG chains is the formation of a tetrasaccharide linker region followed by biosynthesis of HS or CS/DS-specific repeating disaccharide units, which then undergo modifications and epimerization. The importance of these biosynthetic enzymes is illustrated by several severe pleiotropic disorders that arise upon their deficiency. The Ehlers-Danlos syndromes (EDS) constitute a special group among these disorders. Although most EDS types are caused by defects in fibrillar types I, III, or V collagen, or their modifying enzymes, a few rare EDS types have recently been linked to defects in GAG biosynthesis. Spondylodysplastic EDS (spEDS) is caused by defective formation of the tetrasaccharide linker region, either due to β4GalT7 or β3GalT6 deficiency, whereas musculocontractural EDS (mcEDS) results from deficiency of D4ST1 or DS-epi1, impairing DS formation. This narrative review highlights the consequences of GAG deficiency in these specific EDS types, summarizes the associated phenotypic features and the molecular spectrum of reported pathogenic variants, and defines the current knowledge on the underlying pathophysiological mechanisms based on studies in patient-derived material, in vitro analyses, and animal models.
Collapse
Affiliation(s)
- Delfien Syx
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Sarah Delbaere
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Ostend, Belgium
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Tomoki Kosho
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Japan.,Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | | | - Fransiska Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Pathogenic Roles of Heparan Sulfate and Its Use as a Biomarker in Mucopolysaccharidoses. Int J Mol Sci 2022; 23:ijms231911724. [PMID: 36233030 PMCID: PMC9570396 DOI: 10.3390/ijms231911724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is an essential glycosaminoglycan (GAG) as a component of proteoglycans, which are present on the cell surface and in the extracellular matrix. HS-containing proteoglycans not only function as structural constituents of the basal lamina but also play versatile roles in various physiological processes, including cell signaling and organ development. Thus, inherited mutations of genes associated with the biosynthesis or degradation of HS can cause various diseases, particularly those involving the bones and central nervous system (CNS). Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders involving GAG accumulation throughout the body caused by a deficiency of GAG-degrading enzymes. GAGs are stored differently in different types of MPSs. Particularly, HS deposition is observed in patients with MPS types I, II, III, and VII, all which involve progressive neuropathy with multiple CNS system symptoms. While therapies are available for certain symptoms in some types of MPSs, significant unmet medical needs remain, such as neurocognitive impairment. This review presents recent knowledge on the pathophysiological roles of HS focusing on the pathogenesis of MPSs. We also discuss the possible use and significance of HS as a biomarker for disease severity and therapeutic response in MPSs.
Collapse
|
16
|
Asanad S, Bayomi M, Brown D, Buzzard J, Lai E, Ling C, Miglani T, Mohammed T, Tsai J, Uddin O, Singman E. Ehlers-Danlos syndromes and their manifestations in the visual system. Front Med (Lausanne) 2022; 9:996458. [PMID: 36237549 PMCID: PMC9552959 DOI: 10.3389/fmed.2022.996458] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Ehlers-Danlos syndrome (EDS) is a rare, genetically variable, heterogenous group of (currently recognized) thirteen connective tissue disorders characterized by skin hyperextensibility, tissue fragility, and generalized joint hypermobility. In addition to these commonly recognized phenotypes, recent studies have notably highlighted variable ophthalmic features in EDS. In this review, we comprehensively gather and discuss the ocular manifestations of EDS and its thirteen subtypes in the clinical setting.
Collapse
Affiliation(s)
- Samuel Asanad
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - May Bayomi
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Douglas Brown
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Joshua Buzzard
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Eric Lai
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Carlthan Ling
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Trisha Miglani
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Taariq Mohammed
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Joby Tsai
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Olivia Uddin
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
| | - Eric Singman
- University of Maryland School of Medicine, Department of Ophthalmology & Visual Sciences, Baltimore, MD, United States
- *Correspondence: Eric Singman
| |
Collapse
|
17
|
The Specific Role of Dermatan Sulfate as an Instructive Glycosaminoglycan in Tissue Development. Int J Mol Sci 2022; 23:ijms23137485. [PMID: 35806490 PMCID: PMC9267682 DOI: 10.3390/ijms23137485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
The crucial roles of dermatan sulfate (DS) have been demonstrated in tissue development of the cutis, blood vessels, and bone through construction of the extracellular matrix and cell signaling. Although DS classically exerts physiological functions via interaction with collagens, growth factors, and heparin cofactor-II, new functions have been revealed through analyses of human genetic disorders as well as of knockout mice with loss of DS-synthesizing enzymes. Mutations in human genes encoding the epimerase and sulfotransferase responsible for the biosynthesis of DS chains cause connective tissue disorders including spondylodysplastic type Ehlers–Danlos syndrome, characterized by skin hyperextensibility, joint hypermobility, and tissue fragility. DS-deficient mice show perinatal lethality, skin fragility, vascular abnormalities, thoracic kyphosis, myopathy-related phenotypes, acceleration of nerve regeneration, and impairments in self-renewal and proliferation of neural stem cells. These findings suggest that DS is essential for tissue development in addition to the assembly of collagen fibrils in the skin, and that DS-deficient knockout mice can be utilized as models of human genetic disorders that involve impairment of DS biosynthesis. This review highlights a novel role of DS in tissue development studies from the past decade.
Collapse
|
18
|
Shen F, Yang Y, Zheng Y, Tu M, Zhao L, Luo Z, Fu Y, Zhu Y. Mutant B3GALT6 in a Multiplex Family: A Dominant Variant Co-Segregated With Moderate Malformations. Front Genet 2022; 13:824445. [PMID: 35734427 PMCID: PMC9207203 DOI: 10.3389/fgene.2022.824445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
B3GALT6 is a well-documented disease-related gene. Several B3GALT6-recessive variants have been reported to cause Ehlers–Danlos syndrome (EDS). To the best of our knowledge, no dominant B3GALT6 variant that causes human disease has been reported. In 2012, we reported on a three-generation, autosomal-dominant family with multiple members who suffered from radioulnar joint rotation limitation, scoliosis, thick vermilion of both lips, and others, but the genetic cause was unknown. Here, exome sequencing of the family identified mutant B3GALT6 as the cause of the multiplex affected family. We observed that, in the compound heterozygous pattern (i.e., c.883C>T:p.R295C and c.510_517del:p.L170fs*268), mutant B3GALT6 led to severe consequences, and in the dominant pattern, an elongated B3GALT6 variant co-segregated with moderate phenotypes. The functional experiments were performed in vitro. The R295C variant led to subcellular mislocalization, whereas the L170fs*268 showed normal subcellular localization, but it led to an elongated protein. Given that most of the catalytic galactosyltransferase domain was disrupted for the L170fs*268 (it is unlikely that such a protein has activity), we propose that the L170fs*268 occupies the normal B3GALT6 protein position in the Golgi and exerts a dominant-negative effect.
Collapse
Affiliation(s)
- Fang Shen
- The Laboratory of Genetics and Metabolism, Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yongjia Yang
- The Laboratory of Genetics and Metabolism, Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Hengyang Medical School, University of South China, Changsha, China
- *Correspondence: Yongjia Yang, ; Yimin Zhu,
| | - Yu Zheng
- The Laboratory of Genetics and Metabolism, Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ming Tu
- The Laboratory of Genetics and Metabolism, Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Liu Zhao
- The Laboratory of Genetics and Metabolism, Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Zhenqing Luo
- The Laboratory of Genetics and Metabolism, Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yuyan Fu
- The Laboratory of Genetics and Metabolism, Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yimin Zhu
- The Laboratory of Genetics and Metabolism, Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Hengyang Medical School, University of South China, Changsha, China
- Emergency Research Institute of Hunan Province, Hunan People’s Hospital, Changsha, China
- *Correspondence: Yongjia Yang, ; Yimin Zhu,
| |
Collapse
|
19
|
Schwartz NB, Domowicz MS. Roles of Chondroitin Sulfate Proteoglycans as Regulators of Skeletal Development. Front Cell Dev Biol 2022; 10:745372. [PMID: 35465334 PMCID: PMC9026158 DOI: 10.3389/fcell.2022.745372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
The extracellular matrix (ECM) is critically important for most cellular processes including differentiation, morphogenesis, growth, survival and regeneration. The interplay between cells and the ECM often involves bidirectional signaling between ECM components and small molecules, i.e., growth factors, morphogens, hormones, etc., that regulate critical life processes. The ECM provides biochemical and contextual information by binding, storing, and releasing the bioactive signaling molecules, and/or mechanical information that signals from the cell membrane integrins through the cytoskeleton to the nucleus, thereby influencing cell phenotypes. Using these dynamic, reciprocal processes, cells can also remodel and reshape the ECM by degrading and re-assembling it, thereby sculpting their environments. In this review, we summarize the role of chondroitin sulfate proteoglycans as regulators of cell and tissue development using the skeletal growth plate model, with an emphasis on use of naturally occurring, or created mutants to decipher the role of proteoglycan components in signaling paradigms.
Collapse
Affiliation(s)
- Nancy B. Schwartz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
- *Correspondence: Nancy B. Schwartz,
| | - Miriam S. Domowicz
- Department of Pediatrics, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Li Y, Zhang C, Zhang H, Feng W, Wang Q, Fan R. Severe phenotypes of B3GAT3-related disorder caused by two heterozygous variants: a case report and literature review. BMC Med Genomics 2022; 15:27. [PMID: 35151321 PMCID: PMC8841085 DOI: 10.1186/s12920-022-01160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background Linkeropathies refers to a series of extremely rare hereditary connective tissue diseases affected by various glycosyltransferases in the biosynthesis of proteoglycans. We report for the first time two heterozygous variants of B3GAT3 in a Chinese infant, in whom Marfan syndrome was suspected at birth. Case presentation A 2-month-old boy from a non-consanguineous Chinese family without a family history presented severe phenotypes of joint dislocation, obvious flexion contractures of the elbow, arachnodactyly with slightly adducted thumbs, cranial dysplasia, foot abnormalities and aortic root dilation; Marfan syndrome was suspected at birth. Our patient was the youngest, at the age of 2 months, to experience aortic root dilation. Two B3GAT3 variants, NM_012200.2, c.752T>C, p.V251A and c.47C>A, p.S16*, with heterozygosity were identified in the patient by whole-exome sequencing; the variants were inherited from his parents. During close follow-up, significant changes in the cranial profile and obvious external hydrocephalus were present at the age of 7 months, which differs from previously reported cases. Conclusion We diagnosed a patient with congenital heart defects at an early age with a B3GAT3-related disorder instead of Marfan syndrome and expanded the spectrum of B3GAT3-related disorders. We also provide a literature review of reported B3GAT3 cases; for at least one of the variants, this is the first report of genotype–phenotype correlations in individuals with cardiovascular defects being related to the acceptor substrate-binding subdomain of B3GAT3.
Collapse
|
21
|
Hellicar J, Stevenson NL, Stephens DJ, Lowe M. Supply chain logistics - the role of the Golgi complex in extracellular matrix production and maintenance. J Cell Sci 2022; 135:273996. [PMID: 35023559 PMCID: PMC8767278 DOI: 10.1242/jcs.258879] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The biomechanical and biochemical properties of connective tissues are determined by the composition and quality of their extracellular matrix. This, in turn, is highly dependent on the function and organisation of the secretory pathway. The Golgi complex plays a vital role in directing matrix output by co-ordinating the post-translational modification and proteolytic processing of matrix components prior to their secretion. These modifications have broad impacts on the secretion and subsequent assembly of matrix components, as well as their function in the extracellular environment. In this Review, we highlight the role of the Golgi in the formation of an adaptable, healthy matrix, with a focus on proteoglycan and procollagen secretion as example cargoes. We then discuss the impact of Golgi dysfunction on connective tissue in the context of human disease and ageing.
Collapse
Affiliation(s)
- John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
22
|
Lei J, Deng H, Ran Y, Lv Y, Amhare AF, Wang L, Guo X, Han J, Lammi MJ. Altered Expression of Aggrecan, FAM20B, B3GALT6, and EXTL2 in Patients with Osteoarthritis and Kashin-Beck Disease. Cartilage 2021; 13:818S-828S. [PMID: 32517548 PMCID: PMC8808786 DOI: 10.1177/1947603520932199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The objective of this study was to investigate the expression of enzymes involved in synthesis and modification of chondroitin sulfate (CS) in knee cartilage tissue of patients with osteoarthritis (OA) and Kashin-Beck disease (KBD). METHODS The knee articular cartilage samples were obtained from 18 age- and gender-matched donors with 6 each in KBD, OA, and control groups. Hematoxylin and eosin (HE) staining, toluidine blue (TB) staining, and immunohistochemical (IHC) staining were performed to estimate the expression level and localization of aggrecan, along with FAM20B, GalT-II, and EXTL2, which are associated with CS synthesis and modification. Rank-based analyses of variance test was used for the multiple comparisons of discrepancy in the positive staining rate among the 3 groups. RESULTS In HE and TB staining results, damaged morphology, decreased chondrocyte numbers and proteoglycans were observed in OA and KBD groups compared with the control group. In line with these trends, the positive staining rates of aggrecan were lower in KBD and OA groups than in the control group. Meanwhile, the positive staining rates of CS chain modifying enzymes FAM20B, GalT-II, and EXTL2 decreased in OA and KBD groups. CONCLUSIONS In conclusion, it was demonstrated that altered expression of CS chain modifying enzymes in OA and KBD groups influenced the synthesis procession of CS and could contribute to the damage of cartilage. Further investigation of these enzymes can provide new theoretical and experimental targets for OA and KBD pathogenesis studies.
Collapse
Affiliation(s)
- Jian Lei
- School of Public Health, Key Laboratory
of Environment and Genes Related to Diseases, Health Science Center, Xi’an Jiaotong
University, Xi’an, Shaanxi, People’s Republic of China,Shenzhen Institute, Xi’an Jiaotong
University, Shenzhen, Guangdong, People’s Republic of China
| | - Huan Deng
- School of Public Health, Key Laboratory
of Environment and Genes Related to Diseases, Health Science Center, Xi’an Jiaotong
University, Xi’an, Shaanxi, People’s Republic of China
| | - Yan Ran
- Department of Gastroenterology, the
First Affiliated Hospital, Health Science Center of Xi’an Jiaotong University,
Xi’an, People’s Republic of China
| | - Yizhen Lv
- School of Public Health, Key Laboratory
of Environment and Genes Related to Diseases, Health Science Center, Xi’an Jiaotong
University, Xi’an, Shaanxi, People’s Republic of China
| | - Abebe Feyissa Amhare
- School of Public Health, Key Laboratory
of Environment and Genes Related to Diseases, Health Science Center, Xi’an Jiaotong
University, Xi’an, Shaanxi, People’s Republic of China
| | - Liyun Wang
- School of Public Health, Key Laboratory
of Environment and Genes Related to Diseases, Health Science Center, Xi’an Jiaotong
University, Xi’an, Shaanxi, People’s Republic of China,Shenzhen Institute, Xi’an Jiaotong
University, Shenzhen, Guangdong, People’s Republic of China
| | - Xiong Guo
- School of Public Health, Key Laboratory
of Environment and Genes Related to Diseases, Health Science Center, Xi’an Jiaotong
University, Xi’an, Shaanxi, People’s Republic of China
| | - Jing Han
- School of Public Health, Key Laboratory
of Environment and Genes Related to Diseases, Health Science Center, Xi’an Jiaotong
University, Xi’an, Shaanxi, People’s Republic of China,Shenzhen Institute, Xi’an Jiaotong
University, Shenzhen, Guangdong, People’s Republic of China,Jing Han, School of Public Health, Key
Laboratory of Environment and Genes Related to Diseases, Health Science Center,
Xi’an Jiaotong University, No. 76 West Yanta Road, Xi’an, Shaanxi, 710049,
People’s Republic of China.
| | - Mikko J. Lammi
- School of Public Health, Key Laboratory
of Environment and Genes Related to Diseases, Health Science Center, Xi’an Jiaotong
University, Xi’an, Shaanxi, People’s Republic of China,Department of Integrative Medical
Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Ehlers Danlos Syndrome with Glycosaminoglycan Abnormalities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:235-249. [PMID: 34807422 DOI: 10.1007/978-3-030-80614-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ehlers-Danlos syndrome (EDS) is a genetically and clinically heterogeneous group of connective tissue disorders that typically present with skin hyperextensibility, joint hypermobility, and tissue fragility. The major cause of EDS appears to be impaired biosynthesis and enzymatic modification of collagen. In this chapter, we discuss two types of EDS that are associated with proteoglycan abnormalities: spondylodysplastic EDS and musculocontractural EDS. Spondylodysplastic EDS is caused by pathogenic variants in B4GALT7 or B3GALT6, both of which encode key enzymes that initiate glycosaminoglycan synthesis. Musculocontractural EDS is caused by mutations in CHST14 or DSE, both of which encode enzymes responsible for the post-translational biosynthesis of dermatan sulfate. The clinical and molecular characteristics of both types of EDS are described in this chapter.
Collapse
|
24
|
Micale L, Fusco C, Castori M. Ehlers-Danlos Syndromes, Joint Hypermobility and Hypermobility Spectrum Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:207-233. [PMID: 34807421 DOI: 10.1007/978-3-030-80614-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ehlers-Danlos syndrome is an umbrella term for a clinically and genetically heterogeneous group of hereditary soft connective tissue disorders mainly featuring abnormal cutaneous texture (doughy/velvety, soft, thin, and/or variably hyperextensible skin), easy bruising, and joint hypermobility. Currently, musculoskeletal manifestations related to joint hypermobility are perceived as the most prevalent determinants of the quality of life of affected individuals. The 2017 International Classification of Ehlers-Danlos syndromes and related disorders identifies 13 clinical types due to deleterious variants in 19 different genes. Recent publications point out the possibility of a wider spectrum of conditions that may be considered members of the Ehlers-Danlos syndrome community. Most Ehlers-Danlos syndromes are due to inherited abnormalities affecting the biogenesis of fibrillar collagens and other components of the extracellular matrix. The introduction of next-generation sequencing technologies in the diagnostic setting fastened patients' classification and improved our knowledge on the phenotypic variability of many Ehlers-Danlos syndromes. This is impacting significantly patients' management and family counseling. At the same time, most individuals presenting with joint hypermobility and associated musculoskeletal manifestations still remain without a firm diagnosis, due to a too vague clinical presentation and/or the lack of an identifiable molecular biomarker. These individuals are currently defined with the term "hypermobility spectrum disorders". Hence, in parallel with a continuous update of the International Classification of Ehlers-Danlos syndromes, the scientific community is investing efforts in offering a more efficient framework for classifying and, hopefully, managing individuals with joint hypermobility.
Collapse
Affiliation(s)
- Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
25
|
Leoni C, Tedesco M, Radio FC, Chillemi G, Leone A, Bruselles A, Ciolfi A, Stellacci E, Pantaleoni F, Butera G, Rigante D, Onesimo R, Tartaglia M, Zampino G. Broadening the phenotypic spectrum of Beta3GalT6-associated phenotypes. Am J Med Genet A 2021; 185:3153-3160. [PMID: 34159694 DOI: 10.1002/ajmg.a.62399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/27/2021] [Accepted: 06/05/2021] [Indexed: 11/11/2022]
Abstract
Biallelic mutations in B3GALT6, coding for a galactosyltransferase involved in the synthesis of glycosaminoglycans (GAGs), have been associated with various clinical conditions, causing spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMDJL1 or SEMDJL Beighton type), Al-Gazali syndrome (ALGAZ), and a severe progeroid form of Ehlers-Danlos syndrome (EDSSPD2). In the 2017 Ehlers-Danlos syndrome (EDS) classification, Beta3GalT6-related disorders were grouped in the spondylodysplastic EDSs together with spondylodysplastic EDSs due to B4GALT7 and SLC39A13 mutations. Herein, we describe a patient with a previously unreported homozygous pathogenic B3GALT6 variant resulting in a complex phenotype more severe than spondyloepimetaphyseal dysplasia with joint laxity type 1, and having dural ectasia and aortic dilation as additionally associated features, further broadening the phenotypic spectrum of the Beta3GalT6-related syndromes. We also document the utility of repeating sequencing in patients with uninformative exomes, particularly when performed by using "first generations" enrichment capture methods.
Collapse
Affiliation(s)
- Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marta Tedesco
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giovanni Chillemi
- Dipartimento per la Innovazione Nei Sistemi Biologici, Agroalimentari e Forestali, Università Della Tuscia, Viterbo, Italy
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Centro Nazionale Delle Ricerche, Bari, Italy
| | - Antonio Leone
- Dipartimento di Scienze Della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Radiologiche ed Ematologiche, Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Emilia Stellacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Gianfranco Butera
- Department of Pediatric Cardiology, Cardiac Surgery and Heart Lung Transplantation, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Donato Rigante
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
26
|
Mizumoto S, Yamada S. Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Front Genet 2021; 12:717535. [PMID: 34539746 PMCID: PMC8446454 DOI: 10.3389/fgene.2021.717535] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
27
|
Kai Y, Yoneyama H, Yoshikawa M, Kimura H, Muro S. Chondroitin sulfate in tissue remodeling: Therapeutic implications for pulmonary fibrosis. Respir Investig 2021; 59:576-588. [PMID: 34176780 DOI: 10.1016/j.resinv.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Fibrosis is characterized by the deposition of extracellular matrix (ECM) proteins, while idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by dysregulated tissue repair and remodeling. Anti-inflammatory drugs, such as corticosteroids and immunosuppressants, and antifibrotic drugs, like pirfenidone and nintedanib, are used in IPF therapy. However, their limited effects suggest that single mediators are inadequate to control IPF. Therefore, therapies targeting the multifactorial cascades that regulate tissue remodeling in fibrosis could provide alternate solutions. ECM molecules have been shown to modulate various biological functions beyond tissue structure support and thus, could be developed into novel therapeutic targets for modulating tissue remodeling. Among ECM molecules, glycosaminoglycans (GAG) are linear polysaccharides consisting of repeated disaccharides, which regulate cell-matrix interactions. Chondroitin sulfate (CS), one of the major GAGs, binds to multifactorial mediators in the ECM and reportedly participates in tissue remodeling in various diseases; however, to date, its biological functions have drawn considerably less attention than other GAGs, like heparan sulfate. In the present review, we discuss the involvement and regulation of CS in tissue remodeling and pulmonary fibrotic diseases, its role in pulmonary fibrosis, and the therapeutic approaches targeting CS.
Collapse
Affiliation(s)
- Yoshiro Kai
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan; Department of Respiratory Medicine, Minami-Nara General Medical Center, 8-1 Fukugami, Oyodo-cho, Yoshino-gun, Nara, 638-8551, Japan.
| | - Hiroyuki Yoneyama
- TME Therapeutics Inc., 2-16-1 Higashi-shinbashi, Minato-ku, Tokyo, 105-0021, Japan.
| | - Masanori Yoshikawa
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan.
| | - Hiroshi Kimura
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-city, Tokyo, 204-8522, Japan.
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, 840 Shijo-cho, Kashihara-city, Nara, 634-8522, Japan.
| |
Collapse
|
28
|
Dubail J, Cormier-Daire V. Chondrodysplasias With Multiple Dislocations Caused by Defects in Glycosaminoglycan Synthesis. Front Genet 2021; 12:642097. [PMID: 34220933 PMCID: PMC8242584 DOI: 10.3389/fgene.2021.642097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Chondrodysplasias with multiple dislocations form a group of severe disorders characterized by joint laxity and multiple dislocations, severe short stature of pre- and post-natal onset, hand anomalies, and/or vertebral anomalies. The majority of chondrodysplasias with multiple dislocations have been associated with mutations in genes encoding glycosyltransferases, sulfotransferases, and transporters implicated in the synthesis or sulfation of glycosaminoglycans, long and unbranched polysaccharides composed of repeated disaccharide bond to protein core of proteoglycan. Glycosaminoglycan biosynthesis is a tightly regulated process that occurs mainly in the Golgi and that requires the coordinated action of numerous enzymes and transporters as well as an adequate Golgi environment. Any disturbances of this chain of reactions will lead to the incapacity of a cell to construct correct glycanic chains. This review focuses on genetic and glycobiological studies of chondrodysplasias with multiple dislocations associated with glycosaminoglycan biosynthesis defects and related animal models. Strong comprehension of the molecular mechanisms leading to those disorders, mostly through extensive phenotypic analyses of in vitro and/or in vivo models, is essential for the development of novel biomarkers for clinical screenings and innovative therapeutics for these diseases.
Collapse
Affiliation(s)
- Johanne Dubail
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Valérie Cormier-Daire
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France.,Service de Génétique Clinique, Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
29
|
Gensemer C, Burks R, Kautz S, Judge DP, Lavallee M, Norris RA. Hypermobile Ehlers-Danlos syndromes: Complex phenotypes, challenging diagnoses, and poorly understood causes. Dev Dyn 2021; 250:318-344. [PMID: 32629534 PMCID: PMC7785693 DOI: 10.1002/dvdy.220] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of heritable, connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. There is phenotypic and genetic variation among the 13 subtypes. The initial genetic findings on EDS were related to alterations in fibrillar collagen, but the elucidation of the molecular basis of many of the subtypes revealed several genes not involved in collagen biosynthesis or structure. However, the genetic basis of the hypermobile type of EDS (hEDS) is still unknown. hEDS is the most common type of EDS and involves generalized joint hypermobility, musculoskeletal manifestations, and mild skin involvement along with the presence of several comorbid conditions. Variability in the spectrum and severity of symptoms and progression of patient phenotype likely depend on age, gender, lifestyle, and expression domains of the EDS genes during development and postnatal life. In this review, we summarize the current molecular, genetic, epidemiologic, and pathogenetic findings related to EDS with a focus on the hypermobile type.
Collapse
Affiliation(s)
- Cortney Gensemer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Randall Burks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Steven Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel P. Judge
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina
| | - Mark Lavallee
- Department of Family Medicine, Wellspan Health, York, Pennsylvania
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
30
|
Costantini A, Alm JJ, Tonelli F, Valta H, Huber C, Tran AN, Daponte V, Kirova N, Kwon YU, Bae JY, Chung WY, Tan S, Sznajer Y, Nishimura G, Näreoja T, Warren AJ, Cormier-Daire V, Kim OH, Forlino A, Cho TJ, Mäkitie O. Novel RPL13 Variants and Variable Clinical Expressivity in a Human Ribosomopathy With Spondyloepimetaphyseal Dysplasia. J Bone Miner Res 2021; 36:283-297. [PMID: 32916022 PMCID: PMC7988564 DOI: 10.1002/jbmr.4177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/31/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Spondyloepimetaphyseal dysplasias (SEMDs) are a heterogeneous group of disorders with variable growth failure and skeletal impairments affecting the spine and long bone epiphyses and metaphyses. Here we report on four unrelated families with SEMD in which we identified two monoallelic missense variants and one monoallelic splice site variant in RPL13, encoding the ribosomal protein eL13. In two out of four families, we observed autosomal dominant inheritance with incomplete penetrance and variable clinical expressivity; the phenotypes of the mutation-positive subjects ranged from normal height with or without hip dysplasia to severe SEMD with severe short stature and marked skeletal dysplasia. In vitro studies on patient-derived dermal fibroblasts harboring RPL13 missense mutations demonstrated normal eL13 expression, with proper subcellular localization but reduced colocalization with eL28 (p < 0.001). Cellular functional defects in fibroblasts from mutation-positive subjects indicated a significant increase in the ratio of 60S subunits to 80S ribosomes (p = 0.007) and attenuated global translation (p = 0.017). In line with the human phenotype, our rpl13 mutant zebrafish model, generated by CRISPR-Cas9 editing, showed cartilage deformities at embryonic and juvenile stages. These findings extend the genetic spectrum of RPL13 mutations causing this novel human ribosomopathy with variable skeletal features. Our study underscores for the first time incomplete penetrance and broad phenotypic variability in SEMD-RPL13 type and confirms impaired ribosomal function. Furthermore, the newly generated rpl13 mutant zebrafish model corroborates the role of eL13 in skeletogenesis. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica J Alm
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Helena Valta
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Céline Huber
- Department of Clinical Genetics, INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker Enfans Malades Hospital (AP-HP), Paris, France
| | - Anh N Tran
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Valentina Daponte
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Nadi Kirova
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yong-Uk Kwon
- Department of Orthopaedic Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Jung Yun Bae
- Department of Orthopaedic Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Woo Yeong Chung
- Department of Pediatrics, Busan Paik Hospital, College of Medicine, Inje University, Busan, Republic of Korea
| | - Shengjiang Tan
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Yves Sznajer
- Centre de Génétique Humaine - CGH, Cliniques Universitaires St. Luc, UCL, Bruxelles, Belgium
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Tuomas Näreoja
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Alan J Warren
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Valérie Cormier-Daire
- Department of Clinical Genetics, INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker Enfans Malades Hospital (AP-HP), Paris, France
| | - Ok-Hwa Kim
- Department of Radiology, I-Bone Hospital, Cheonan, Republic of Korea
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Tae-Joon Cho
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Folkhälsan Institute of Genetics, and Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Delbaere S, De Clercq A, Mizumoto S, Noborn F, Bek JW, Alluyn L, Gistelinck C, Syx D, Salmon PL, Coucke PJ, Larson G, Yamada S, Willaert A, Malfait F. b3galt6 Knock-Out Zebrafish Recapitulate β3GalT6-Deficiency Disorders in Human and Reveal a Trisaccharide Proteoglycan Linkage Region. Front Cell Dev Biol 2020; 8:597857. [PMID: 33363150 PMCID: PMC7758351 DOI: 10.3389/fcell.2020.597857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
Proteoglycans are structurally and functionally diverse biomacromolecules found abundantly on cell membranes and in the extracellular matrix. They consist of a core protein linked to glycosaminoglycan chains via a tetrasaccharide linkage region. Here, we show that CRISPR/Cas9-mediated b3galt6 knock-out zebrafish, lacking galactosyltransferase II, which adds the third sugar in the linkage region, largely recapitulate the phenotypic abnormalities seen in human β3GalT6-deficiency disorders. These comprise craniofacial dysmorphism, generalized skeletal dysplasia, skin involvement and indications for muscle hypotonia. In-depth TEM analysis revealed disturbed collagen fibril organization as the most consistent ultrastructural characteristic throughout different affected tissues. Strikingly, despite a strong reduction in glycosaminoglycan content, as demonstrated by anion-exchange HPLC, subsequent LC-MS/MS analysis revealed a small amount of proteoglycans containing a unique linkage region consisting of only three sugars. This implies that formation of glycosaminoglycans with an immature linkage region is possible in a pathogenic context. Our study, therefore unveils a novel rescue mechanism for proteoglycan production in the absence of galactosyltransferase II, hereby opening new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sarah Delbaere
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Fredrik Noborn
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Lien Alluyn
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Charlotte Gistelinck
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, United States
| | - Delfien Syx
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Andy Willaert
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Fransiska Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Further defining the clinical and molecular spectrum of acromesomelic dysplasia type maroteaux: a Turkish tertiary center experience. J Hum Genet 2020; 66:585-596. [PMID: 33288834 DOI: 10.1038/s10038-020-00871-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Acromesomelic dysplasia type Maroteaux (AMDM, OMIM #602875) is an autosomal recessive disorder characterized by severe short stature, shortened middle and distal segments of the limbs, redundant skin of fingers, radial head subluxation or dislocation, large great toes and cranium, and normal intelligence. Only the skeletal system appears to be consistently affected. AMDM is caused by biallelic loss-of-function variants in the natriuretic peptide receptor B (NPRB or NPR2, OMIM #108961) which is involved in endochondral ossification and longitudinal growth of limbs and vertebrae. In this study, we investigated 26 AMDM patients from 22 unrelated families and revealed their genetic etiology in 20 families, via Sanger sequencing or exome sequencing. A total of 22 distinct variants in NPR2 (14 missense, 5 nonsense, 2 intronic, and 1 one-amino acid deletion) were detected, among which 15 were novel. They were in homozygous states in 19 patients and in compound heterozygous states in four patients. Parents with heterozygous NPR2 variants were significantly shorter than the control. Extra-skeletal abnormalities, including global developmental delay/intellectual disability, nephrolithiasis, renal cyst, and oligodontia were noted in the patient cohort. The high parental consanguinity rate might have contributed to these findings, probably associated with other gene variants. This study represents the largest cohort of AMDM from Turkey and regional countries and further expands the molecular and clinical spectrum of AMDM.
Collapse
|
34
|
Haythorn A, Young M, Stanton J, Zhang J, Mueller POE, Halper J. Differential gene expression in skin RNA of horses affected with degenerative suspensory ligament desmitis. J Orthop Surg Res 2020; 15:460. [PMID: 33028365 PMCID: PMC7541307 DOI: 10.1186/s13018-020-01994-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Equine degenerative suspensory ligament desmitis (DSLD) is a systemic connective tissue disorder first identified in Peruvian Paso horses but afflicting other horse breeds as well. Inappropriate accumulation of proteoglycans in connective tissues, most prominently in tendons and ligaments, leads to progressive and debilitating lameness and pain. It is largely unknown what drives the overproduction of proteoglycans, but our previous studies suggest involvement of bone morphogenetic protein 2 (BMP2), a member of the transforming growth factor-β (TGFβ) family, impacting synthesis of proteoglycans. To identify potential players in pathogenesis of DSLD a new approach utilizing next generation sequencing was undertaken. METHODS Next generation sequencing was performed using RNA extracted from skin biopsies of six control Peruvian Pasos and six horses with DSLD (4 Peruvian Pasos and 2 warmbloods). The CuffDiff result sets were validated with algorithms used to run them. This was based on the determined false discovery rates derived from the P values adjusted for multiple testing for any given result. RESULTS Bioinformatics analysis of transcriptomes revealed differential expression of over 1500 genes, including increased expression of genes for several growth factors (most prominently BMP2, FGF5, CTGF, many members of the EGF family), and mediators of signaling (Fos, Myc, MAPK system), and keratins. Two genes encoding for enzymes involved in synthesis of hyaluronan were also overexpressed. Gene expression was decreased for protein cores of many proteoglycans, several growth factors, most collagens, and many peptides with immune function. CONCLUSIONS The overexpression of BMP2 correlates well with our previous data. However, the decrease in expression of numerous proteoglycans was unexpected. A mutation in a gene of a less characterized proteoglycan and/or glycosyltransferase with subsequent increased production of hyaluronan and/or a proteoglycan(s) undetected in our study could account for the systemic proteoglycan deposition. Decreased collagen gene expression indicates abnormal connective tissue metabolism. The increased expression of keratin genes and FGF5 supports reports of skin abnormalities in DSLD. Underexpression of immune function genes corresponds with lack of inflammation in DSLD tissues. Finally, though the proteoglycan and/or glycosaminoglycan abundant in DSLD has not been identified, we validated our previous data, including overexpression of BMP2, and systemic nature of DSLD due to disturbed metabolism of the extracellular matrix.
Collapse
Affiliation(s)
- Abigail Haythorn
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
| | - Madeline Young
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
| | - James Stanton
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
| | - Jian Zhang
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
| | - P. O. E. Mueller
- Department of Large Animal Medicine, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
| | - Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602 USA
- AU/UGA Medical Partnership, The University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
35
|
Petit D, Teppa RE, Harduin-Lepers A. A phylogenetic view and functional annotation of the animal β1,3-glycosyltransferases of the GT31 CAZy family. Glycobiology 2020; 31:243-259. [PMID: 32886776 PMCID: PMC8022947 DOI: 10.1093/glycob/cwaa086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
The formation of β1,3-linkages on animal glycoconjugates is catalyzed by a subset of β1,3-glycosyltransferases grouped in the Carbohydrate-Active enZYmes family glycosyltransferase-31 (GT31). This family represents an extremely diverse set of β1,3-N-acetylglucosaminyltransferases [B3GNTs and Fringe β1,3-N-acetylglucosaminyltransferases], β1,3-N-acetylgalactosaminyltransferases (B3GALNTs), β1,3-galactosyltransferases [B3GALTs and core 1 β1,3-galactosyltransferases (C1GALTs)], β1,3-glucosyltransferase (B3GLCT) and β1,3-glucuronyl acid transferases (B3GLCATs or CHs). The mammalian enzymes were particularly well studied and shown to use a large variety of sugar donors and acceptor substrates leading to the formation of β1,3-linkages in various glycosylation pathways. In contrast, there are only a few studies related to other metazoan and lower vertebrates GT31 enzymes and the evolutionary relationships of these divergent sequences remain obscure. In this study, we used bioinformatics approaches to identify more than 920 of putative GT31 sequences in Metazoa, Fungi and Choanoflagellata revealing their deep ancestry. Sequence-based analysis shed light on conserved motifs and structural features that are signatures of all the GT31. We leverage pieces of evidence from gene structure, phylogenetic and sequence-based analyses to identify two major subgroups of GT31 named Fringe-related and B3GALT-related and demonstrate the existence of 10 orthologue groups in the Urmetazoa, the hypothetical last common ancestor of all animals. Finally, synteny and paralogy analysis unveiled the existence of 30 subfamilies in vertebrates, among which 5 are new and were named C1GALT2, C1GALT3, B3GALT8, B3GNT10 and B3GNT11. Altogether, these various approaches enabled us to propose the first comprehensive analysis of the metazoan GT31 disentangling their evolutionary relationships.
Collapse
Affiliation(s)
- Daniel Petit
- Glycosylation et différenciation cellulaire, EA 7500, Laboratoire PEIRENE, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Roxana Elin Teppa
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
36
|
Malfait F, Castori M, Francomano CA, Giunta C, Kosho T, Byers PH. The Ehlers-Danlos syndromes. Nat Rev Dis Primers 2020; 6:64. [PMID: 32732924 DOI: 10.1038/s41572-020-0194-9] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of hereditary disorders of connective tissue, with common features including joint hypermobility, soft and hyperextensible skin, abnormal wound healing and easy bruising. Fourteen different types of EDS are recognized, of which the molecular cause is known for 13 types. These types are caused by variants in 20 different genes, the majority of which encode the fibrillar collagen types I, III and V, modifying or processing enzymes for those proteins, and enzymes that can modify glycosaminoglycan chains of proteoglycans. For the hypermobile type of EDS, the molecular underpinnings remain unknown. As connective tissue is ubiquitously distributed throughout the body, manifestations of the different types of EDS are present, to varying degrees, in virtually every organ system. This can make these disorders particularly challenging to diagnose and manage. Management consists of a care team responsible for surveillance of major and organ-specific complications (for example, arterial aneurysm and dissection), integrated physical medicine and rehabilitation. No specific medical or genetic therapies are available for any type of EDS.
Collapse
Affiliation(s)
- Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Clair A Francomano
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cecilia Giunta
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Peter H Byers
- Department of Pathology and Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Mizumoto S, Janecke AR, Sadeghpour A, Povysil G, McDonald MT, Unger S, Greber‐Platzer S, Deak KL, Katsanis N, Superti‐Furga A, Sugahara K, Davis EE, Yamada S, Vodopiutz J. CSGALNACT1-congenital disorder of glycosylation: A mild skeletal dysplasia with advanced bone age. Hum Mutat 2020; 41:655-667. [PMID: 31705726 PMCID: PMC7027858 DOI: 10.1002/humu.23952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023]
Abstract
Congenital disorders of glycosylation (CDGs) comprise a large number of inherited metabolic defects that affect the biosynthesis and attachment of glycans. CDGs manifest as a broad spectrum of disease, most often including neurodevelopmental and skeletal abnormalities and skin laxity. Two patients with biallelic CSGALNACT1 variants and a mild skeletal dysplasia have been described previously. We investigated two unrelated patients presenting with short stature with advanced bone age, facial dysmorphism, and mild language delay, in whom trio-exome sequencing identified novel biallelic CSGALNACT1 variants: compound heterozygosity for c.1294G>T (p.Asp432Tyr) and the deletion of exon 4 that includes the start codon in one patient, and homozygosity for c.791A>G (p.Asn264Ser) in the other patient. CSGALNACT1 encodes CSGalNAcT-1, a key enzyme in the biosynthesis of sulfated glycosaminoglycans chondroitin and dermatan sulfate. Biochemical studies demonstrated significantly reduced CSGalNAcT-1 activity of the novel missense variants, as reported previously for the p.Pro384Arg variant. Altered levels of chondroitin, dermatan, and heparan sulfate moieties were observed in patients' fibroblasts compared to controls. Our data indicate that biallelic loss-of-function mutations in CSGALNACT1 disturb glycosaminoglycan synthesis and cause a mild skeletal dysplasia with advanced bone age, CSGALNACT1-CDG.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
- Department of Women's and Children's Health, Clinical Genetics Group, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Andreas R. Janecke
- Department of Pediatrics IMedical University of InnsbruckInnsbruckAustria
- Division of Human GeneticsMedical University of InnsbruckInnsbruckAustria
| | - Azita Sadeghpour
- Center for Human Disease ModelingDuke University Medical CenterDurhamNorth Carolina
| | - Gundula Povysil
- Institute of BioinformaticsJohannes Kepler UniversityLinzAustria
| | - Marie T. McDonald
- Department of Pediatrics, Division of Medical GeneticsDuke University Medical CenterDurhamNorth Carolina
| | - Sheila Unger
- Department of Medical Genetics, Centre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Susanne Greber‐Platzer
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Kristen L. Deak
- Department of PathologyDuke University Medical CenterDurhamNorth Carolina
| | - Nicholas Katsanis
- Center for Human Disease ModelingDuke University Medical CenterDurhamNorth Carolina
- Advanced Center for Translational and Genetic Medicine (ACT‐GeM), Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinois
- Department of Pediatrics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Andrea Superti‐Furga
- Department of Pediatrics, Centre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Kazuyuki Sugahara
- Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
| | - Erica E. Davis
- Center for Human Disease ModelingDuke University Medical CenterDurhamNorth Carolina
- Advanced Center for Translational and Genetic Medicine (ACT‐GeM), Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinois
- Department of Pediatrics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for PediatricsMedical University of ViennaViennaAustria
| |
Collapse
|
38
|
Byrne AB, Mizumoto S, Arts P, Yap P, Feng J, Schreiber AW, Babic M, King-Smith SL, Barnett CP, Moore L, Sugahara K, Mutlu-Albayrak H, Nishimura G, Liebelt JE, Yamada S, Savarirayan R, Scott HS. Pseudodiastrophic dysplasia expands the known phenotypic spectrum of defects in proteoglycan biosynthesis. J Med Genet 2020; 57:454-460. [PMID: 31988067 PMCID: PMC7361035 DOI: 10.1136/jmedgenet-2019-106700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023]
Abstract
Background Pseudodiastrophic dysplasia (PDD) is a severe skeletal dysplasia associated with prenatal manifestation and early lethality. Clinically, PDD is classified as a ‘dysplasia with multiple joint dislocations’; however, the molecular aetiology of the disorder is currently unknown. Methods Whole exome sequencing (WES) was performed on three patients from two unrelated families, clinically diagnosed with PDD, in order to identify the underlying genetic cause. The functional effects of the identified variants were characterised using primary cells and human cell-based overexpression assays. Results WES resulted in the identification of biallelic variants in the established skeletal dysplasia genes, B3GAT3 (family 1) and CANT1 (family 2). Mutations in these genes have previously been reported to cause ‘multiple joint dislocations, short stature, and craniofacial dysmorphism with or without congenital heart defects’ (‘JDSCD’; B3GAT3) and Desbuquois dysplasia 1 (CANT1), disorders in the same nosological group as PDD. Follow-up of the B3GAT3 variants demonstrated significantly reduced B3GAT3/GlcAT-I expression. Downstream in vitro functional analysis revealed abolished biosynthesis of glycosaminoglycan side chains on proteoglycans. Functional evaluation of the CANT1 variant showed impaired nucleotidase activity, which results in inhibition of glycosaminoglycan synthesis through accumulation of uridine diphosphate. Conclusion For the families described in this study, the PDD phenotype was caused by mutations in the known skeletal dysplasia genes B3GAT3 and CANT1, demonstrating the advantage of genomic analyses in delineating the molecular diagnosis of skeletal dysplasias. This finding expands the phenotypic spectrum of B3GAT3-related and CANT1-related skeletal dysplasias to include PDD and highlights the significant phenotypic overlap of conditions within the proteoglycan biosynthesis pathway.
Collapse
Affiliation(s)
- Alicia B Byrne
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan.,Research Center for Pathogenesis of Intractable Diseases, Meijo University, Nagoya, Japan.,Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Peer Arts
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Patrick Yap
- Victorian Clinical Genetics Service, Royal Children's Hospital, Melbourne, Victoria, Australia.,Genetic Health Service New Zealand (Northern Hub), Auckland, New Zealand.,Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jinghua Feng
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Andreas W Schreiber
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.,School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Milena Babic
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Sarah L King-Smith
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.,Australian Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Christopher P Barnett
- South Australian Clinical Genetics Service, Women's and Children's Hospital, North Adelaide, South Australia, Australia.,School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lynette Moore
- School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Surgical Pathology, Women's and Children's Hospital, SA Pathology, North Adelaide, South Australia, Australia
| | - Kazuyuki Sugahara
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Hatice Mutlu-Albayrak
- Department of Pediatric Genetics, Cengiz Gökcek Obstetrics and Children's Hospital, Gaziantep, Turkey
| | - Gen Nishimura
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Jan E Liebelt
- South Australian Clinical Genetics Service, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan.,Research Center for Pathogenesis of Intractable Diseases, Meijo University, Nagoya, Japan
| | - Ravi Savarirayan
- Victorian Clinical Genetics Service, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia .,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.,Australian Genomics Health Alliance, Melbourne, Victoria, Australia.,School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Mizumoto S. [Hereditary Skeletal and Skin Disorders Caused by Defects in the Biosynthesis of Chondroitin/Dermatan Sulfate, and Molecular Mechanisms of Pulmonary Metastasis]. YAKUGAKU ZASSHI 2019; 139:1495-1500. [PMID: 31787635 DOI: 10.1248/yakushi.19-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The roles of chondroitin sulfate (CS) and dermatan sulfate (DS) have been demonstrated in various biological events such as the construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, and growth factors. Human genetic diseases, including skeletal abnormalities, connective tissue diseases, and heart defects, were reported to be caused by mutations in the genes encoding glycosyltransferases, epimerases, and sulfotransferases that are responsible for the biosynthesis of CS and DS. Glycobiological approaches revealed that mutations in CS- and DS-biosynthetic enzymes led to reductions in their enzymatic activities and in the levels of CS and DS. Furthermore, CS at the surface of tumor cells plays a key role in pulmonary metastasis. A receptor for advanced glycation end-products (RAGE) was predominantly expressed in the lung, and was identified as a functional receptor for CS chains. CS and anti-RAGE antibodies inhibited the pulmonary metastasis of not only Lewis lung carcinoma but also B16 melanoma cells. Hence, RAGE and CS are potential targets of drug discovery for pulmonary metastasis and a number of other pathological conditions involving RAGE in the pathogenetic mechanism. This review provides an overview of glycobiological studies on characterized genetic disorders caused by the impaired biosynthesis of CS, as well as DS, and on the pulmonary metastasis of Lewis lung carcinoma cells involving CS and RAGE.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University
| |
Collapse
|
40
|
Caraffi SG, Maini I, Ivanovski I, Pollazzon M, Giangiobbe S, Valli M, Rossi A, Sassi S, Faccioli S, Rocco MD, Magnani C, Campos-Xavier B, Unger S, Superti-Furga A, Garavelli L. Severe Peripheral Joint Laxity is a Distinctive Clinical Feature of Spondylodysplastic-Ehlers-Danlos Syndrome (EDS)- B4GALT7 and Spondylodysplastic-EDS- B3GALT6. Genes (Basel) 2019; 10:genes10100799. [PMID: 31614862 PMCID: PMC6826576 DOI: 10.3390/genes10100799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
Variations in genes encoding for the enzymes responsible for synthesizing the linker region of proteoglycans may result in recessive conditions known as "linkeropathies". The two phenotypes related to mutations in genes B4GALT7 and B3GALT6 (encoding for galactosyltransferase I and II respectively) are similar, characterized by short stature, hypotonia, joint hypermobility, skeletal features and a suggestive face with prominent forehead, thin soft tissue and prominent eyes. The most outstanding feature of these disorders is the combination of severe connective tissue involvement, often manifesting in newborns and infants, and skeletal dysplasia that becomes apparent during childhood. Here, we intend to more accurately define some of the clinical features of B4GALT7 and B3GALT6-related conditions and underline the extreme hypermobility of distal joints and the soft, doughy skin on the hands and feet as features that may be useful as the first clues for a correct diagnosis.
Collapse
Affiliation(s)
- Stefano Giuseppe Caraffi
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Ilenia Maini
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
- Child Neuropsychiatry Unit, Azienda USL of Parma, 43125 Parma, Italy.
| | - Ivan Ivanovski
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 42121 Reggio Emilia, Italy.
| | - Marzia Pollazzon
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Sara Giangiobbe
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Maurizia Valli
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy.
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy.
| | - Silvia Sassi
- Rehabilitation Pediatric Unit, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Silvia Faccioli
- Rehabilitation Pediatric Unit, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Maja Di Rocco
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy.
| | - Cinzia Magnani
- Neonatology and Neonatal Intensive Care Unit, Maternal and Child Department, University of Parma, 43121 Parma, Italy.
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011 Lausanne, Switzerland.
| | - Sheila Unger
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011 Lausanne, Switzerland.
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, 1011 Lausanne, Switzerland.
| | - Livia Garavelli
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
41
|
Further Defining the Phenotypic Spectrum of B3GAT3 Mutations and Literature Review on Linkeropathy Syndromes. Genes (Basel) 2019; 10:genes10090631. [PMID: 31438591 PMCID: PMC6770791 DOI: 10.3390/genes10090631] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
The term linkeropathies (LKs) refers to a group of rare heritable connective tissue disorders, characterized by a variable degree of short stature, skeletal dysplasia, joint laxity, cutaneous anomalies, dysmorphism, heart malformation, and developmental delay. The LK genes encode for enzymes that add glycosaminoglycan chains onto proteoglycans via a common tetrasaccharide linker region. Biallelic variants in XYLT1 and XYLT2, encoding xylosyltransferases, are associated with Desbuquois dysplasia type 2 and spondylo-ocular syndrome, respectively. Defects in B4GALT7 and B3GALT6, encoding galactosyltransferases, lead to spondylodysplastic Ehlers-Danlos syndrome (spEDS). Mutations in B3GAT3, encoding a glucuronyltransferase, were described in 25 patients from 12 families with variable phenotypes resembling Larsen, Antley-Bixler, Shprintzen-Goldberg, and Geroderma osteodysplastica syndromes. Herein, we report on a 13-year-old girl with a clinical presentation suggestive of spEDS, according to the 2017 EDS nosology, in whom compound heterozygosity for two B3GAT3 likely pathogenic variants was identified. We review the spectrum of B3GAT3-related disorders and provide a comparison of all LK patients reported up to now, highlighting that LKs are a phenotypic continuum bridging EDS and skeletal disorders, hence offering future nosologic perspectives.
Collapse
|
42
|
Welch LG, Munro S. A tale of short tails, through thick and thin: investigating the sorting mechanisms of Golgi enzymes. FEBS Lett 2019; 593:2452-2465. [DOI: 10.1002/1873-3468.13553] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Lawrence G. Welch
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge UK
| |
Collapse
|
43
|
Paganini C, Costantini R, Superti-Furga A, Rossi A. Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: a panoramic view. FEBS J 2019; 286:3008-3032. [PMID: 31286677 DOI: 10.1111/febs.14984] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/22/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides that constitute the carbohydrate moiety covalently attached to the protein core of proteoglycans, macromolecules present on the cell surface and in the extracellular matrix. Several genetic disorders of bone and connective tissue are caused by mutations in genes encoding for glycosyltransferases, sulfotransferases and transporters that are responsible for the synthesis of sulfated GAGs. Phenotypically, these disorders all reflect alterations in crucial biological functions of GAGs in the development, growth and homoeostasis of cartilage and bone. To date, up to 27 different skeletal phenotypes have been linked to mutations in 23 genes encoding for proteins involved in GAG biosynthesis. This review focuses on recent genetic, molecular and biochemical studies of bone and connective tissue disorders caused by GAG synthesis defects. These insights and future research in the field will provide a deeper understanding of the molecular pathogenesis of these disorders and will pave the way for developing common therapeutic strategies that might be targeted to a range of individual phenotypes.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Rossella Costantini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| |
Collapse
|
44
|
Chimusa ER, Beighton P, Kumuthini J, Ramesar RS. Detecting genetic modifiers of spondyloepimetaphyseal dysplasia with joint laxity in the Caucasian Afrikaner community. Hum Mol Genet 2019; 28:1053-1063. [PMID: 30358852 DOI: 10.1093/hmg/ddy373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
Spondyloepimetaphyseal dysplasia with joint laxity (SEMDJL) is an autosomal-recessive skeletal dysplasia. A relatively large number of patients with SEMDJL have been identified in the Caucasian Afrikaans-speaking community in South Africa. We used a combination of Genome-Wide Human Single Nucleotide Polymorphism (SNP) Array 6.0 data and whole exomic data to potentially dissect genetic modifiers associated with SEMDJL in Caucasian Afrikaans-speaking patients. Leveraging the family-based association signal in prioritizing candidate mutations, we identified two potential modifier genes, COL1A2 and MATN1, and replicating previously identified mutation in KIF22. Importantly, our findings of genetic modifier genes and previously identified mutations are layered on the same sub-network implicated in syndromes characterized by skeletal abnormalities and intellectual disability, bone and connective tissue fragility. This study has potentially provided crucial insights in identifying the indirect modifying mutation(s) linked to the true causal mutation associated with SEMDJL. It is a critical lesson that one may use constructively especially when the pace of exomic sequencing of rare disorders continues apace.
Collapse
Affiliation(s)
- Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Peter Beighton
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Judit Kumuthini
- Centre for Proteomic and Genomic Research, St. Peter's Square Mall, Cape Town, South Africa
| | - Rajkumar S Ramesar
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
45
|
Colman M, Van Damme T, Steichen-Gersdorf E, Laccone F, Nampoothiri S, Syx D, Guillemyn B, Symoens S, Malfait F. The clinical and mutational spectrum of B3GAT3 linkeropathy: two case reports and literature review. Orphanet J Rare Dis 2019; 14:138. [PMID: 31196143 PMCID: PMC6567438 DOI: 10.1186/s13023-019-1110-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/04/2019] [Indexed: 01/07/2023] Open
Abstract
Background Proteoglycans are large and structurally complex macromolecules which can be found in abundancy in the extracellular matrix and on the surface of all animal cells. Mutations in the genes encoding the enzymes responsible for the formation of the tetrasaccharide linker region between the proteoglycan core protein and the glycosaminoglycan side chains lead to a spectrum of severe and overlapping autosomal recessive connective tissue disorders, collectively coined the ‘glycosaminoglycan linkeropathies’. Results We report the clinical findings of two novel patients with a complex linkeropathy due to biallelic mutations in B3GAT3, the gene that encodes glucuronosyltransferase I, which catalyzes the addition of the ultimate saccharide to the linker region. We identified a previously reported c.667G > A missense mutation and an unreported homozygous c.416C > T missense mutation. We also performed a genotype and phenotype-oriented literature overview of all hitherto reported patients harbouring B3GAT3 mutations. A total of 23 patients from 10 families harbouring bi-allelic mutations and one patient with a heterozygeous splice-site mutation in B3GAT3 have been reported. They all display a complex phenotype characterized by consistent presence of skeletal dysplasia (including short stature, kyphosis, scoliosis and deformity of the long bones), facial dysmorphology, and spatulate distal phalanges. More variably present are cardiac defects, joint hypermobility, joint dislocations/contractures and fractures. Seven different B3GAT3 mutations have been reported, and although the number of patients is still limited, some phenotype-genotype correlations start to emerge. The more severe phenotypes seem to have mutations located in the substrate acceptor subdomain of the catalytic domain of the glucuronosyltransferase I protein while more mildly affected phenotypes seem to have mutations in the NTP-sugar donor substrate binding subdomain. Conclusions Loss-of-function mutations in B3GAT3 are associated with a complex connective tissue phenotype characterized by disproportionate short stature, skeletal dysplasia, facial dysmorphism, spatulate distal phalanges and -to a lesser extent- joint contractures, joint hypermobility with dislocations, cardiac defects and bone fragility. Based on the limited number of reported patients, some genotype-phenotype correlations start to emerge.
Collapse
Affiliation(s)
- Marlies Colman
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 0K5, Corneel Heymanslaan 10, B-9000, Ghent, Belgium
| | - Tim Van Damme
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 0K5, Corneel Heymanslaan 10, B-9000, Ghent, Belgium
| | | | | | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Kerala, India
| | - Delfien Syx
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 0K5, Corneel Heymanslaan 10, B-9000, Ghent, Belgium
| | - Brecht Guillemyn
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 0K5, Corneel Heymanslaan 10, B-9000, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 0K5, Corneel Heymanslaan 10, B-9000, Ghent, Belgium
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 0K5, Corneel Heymanslaan 10, B-9000, Ghent, Belgium.
| |
Collapse
|
46
|
Van Damme T, Pang X, Guillemyn B, Gulberti S, Syx D, De Rycke R, Kaye O, de Die-Smulders CEM, Pfundt R, Kariminejad A, Nampoothiri S, Pierquin G, Bulk S, Larson AA, Chatfield KC, Simon M, Legrand A, Gerard M, Symoens S, Fournel-Gigleux S, Malfait F. Biallelic B3GALT6 mutations cause spondylodysplastic Ehlers-Danlos syndrome. Hum Mol Genet 2019; 27:3475-3487. [PMID: 29931299 DOI: 10.1093/hmg/ddy234] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/14/2018] [Indexed: 11/15/2022] Open
Abstract
Proteoglycans are among the most abundant and structurally complex biomacromolecules and play critical roles in connective tissues. They are composed of a core protein onto which glycosaminoglycan (GAG) side chains are attached via a linker region. Biallelic mutations in B3GALT6, encoding one of the linker region glycosyltransferases, are known to cause either spondyloepimetaphyseal dysplasia (SEMD) or a severe pleiotropic form of Ehlers-Danlos syndromes (EDS). This study provides clinical, molecular and biochemical data on 12 patients with biallelic B3GALT6 mutations. Notably, all patients have features of both EDS and SEMD. In addition, some patients have severe and potential life-threatening complications such as aortic dilatation and aneurysm, cervical spine instability and respiratory insufficiency. Whole-exome sequencing, next generation panel sequencing and direct sequencing identified biallelic B3GALT6 mutations in all patients. We show that these mutations reduce the amount of β3GalT6 protein and lead to a complete loss of galactosyltransferase activity. In turn, this leads to deficient GAG synthesis, and ultrastructural abnormalities in collagen fibril organization. In conclusion, this study redefines the phenotype associated with B3GALT6 mutations on the basis of clinical, molecular and biochemical data in 12 patients, and provides an in-depth assessment of β3GalT6 activity and GAG synthesis to better understand this rare condition.
Collapse
Affiliation(s)
- Tim Van Damme
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Xiaomeng Pang
- MolCelTEG Team, UMR 7365 CNRS - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Brecht Guillemyn
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Sandrine Gulberti
- MolCelTEG Team, UMR 7365 CNRS - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Delfien Syx
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium.,Center for Inflammation Research and BioImaging Core, VIB, Ghent, Belgium
| | - Olivier Kaye
- Centre de Rhumatologie, CHR de la Citadelle, Liège, Belgium
| | | | - Rolph Pfundt
- Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands
| | | | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, Kerala, India
| | | | - Saskia Bulk
- Service de Génétique Médicale, CHU Liège, Liège, Belgium
| | - Austin A Larson
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital of Colorado, Aurora, CO, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital of Colorado, Aurora, CO, USA
| | - Marleen Simon
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Anne Legrand
- Centre de Référence des Maladies Vasculaires Rares, Hôpital Européen Georges Pompidou, Paris, France.,Paris Centre de Recherche Cardiovasculaire-PARCC, INSERM U970-Université Paris Descartes, Paris, France
| | - Marion Gerard
- Service de Génétique Clinique, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Sofie Symoens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | | | - Fransiska Malfait
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
47
|
Understanding the basis of Ehlers-Danlos syndrome in the era of the next-generation sequencing. Arch Dermatol Res 2019; 311:265-275. [PMID: 30826961 DOI: 10.1007/s00403-019-01894-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/26/2018] [Accepted: 02/12/2019] [Indexed: 01/08/2023]
Abstract
Ehlers-Danlos syndrome (EDS) is a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) defined by joint laxity, skin alterations, and joint hypermobility. The latest EDS classification recognized 13 subtypes in which the clinical and genetic phenotypes are often overlapping, making the diagnosis rather difficult and strengthening the importance of the molecular diagnostic confirmation. New genetic techniques such as next-generation sequencing (NGS) gave the opportunity to identify the genetic bases of unresolved EDS types and support clinical counseling. To date, the molecular defects have been identified in 19 genes, mainly in those encoding collagen, its modifying enzymes or other constituents of the extracellular matrix (ECM). In this review we summarize the contribution of NGS technologies to the current knowledge of the genetic background in different EDS subtypes.
Collapse
|
48
|
Francisco R, Pascoal C, Marques-da-Silva D, Morava E, Gole GA, Coman D, Jaeken J, Dos Reis Ferreira V. Keeping an eye on congenital disorders of O-glycosylation: A systematic literature review. J Inherit Metab Dis 2019; 42:29-48. [PMID: 30740740 DOI: 10.1002/jimd.12025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing family comprising >100 genetic diseases. Some 25 CDG are pure O-glycosylation defects. Even among this CDG subgroup, phenotypic diversity is broad, ranging from mild to severe poly-organ/system dysfunction. Ophthalmic manifestations are present in 60% of these CDG. The ophthalmic manifestations in N-glycosylation-deficient patients have been described elsewhere. The present review documents the spectrum and incidence of eye disorders in patients with pure O-glycosylation defects with the aim of assisting diagnosis and management and promoting research.
Collapse
Affiliation(s)
- Rita Francisco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Carlota Pascoal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Dorinda Marques-da-Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Eva Morava
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Glen A Gole
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Discipline of Paediatrics and Child Health, University of Queensland, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David Coman
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| |
Collapse
|
49
|
Campos-Xavier B, Rogers RC, Niel-Bütschi F, Ferreira C, Unger S, Spranger J, Superti-Furga A. Confirmation of spondylo-epi-metaphyseal dysplasia with joint laxity, EXOC6B
type. Am J Med Genet A 2018; 176:2934-2935. [DOI: 10.1002/ajmg.a.40631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital (CHUV); University of Lausanne; Lausanne Switzerland
| | | | - Florence Niel-Bütschi
- Division of Genetic Medicine, Lausanne University Hospital (CHUV); University of Lausanne; Lausanne Switzerland
| | - Catarina Ferreira
- Division of Genetic Medicine, Lausanne University Hospital (CHUV); University of Lausanne; Lausanne Switzerland
| | - Sheila Unger
- Division of Genetic Medicine, Lausanne University Hospital (CHUV); University of Lausanne; Lausanne Switzerland
| | | | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital (CHUV); University of Lausanne; Lausanne Switzerland
| |
Collapse
|
50
|
Ben-Mahmoud A, Ben-Salem S, Al-Sorkhy M, John A, Ali BR, Al-Gazali L. A B3GALT6 variant in patient originally described as Al-Gazali syndrome and implicating the endoplasmic reticulum quality control in the mechanism of some β3GalT6-pathy mutations. Clin Genet 2018; 93:1148-1158. [PMID: 29443383 DOI: 10.1111/cge.13236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 02/05/2023]
Abstract
Al-Gazali syndrome encompasses several clinical features including prenatal growth retardation, large joints contractures with camptodactyly, bilateral talipes equinovarus, small mouth, anterior segment anomalies of the eyes, and early lethality. Recently, a baby with features very similar to Al-Gazali syndrome was found to have compound heterozygous variants in B3GALT6. This gene encodes Beta-1,3-galactosyltransferase 6 (β3GalT6), an essential component of the glycosaminoglycan synthesis pathway. Pathogenic variants in B3GALT6 have also been shown to cause Ehlers-Danlos syndrome spondylodysplastic type (spEDS-B3GALT6) and spondyloepimetaphyseal dysplasia with joint laxity type I (SEMD-JL1). In 2017, a new international classification of EDS included these 2 conditions together with the child reported to have features similar to Al-Gazali syndrome under spondylodysplastic EDS (spEDS). We report a disease-causing variant c.618C > G, p.(Cys206Trp) in 1 patient originally described as Al-Gazali syndrome and reported in 1999. We evaluated the involvement of the endoplasmic reticulum-associated protein degradation, in the pathogenesis of 13 B3GALT6 variants. Retention in endoplasmic reticulum was evident in 6 of them while the c.618C > G, p.(Cys206Trp) and the other 6 variants trafficked normally. Our findings confirm the involvement of B3GALT6 in the pathogenesis of Al-Gazali syndrome and suggest that Al-Gazali syndrome represents the severe end of the spectrum of the phenotypes caused by pathogenic variants in this gene.
Collapse
Affiliation(s)
- A Ben-Mahmoud
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - S Ben-Salem
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - M Al-Sorkhy
- College of pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - A John
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - B R Ali
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - L Al-Gazali
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|