1
|
Kitaba NT, Østergaard TM, Lønnebotn M, Accordini S, Real FG, Malinovschi A, Oudin A, Benediktsdottir B, González FJC, Gómez LP, Holm M, Jõgi NO, Dharmage SC, Skulstad SM, Schlünssen V, Svanes C, Holloway JW. Father's adolescent body silhouette is associated with offspring asthma, lung function and BMI through DNA methylation. Commun Biol 2025; 8:796. [PMID: 40410506 DOI: 10.1038/s42003-025-08121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/23/2025] [Indexed: 05/25/2025] Open
Abstract
Boys' pubertal overweight associates with future offspring's asthma and low lung function. To identify how paternal overweight is associated with offspring's DNA methylation (DNAm), we conducted an epigenome-wide association study of father's body silhouette (FBS) at three timepoints (age 8, voice break and 30) and change in FBS between these times, with offspring DNAm, in the RHINESSA cohort (N = 339). We identified 2005 differentially methylated cytosine-phosphate-guanine (dmCpG) sites (FDR < 0.05), including dmCpGs associated with offspring asthma (119), lung function (178) and BMI (291). Voice break FBS associated with dmCpGs in loci including KCNJ10, FERMT1, NCK2 and WWP1. Change in FBS across sexual maturation associated with DNAm at loci including NOP10, TRRAP, EFHD1, MRPL17 and NORD59A;ATP5B and showed strong correlation in reduced gene expression in loci NAP1L5, ATP5B, ZNF695, ZNF600, VTRNA2-1, SOAT2 and AGPAT2. We identified 24 imprinted genes including: VTRNA2-1, BLCAP, WT1, NAP1L5 and PTPRN2. Identified pathways relate to lipid and glucose metabolism and adipogenesis. Father's overweight at puberty and during reproductive maturation was strongly associated with offspring DNA, suggesting a key role for epigenetic mechanisms in intergenerational transfer from father to offspring in humans. The results support an important vulnerability window in male puberty for future offspring health.
Collapse
Affiliation(s)
- Negusse Tadesse Kitaba
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Toril Mørkve Østergaard
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway
| | - Marianne Lønnebotn
- Department of Health and Caring Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Simone Accordini
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Anna Oudin
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bryndis Benediktsdottir
- Department of Allergy, Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland Faculty of Medicine, University of Iceland, Landspitali, Iceland
| | | | | | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nils Oskar Jõgi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Svein Magne Skulstad
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment, Work and Health, Danish Ramazzini Centre, Aarhus University Denmark, Aarhus, Denmark
| | - Cecilie Svanes
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway.
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway.
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton, UK
| |
Collapse
|
2
|
Rosenski J, Peretz A, Magenheim J, Loyfer N, Shemer R, Glaser B, Dor Y, Kaplan T. Atlas of imprinted and allele-specific DNA methylation in the human body. Nat Commun 2025; 16:2141. [PMID: 40069157 PMCID: PMC11897249 DOI: 10.1038/s41467-025-57433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Allele-specific DNA methylation reflects genetic variation and parentally-inherited changes, and is involved in gene regulation and pathologies. Yet, our knowledge of this phenomenon is largely limited to blood. Here we present a comprehensive atlas of allele-specific DNA methylation using deep whole-genome sequencing across 39 normal human cell types. We identified 325k regions, covering 6% of the genome and 11% of CpGs, that show a bimodal distribution of methylated and unmethylated molecules. In 34k of these regions, genetic variations at individual alleles segregate with methylation patterns, validating allele-specific methylation. We also identified 460 regions showing parental allele-specific methylation, the majority of which are novel, as well as 78 regions associated with known imprinted genes. Surprisingly, sequence-dependent and parental allele-dependent methylation is often restricted to specific cell types, revealing unappreciated variation of allele-specific methylation across the human body. Finally, we validate tissue-specific, maternal allele-specific methylation of CHD7, offering a potential mechanism for the paternal bias in the inheritance mode of CHARGE syndrome associated with this gene. The atlas provides a resource for studying allele-specific methylation and regulatory mechanisms underlying imprinted expression in specific human cell types.
Collapse
Affiliation(s)
- Jonathan Rosenski
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayelet Peretz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Judith Magenheim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Center for Computational Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Center for Computational Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Mizuguchi T, Okamoto N, Hara T, Nishimura N, Sakamoto M, Fu L, Uchiyama Y, Tsuchida N, Hamanaka K, Koshimizu E, Fujita A, Misawa K, Nakabayashi K, Miyatake S, Matsumoto N. Diagnostic utility of single-locus DNA methylation mark in Sotos syndrome developed by nanopore sequencing-based episignature. Clin Epigenetics 2025; 17:27. [PMID: 39966947 PMCID: PMC11837588 DOI: 10.1186/s13148-025-01832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND In various neurodevelopmental disorders (NDDs), sets of differential methylation marks (referred to as DNA methylation signatures or episignatures) are syndrome-specific and useful in evaluating the pathogenicity of detected genetic variants. These signatures have generally been tested using methylation arrays, requiring additional experimental and evaluation costs. As an alternative, long-read sequencing can simultaneously and accurately evaluate genetic and epigenetic changes. In addition, genome-wide DNA methylation profiling with more complete sets of CpG using long-read sequencing (than methylation arrays) may provide alternative but more comprehensive DNA methylation signatures, which have yet to be adequately investigated. METHODS Nine and seven cases of molecularly diagnosed Sotos syndrome and ATR-X syndrome, respectively, were sequenced using nanopore long-read sequencing, together with 22 controls. Genome-wide differential DNA methylation analysis was performed. Among these differential DNA methylation sites, a single-locus DNA methylation mark at part of the NSD1 CpG island (CpGi) was subsequently studied in an additional 22 cases with a NSD1 point mutation or a 5q35 submicroscopic deletion involving NSD1. To investigate the potential utility of a single-locus DNA methylation test at NSD1 CpGi for differential diagnosis, nine cases with NSD1-negative clinically overlapping overgrowth intellectual disability syndromes (OGIDs) were also tested. RESULTS Long-read sequencing enabled the successful extraction of two sets of differential methylation marks unique to each of Sotos syndrome and ATR-X syndrome, referred to as long-read-based DNA methylation signatures (LR-DNAm signatures), as alternatives to reported DNA methylation signatures (obtained by methylation array). Additionally, we found that a part, but not all, of the NSD1 CpGi were hypomethylated compared with the level in controls in both cases harboring NSD1 point mutations and those with a 5q35 submicroscopic deletion. This difference in methylation is specific to Sotos syndrome and lacking in other OGIDs. CONCLUSIONS Simultaneous evaluation of genetic and epigenetic alterations using long-read sequencing may improve the discovery of DNA methylation signatures, which may in turn increase the diagnostic yields. As an example of the outcomes of these analyses, we propose that a single-locus DNA methylation test at NSD1 CpGi may streamline the molecular diagnosis of Sotos syndrome, regardless of the type of NSD1 aberration.
Collapse
Affiliation(s)
- Takeshi Mizuguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Taiki Hara
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naoto Nishimura
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masamune Sakamoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Li Fu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan.
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan.
| |
Collapse
|
4
|
Urakawa T, Soejima H, Yamoto K, Hara-Isono K, Nakamura A, Kawashima S, Narusawa H, Kosaki R, Nishimura Y, Yamazawa K, Hattori T, Muramatsu Y, Inoue T, Matsubara K, Fukami M, Saitoh S, Ogata T, Kagami M. Comprehensive molecular and clinical findings in 29 patients with multi-locus imprinting disturbance. Clin Epigenetics 2024; 16:138. [PMID: 39369220 PMCID: PMC11452994 DOI: 10.1186/s13148-024-01744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Multi-locus imprinting disturbance (MLID) with methylation defects in various differentially methylated regions (DMRs) has recently been identified in approximately 150 cases with imprinting disorders (IDs), and deleterious variants have been found in genes related to methylation maintenance of DMRs, such as those encoding proteins constructing the subcortical maternal complex (SCMC), in a small fraction of patients and/or their mothers. However, integrated methylation analysis for DMRs and sequence analysis for MLID-causative genes in MLID cases and their mothers have been performed only in a single study focusing on Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) phenotypes. RESULTS Of 783 patients with various IDs we have identified to date, we examined a total of 386 patients with confirmed epimutation and 71 patients with epimutation or uniparental disomy. Consequently, we identified MLID in 29 patients with epimutation confirmed by methylation analysis for multiple ID-associated DMRs using pyrosequencing and/or methylation-specific multiple ligation-dependent probe amplification. MLID was detected in approximately 12% of patients with BWS phenotype and approximately 5% of patients with SRS phenotype, but not in patients with Kagami-Ogata syndrome, Prader-Willi syndrome, or Angelman syndrome phenotypes. We next conducted array-based methylation analysis for 78 DMRs and whole-exome sequencing in the 29 patients, revealing hypomethylation-dominant aberrant methylation patterns in various DMRs of all the patients, eight probably deleterious variants in genes for SCMC in the mothers of patients, and one homozygous deleterious variant in ZNF445 in one patient. These variants did not show gene-specific methylation disturbance patterns. Clinically, neurodevelopmental delay and/or intellectual developmental disorder (ND/IDD) was observed in about half of the MLID patients, with no association with the identified methylation disturbance patterns and genetic variants. Notably, seven patients with BWS phenotype were conceived by assisted reproductive technology (ART). CONCLUSIONS The frequency of MLID was 7.5% (29/386) in IDs caused by confirmed epimutation. Furthermore, we revealed diverse patterns of hypomethylation-dominant methylation defects, nine deleterious variants, ND/IDD complications in about half of the MLID patients, and a high frequency of MLID in ART-conceived patients.
Collapse
Affiliation(s)
- Tatsuki Urakawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-0937, Japan
| | - Kaori Yamoto
- Department of Biochemistry, Hamamatsu University School of Medicine, 1‑20‑1 Handayama, Higashi‑ku, Hamamatsu, 431‑3192, Japan
| | - Kaori Hara-Isono
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Hiromune Narusawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Rika Kosaki
- Department of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Yutaka Nishimura
- Department of Neonatology, Hiroshima City Hiroshima Citizens Hospital, 7-33 Motomachi, Naka-Ku, Hiroshima, 730-8518, Japan
| | - Kazuki Yamazawa
- Medical Genetics Center, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan
| | - Tetsuo Hattori
- Department of Pediatrics, Anjo Kosei Hospital, 28 Higashihirokute, Anjo, 446-8602, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Shouwa‑ku, Nagoya, 466‑8560, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Center for Medical Genetics, Chiba Children's Hospital, 579-1 Heta, Midori-Ku, Chiba, 266-0007, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Tsutomu Ogata
- Department of Biochemistry, Hamamatsu University School of Medicine, 1‑20‑1 Handayama, Higashi‑ku, Hamamatsu, 431‑3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, 328 Tomizuka-Cho, Chuo-Ku, Hamamatsu, 432-8580, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
5
|
Kovaleva NV, Cotter PD. Mosaicism for Autosomal Trisomies: A Comprehensive Analysis of 1266 Published Cases Focusing on Maternal Age and Reproductive History. Genes (Basel) 2024; 15:778. [PMID: 38927714 PMCID: PMC11202781 DOI: 10.3390/genes15060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Mosaicism for autosomal trisomy is uncommon in clinical practice. However, despite its rarity among both prenatally and postnatally diagnoses, there are a large number of characterized and published cases. Surprisingly, in contrast to regular trisomies, no attempts at systematic analyses of mosaic carriers' demographics were undertaken. This is the first study aimed to address this gap. For that, we have screened more than eight hundred publications on mosaic trisomies, reviewing data including gender and clinical status of mosaic carriers, maternal age and reproductive history. In total, 596 publications were eligible for analysis, containing data on 948 prenatal diagnoses, including true fetal mosaicism (TFM) and confined placental mosaicism (CPM), and on 318 cases of postnatally detected mosaicism (PNM). No difference was found in maternal age between normal pregnancy outcomes with appropriate birth weight and those with intrauterine growth restriction. Unexpectedly, a higher proportion of advanced maternal ages (AMA) was found in normal outcomes compared to abnormal ones (abnormal fetus or newborn) and fetal losses, 73% vs. 56% and 50%, p = 0.0015 and p = 0.0011, correspondingly. Another intriguing finding was a higher AMA proportion in mosaic carriers with concomitant uniparental disomy (UPD) for chromosomes 7, 14, 15, and 16 compared to carriers with biparental disomy (BPD) (72% vs. 58%, 92% vs. 55%, 87% vs. 78%, and 65% vs. 24%, correspondingly); overall figures were 78% vs. 48%, p = 0.0026. Analysis of reproductive histories showed a very poor reporting but almost two-fold higher rate of mothers reporting a previous fetal loss from PNM cohort (in which almost all patients were clinically abnormal) compared to mothers from the TFM and CPM cohorts (with a large proportion of normal outcomes), 30% vs. 16%, p = 0.0072. The occurrence of a previous pregnancy with a chromosome abnormality was 1 in 13 in the prenatal cohort and 1 in 16 in the postnatal cohort, which are five-fold higher compared to published studies on non-mosaic trisomies. We consider the data obtained in this study to be preliminary despite the magnitude of the literature reviewed since reporting of detailed data was mostly poor, and therefore, the studied cohorts do not represent "big data". Nevertheless, the information obtained is useful both for clinical genetic counseling and for modeling further studies.
Collapse
Affiliation(s)
- Natalia V. Kovaleva
- Academy of Molecular Medicine, Mytniskaya Str. 12/44, 191144 St. Petersburg, Russia
| | | |
Collapse
|
6
|
Gilchrist JJ, Fang H, Danielli S, Tomkova M, Nassiri I, Ng E, Tong O, Taylor C, Muldoon D, Cohen LRZ, Al-Mossawi H, Lau E, Neville M, Schuster-Boeckler B, Knight JC, Fairfax BP. Characterization of the genetic determinants of context-specific DNA methylation in primary monocytes. CELL GENOMICS 2024; 4:100541. [PMID: 38663408 PMCID: PMC11099345 DOI: 10.1016/j.xgen.2024.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/24/2023] [Accepted: 03/27/2024] [Indexed: 05/12/2024]
Abstract
To better understand inter-individual variation in sensitivity of DNA methylation (DNAm) to immune activity, we characterized effects of inflammatory stimuli on primary monocyte DNAm (n = 190). We find that monocyte DNAm is site-dependently sensitive to lipopolysaccharide (LPS), with LPS-induced demethylation occurring following hydroxymethylation. We identify 7,359 high-confidence immune-modulated CpGs (imCpGs) that differ in genomic localization and transcription factor usage according to whether they represent a gain or loss in DNAm. Demethylated imCpGs are profoundly enriched for enhancers and colocalize to genes enriched for disease associations, especially cancer. DNAm is age associated, and we find that 24-h LPS exposure triggers approximately 6 months of gain in epigenetic age, directly linking epigenetic aging with innate immune activity. By integrating LPS-induced changes in DNAm with genetic variation, we identify 234 imCpGs under local genetic control. Exploring shared causal loci between LPS-induced DNAm responses and human disease traits highlights examples of disease-associated loci that modulate imCpG formation.
Collapse
Affiliation(s)
- James J Gilchrist
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK; MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Hai Fang
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Sara Danielli
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Marketa Tomkova
- Ludwig Cancer Research Oxford, University of Oxford, Oxford OX3 7DQ, UK
| | - Isar Nassiri
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Esther Ng
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Orion Tong
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Chelsea Taylor
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Dylan Muldoon
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lea R Z Cohen
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Hussein Al-Mossawi
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Evelyn Lau
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LE, UK
| | | | - Julian C Knight
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Benjamin P Fairfax
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
7
|
Huo H, Zhang C, Wang K, Wang S, Chen W, Zhang Y, Yu W, Li S, Li S. A novel imprinted locus on bovine chromosome 18 homologous with human chromosome 16q24.1. Mol Genet Genomics 2024; 299:40. [PMID: 38546894 DOI: 10.1007/s00438-024-02123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/02/2024] [Indexed: 04/02/2024]
Abstract
Genomic imprinting is an epigenetic regulation mechanism in mammals resulting in the parentally dependent monoallelic expression of genes. Imprinting disorders in humans are associated with several congenital syndromes and cancers and remain the focus of many medical studies. Cattle is a better model organism for investigating human embryo development than mice. Imprinted genes usually cluster on chromosomes and are regulated by different methylation regions (DMRs) located in imprinting control regions that control gene expression in cis. There is an imprinted locus on human chromosome 16q24.1 associated with congenital lethal developmental lung disease in newborns. However, genomic imprinting on bovine chromosome 18, which is homologous with human chromosome 16 has not been systematically studied. The aim of this study was to analyze the allelic expressions of eight genes (CDH13, ATP2C2, TLDC1, COTL1, CRISPLD2, ZDHHC7, KIAA0513, and GSE1) on bovine chromosome 18 and to search the DMRs associated gene allelic expression. Three transcript variants of the ZDHHC7 gene (X1, X2, and X5) showed maternal imprinting in bovine placentas. In addition, the monoallelic expression of X2 and X5 was tissue-specific. Five transcripts of the KIAA0513 gene showed tissue- and isoform-specific monoallelic expression. The CDH13, ATP2C2, and TLDC1 genes exhibited tissue-specific imprinting, however, COTL1, CRISLPLD2, and GSE1 escaped imprinting. Four DMRs, established after fertilization, were found in this region. Two DMRs were located between the ZDHHC7 and KIAA0513 genes, and two were in exon 1 of the CDH13 and ATP2C2 genes, respectively. The results from this study support future studies on the molecular mechanism to regulate the imprinting of candidate genes on bovine chromosome 18.
Collapse
Affiliation(s)
- Haonan Huo
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - Cui Zhang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - Kun Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang, China
| | - Siwei Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang, China
| | - Weina Chen
- College of Medical Science, Hebei University, Baoding, Hebei, China
| | - Yinjiao Zhang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - Wenli Yu
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang, Hebei, China
| | - Shujing Li
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang, Hebei, China.
| | - Shijie Li
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China.
| |
Collapse
|
8
|
Yuan S, Gao L, Tao W, Zhan J, Lu G, Zhang J, Zhang C, Yi L, Liu Z, Hou Z, Dai M, Zhao H, Chen ZJ, Liu J, Wu K. Allelic reprogramming of chromatin states in human early embryos. Natl Sci Rev 2024; 11:nwad328. [PMID: 38449877 PMCID: PMC10917445 DOI: 10.1093/nsr/nwad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 03/08/2024] Open
Abstract
The reprogramming of parental epigenomes in human early embryos remains elusive. To what extent the characteristics of parental epigenomes are conserved between humans and mice is currently unknown. Here, we mapped parental haploid epigenomes using human parthenogenetic and androgenetic embryos. Human embryos have a larger portion of genome with parentally specific epigenetic states than mouse embryos. The allelic patterns of epigenetic states for orthologous regions are not conserved between humans and mice. Nevertheless, it is conserved that maternal DNA methylation and paternal H3K27me3 are associated with the repression of two alleles in humans and mice. In addition, for DNA-methylation-dependent imprinting, we report 19 novel imprinted genes and their associated germline differentially methylated regions. Unlike in mice, H3K27me3-dependent imprinting is not observed in human early embryos. Collectively, allele-specific epigenomic reprogramming is different in humans and mice.
Collapse
Affiliation(s)
- Shenli Yuan
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Lei Gao
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenrong Tao
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianhong Zhan
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Jingye Zhang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan 250012, China
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan 250012, China
| | - Lizhi Yi
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenbo Liu
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenzhen Hou
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan 250012, China
| | - Min Dai
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan 250012, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan 250012, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Keliang Wu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan 250012, China
| |
Collapse
|
9
|
Bu X, Li X, Peng C, Li H, Zhou S, Zhu Z, He J, Linpeng S. Case report: Paternal uniparental disomy on chromosome 7 and homozygous SUGCT mutation in a fetus with overweight after birth. Front Genet 2023; 14:1272028. [PMID: 37920852 PMCID: PMC10619901 DOI: 10.3389/fgene.2023.1272028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Background: Paternal uniparental disomy (UPD) of chromosome 7 is extremely rare, and only a few postnatal cases have been reported. The effects on growth were discordant in these cases, and the relevance of paternal UPD(7) to growth caused by imprinting remains questionable. Case presentation: Here, we report a prenatal case that underwent invasive prenatal diagnosis due to the high risk of Down's syndrome and failed noninvasive prenatal screening. The fetus had a normal karyotype and no apparent copy number variation. Homozygous copy-neutral regions on chromosome 7 were identified using a single nucleotide polymorphism (SNP) array; the data for the parent-child trios showed that the fetus carried the whole paternal isodisomy of chromosome 7. Whole exome and Sanger sequencing revealed a homozygous frameshift mutation in SUGCT at 7p14.1, from the heterozygous carrier father, with no contribution from the mother. The parents decided to continue with the pregnancy after genetic counseling, and the neonate had normal physical findings at birth and showed overweight after birth during a long-term intensive follow-up. Conclusion: We report the first prenatal case who carried paternal UPD(7) and homozygous SUGCT mutation with an overweight phenotype after birth. The overweight may be caused by paternal UPD(7) or homozygous frameshift mutation of SUGCT, or both of them, but it is unclear which contributes more.
Collapse
Affiliation(s)
- Xiufen Bu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xu Li
- Department of Physiology, Changsha Health Vocational College, Changsha, China
| | - Can Peng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Hongyu Li
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Shihao Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Zesen Zhu
- Technical Support Center, Zhejiang Biosan Biochemical Technologies Co., Ltd., Hangzhou, China
| | - Jun He
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Siyuan Linpeng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
Kim HY, Shin CH, Shin CH, Ko JM. Uncovering the phenotypic consequences of multi-locus imprinting disturbances using genome-wide methylation analysis in genomic imprinting disorders. PLoS One 2023; 18:e0290450. [PMID: 37594968 PMCID: PMC10437897 DOI: 10.1371/journal.pone.0290450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Imprinted genes are regulated by DNA methylation of imprinted differentially methylated regions (iDMRs). An increasing number of patients with congenital imprinting disorders (IDs) exhibit aberrant methylation at multiple imprinted loci, multi-locus imprinting disturbance (MLID). We examined MLID and its possible impact on clinical features in patients with IDs. Genome-wide DNA methylation analysis (GWMA) using blood leukocyte DNA was performed on 13 patients with Beckwith-Wiedemann syndrome (BWS), two patients with Silver-Russell syndrome (SRS), and four controls. HumanMethylation850 BeadChip analysis for 77 iDMRs (809 CpG sites) identified three patients with BWS and one patient with SRS showing additional hypomethylation, other than the disease-related iDMRs, suggestive of MLID. Two regions were aberrantly methylated in at least two patients with BWS showing MLID: PPIEL locus (chromosome 1: 39559298 to 39559744), and FAM50B locus (chromosome 6: 3849096 to 3849469). All patients with BWS- and SRS-MLID did not show any other clinical characteristics associated with additional involved iDMRs. Exome analysis in three patients with BWS who exhibited multiple hypomethylation did not identify any causative variant related to MLID. This study indicates that a genome-wide approach can unravel MLID in patients with an apparently isolated ID. Patients with MLID showed only clinical features related to the original IDs. Long-term follow-up studies in larger cohorts are warranted to evaluate any possible phenotypic consequences of other disturbed imprinted loci.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Shin
- Department of Orthopaedics, Division of Pediatric Orthopedics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Division of Clinical Genetics, Seoul National University College of Medicine, Seoul, Korea
- Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
11
|
Ni P, Nie F, Zhong Z, Xu J, Huang N, Zhang J, Zhao H, Zou Y, Huang Y, Li J, Xiao CL, Luo F, Wang J. DNA 5-methylcytosine detection and methylation phasing using PacBio circular consensus sequencing. Nat Commun 2023; 14:4054. [PMID: 37422489 PMCID: PMC10329642 DOI: 10.1038/s41467-023-39784-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Long single-molecular sequencing technologies, such as PacBio circular consensus sequencing (CCS) and nanopore sequencing, are advantageous in detecting DNA 5-methylcytosine in CpGs (5mCpGs), especially in repetitive genomic regions. However, existing methods for detecting 5mCpGs using PacBio CCS are less accurate and robust. Here, we present ccsmeth, a deep-learning method to detect DNA 5mCpGs using CCS reads. We sequence polymerase-chain-reaction treated and M.SssI-methyltransferase treated DNA of one human sample using PacBio CCS for training ccsmeth. Using long (≥10 Kb) CCS reads, ccsmeth achieves 0.90 accuracy and 0.97 Area Under the Curve on 5mCpG detection at single-molecule resolution. At the genome-wide site level, ccsmeth achieves >0.90 correlations with bisulfite sequencing and nanopore sequencing using only 10× reads. Furthermore, we develop a Nextflow pipeline, ccsmethphase, to detect haplotype-aware methylation using CCS reads, and then sequence a Chinese family trio to validate it. ccsmeth and ccsmethphase can be robust and accurate tools for detecting DNA 5-methylcytosines.
Collapse
Affiliation(s)
- Peng Ni
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Xiangjiang Laboratory, Changsha, 410205, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Fan Nie
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Xiangjiang Laboratory, Changsha, 410205, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Zeyu Zhong
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Jinrui Xu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Neng Huang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Jun Zhang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Haochen Zhao
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - You Zou
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Yuanfeng Huang
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Jinchen Li
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410000, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410000, China
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Tianhe District, Guangzhou, China.
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, 29634-0974, USA.
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
- Xiangjiang Laboratory, Changsha, 410205, China.
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China.
| |
Collapse
|
12
|
Gao Y, Yi L, Zhan J, Wang L, Yao X, Yan J, Jian S, Gao L, Farangez M, Gao M, Zou Y, Gao X, Wu K, Liu J, Chen ZJ. A clinical study of preimplantation DNA methylation screening in assisted reproductive technology. Cell Res 2023; 33:483-485. [PMID: 37150776 PMCID: PMC10235035 DOI: 10.1038/s41422-023-00809-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Yuan Gao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.
| | - Lizhi Yi
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
- Nvwa life technology, Guangzhou, Guangdong, China
| | - Jianhong Zhan
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Lijuan Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xuelong Yao
- Nvwa life technology, Guangzhou, Guangdong, China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Sijing Jian
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Lei Gao
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Mamadboqirova Farangez
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Ming Gao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Yang Zou
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xuan Gao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Keliang Wu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| |
Collapse
|
13
|
Hu Y, Yuan S, Du X, Liu J, Zhou W, Wei F. Comparative analysis reveals epigenomic evolution related to species traits and genomic imprinting in mammals. Innovation (N Y) 2023; 4:100434. [PMID: 37215528 PMCID: PMC10196708 DOI: 10.1016/j.xinn.2023.100434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various regulatory processes, including gene expression regulation, transposable element repression, and genomic imprinting. However, most studies on DNA methylation have been conducted in humans and other model species, whereas the dynamics of DNA methylation across mammals remain poorly explored, limiting our understanding of epigenomic evolution in mammals and the evolutionary impacts of conserved and lineage-specific DNA methylation. Here, we generated and gathered comparative epigenomic data from 13 mammalian species, including two marsupial species, to demonstrate that DNA methylation plays critical roles in several aspects of gene evolution and species trait evolution. We found that the species-specific DNA methylation of promoters and noncoding elements correlates with species-specific traits such as body patterning, indicating that DNA methylation might help establish or maintain interspecies differences in gene regulation that shape phenotypes. For a broader view, we investigated the evolutionary histories of 88 known imprinting control regions across mammals to identify their evolutionary origins. By analyzing the features of known and newly identified potential imprints in all studied mammals, we found that genomic imprinting may function in embryonic development through the binding of specific transcription factors. Our findings show that DNA methylation and the complex interaction between the genome and epigenome have a significant impact on mammalian evolution, suggesting that evolutionary epigenomics should be incorporated to develop a unified evolutionary theory.
Collapse
Affiliation(s)
- Yisi Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shenli Yuan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
14
|
Meossi C, Carrer A, Ciaccio C, Estienne M, Silipigni R, Sciacca FL, Pantaleoni C, D'Arrigo S, Milani D. Clinical features and magnesium levels: Novel insights in 15q11.2 BP1-BP2 copy number variants. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023. [PMID: 37129092 DOI: 10.1111/jir.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/16/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Investigating copy number variations (CNVs) such as microdeletions or microduplications can significantly contribute to discover the aetiology of neurodevelopmental disorders. 15q11.2 genomic region, including NIPA1 and NIPA2 genes, contains a recurrent but rare CNV, flanked by the break points BP1 and BP2. Both BP1-BP2 microdeletion and microduplication have been associated with intellectual disability (ID), neuropsychiatric/behavioural disturbances and mild clinical features, even if with incomplete penetrance and variable expressivity. The pathogenic role of this CNV is quite unclear though. Unknown variants in other DNA regions and parent-of-origin effect (POE) are some of the mechanisms that have been proposed as an explanation of the wide phenotypic variability. As NIPA1 and NIPA2 encode for proteins that mediate magnesium (Mg2+ ) metabolism, it has been suggested that urinary Mg2+ levels could potentially represent informative and affordable biomarkers for a rapid screening of 15q11.2 duplications or deletions. Furthermore, magnesium supplementation has been proposed as possible therapeutic strategy. METHODS Thirty one children with ID and/or other neurodevelopmental disorders carrying either a duplication or a deletion in 15q11.2 BP1-BP2 region have been recruited. When available, blood samples from parents have been analysed to identify the CNV origin. All participants underwent family and medical data collection, physical examination and neuropsychiatric assessment. Electroencephalogram (EEG) and brain magnetic resonance imaging (MRI) scan were performed in 15 children. In addition, 11 families agreed to participate to the assessment of blood and urinary Mg2+ levels. RESULTS We observed a highly variable phenotypic spectrum of developmental issues encompassing ID in most subjects as well as a variety of behavioural disorders such as autism and attention-deficit disorder/attention-deficit hyperactivity disorder. Dysmorphic traits and malformations were detected only in a minority of the participants, and no clear association with growth anomalies was found. Abnormal brain MRI and/or EEG were reported respectively in 64% and 92% of the subjects. Inheritance assessment highlighted an excess of duplication of maternal origin, while cardiac alterations were detected only in children with 15q11.2 CNV inherited from the father. We found great variability in Mg2+ urinary values, without correlation with 15q11.2 copy numbers. However, the variance of urinary Mg2+ levels largely increases in individuals with 15q11.2 deletion/duplication. CONCLUSIONS This study provides further evidence that 15q11.2 BP1-BP2 CNV is associated with a broad spectrum of neurodevelopmental disorders and POE might be an explanation for clinical variability. However, some issues may question the real impact of 15q11.2 CNV on the phenotype in the carriers: DNA sequencing could be useful to exclude other pathogenic gene mutations. Our results do not support the possibility that urinary Mg2+ levels can be used as biomarkers to screen children with neurodevelopmental disorders for 15q11.2 duplication/deletion. However, there are evidences of correlations between 15q11.2 BP1-BP2 CNV and Mg2+ metabolism and future studies may pave the way to new therapeutic options.
Collapse
Affiliation(s)
- C Meossi
- Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Carrer
- Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C Ciaccio
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - M Estienne
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - R Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - F L Sciacca
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - C Pantaleoni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - S D'Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - D Milani
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
15
|
Akbari V, Hanlon VC, O’Neill K, Lefebvre L, Schrader KA, Lansdorp PM, Jones SJ. Parent-of-origin detection and chromosome-scale haplotyping using long-read DNA methylation sequencing and Strand-seq. CELL GENOMICS 2023; 3:100233. [PMID: 36777186 PMCID: PMC9903809 DOI: 10.1016/j.xgen.2022.100233] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Hundreds of loci in human genomes have alleles that are methylated differentially according to their parent of origin. These imprinted loci generally show little variation across tissues, individuals, and populations. We show that such loci can be used to distinguish the maternal and paternal homologs for all human autosomes without the need for the parental DNA. We integrate methylation-detecting nanopore sequencing with the long-range phase information in Strand-seq data to determine the parent of origin of chromosome-length haplotypes for both DNA sequence and DNA methylation in five trios with diverse genetic backgrounds. The parent of origin was correctly inferred for all autosomes with an average mismatch error rate of 0.31% for SNVs and 1.89% for insertions or deletions (indels). Because our method can determine whether an inherited disease allele originated from the mother or the father, we predict that it will improve the diagnosis and management of many genetic diseases.
Collapse
Affiliation(s)
- Vahid Akbari
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Kieran O’Neill
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Louis Lefebvre
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kasmintan A. Schrader
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Peter M. Lansdorp
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Steven J.M. Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Raineri E, Alberola I Pla M, Dabad M, Heath S. cvlr: finding heterogeneously methylated genomic regions using ONT reads. BIOINFORMATICS ADVANCES 2023; 3:vbac101. [PMID: 36726731 PMCID: PMC9887406 DOI: 10.1093/bioadv/vbac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023]
Abstract
Summary Nanopore reads encode information on the methylation status of cytosines in CpG dinucleotides. The length of the reads makes it comparatively easy to look at patterns consisting of multiple loci; here, we exploit this property to search for regions where one can define subpopulations of molecules based on methylation patterns. As an example, we run our clustering algorithm on known imprinted genes; we also scan chromosome 15 looking for windows corresponding to heterogeneous methylation. Our software can also compute the covariance of methylation across these regions while keeping into account the mixture of different types of reads. Availability and implementation https://github.com/EmanueleRaineri/cvlr. Contact simon.heath@cnag.crg.eu. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Emanuele Raineri
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Mariona Alberola I Pla
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Simon Heath
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| |
Collapse
|
17
|
Dong X, Xiao T, Chen B, Lu Y, Zhou W. Precision medicine via the integration of phenotype-genotype information in neonatal genome project. FUNDAMENTAL RESEARCH 2022; 2:873-884. [PMID: 38933389 PMCID: PMC11197532 DOI: 10.1016/j.fmre.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
The explosion of next-generation sequencing (NGS) has enabled the widespread use of genomic data in precision medicine. Currently, several neonatal genome projects have emerged to explore the advantages of NGS to diagnose or screen for rare genetic disorders. These projects have made remarkable achievements, but still the genome data could be further explored with the assistance of phenotype collection. In contrast, longitudinal birth cohorts are great examples to record and apply phenotypic information in clinical studies starting at the neonatal period, especially the trajectory analyses for health development or disease progression. It is obvious that efficient integration of genotype and phenotype benefits not only the clinical management of rare genetic disorders but also the risk assessment of complex diseases. Here, we first summarize the recent neonatal genome projects as well as some longitudinal birth cohorts. Then, we propose two simplified strategies by integrating genotypic and phenotypic information in precision medicine based on current studies. Finally, research collaborations, sociological issues, and future perspectives are discussed. How to maximize neonatal genomic information to benefit the pediatric population remains an area in need of more research and effort.
Collapse
Affiliation(s)
- Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Tiantian Xiao
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610066, China
| | - Bin Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
18
|
Dong Y, Zhang C, Jin L, Li D, Chen W, Huo H, Li S.
PMM2
and
NARFL
are paternally imprinted genes in bovines. Anim Genet 2022; 53:592-598. [DOI: 10.1111/age.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Yanqiu Dong
- College of Life Science Agricultural University of Hebei Baoding Hebei China
| | - Cui Zhang
- College of Life Science Agricultural University of Hebei Baoding Hebei China
| | - Lanjie Jin
- College of Life Science Agricultural University of Hebei Baoding Hebei China
| | - Dongjie Li
- College of Bioscience and Bioengineering Hebei University of Science and Technology Shijiazhuang Hebei China
| | - Weina Chen
- Department of Traditional Chinese Medicine Hebei University Baoding Hebei China
| | - Haonan Huo
- College of Life Science Agricultural University of Hebei Baoding Hebei China
| | - Shijie Li
- College of Life Science Agricultural University of Hebei Baoding Hebei China
| |
Collapse
|
19
|
Akbari V, Garant JM, O'Neill K, Pandoh P, Moore R, Marra MA, Hirst M, Jones SJM. Genome-wide detection of imprinted differentially methylated regions using nanopore sequencing. eLife 2022; 11:e77898. [PMID: 35787786 PMCID: PMC9255983 DOI: 10.7554/elife.77898] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/16/2022] [Indexed: 01/02/2023] Open
Abstract
Imprinting is a critical part of normal embryonic development in mammals, controlled by defined parent-of-origin (PofO) differentially methylated regions (DMRs) known as imprinting control regions. Direct nanopore sequencing of DNA provides a means to detect allelic methylation and to overcome the drawbacks of methylation array and short-read technologies. Here, we used publicly available nanopore sequencing data for 12 standard B-lymphocyte cell lines to acquire the genome-wide mapping of imprinted intervals in humans. Using the sequencing data, we were able to phase 95% of the human methylome and detect 94% of the previously well-characterized, imprinted DMRs. In addition, we found 42 novel imprinted DMRs (16 germline and 26 somatic), which were confirmed using whole-genome bisulfite sequencing (WGBS) data. Analysis of WGBS data in mouse (Mus musculus), rhesus monkey (Macaca mulatta), and chimpanzee (Pan troglodytes) suggested that 17 of these imprinted DMRs are conserved. Some of the novel imprinted intervals are within or close to imprinted genes without a known DMR. We also detected subtle parental methylation bias, spanning several kilobases at seven known imprinted clusters. At these blocks, hypermethylation occurs at the gene body of expressed allele(s) with mutually exclusive H3K36me3 and H3K27me3 allelic histone marks. These results expand upon our current knowledge of imprinting and the potential of nanopore sequencing to identify imprinting regions using only parent-offspring trios, as opposed to the large multi-generational pedigrees that have previously been required.
Collapse
Affiliation(s)
- Vahid Akbari
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
- Department of Medical Genetics, University of British ColumbiaVancouverCanada
| | - Jean-Michel Garant
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
| | - Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
| | - Pawan Pandoh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
- Department of Medical Genetics, University of British ColumbiaVancouverCanada
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Steven JM Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer AgencyVancouverCanada
- Department of Medical Genetics, University of British ColumbiaVancouverCanada
| |
Collapse
|
20
|
Ishihara T, Hickford D, Fenelon JC, Griffith OW, Suzuki S, Renfree MB. Evolution of the short form of DNMT3A, DNMT3A2, occurred in the common ancestor of mammals. Genome Biol Evol 2022; 14:6615359. [PMID: 35749276 PMCID: PMC9254654 DOI: 10.1093/gbe/evac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is found in marsupial and eutherian mammals, but not in monotremes. While the primary regulator of genomic imprinting in eutherians is differential DNA methylation between parental alleles, conserved imprinted genes in marsupials tend to lack DNA methylation at their promoters. DNA methylation at eutherian imprinted genes is mainly catalysed by a DNA methyltransferase (DNMT) enzyme, DNMT3A. There are two isoforms of eutherian DNMT3A: DNMT3A and DNMT3A2. DNMT3A2 is the primary isoform for establishing DNA methylation at eutherian imprinted genes and is essential for eutherian genomic imprinting. In this study, we investigated whether DNMT3A2 is also present in the two other mammalian lineages, marsupials and monotremes. We identified DNMT3A2 in both marsupials and monotremes, although imprinting has not been identified in monotremes. By analysing genomic sequences and transcriptome data across vertebrates, we concluded that the evolution of DNMT3A2 occurred in the common ancestor of mammals. In addition, DNMT3A/3A2 gene and protein expression during gametogenesis showed distinct sexual dimorphisms in a marsupial, the tammar wallaby, and this pattern coincided with the sex-specific DNA methylation reprogramming in this species as it does in mice. Our results show that DNMT3A2 is present in all mammalian groups and suggests that the basic DNMT3A/3A2-based DNA methylation mechanism is conserved at least in therian mammals.
Collapse
Affiliation(s)
- Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Danielle Hickford
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jane C Fenelon
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Oliver W Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Shinshu University, Nagano, Japan
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
21
|
TARSII and CARSII: Two approaches for SNP-independent identification of germline differentially methylated regions in mammals. STAR Protoc 2022; 3:101240. [PMID: 35310079 PMCID: PMC8931438 DOI: 10.1016/j.xpro.2022.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Identifying germline differentially methylated regions (DMRs) in outbred mammals remains a challenge because of difficulty in obtaining single-nucleotide polymorphisms (SNPs). To overcome this difficulty, we developed two computational approaches, TARSII and CARSII, which allow accurate prediction of germline DMRs from DNA methylomes independent of SNPs. Furthermore, we introduce an easy and quick way to validate the predicted germline DMRs with allelic DNA methylation using CGmapTools. Collectively, our strategy can greatly facilitate de novo identification of germline DMRs in outbred mammals. For complete details on the use and execution of this protocol, please refer to Chu et al. (2021).
Collapse
|
22
|
Narusawa H, Sasaki S, Hara-Isono K, Matsubara K, Fukami M, Nagasaki K, Kagami M. A boy with overgrowth caused by multi-locus imprinting disturbance including hypomethylation of MEST:alt-TSS-DMR. Eur J Med Genet 2022; 65:104502. [DOI: 10.1016/j.ejmg.2022.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Accepted: 04/09/2022] [Indexed: 11/03/2022]
|
23
|
Chu C, Zhang W, Kang Y, Si C, Ji W, Niu Y, Zhang Y. Analysis of developmental imprinting dynamics in primates using SNP-free methods to identify imprinting defects in cloned placenta. Dev Cell 2021; 56:2826-2840.e7. [PMID: 34619096 DOI: 10.1016/j.devcel.2021.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022]
Abstract
Our knowledge of genomic imprinting in primates is lagging behind that of mice largely because of the difficulties of allelic analyses in outbred animals. To understand imprinting dynamics in primates, we profiled transcriptomes, DNA methylomes, and H3K27me3 in uniparental monkey embryos. We further developed single-nucleotide-polymorphism (SNP)-free methods, TARSII and CARSII, to identify germline differentially methylated regions (DMRs) in somatic tissues. Our comprehensive analyses showed that allelic DNA methylation, but not H3K27me3, is a major mark that correlates with paternal-biasedly expressed genes (PEGs) in uniparental monkey embryos. Interestingly, primate germline DMRs are different from PEG-associated DMRs in early embryos and are enriched in placenta. Strikingly, most placenta-specific germline DMRs are lost in placenta of cloned monkeys. Collectively, our study establishes SNP-free germline DMR identification methods, defines developmental imprinting dynamics in primates, and demonstrates imprinting defects in cloned monkey placenta, which provides important clues for improving primate cloning.
Collapse
Affiliation(s)
- Chu Chu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wenhao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chenyang Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Berland S, Rustad CF, Bentsen MHL, Wollen EJ, Turowski G, Johansson S, Houge G, Haukanes BI. Double paternal uniparental isodisomy 7 and 15 presenting with Beckwith-Wiedemann spectrum features. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006113. [PMID: 34615670 PMCID: PMC8751407 DOI: 10.1101/mcs.a006113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Here we describe for the first time double paternal uniparental isodisomy (iUPD) 7 and 15 in a baby boy with features in the Beckwith–Wiedemann syndrome spectrum (BWSp) (placentomegaly, hyperinsulinism, enlarged viscera, hemangiomas, and earlobe creases) in addition to conjugated hyperbilirubinemia. His phenotype was also reminiscent of genome-wide paternal uniparental isodisomy. We discuss the most likely origin of the UPDs: a maternal double monosomy 7 and 15 rescued by duplication of the paternal chromosomes after fertilization. So far, paternal UPD7 is not associated with an abnormal phenotype, whereas paternal UPD15 causes Angelman syndrome. Methylation analysis for other clinically relevant imprinting disorders, including BWSp, was normal. Therefore, we hypothesized that the double UPD affected other imprinted genes. To look for such effects, patient fibroblast RNA was isolated and analyzed for differential expression compared to six controls. We did not find apparent transcription differences in imprinted genes outside Chromosomes 7 and 15 in patient fibroblast. PEG10 (7q21.3) was the only paternally imprinted gene on these chromosomes up-regulated beyond double-dose expectation (sixfold). We speculate that a high PEG10 level could have a growth-promoting effect as his phenotype was not related to aberrations in BWS locus on 11p15.5 after DNA, RNA, and methylation testing. However, many genes in gene sets associated with growth were up-regulated. This case broadens the phenotypic spectrum of UPDs but does not show evidence of involvement of an imprinted gene network.
Collapse
Affiliation(s)
- Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Cecilie F Rustad
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Mariann H L Bentsen
- Department of Pediatric and Adolescent Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Embjørg J Wollen
- Department of Pediatric Hepatology, Division of Pediatric and Adolescent Medicine, University of Oslo, Oslo University Hospital HF, 0424 Oslo, Norway
| | - Gitta Turowski
- Department of Pathology, Center for Perinatal and Pregnancy-Related Pathology, Oslo University Hospital-Ullevål, 0424 Oslo, Norway
| | - Stefan Johansson
- Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway.,Department of Clinical Science, University of Bergen, 5007 Bergen, Norway
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Bjørn I Haukanes
- Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
25
|
Wang Y, Hannon E, Grant OA, Gorrie-Stone TJ, Kumari M, Mill J, Zhai X, McDonald-Maier KD, Schalkwyk LC. DNA methylation-based sex classifier to predict sex and identify sex chromosome aneuploidy. BMC Genomics 2021; 22:484. [PMID: 34182928 PMCID: PMC8240370 DOI: 10.1186/s12864-021-07675-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/05/2021] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Sex is an important covariate of epigenome-wide association studies due to its strong influence on DNA methylation patterns across numerous genomic positions. Nevertheless, many samples on the Gene Expression Omnibus (GEO) frequently lack a sex annotation or are incorrectly labelled. Considering the influence that sex imposes on DNA methylation patterns, it is necessary to ensure that methods for filtering poor samples and checking of sex assignment are accurate and widely applicable. RESULTS Here we presented a novel method to predict sex using only DNA methylation beta values, which can be readily applied to almost all DNA methylation datasets of different formats (raw IDATs or text files with only signal intensities) uploaded to GEO. We identified 4345 significantly (p<0.01) sex-associated CpG sites present on both 450K and EPIC arrays, and constructed a sex classifier based on the two first principal components of the DNA methylation data of sex-associated probes mapped on sex chromosomes. The proposed method is constructed using whole blood samples and exhibits good performance across a wide range of tissues. We further demonstrated that our method can be used to identify samples with sex chromosome aneuploidy, this function is validated by five Turner syndrome cases and one Klinefelter syndrome case. CONCLUSIONS This proposed sex classifier not only can be used for sex predictions but also applied to identify samples with sex chromosome aneuploidy, and it is freely and easily accessible by calling the 'estimateSex' function from the newest wateRmelon Bioconductor package ( https://github.com/schalkwyk/wateRmelon ).
Collapse
Affiliation(s)
- Yucheng Wang
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, UK
| | - Eilis Hannon
- Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Olivia A. Grant
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | | | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, UK
| | - Jonathan Mill
- Medical School, University of Exeter, Barrack Road, Exeter, UK
| | - Xiaojun Zhai
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, UK
| | - Klaus D. McDonald-Maier
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, UK
| | - Leonard C. Schalkwyk
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
26
|
A patient with Silver-Russell syndrome with multilocus imprinting disturbance, and Schimke immuno-osseous dysplasia unmasked by uniparental isodisomy of chromosome 2. J Hum Genet 2021; 66:1121-1126. [PMID: 34031513 DOI: 10.1038/s10038-021-00937-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/08/2022]
Abstract
Silver-Russell syndrome (SRS) is a congenital disorder characterized by prenatal and postnatal growth failure and craniofacial features. Hypomethylation of the H19/IGF2:IG-differential methylated region (H19LOM) is observed in 50% of SRS patients, and 15% of SRS patients with H19LOM had multilocus imprinting disturbance (MLID). Schimke immuno-osseous dysplasia (SIOD), characterized by spondyloepiphyseal dysplasia and nephropathy, is an autosomal recessive disorder caused by mutations in SMARCAL1 on chromosome 2. We report a patient with typical SRS-related features, spondyloepiphyseal dysplasia, and severe nephropathy. Molecular analyses showed H19LOM, paternal uniparental isodisomy of chromosome 2 (iUPD(2)pat), and a paternally inherited homozygous frameshift variant in SMARCAL1. Genome-wide methylation analysis showed MLID in this patient, although it showed no MLID in another patient with SIOD without SRS phenotype. These results suggest that iUPD(2)pat unmasked the recessive mutation in SMARCAL1 and that the SMARCAL1 gene mutation may have no direct effect on the patient's methylation defects.
Collapse
|
27
|
Hureaux M, Chantot-Bastaraud S, Cassinari K, Martinez Casado E, Cuny A, Frébourg T, Vargas-Poussou R, Bréhin AC. When a maternal heterozygous mutation of the CYP24A1 gene leads to infantile hypercalcemia through a maternal uniparental disomy of chromosome 20. Mol Cytogenet 2021; 14:23. [PMID: 33952337 PMCID: PMC8101107 DOI: 10.1186/s13039-021-00543-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Infantile hypercalcemia is an autosomal recessive disorder caused either by mutations in the CYP24A1 gene (20q13.2) or in the SLC34A1 gene (5q35.3). This disease is characterized by hypercalcemia, hypercalciuria and nephrocalcinosis in paediatric patients. Maternal uniparental disomy of chromosome 20 [UPD(20)mat], resulting in aberrant expression of imprinted transcripts at the GNAS locus, is a poorly characterized condition. UPD(20)mat patients manifest a phenotype similar to that of Silver-Russell syndrome and small for gestational age-short stature. CASE PRESENTATION We report here the genetic and clinical characterization of a male child with a phenotype of infantile hypercalcemia, postnatal growth retardation, and minor dysmorphic features. Genetic analysis using a next generation sequencing panel revealed a homozygous pathogenic variant of CYP24A1. The absence of the variant in the father led to microsatellite segregation analysis, suggestive of UPD. SNP-array revealed a large terminal copy neutral loss of heterozygosity leading to CYP24A1 homozygosity. SNP-array data of parent-child trio confirmed a UPD(20)mat responsible for both infantile hypercalcemia and Silver-Russell syndrome-like traits. CONCLUSION This is the first report of uniparental disomy of chromosome 20 revealed by infantile hypercalcemia related to CYP24A1 biallelic homozygous variants, underlying the importance of controlling allelic segregation in cases of homozygosity.
Collapse
Affiliation(s)
- Marguerite Hureaux
- Département de Génétique, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015, Paris, France.
- Reference Centre for Hereditary Renal Diseases (MARHEA), Paris, France.
- Paris Cardiovascular Research Center, INSERM, Paris, France.
| | - Sandra Chantot-Bastaraud
- Assistance Publique-Hôpitaux de Paris, Departement de Genetique Medicale, Hôpital Trousseau, 75012, Paris, France
| | - Kévin Cassinari
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, 76000, Rouen, France
| | | | - Ariane Cuny
- Department of Pediatrics, Centre Hospitalier Universitaire de Rouen, 76000, Rouen, France
| | - Thierry Frébourg
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, 76000, Rouen, France
| | - Rosa Vargas-Poussou
- Département de Génétique, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015, Paris, France
- Reference Centre for Hereditary Renal Diseases (MARHEA), Paris, France
| | - Anne-Claire Bréhin
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, 76000, Rouen, France
| |
Collapse
|
28
|
Velasco G, Ulveling D, Rondeau S, Marzin P, Unoki M, Cormier-Daire V, Francastel C. Interplay between Histone and DNA Methylation Seen through Comparative Methylomes in Rare Mendelian Disorders. Int J Mol Sci 2021; 22:3735. [PMID: 33916664 PMCID: PMC8038329 DOI: 10.3390/ijms22073735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.
Collapse
Affiliation(s)
- Guillaume Velasco
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| | - Damien Ulveling
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| | - Sophie Rondeau
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Pauline Marzin
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Motoko Unoki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Claire Francastel
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| |
Collapse
|
29
|
Akbari V, Garant JM, O'Neill K, Pandoh P, Moore R, Marra MA, Hirst M, Jones SJM. Megabase-scale methylation phasing using nanopore long reads and NanoMethPhase. Genome Biol 2021; 22:68. [PMID: 33618748 PMCID: PMC7898412 DOI: 10.1186/s13059-021-02283-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The ability of nanopore sequencing to simultaneously detect modified nucleotides while producing long reads makes it ideal for detecting and phasing allele-specific methylation. However, there is currently no complete software for detecting SNPs, phasing haplotypes, and mapping methylation to these from nanopore sequence data. Here, we present NanoMethPhase, a software tool to phase 5-methylcytosine from nanopore sequencing. We also present SNVoter, which can post-process nanopore SNV calls to improve accuracy in low coverage regions. Together, these tools can accurately detect allele-specific methylation genome-wide using nanopore sequence data with low coverage of about ten-fold redundancy.
Collapse
Affiliation(s)
- Vahid Akbari
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jean-Michel Garant
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Pawan Pandoh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
30
|
Pauler FM, Hudson QJ, Laukoter S, Hippenmeyer S. Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond. Neurochem Int 2021; 145:104986. [PMID: 33600873 DOI: 10.1016/j.neuint.2021.104986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 12/27/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that results in parental allele-specific expression of ~1% of all genes in mouse and human. Imprinted genes are key developmental regulators and play pivotal roles in many biological processes such as nutrient transfer from the mother to offspring and neuronal development. Imprinted genes are also involved in human disease, including neurodevelopmental disorders, and often occur in clusters that are regulated by a common imprint control region (ICR). In extra-embryonic tissues ICRs can act over large distances, with the largest surrounding Igf2r spanning over 10 million base-pairs. Besides classical imprinted expression that shows near exclusive maternal or paternal expression, widespread biased imprinted expression has been identified mainly in brain. In this review we discuss recent developments mapping cell type specific imprinted expression in extra-embryonic tissues and neocortex in the mouse. We highlight the advantages of using an inducible uniparental chromosome disomy (UPD) system to generate cells carrying either two maternal or two paternal copies of a specific chromosome to analyze the functional consequences of genomic imprinting. Mosaic Analysis with Double Markers (MADM) allows fluorescent labeling and concomitant induction of UPD sparsely in specific cell types, and thus to over-express or suppress all imprinted genes on that chromosome. To illustrate the utility of this technique, we explain how MADM-induced UPD revealed new insights about the function of the well-studied Cdkn1c imprinted gene, and how MADM-induced UPDs led to identification of highly cell type specific phenotypes related to perturbed imprinted expression in the mouse neocortex. Finally, we give an outlook on how MADM could be used to probe cell type specific imprinted expression in other tissues in mouse, particularly in extra-embryonic tissues.
Collapse
Affiliation(s)
- Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Quanah J Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
31
|
Hara-Isono K, Matsubara K, Fuke T, Yamazawa K, Satou K, Murakami N, Saitoh S, Nakabayashi K, Hata K, Ogata T, Fukami M, Kagami M. Genome-wide methylation analysis in Silver-Russell syndrome, Temple syndrome, and Prader-Willi syndrome. Clin Epigenetics 2020; 12:159. [PMID: 33092629 PMCID: PMC7583213 DOI: 10.1186/s13148-020-00949-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background Imprinting disorders (IDs) show overlapping phenotypes, particularly in Silver–Russell syndrome (SRS), Temple syndrome (TS14), and Prader–Willi syndrome (PWS). These three IDs include fetal and postnatal growth failure, feeding difficulty, and muscular hypotonia as major clinical features. However, the mechanism that causes overlapping phenotypes has not been clarified. To investigate the presence or absence of methylation signatures associated with overlapping phenotypes, we performed genome-wide methylation analysis (GWMA). Results GWMA was carried out on 36 patients with three IDs (SRS [n = 16], TS14 [n = 7], PWS [n = 13]) and 11 child controls using HumanMethylation450 BeadChip including 475,000 CpG sites across the human genome. To reveal an aberrantly methylated region shared by SRS, TS14, and PWS groups, we compared genome-wide methylation data of the three groups with those of control subjects. All the identified regions were known as SRS-, TS14-, and PWS-related imprinting-associated differentially methylated regions (iDMRs), and there was no hypermethylated or hypomethylated region shared by different ID groups. To examine the methylation pattern shared by SRS, TS14, and PWS groups, we performed clustering analysis based on GWMA data. The result focusing on 620 probes at the 62 known iDMRs (except for SRS-, TS14-, and PWS-related iDMRs) classified patients into two categories: (1) category A, grossly normal methylation patterns mainly consisting of SRS group patients; and (2) category B, broad and mild hypermethylation patterns mainly consisting of TS14 and PWS group patients. However, we found no obvious relationship between these methylation patterns and phenotypes of patients. Conclusions GWMA in three IDs found no methylation signatures shared by SRS, TS14, and PWS groups. Although clustering analysis showed similar mild hypermethylation patterns in TS14 and PWS groups, further study is needed to clarify the effect of methylation patterns on the overlapping phenotypes.
Collapse
Affiliation(s)
- Kaori Hara-Isono
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Tomoko Fuke
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kazuki Yamazawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Medical Genetics Center, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Kazuhito Satou
- Department of Genome Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Nobuyuki Murakami
- Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami Koshigaya, Koshigaya, 343-8555, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
32
|
Deyssenroth MA, Marsit CJ, Chen J, Lambertini L. In-depth characterization of the placental imprintome reveals novel differentially methylated regions across birth weight categories. Epigenetics 2020; 15:47-60. [PMID: 31403346 PMCID: PMC6961688 DOI: 10.1080/15592294.2019.1647945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023] Open
Abstract
Imprinted genes play a pivotal role in placental processes underlying fetal development, and much interest centers on discerning whether these loci, via changes in DNA methylation and/or gene expression, inform disruptions in appropriate fetal growth. In this study, we comprehensively profiled DNA methylation across the placental imprintome and assessed the relationship with gene expression levels and aberrant fetal growth.Placental DNA methylation across 153 imprinted loci, including imprint control regions (ICR) and surrounding non-ICR regions, was surveyed using the Nimblegen TruSeq bisulfite sequencing platform among participants enrolled in the Rhode Island Child Health Study (RICHS, n = 163). Methylation and gene expression associations were assessed using eQTM analysis. Differential methylation analysis contrasting small (SGA) and large for gestational age (LGA) infants against appropriate for gestational age (AGA) infants was assessed using the DMRcate R package.We identified 34 SGA-related differentially methylated regions (DMRs) and 9 LGA-related DMRs (FDR<0.05), and these BW-DMRs predominated in promoter and intronic regions. We observed overall hypomethylation among SGA-DMRs overlapping maternally expressed (paternally imprinted) genes while no parent-of-origin effect was observed among LGA DMRs. Three BW-DMRs, mapping to GABRG3, IGF1R and MEST, were common to SGA and LGA placenta. We did not observe significant correlations between BW-DMR-associated CpG methylation and gene expression levels.We report the first in-depth characterization of the placental imprintome in a population-wide setting. Our findings reveal growth-related differences in methylation without concomitant expression differences in regions that extend beyond typically interrogated imprinted loci, highlighting potentially novel placental biomarkers of growth and development.
Collapse
Affiliation(s)
- Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen J. Marsit
- Environmental Health at Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
33
|
Multiple methods used for type detection of uniparental disomy in paternity testing. Int J Legal Med 2019; 134:885-893. [PMID: 31807870 DOI: 10.1007/s00414-019-02215-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022]
Abstract
Uniparental disomy (UPD) has attracted more attention recently in paternity testing, though it is an infrequent genetic event. Although short tandem repeat (STR) profiling has been widely used in paternity testing, it is not sufficient to use STR only to judge the genetic relationship, because the existence of UPD will inevitably affect the results of genotyping. Compared with complete UPD, segmental UPD is more difficult to detect because it does not affect all genotypes on the same chromosome. It is necessary to determine the type of UPD with multiple methods because a single method is not sufficient. Therefore, it is advisable to detect UPD in paternity testing with multiple methods. In this study, after autosomal STR profiling was used, we found that there were several gene loci on the same chromosome that did not conform to Mendelian genetic law, thus we highly suspected the existence of UPD and performed X-STR profiling immediately. Then whole-genome single nucleotide polymorphism (SNP) array analysis was performed to identify the type, and the results provided straightforward evidence for distinguishing complete from segmental UPD. Lastly, we used deletion insertion polymorphism (DIP)-SNP SNaPshot assay and Miseq FGx sequencing (for SNP and STR) to determine whether the mutation source is maternal uniparental disomy (mUPD) or paternal uniparental disomy (pUPD). To avoid false exclusion of kinship, it is vital to determine the type of UPD in paternity testing and effective strategies based on multiple methods to detect the type of UPD are provided in this study.
Collapse
|
34
|
Chen M, Hao H, Xiong H, Cai Y, Ma F, Shi C, Xiao X, Li S. Segmental uniparental disomy of chromosome 4 in a patient with methylmalonic acidemia. Mol Genet Genomic Med 2019; 8:e1063. [PMID: 31793236 PMCID: PMC6978399 DOI: 10.1002/mgg3.1063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Methylmalonic acidemia (MMA) is an autosomal recessive genetic disorder involving the metabolism of organic acids. METHODS Here, we report the case of a patient who developed acute metabolic crisis after vaccination and was diagnosed with cblA type MMA after hospitalization. RESULTS Further examination revealed a homozygous pathogenic variant in the MMAA gene that caused the disease in the patient but did not conform to Mendelian inheritance. Using chromosomal microarray analysis, maternal uniparental disomy (UPD) was found on chromosome 4q26-q35.2 of the patient. The MMAA gene of the patient was inherited only from the mother and carried the same pathogenic variant on both alleles of chromosome 4. MMAA gene expression levels in whole blood were detected by real-time PCR. CONCLUSION The nonsense pathogenic variant, NM_172250.2:c.742C>T (p.Gln248*), carried by the patient leads to a premature termination of transcription of the gene, thereby resulting in partial loss of protein function while retaining some others. Segmental UPD 4 is rare, and to our knowledge, has not been reported previously.
Collapse
Affiliation(s)
- Min Chen
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hui Xiong
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fei Ma
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Congcong Shi
- Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Walenkamp MJE, Robers JML, Wit JM, Zandwijken GRJ, van Duyvenvoorde HA, Oostdijk W, Hokken-Koelega ACS, Kant SG, Losekoot M. Phenotypic Features and Response to GH Treatment of Patients With a Molecular Defect of the IGF-1 Receptor. J Clin Endocrinol Metab 2019; 104:3157-3171. [PMID: 30848790 DOI: 10.1210/jc.2018-02065] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
CONTEXT The phenotype and response to GH treatment of children with an IGF1R defect is insufficiently known. OBJECTIVE To develop a clinical score for selecting children with short stature for genetic testing and evaluate the efficacy of treatment. DESIGN AND SETTING Case series with an IGF1R defect identified in a university genetic laboratory. PATIENTS AND INTERVENTIONS Of all patients with sufficient clinical data, 18 had (likely) pathogenic mutations (group 1) and 7 had 15q deletions including IGF1R (group 2); 19 patients were treated with GH. MAIN OUTCOME MEASURES Phenotype and response to GH treatment. RESULTS In groups 1 and 2, mean (range) birth weight, length, and head circumference (HC) SD scores (SDSs) were -2.1 (-3.7 to -0.4), -2.7 (-5.0 to -1.0), and -1.6 (-3.0 to 0.0), respectively. At presentation, height, HC, and serum IGF-1 SDSs were -3.0 (-5.5 to -1.7), -2.5 (-4.2 to -0.5), and +1.2 (-1.3 to 3.2), respectively. Feeding problems were reported in 15 of 19 patients. A clinical score with 76% sensitivity is proposed. After 3 years of GH treatment [1.1 (0.2) mg/m2/d] height gain in groups 1 (n = 12) and 2 (n = 7) was 0.9 SDS and 1.3 SDS (at a mean IGF-1 of 3.5 SDS), less than reported for small for gestational age (1.8 SDS). CONCLUSION A clinical score encompassing birth weight and/or length, short stature, microcephaly, and IGF-1 is useful for selecting patients for IGF1R analysis. Feeding problems are common and the growth response to GH treatment is moderate.
Collapse
Affiliation(s)
- Marie J E Walenkamp
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jasmijn M L Robers
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Wilma Oostdijk
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Dutch Growth Research Foundation, Rotterdam, Netherlands
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sarina G Kant
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
36
|
CHEN D, QI M. [Research progress on uniparental disomy in cancer]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:560-566. [PMID: 31901032 PMCID: PMC8800777 DOI: 10.3785/j.issn.1008-9292.2019.10.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/17/2019] [Indexed: 06/10/2023]
Abstract
Uniparental disomy (UPD) refers to a chromosome defect that an individual's homologous chromosome or segments are inherited from one parent. UPD can cause either aberrant patterns of genomic imprinting or homozygosity of mutations, leading to various diseases, including cancer. The mechanisms of UPD formation are diverse but largely due to the incorrect chromosome separation during cell division. UPD does not alter the number of gene copies, thus is difficult to be detected by conventional cytogenetic techniques effectively. Assisted by the new techniques such as single nucleotide polymorphism arrays, more and more UPD-related cases have been reported recently. UPD events are non-randomly distributed across cancer types, which play important role in the occurrence, development and metastasis of cancer. Here we review the research progress on the formation mechanisms, detection methods, the involved chromosomal regions and genes, and clinical significance of UPD; and also discuss the directions for future studies in this field.
Collapse
Affiliation(s)
| | - Ming QI
- 祁鸣(1957-), 男, 博士, 教授, 博士生导师, 主要从事遗传与基因组医学研究; E-mail:
;
https://orcid.org/0000-0002-8421-6727
| |
Collapse
|
37
|
Garg P, Sharp AJ. Screening for rare epigenetic variations in autism and schizophrenia. Hum Mutat 2019; 40:952-961. [PMID: 30900359 PMCID: PMC6801017 DOI: 10.1002/humu.23740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/19/2019] [Accepted: 03/06/2019] [Indexed: 01/28/2023]
Abstract
While many studies have led to the identification of rare sequence variants linked with susceptibility to autism and schizophrenia, the contribution of rare epigenetic variations (epivariations) in these disorders remains largely unexplored. Previously we presented evidence that epivariations occur relatively frequently in the human genome, and likely contribute to a subset of congenital and neurodevelopmental disorders through the disruption of dosage-sensitive genes. Here we extend this approach, studying methylation profiles from 297 samples with autism and 767 cases with schizophrenia, identifying 84 and 268 rare epivariations in these two cohorts, respectively, that were absent from 4,860 population controls. We observed multiple features associated with these epivariations that support their pathogenic relevance, including (a) a significant enrichment for epivariations in schizophrenic individuals at genes previously linked with schizophrenia, (b) increased brain expression of genes associated with epivariations found in autism cases compared with controls, (c) in autism families, a significant excess of epivariations found specifically in affected versus unaffected sibs, (d) Gene Ontology terms linked with epivariations found in autism, including "D1 dopamine receptor binding." Our study provides additional evidence that rare epivariations likely contribute to the mutational spectra underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Paras Garg
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, Hess Center for Science and Medicine, New York, New York
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, Hess Center for Science and Medicine, New York, New York
| |
Collapse
|
38
|
Jadhav B, Monajemi R, Gagalova KK, Ho D, Draisma HHM, van de Wiel MA, Franke L, Heijmans BT, van Meurs J, Jansen R, 't Hoen PAC, Sharp AJ, Kiełbasa SM. RNA-Seq in 296 phased trios provides a high-resolution map of genomic imprinting. BMC Biol 2019; 17:50. [PMID: 31234833 PMCID: PMC6589892 DOI: 10.1186/s12915-019-0674-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/07/2019] [Indexed: 01/21/2023] Open
Abstract
Background Identification of imprinted genes, demonstrating a consistent preference towards the paternal or maternal allelic expression, is important for the understanding of gene expression regulation during embryonic development and of the molecular basis of developmental disorders with a parent-of-origin effect. Combining allelic analysis of RNA-Seq data with phased genotypes in family trios provides a powerful method to detect parent-of-origin biases in gene expression. Results We report findings in 296 family trios from two large studies: 165 lymphoblastoid cell lines from the 1000 Genomes Project and 131 blood samples from the Genome of the Netherlands (GoNL) participants. Based on parental haplotypes, we identified > 2.8 million transcribed heterozygous SNVs phased for parental origin and developed a robust statistical framework for measuring allelic expression. We identified a total of 45 imprinted genes and one imprinted unannotated transcript, including multiple imprinted transcripts showing incomplete parental expression bias that was located adjacent to strongly imprinted genes. For example, PXDC1, a gene which lies adjacent to the paternally expressed gene FAM50B, shows a 2:1 paternal expression bias. Other imprinted genes had promoter regions that coincide with sites of parentally biased DNA methylation identified in the blood from uniparental disomy (UPD) samples, thus providing independent validation of our results. Using the stranded nature of the RNA-Seq data in lymphoblastoid cell lines, we identified multiple loci with overlapping sense/antisense transcripts, of which one is expressed paternally and the other maternally. Using a sliding window approach, we searched for imprinted expression across the entire genome, identifying a novel imprinted putative lncRNA in 13q21.2. Overall, we identified 7 transcripts showing parental bias in gene expression which were not reported in 4 other recent RNA-Seq studies of imprinting. Conclusions Our methods and data provide a robust and high-resolution map of imprinted gene expression in the human genome. Electronic supplementary material The online version of this article (10.1186/s12915-019-0674-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bharati Jadhav
- Department of Genetics and Genomic Sciences, Hess Center for Science and Medicine, Mount Sinai School of Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY, 10029, USA
| | - Ramin Monajemi
- Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.
| | | | - Daniel Ho
- Department of Genetics and Genomic Sciences, Hess Center for Science and Medicine, Mount Sinai School of Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY, 10029, USA
| | - Harmen H M Draisma
- Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Mark A van de Wiel
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Bastiaan T Heijmans
- Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Rick Jansen
- Department of Psychiatry, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | | | | | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Hess Center for Science and Medicine, Mount Sinai School of Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY, 10029, USA.
| | - Szymon M Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.
| |
Collapse
|
39
|
Souren NY, Gerdes LA, Lutsik P, Gasparoni G, Beltrán E, Salhab A, Kümpfel T, Weichenhan D, Plass C, Hohlfeld R, Walter J. DNA methylation signatures of monozygotic twins clinically discordant for multiple sclerosis. Nat Commun 2019; 10:2094. [PMID: 31064978 PMCID: PMC6504952 DOI: 10.1038/s41467-019-09984-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system with a modest concordance rate in monozygotic twins, which strongly argues for involvement of epigenetic factors. We observe highly similar peripheral blood mononuclear cell-based methylomes in 45 MS-discordant monozygotic twins. Nevertheless, we identify seven MS-associated differentially methylated positions (DMPs) of which we validate two, including a region in the TMEM232 promoter and ZBTB16 enhancer. In CD4 + T cells we find an MS-associated differentially methylated region in FIRRE. Additionally, 45 regions show large methylation differences in individual pairs, but they do not clearly associate with MS. Furthermore, we present epigenetic biomarkers for current interferon-beta treatment, and extensive validation shows that the ZBTB16 DMP is a signature for prior glucocorticoid treatment. Taken together, this study represents an important reference for epigenomic MS studies, identifies new candidate epigenetic markers, and highlights treatment effects and genetic background as major confounders. Monozygotic (MZ) twins are ideal to study the influence of non-genetic factors on complex phenotypes. Here, Souren et al. perform an EWAS in peripheral blood mononuclear cells from 45 MZ twins discordant for multiple sclerosis and identify disease and treatment-associated epigenetic markers.
Collapse
Affiliation(s)
- Nicole Y Souren
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany.
| | - Lisa A Gerdes
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Gilles Gasparoni
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - Abdulrahman Salhab
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
40
|
Schulze KV, Szafranski P, Lesmana H, Hopkin RJ, Hamvas A, Wambach JA, Shinawi M, Zapata G, Carvalho CMB, Liu Q, Karolak JA, Lupski JR, Hanchard NA, Stankiewicz P. Novel parent-of-origin-specific differentially methylated loci on chromosome 16. Clin Epigenetics 2019; 11:60. [PMID: 30961659 PMCID: PMC6454695 DOI: 10.1186/s13148-019-0655-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/13/2019] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Congenital malformations associated with maternal uniparental disomy of chromosome 16, upd(16)mat, resemble those observed in newborns with the lethal developmental lung disease, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Interestingly, ACDMPV-causative deletions, involving FOXF1 or its lung-specific upstream enhancer at 16q24.1, arise almost exclusively on the maternally inherited chromosome 16. Given the phenotypic similarities between upd(16)mat and ACDMPV, together with parental allelic bias in ACDMPV, we hypothesized that there may be unknown imprinted loci mapping to chromosome 16 that become functionally unmasked by chromosomal structural variants. RESULTS To identify parent-of-origin biased DNA methylation, we performed high-resolution bisulfite sequencing of chromosome 16 on peripheral blood and cultured skin fibroblasts from individuals with maternal or paternal upd(16) as well as lung tissue from patients with ACDMPV-causative 16q24.1 deletions and a normal control. We identified 22 differentially methylated regions (DMRs) with ≥ 5 consecutive CpG methylation sites and varying tissue-specificity, including the known DMRs associated with the established imprinted gene ZNF597 and DMRs supporting maternal methylation of PRR25, thought to be paternally expressed in lymphoblastoid cells. Lastly, we found evidence of paternal methylation on 16q24.1 near LINC01082 mapping to the FOXF1 enhancer. CONCLUSIONS Using high-resolution bisulfite sequencing to evaluate DNA methylation across chromosome 16, we found evidence for novel candidate imprinted loci on chromosome 16 that would not be evident in array-based assays and could contribute to the birth defects observed in patients with upd(16)mat or in ACDMPV.
Collapse
Affiliation(s)
- Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Harry Lesmana
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aaron Hamvas
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer A Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Gladys Zapata
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Qian Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA.
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
41
|
Davis KW, Serrano M, Loddo S, Robinson C, Alesi V, Dallapiccola B, Novelli A, Butler MG. Parent-of-Origin Effects in 15q11.2 BP1-BP2 Microdeletion (Burnside-Butler) Syndrome. Int J Mol Sci 2019; 20:E1459. [PMID: 30909440 PMCID: PMC6470921 DOI: 10.3390/ijms20061459] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
To identify whether parent-of-origin effects (POE) of the 15q11.2 BP1-BP2 microdeletion are associated with differences in clinical features in individuals inheriting the deletion, we collected 71 individuals reported with phenotypic data and known inheritance from a clinical cohort, a research cohort, the DECIPHER database, and the primary literature. Chi-squared and Mann-Whitney U tests were used to test for differences in specific and grouped clinical symptoms based on parental inheritance and proband gender. Analyses controlled for sibling sets and individuals with additional variants of uncertain significance (VOUS). Among all probands, maternal deletions were associated with macrocephaly (p = 0.016) and autism spectrum disorder (ASD; p = 0.02), while paternal deletions were associated with congenital heart disease (CHD; p = 0.004). Excluding sibling sets, maternal deletions were associated with epilepsy as well as macrocephaly (p < 0.05), while paternal deletions were associated with CHD and abnormal muscular phenotypes (p < 0.05). Excluding sibling sets and probands with an additional VOUS, maternal deletions were associated with epilepsy (p = 0.019) and paternal deletions associated with muscular phenotypes (p = 0.008). Significant gender-based differences were also observed. Our results supported POEs of this deletion and included macrocephaly, epilepsy and ASD in maternal deletions with CHD and abnormal muscular phenotypes seen in paternal deletions.
Collapse
Affiliation(s)
| | | | - Sara Loddo
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy.
| | | | - Viola Alesi
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy.
| | - Bruno Dallapiccola
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy.
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy.
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
42
|
Matsubara K, Itoh M, Shimizu K, Saito S, Enomoto K, Nakabayashi K, Hata K, Kurosawa K, Ogata T, Fukami M, Kagami M. Exploring the unique function of imprinting control centers in the PWS/AS-responsible region: finding from array-based methylation analysis in cases with variously sized microdeletions. Clin Epigenetics 2019; 11:36. [PMID: 30819260 PMCID: PMC6396496 DOI: 10.1186/s13148-019-0633-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/14/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human 15q11-13 is responsible for Prader-Willi syndrome (PWS) and Angelman syndrome (AS) and includes several imprinted genes together with bipartite elements named AS-IC (imprinting center) and PWS-IC. These concertedly confer allele specificity on 15q11-13. Here, we report DNA methylation status of 15q11-13 and other autosomal imprinted differentially methylated regions (iDMRs) in cases with various deletions within the PWS/AS-responsible region. METHODS We performed array-based methylation analysis and examined the methylation status of CpG sites in 15q11-13 and in 71 iDMRs in six cases with various microdeletions, eight cases with conventional deletions within 15q11-13, and healthy controls. RESULTS We detected 89 CpGs in 15q11-13 showing significant methylation changes in our cases. Of them, 14 CpGs in the SNORD116s cluster presented slight hypomethylation in the PWS cases and hypermethylation in the AS cases. No iDMRs at regions other than 15q11-13 showed abnormal methylation. CONCLUSIONS We identified CpG sites and regions in which methylation status is regulated by AS-IC and PWS-IC. This result indicated that each IC had unique functions and coordinately regulated the DNA methylation of respective alleles. In addition, only aberrant methylation at iDMRs in 15q11-13 leads to the development of the phenotypes in our cases.
Collapse
Affiliation(s)
- Keiko Matsubara
- Department of Molecular Endocrinology, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Masatsune Itoh
- Department of Pediatrics, Kanazawa Medical University, Kanazawa, 920-1192, Japan
| | - Kenji Shimizu
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, 330-8777, Japan
| | - Shinji Saito
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Keisuke Enomoto
- Enomoto Children's Clinic, Moriya, 302-0127, Japan.,Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School, Tokyo, 113-8510, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, 232-8555, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
43
|
Monteagudo-Sánchez A, Sánchez-Delgado M, Mora JRH, Santamaría NT, Gratacós E, Esteller M, de Heredia ML, Nunes V, Choux C, Fauque P, de Nanclares GP, Anton L, Elovitz MA, Iglesias-Platas I, Monk D. Differences in expression rather than methylation at placenta-specific imprinted loci is associated with intrauterine growth restriction. Clin Epigenetics 2019; 11:35. [PMID: 30808399 PMCID: PMC6390544 DOI: 10.1186/s13148-019-0630-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genome-wide studies have begun to link subtle variations in both allelic DNA methylation and parent-of-origin genetic effects with early development. Numerous reports have highlighted that the placenta plays a critical role in coordinating fetal growth, with many key functions regulated by genomic imprinting. With the recent description of wide-spread polymorphic placenta-specific imprinting, the molecular mechanisms leading to this curious polymorphic epigenetic phenomenon is unknown, as is their involvement in pregnancies complications. RESULTS Profiling of 35 ubiquitous and 112 placenta-specific imprinted differentially methylated regions (DMRs) using high-density methylation arrays and pyrosequencing revealed isolated aberrant methylation at ubiquitous DMRs as well as abundant hypomethylation at placenta-specific DMRs. Analysis of the underlying chromatin state revealed that the polymorphic nature is not only evident at the level of allelic methylation, but DMRs can also adopt an unusual epigenetic signature where the underlying histones are biallelically enrichment of H3K4 methylation, a modification normally mutually exclusive with DNA methylation. Quantitative expression analysis in placenta identified two genes, GPR1-AS1 and ZDBF2, that were differentially expressed between IUGRs and control samples after adjusting for clinical factors, revealing coordinated deregulation at the chromosome 2q33 imprinted locus. CONCLUSIONS DNA methylation is less stable at placenta-specific imprinted DMRs compared to ubiquitous DMRs and contributes to privileged state of the placenta epigenome. IUGR-associated expression differences were identified for several imprinted transcripts independent of allelic methylation. Further work is required to determine if these differences are the cause IUGR or reflect unique adaption by the placenta to developmental stresses.
Collapse
Affiliation(s)
- Ana Monteagudo-Sánchez
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marta Sánchez-Delgado
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Ramon Hernandez Mora
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Nuria Tubío Santamaría
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.,Leibniz Institute on Aging, Jena, Germany
| | - Eduard Gratacós
- Fetal I+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Déu, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Gran via, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Miguel López de Heredia
- Human Molecular Genetics group, Genes, disease and Therapy Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospitalet 199-203, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Virgina Nunes
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Human Molecular Genetics group, Genes, disease and Therapy Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospitalet 199-203, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigaciòn Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cecile Choux
- Université Bourgogne Franche-Comté - INSERM UMR1231, F-21000, Dijon, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté - INSERM UMR1231, F-21000, Dijon, France
| | - Guiomar Perez de Nanclares
- (Epi) Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | - Lauren Anton
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, USA
| | - Isabel Iglesias-Platas
- GReN (Grup de Reçerca en Neonatologia), BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Institut de Reçerca Sant Joan de Déu, Barcelona, Spain
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
44
|
Insights into imprinting from parent-of-origin phased methylomes and transcriptomes. Nat Genet 2018; 50:1542-1552. [PMID: 30349119 DOI: 10.1038/s41588-018-0232-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/08/2018] [Indexed: 01/23/2023]
Abstract
Imprinting is the preferential expression of one parental allele over the other. It is controlled primarily through differential methylation of cytosine at CpG dinucleotides. Here we combine 285 methylomes and 11,617 transcriptomes from peripheral blood samples with parent-of-origin phased haplotypes, to produce a new map of imprinted methylation and gene expression patterns across the human genome. We demonstrate how imprinted methylation is a continuous rather than a binary characteristic. We describe at high resolution the parent-of-origin methylation pattern at the 15q11.2 Prader-Willi/Angelman syndrome locus, with nearly confluent stochastic paternal methylation punctuated by 'spikes' of maternal methylation. We find examples of polymorphic imprinted methylation unrelated (at VTRNA2-1 and PARD6G) or related (at CHRNE) to nearby SNP genotypes. We observe RNA isoform-specific imprinted expression patterns suggestive of a methylation-sensitive transcriptional elongation block. Finally, we gain new insights into parent-of-origin-specific effects on phenotypes at the DLK1/MEG3 and GNAS loci.
Collapse
|
45
|
Goovaerts T, Steyaert S, Vandenbussche CA, Galle J, Thas O, Van Criekinge W, De Meyer T. A comprehensive overview of genomic imprinting in breast and its deregulation in cancer. Nat Commun 2018; 9:4120. [PMID: 30297886 PMCID: PMC6175939 DOI: 10.1038/s41467-018-06566-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Genomic imprinting plays an important role in growth and development. Loss of imprinting (LOI) has been found in cancer, yet systematic studies are impeded by data-analytical challenges. We developed a methodology to detect monoallelically expressed loci without requiring genotyping data, and applied it on The Cancer Genome Atlas (TCGA, discovery) and Genotype-Tissue expression project (GTEx, validation) breast tissue RNA-seq data. Here, we report the identification of 30 putatively imprinted genes in breast. In breast cancer (TCGA), HM13 is featured by LOI and expression upregulation, which is linked to DNA demethylation. Other imprinted genes typically demonstrate lower expression in cancer, often associated with copy number variation and aberrant DNA methylation. Downregulation in cancer frequently leads to higher relative expression of the (imperfectly) silenced allele, yet this is not considered canonical LOI given the lack of (absolute) re-expression. In summary, our novel methodology highlights the massive deregulation of imprinting in breast cancer.
Collapse
Affiliation(s)
- Tine Goovaerts
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sandra Steyaert
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Chari A Vandenbussche
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jeroen Galle
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Olivier Thas
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Wim Van Criekinge
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Tim De Meyer
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
46
|
Maternally inherited 133kb deletion of 14q32 causing Kagami–Ogata syndrome. J Hum Genet 2018; 63:1231-1239. [DOI: 10.1038/s10038-018-0506-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 11/09/2022]
|
47
|
Mozaffari SV, Stein MM, Magnaye KM, Nicolae DL, Ober C. Parent of origin gene expression in a founder population identifies two new candidate imprinted genes at known imprinted regions. PLoS One 2018; 13:e0203906. [PMID: 30204804 PMCID: PMC6133383 DOI: 10.1371/journal.pone.0203906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/29/2018] [Indexed: 11/18/2022] Open
Abstract
Genomic imprinting is the phenomena that leads to silencing of one copy of a gene inherited from a specific parent. Mutations in imprinted regions have been involved in diseases showing parent of origin effects. Identifying genes with evidence of parent of origin expression patterns in family studies allows the detection of more subtle imprinting. Here, we use allele specific expression in lymphoblastoid cell lines from 306 Hutterites related in a single pedigree to provide formal evidence for parent of origin effects. We take advantage of phased genotype data to assign parent of origin to RNA-seq reads in individuals with gene expression data. Our approach identified known imprinted genes, two putative novel imprinted genes, PXDC1 and PWAR6, and 14 genes with asymmetrical parent of origin gene expression. We used gene expression in peripheral blood leukocytes (PBL) to validate our findings, and then confirmed imprinting control regions (ICRs) using DNA methylation levels in the PBLs.
Collapse
Affiliation(s)
- Sahar V. Mozaffari
- Committee on Genetics, Genomics & Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Michelle M. Stein
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Kevin M. Magnaye
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Dan L. Nicolae
- Committee on Genetics, Genomics & Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - Carole Ober
- Committee on Genetics, Genomics & Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
48
|
Matsubara K, Kagami M, Fukami M. Uniparental disomy as a cause of pediatric endocrine disorders. Clin Pediatr Endocrinol 2018; 27:113-121. [PMID: 30083028 PMCID: PMC6073059 DOI: 10.1297/cpe.27.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Uniparental disomy (UPD) refers to a condition in which two homologous chromosomes or
chromosomal regions are inherited from one parent. Recent studies have shown that UPD is
not rare among the general population, arising from trisomy rescue, gamete
complementation, and other mechanisms. Although UPD is not necessarily pathogenic, it can
lead to various disease phenotypes by causing imprinting disorders or by unmasking
autosomal recessive mutations. Notably, known UPD-mediated autosomal recessive disorders
include congenital adrenal hyperplasia due to 21-hydroxylase deficiency, 11β-hydroxylase
deficiency, and 3β-hydroxysteroid dehydrogenase deficiency. In addition, UPD can occur in
combination with additional cytogenetic abnormalities that may affect growth and
development. Therefore, UPD represents a clinically important condition that accounts for
a certain percentage of the etiology of growth failure and endocrine abnormalities.
Although UPD is barely detectable by standard karyotyping or sequence analyses, it can be
screened by single nucleotide polymorphism- and microsatellite-genotyping of patients and
their parents, or by DNA methylation analysis of the patients. This mini-review introduces
the underlying mechanisms and phenotypic consequences of UPD in association with pediatric
endocrine disorders.
Collapse
Affiliation(s)
- Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
49
|
Hernandez Mora JR, Tayama C, Sánchez-Delgado M, Monteagudo-Sánchez A, Hata K, Ogata T, Medrano J, Poo-Llanillo ME, Simón C, Moran S, Esteller M, Tenorio J, Lapunzina P, Kagami M, Monk D, Nakabayashi K. Characterization of parent-of-origin methylation using the Illumina Infinium MethylationEPIC array platform. Epigenomics 2018; 10:941-954. [PMID: 29962238 DOI: 10.2217/epi-2017-0172] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM This study aimed to establish a catalog of probes corresponding to imprinted differentially methylated regions (DMRs) on the Infinium HumanMethylationEPIC BeadChip. MATERIALS & METHODS Reciprocal uniparental diploidies with low normal biparental mosaic contribution, together with normal diploid controls, were subjected to EPIC BeadChip hybridization. The methylation profiles were assessed for imprinted differential methylation. Top candidates were validated using locus-specific PCR-based assays. RESULTS Seven hundred and eighty-nine CpG probes coincided with 50 known imprinted DMRs and 467 CpG probes corresponding to 124 novel imprinted DMR candidates were identified. Validation led to identification of several subtle DMRs within known imprinted domains as well as novel maternally methylated regions associated with PTCHD3 and JAKMIP1. CONCLUSION Our comprehensive list of bona fide-imprinted DMR probes will simplify and facilitate methylation profiling of individuals with imprinting disorders and is applicable to other diseases in which aberrant imprinting has been implicated, such as cancer and fetal growth.
Collapse
Affiliation(s)
- Jose R Hernandez Mora
- Imprinting & Cancer group, Cancer Epigenetic & Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Chiharu Tayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Marta Sánchez-Delgado
- Imprinting & Cancer group, Cancer Epigenetic & Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Monteagudo-Sánchez
- Imprinting & Cancer group, Cancer Epigenetic & Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Jose Medrano
- Fundación IVI-Instituto Universitario IVI- INCLIVA, Valencia, Spain
| | | | - Carlos Simón
- Igenomix SL, Valencia, Spain.,Department of Obs/Gyn, Valencia University, Valencia, Spain.,Department of Obs/Gyn, Stanford University, Palo Alto, CA 94305, USA
| | - Sebastian Moran
- Cancer Epigenetics group, Cancer Epigenetic & Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics group, Cancer Epigenetic & Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Jair Tenorio
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health & Development, Tokyo, Japan
| | - David Monk
- Imprinting & Cancer group, Cancer Epigenetic & Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo, Japan
| |
Collapse
|
50
|
Manheimer KB, Patel N, Richter F, Gorham J, Tai AC, Homsy J, Boskovski MT, Parfenov M, Goldmuntz E, Chung WK, Brueckner M, Tristani-Firouzi M, Srivastava D, Seidman JG, Seidman CE, Gelb BD, Sharp AJ. Robust identification of deletions in exome and genome sequence data based on clustering of Mendelian errors. Hum Mutat 2018; 39:870-881. [PMID: 29527824 PMCID: PMC6022753 DOI: 10.1002/humu.23419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 01/06/2023]
Abstract
Multiple tools have been developed to identify copy number variants (CNVs) from whole exome (WES) and whole genome sequencing (WGS) data. Current tools such as XHMM for WES and CNVnator for WGS identify CNVs based on changes in read depth. For WGS, other methods to identify CNVs include utilizing discordant read pairs and split reads and genome-wide local assembly with tools such as Lumpy and SvABA, respectively. Here, we introduce a new method to identify deletion CNVs from WES and WGS trio data based on the clustering of Mendelian errors (MEs). Using our Mendelian Error Method (MEM), we identified 127 deletions (inherited and de novo) in 2,601 WES trios from the Pediatric Cardiac Genomics Consortium, with a validation rate of 88% by digital droplet PCR. MEM identified additional de novo deletions compared with XHMM, and a significant enrichment of 15q11.2 deletions compared with controls. In addition, MEM identified eight cases of uniparental disomy, sample switches, and DNA contamination. We applied MEM to WGS data from the Genome In A Bottle Ashkenazi trio and identified deletions with 97% specificity. MEM provides a robust, computationally inexpensive method for identifying deletions, and an orthogonal approach for verifying deletions called by other tools.
Collapse
Affiliation(s)
- Kathryn B. Manheimer
- Mindich Child Health and Development Institute, Icahn School of
Medicine at Mount Sinai, New York, NY, USA
| | - Nihir Patel
- Mindich Child Health and Development Institute, Icahn School of
Medicine at Mount Sinai, New York, NY, USA
| | - Felix Richter
- Mindich Child Health and Development Institute, Icahn School of
Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston MA, USA
| | - Angela C. Tai
- Department of Genetics, Harvard Medical School, Boston MA, USA
| | - Jason Homsy
- Department of Genetics, Harvard Medical School, Boston MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital,
Boston, MA, USA
| | - Marko T. Boskovski
- Division of Cardiac Surgery, The Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Elizabeth Goldmuntz
- Department of Pediatrics, The Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiology, The Children’s Hospital of
Philadelphia, The University of Pennsylvania Perelman School of Medicine,
Philadelphia, PA, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Medical Center, New
York, NY, USA
- Department of Medicine, Columbia University Medical Center, New
York, NY, USA
| | - Martina Brueckner
- Department of Genetics, Yale University School of Medicine, New
Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New
Haven, CT, USA
| | | | - Deepak Srivastava
- Department of Pediatrics, UCSF, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | | | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston MA, USA
- Department of Medicine (Cardiology), Brigham and Women’s
Hospital, Boston, MA and the Howard Hughes Medical Institute, Chevy Chase, MD,
USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Icahn School of
Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai,
New York, NY, USA
| | - Andrew J. Sharp
- Mindich Child Health and Development Institute, Icahn School of
Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|