1
|
Perneel J, Lastra Osua M, Alidadiani S, Peeters N, De Witte L, Heeman B, Manzella S, De Rycke R, Brooks M, Perkerson RB, Calus E, De Coster W, Neumann M, Mackenzie IRA, Van Dam D, Asselbergh B, Ellender T, Zhou X, Rademakers R. Increased TMEM106B levels lead to lysosomal dysfunction which affects synaptic signaling and neuronal health. Mol Neurodegener 2025; 20:45. [PMID: 40269985 PMCID: PMC12016085 DOI: 10.1186/s13024-025-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Genetic variation in Transmembrane protein 106B (TMEM106B) is known to influence the risk and presentation in several neurodegenerative diseases and modifies healthy aging. While evidence from human studies suggests that the risk allele is associated with higher levels of TMEM106B, the contribution of elevated levels of TMEM106B to neurodegeneration and aging has not been assessed and it remains unclear how TMEM106B modulates disease risk. METHODS To study the effect of increased TMEM106B levels, we generated Cre-inducible transgenic mice expressing human wild-type TMEM106B. We evaluated lysosomal and neuronal health using in vitro and in vivo assays including transmission electron microscopy, immunostainings, behavioral testing, electrophysiology, and bulk RNA sequencing. RESULTS We created the first transgenic mouse model that successfully overexpresses TMEM106B, with a 4- to 8-fold increase in TMEM106B protein levels in heterozygous (hTMEM106B(+)) and homozygous (hTMEM106B(++)) animals, respectively. We showed that the increase in TMEM106B protein levels induced lysosomal dysfunction and age-related downregulation of genes associated with neuronal plasticity, learning, and memory. Increased TMEM106B levels led to altered synaptic signaling in 12-month-old animals which further exhibited an anxiety-like phenotype. Finally, we observed mild neuronal loss in the hippocampus of 21-month-old animals. CONCLUSION Characterization of the first transgenic mouse model that overexpresses TMEM106B suggests that higher levels of TMEM106B negatively impacts brain health by modifying brain aging and impairing the resilience of the brain to the pathomechanisms of neurodegenerative disorders. This novel model will be a valuable tool to study the involvement and contribution of increased TMEM106B levels to aging and will be essential to study the many age-related diseases in which TMEM106B was genetically shown to be a disease- and risk-modifier.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Miranda Lastra Osua
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sara Alidadiani
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nele Peeters
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Linus De Witte
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Bavo Heeman
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Simona Manzella
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Riet De Rycke
- VIB Bioimaging Core, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Mieu Brooks
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Elke Calus
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Experimental Neurobiology Unit, University of Antwerp, Antwerp, Belgium
- Neurochemistry and Behaviour Group, University of Antwerp, Antwerp, Belgium
| | - Wouter De Coster
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Manuela Neumann
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Ian R A Mackenzie
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC, Canada
- Division of Neurology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Debby Van Dam
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Experimental Neurobiology Unit, University of Antwerp, Antwerp, Belgium
- Neurochemistry and Behaviour Group, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Bob Asselbergh
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tommas Ellender
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Experimental Neurobiology Unit, University of Antwerp, Antwerp, Belgium
| | - Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science,, Guangzhou, 510060, China.
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
3
|
Riordan R, Saxton A, Han M, McMillan PJ, Kow RL, Liachko NF, Kraemer BC. TMEM106B C-terminal fragments aggregate and drive neurodegenerative proteinopathy in transgenic Caenorhabditis elegans. Alzheimers Dement 2025; 21:e14468. [PMID: 39711302 PMCID: PMC11848199 DOI: 10.1002/alz.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Genetic variation in the lysosomal and transmembrane protein 106B (TMEM106B) modifies risk for several neurodegenerative disorders, especially frontotemporal lobar degeneration (FTLD). The C-terminal (CT) domain of TMEM106B occurs as fibrillar protein deposits in the brains of dementia patients. METHODS To determine the TMEM CT aggregation propensity and neurodegenerative potential, we generated transgenic Caenorhabditis elegans expressing the human TMEM CT fragment aggregating in FTLD cases. RESULTS Pan-neuronal expression of human TMEM CT in C. elegans causes severe neuronal dysfunction driving neurodegeneration. Cytosolic aggregation of TMEM CT proteins accompanied by behavioral dysfunction and neurodegeneration. Loss of pgrn-1 did not modify TMEM CT phenotypes suggesting TMEM CT aggregation occurs downstream of PGRN loss of function. The mechanistic drivers of TMEM106B proteinopathy appear distinct from known modifiers of tauopathy. DISCUSSION Our data demonstrate that TMEM CT aggregation can kill neurons. TMEM106B transgenic C.elegans provide a useful model for characterizing TMEM106B proteinopathy-mediated neurodegeneration in FTLD. HIGHLIGHTS Pan-neuronal expression of human TMEM106B C-terminal fragments (TMEM CT) in C. elegans neurons drives a suite of disease-related phenotypes useful for modeling the molecular and cellular features of TMEM106B neuropathology. TMEM CT expression results in extensive TMEM aggregation and accumulation of highly detergent insoluble protein species. TMEM CT expression causes moderate to severe neuronal dysfunction dependent on TMEM CT abundance as measured by stereotypical behavioral readouts. TMEM CT expression drives significant neurodegenerative changes. Dendra2 tagged TMEM exhibits similar properties to untagged TMEM allowing ready visualization of the protein. TMEM CT aggregates accumulate adjacent to but not within lysosomes. PGRN loss of function does not impact TMEM CT toxicity. Modifiers of tau and TDP-43 proteinopathies have little impact on TMEM CT-related neurodegenerative phenotypes.
Collapse
Affiliation(s)
- Ruben Riordan
- Geriatrics Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Division of Gerontology and Geriatric MedicineDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
| | - Marina Han
- Division of Gerontology and Geriatric MedicineDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Graduate Program in NeuroscienceUniversity of WashingtonSeattleWashingtonUSA
| | - Pamela J. McMillan
- Geriatrics Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Rebecca L. Kow
- Geriatrics Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Division of Gerontology and Geriatric MedicineDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Division of Gerontology and Geriatric MedicineDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Graduate Program in NeuroscienceUniversity of WashingtonSeattleWashingtonUSA
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWashingtonUSA
- Division of Gerontology and Geriatric MedicineDepartment of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Graduate Program in NeuroscienceUniversity of WashingtonSeattleWashingtonUSA
- Department of Psychiatry and Behavioral SciencesUniversity of WashingtonSeattleWashingtonUSA
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
4
|
Liu Y, Qin K, Dou K, Ren J, Hou B, Xie A. TMEM106B knockdown exhibits a neuroprotective effect in Parkinson's disease models via regulating autophagy-lysosome pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167553. [PMID: 39490939 DOI: 10.1016/j.bbadis.2024.167553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND TMEM106B, a lysosomal transmembrane protein, has been reported to be associated with Parkinson's disease (PD). However, the precise physiopathologic mechanism of TMEM106B in PD remains unclear. OBJECTIVE This study aimed to explore the influence of TMEM106B on the autophagy-lysosome pathway (ALP) in PD. METHODS 55 patients with PD and 40 healthy controls were enrolled. RT-qPCR and ELISA were employed to assess the levels of TMEM106B. In vitro and in vivo models of PD, Lentivirus-shTMEM106B and AAV-shTMEM106B were used to knockdown the expression of TMEM106B. Behavioral experiments, western blot, immunofluorescence, and immunohistochemistry were used to detect the effect of TMEM106B on the ALP process. RESULTS We found that the levels of TMEM106B were increased in the PD patients and PD models. TMEM106B knockdown markedly improved the motor deficits and tyrosine hydroxylase (TH) expression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mice. TMEM106B knockdown promoted α-syn clearance by regulating the ALP process in MPP+-induced SH-SY5Y cells and MPTP-treated mice. Further studies revealed that TMEM106B knockdown might activate ALP through activating AMPK-mTOR-TFEB axis. Furthermore, TMEM106B may play a vital role in the ALP by mediating the expression of TDP43. CONCLUSIONS Taken together, our study suggests that TMEM106B knockdown mediates the ALP pathway, leading to a decrease in α-syn, providing a new direction and perspective for the regulation of autophagy in PD.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kunpeng Qin
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaixin Dou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiwen Ren
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Binghui Hou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Roy DG, De M, Bharatiya S, Khedekar DA, Datta K, Bhattacharjee S, Chinnaswamy S. Evidence for a sex-dependent effect modification in the association between IFN-λ DNA polymorphisms and expression of IFN-λ and interferon-stimulated genes in human PBMCs. Cytokine 2024; 184:156779. [PMID: 39423653 DOI: 10.1016/j.cyto.2024.156779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Human interferon (IFN) lambda (IFNL, IFN-L or IFN-λ) locus has several functional genetic variants but their role in regulating in vivo gene expression, and whether they associate with antiviral states in healthy individuals, is not clear. In this study, we recruited ∼550 healthy individuals belonging to both sexes, genotyped them for several IFNL genetic variants and measured, by qPCR, the expression of IFNL2/3, IFNL4 and four IFN-stimulated genes (ISGs) (MX1, OAS1, ISG15 and RSAD2) from their peripheral blood mononuclear cells (PBMC) both before and after stimulation with a viral mimic, poly I: C. We also measured secreted levels of several cytokines including IFN-λ1 and IFN-λ3 in poly I:C stimulated PBMCs. We found that males secrete higher levels of IFN-λs than females. The IFNL3/4 genetic variants significantly associated with secreted levels of both IFN-λ1 and IFN-λ3 in opposite directions, only in males. While the IFNL3/4 variants significantly associated with ISG expression either in basal or poly I:C induced or in both states, the direction of effect was opposite for the two sexes, suggesting that sex was a strong effect modifier. We did not see this trend in the association of ISG expression with the IFNL1 polymorphism, rs7247086, whose association with ISG expression and secreted IFN-λ3 levels was seen in females but not in males. Further, expression of several genes was associated with the IFN-λ4 activity-modifying variant rs117648444. However, we neither saw any strong correlation between levels of IFN-λ1/3 and ISG expression, nor did we see any strong evidence of IFNL4 expression that could be responsible for the association between ISG expression and IFNL genetic variants. These results suggest that there are complex interactions involving gender, IFN-λs, IFN-λ genetic variants and antiviral states in humans.
Collapse
Affiliation(s)
- Debarati Guha Roy
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Manjarika De
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India
| | - Seema Bharatiya
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Dhanashree A Khedekar
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Kallol Datta
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Samsiddhi Bhattacharjee
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India
| | - Sreedhar Chinnaswamy
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India; Regional Centre for Biotechnology, Faridabad, India; Biotechnology Research Innovation Council-National Institute of Animal Biotechnology (BRIC-NIAB), Hyderabad, India.
| |
Collapse
|
6
|
Du M, Akerman SC, Fare CM, Ruan L, Vidensky S, Mamedova L, Lee J, Rothstein JD. Divergent and Convergent TMEM106B Pathology in Murine Models of Neurodegeneration and Human Disease. RESEARCH SQUARE 2024:rs.3.rs-5306005. [PMID: 39606446 PMCID: PMC11601866 DOI: 10.21203/rs.3.rs-5306005/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied in vivo using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches. To date, endogenous TMEM106B pathology and its relationship to known canonical pathology in animal models has not been reported. Here, we analyze histological patterns of TMEM106B in murine models of C9ORF72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD), SOD1-related ALS, and tauopathy and compare these to postmortem human tissue from patients with C9-ALS/FTD, Alzheimer's disease (AD), and AD with limbic-predominant age-related TDP-43 encephalopathy (AD/LATE). We show that there are significant differences between TMEM106B pathology in mouse models and human patient tissue. Importantly, we also identified convergent evidence from both murine models and human patients that links TMEM106B pathology to TDP-43 nuclear clearance specifically in C9-ALS. Similarly, we find a relationship at the cellular level between TMEM106B pathology and phosphorylated Tau burden in Alzheimer's disease. By characterizing endogenous TMEM106B pathology in both mice and human postmortem tissue, our work reveals considerations that must be taken into account when analyzing data from in vivo mouse studies and elucidates new insights supporting the involvement of TMEM106B in the pathogenesis and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Muzi Du
- Johns Hopkins University School of Medicine
| | | | | | | | | | | | - Joshua Lee
- Johns Hopkins University School of Medicine
| | | |
Collapse
|
7
|
Du M, Akerman SC, Fare CM, Ruan L, Vidensky S, Mamedova L, Lee J, Rothstein JD. Divergent and Convergent TMEM106B Pathology in Murine Models of Neurodegeneration and Human Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618765. [PMID: 39464100 PMCID: PMC11507888 DOI: 10.1101/2024.10.16.618765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied in vivo using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches. To date, endogenous TMEM106B pathology and its relationship to known canonical pathology in animal models has not been reported. Here, we analyze histological patterns of TMEM106B in murine models of C9ORF72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD), SOD1-related ALS, and tauopathy and compare these to postmortem human tissue from patients with C9-ALS/FTD, Alzheimer's disease (AD), and AD with limbic-predominant age-related TDP-43 encephalopathy (AD/LATE). We show that there are significant differences between TMEM106B pathology in mouse models and human patient tissue. Importantly, we also identified convergent evidence from both murine models and human patients that links TMEM106B pathology to TDP-43 nuclear clearance specifically in C9-ALS. Similarly, we find a relationship at the cellular level between TMEM106B pathology and phosphorylated Tau burden in Alzheimer's disease. By characterizing endogenous TMEM106B pathology in both mice and human postmortem tissue, our work reveals considerations that must be taken into account when analyzing data from in vivo mouse studies and elucidates new insights supporting the involvement of TMEM106B in the pathogenesis and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Muzi Du
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Suleyman C. Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Charlotte M. Fare
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Linhao Ruan
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Svetlana Vidensky
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lyudmila Mamedova
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joshua Lee
- Department of Psychological and Brain Sciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, 21218, USA
| | - Jeffrey D. Rothstein
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
8
|
Rodney A, Karanjeet K, Benzow K, Koob MD. A common Alu insertion in the 3'UTR of TMEM106B is associated with risk of dementia. Alzheimers Dement 2024; 20:5071-5077. [PMID: 38924247 PMCID: PMC11247663 DOI: 10.1002/alz.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Sequence variants in TMEM106B have been associated with an increased risk of developing dementia. METHODS As part of our efforts to generate a set of mouse lines in which we replaced the mouse Tmem106b gene with a human TMEM106B gene comprised of either a risk or protective haplotype, we conducted an in-depth sequence analysis of these alleles. We also analyzed transcribed TMEM106B sequences using RNA-seq data (AD Knowledge portal) and full genome sequences (1000 Genomes). RESULTS We identified an AluYb8 insertion in the 3' untranslated region (3'UTR) of the TMEM106B risk haplotype. We found this AluYb8 insertion in every risk haplotype analyzed, but not in either protective haplotypes or in non-human primates. DISCUSSION We conclude that this risk haplotype arose early in human development with a single Alu-insertion event within a unique haplotype context. This AluYb8 element may act as a functional variant in conferring an increased risk of developing dementia. HIGHLIGHTS We conducted an in-depth sequence analysis of (1) a risk and (2) a protective haplotype of the human TMEM106B gene. We also analyzed transcribed TMEM106B sequences using RNA-seq data (AD Knowledge Portal) and full genome sequences (1000 Genomes). We identified an AluYb8 insertion in the 3' untranslated region (3'UTR) of the TMEM106B risk haplotype. We found this AluYb8 insertion in every risk haplotype analyzed, but not in either protective haplotypes or in non-human primates. This AluYb8 element may act as a functional variant in conferring an increased risk of developing dementia.
Collapse
Affiliation(s)
- Alana Rodney
- Lab Medicine and Pathology, and Institute for Translational NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kul Karanjeet
- Lab Medicine and Pathology, and Institute for Translational NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kellie Benzow
- Lab Medicine and Pathology, and Institute for Translational NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michael D. Koob
- Lab Medicine and Pathology, and Institute for Translational NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
9
|
Bacioglu M, Schweighauser M, Gray D, Lövestam S, Katsinelos T, Quaegebeur A, van Swieten J, Jaunmuktane Z, Davies SW, Scheres SHW, Goedert M, Ghetti B, Spillantini MG. Cleaved TMEM106B forms amyloid aggregates in central and peripheral nervous systems. Acta Neuropathol Commun 2024; 12:99. [PMID: 38886865 PMCID: PMC11181561 DOI: 10.1186/s40478-024-01813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Filaments made of residues 120-254 of transmembrane protein 106B (TMEM106B) form in an age-dependent manner and can be extracted from the brains of neurologically normal individuals and those of subjects with a variety of neurodegenerative diseases. TMEM106B filament formation requires cleavage at residue 120 of the 274 amino acid protein; at present, it is not known if residues 255-274 form the fuzzy coat of TMEM106B filaments. Here we show that a second cleavage appears likely, based on staining with an antibody raised against residues 263-274 of TMEM106B. We also show that besides the brain TMEM106B inclusions form in dorsal root ganglia and spinal cord, where they were mostly found in non-neuronal cells. We confirm that in the brain, inclusions were most abundant in astrocytes. No inclusions were detected in heart, liver, spleen or hilar lymph nodes. Based on their staining with luminescent conjugated oligothiophenes, we confirm that TMEM106B inclusions are amyloids. By in situ immunoelectron microscopy, TMEM106B assemblies were often found in structures resembling endosomes and lysosomes.
Collapse
Affiliation(s)
- Mehtap Bacioglu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Derrick Gray
- IUSM Center for Electron Microscopy (ICEM), Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sofia Lövestam
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Annelies Quaegebeur
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust and the Cambridge Brain Bank, Cambridge, UK
| | - John van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Stephen W Davies
- Department of Cell and Developmental Biology, University College, London, UK
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
10
|
Xu H, Yang Z, Hu W, Zhou X, Zhang Z, Zhang X. CSPG4P12 polymorphism served as a susceptibility marker for esophageal cancer in Chinese population. BMC Cancer 2024; 24:729. [PMID: 38877481 PMCID: PMC11177360 DOI: 10.1186/s12885-024-12475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Chondroitin sulfate proteoglycan 4 pseudogene 12 (CSPG4P12) has been implicated in the pathogenesis of various cancers. This study aimed to evaluate the association of the CSPG4P12 polymorphism with esophageal squamous cell carcinoma (ESCA) risk and to explore the biological impact of CSPG4P12 expression on ESCA cell behavior. METHODS A case-control study was conducted involving 480 ESCA patients and 480 healthy controls to assess the association between the rs8040855 polymorphism and ESCA risk. The CSPG4P12 rs8040855 genotype was identified using the TaqMan-MGB probe method. Logistic regression model was used to evaluate the association of CSPG4P12 SNP with the risk of ESCA by calculating the odds ratios (OR) and 95% confidence intervals (95%CI ). The effects of CSPG4P12 overexpression on cell proliferation, migration, and invasion were examined in ESCA cell lines. Co-expressed genes were identified via the CBioportal database, with pathway enrichment analyzed using SangerBox. The binding score of CSPG4P12 to P53 was calculated using RNA protein interaction prediction (RPISeq). Additionally, Western Blot analysis was performed to investigate the impact of CSPG4P12 overexpression on the P53/PI3K/AKT signaling pathway. RESULTS The presence of at least one rs8040855 G allele was associated with a reduced susceptibility to ESCA compared to the CC genotype (OR = 0.51, 95%CI = 0.28-0.93, P = 0.03). Stratification analysis revealed that the CSPG4P12 rs8040855 C allele significantly decreased the risk of ESCA among younger individuals (≤ 57 years) and non-drinkers (OR = 0.31, 95%CI = 0.12-0.77, P = 0.01; OR = 0.42, 95%CI=0.20-0.87, P = 0.02, respectively). CSPG4P12 expression was found to be downregulated in ESCA tissues compared to adjacent normal tissues. Overexpression of CSPG4P12 in ESCA cells inhibited their proliferation, migration, and invasion capabilities. Furthermore, Western Blot analysis indicated that CSPG4P12 overexpression led to a reduction in PI3K and p-AKT protein expression levels. P53 silencing rescues the inhibitory effect of CSPG4P12 on p-AKT. CONCLUSION The CSPG4P12 rs8040855 variant is associated with reduced ESCA risk and the overexpression of CSPG4P12 inhibited the migration and invasion of ESCA cells by P53/PI3K/AKT pathway. These findings suggest that CSPG4P12 may serve as a novel biomarker for ESCA susceptibility and a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Hongxue Xu
- School of Public Health, North China University of Science and Technology, Tangshan, China
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan, China
| | - Zhenbang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Wenqian Hu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xianlei Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital , North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China.
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
11
|
Riordan R, Saxton A, McMillan PJ, Kow RL, Liachko NF, Kraemer BC. TMEM106B C-terminal fragments aggregate and drive neurodegenerative proteinopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598478. [PMID: 38915598 PMCID: PMC11195232 DOI: 10.1101/2024.06.11.598478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Genetic variation in the lysosomal and transmembrane protein 106B (TMEM106B) modifies risk for a diverse range of neurodegenerative disorders, especially frontotemporal lobar degeneration (FTLD) with progranulin (PGRN) haplo-insufficiency, although the molecular mechanisms involved are not yet understood. Through advances in cryo-electron microscopy (cryo-EM), homotypic aggregates of the C-Terminal domain of TMEM106B (TMEM CT) were discovered as a previously unidentified cytosolic proteinopathy in the brains of FTLD, Alzheimer's disease, progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB) patients. While it remains unknown what role TMEM CT aggregation plays in neuronal loss, its presence across a range of aging related dementia disorders indicates involvement in multi-proteinopathy driven neurodegeneration. To determine the TMEM CT aggregation propensity and neurodegenerative potential, we characterized a novel transgenic C. elegans model expressing the human TMEM CT fragment constituting the fibrillar core seen in FTLD cases. We found that pan-neuronal expression of human TMEM CT in C. elegans causes neuronal dysfunction as evidenced by behavioral analysis. Cytosolic aggregation of TMEM CT proteins accompanied the behavioral dysfunction driving neurodegeneration, as illustrated by loss of GABAergic neurons. To investigate the molecular mechanisms driving TMEM106B proteinopathy, we explored the impact of PGRN loss on the neurodegenerative effect of TMEM CT expression. To this end, we generated TMEM CT expressing C. elegans with loss of pgrn-1, the C. elegans ortholog of human PGRN. Neither full nor partial loss of pgrn-1 altered the motor phenotype of our TMEM CT model suggesting TMEM CT aggregation occurs downstream of PGRN loss of function. We also tested the ability of genetic suppressors of tauopathy to rescue TMEM CT pathology. We found that genetic knockout of spop-1, sut-2, and sut-6 resulted in weak to no rescue of proteinopathy phenotypes, indicating that the mechanistic drivers of TMEM106B proteinopathy may be distinct from tauopathy. Taken together, our data demonstrate that TMEM CT aggregation can kill neurons. Further, expression of TMEM CT in C. elegans neurons provides a useful model for the functional characterization of TMEM106B proteinopathy in neurodegenerative disease.
Collapse
Affiliation(s)
- Ruben Riordan
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Pamela J. McMillan
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Rebecca L Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
12
|
Zhu M, Zhang G, Meng L, Xiao T, Fang X, Zhang Z. Physiological and pathological functions of TMEM106B in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:209. [PMID: 38710967 PMCID: PMC11074223 DOI: 10.1007/s00018-024-05241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
As an integral lysosomal transmembrane protein, transmembrane protein 106B (TMEM106B) regulates several aspects of lysosomal function and is associated with neurodegenerative diseases. The TMEM106B gene mutations lead to lysosomal dysfunction and accelerate the pathological progression of Neurodegenerative diseases. Yet, the precise mechanism of TMEM106B in Neurodegenerative diseases remains unclear. Recently, different research teams discovered that TMEM106B is an amyloid protein and the C-terminal domain of TMEM106B forms amyloid fibrils in various Neurodegenerative diseases and normally elderly individuals. In this review, we discussed the physiological functions of TMEM106B. We also included TMEM106B gene mutations that cause neurodegenerative diseases. Finally, we summarized the identification and cryo-electronic microscopic structure of TMEM106B fibrils, and discussed the promising therapeutic strategies aimed at TMEM106B fibrils and the future directions for TMEM106B research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tingting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
13
|
Edwards GA, Wood CA, He Y, Nguyen Q, Kim PJ, Gomez-Gutierrez R, Park KW, Xu Y, Zurhellen C, Al-Ramahi I, Jankowsky JL. TMEM106B coding variant is protective and deletion detrimental in a mouse model of tauopathy. Acta Neuropathol 2024; 147:61. [PMID: 38526616 DOI: 10.1007/s00401-024-02701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/07/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
TMEM106B is a risk modifier of multiple neurological conditions, where a single coding variant and multiple non-coding SNPs influence the balance between susceptibility and resilience. Two key questions that emerge from past work are whether the lone T185S coding variant contributes to protection, and if the presence of TMEM106B is helpful or harmful in the context of disease. Here, we address both questions while expanding the scope of TMEM106B study from TDP-43 to models of tauopathy. We generated knockout mice with constitutive deletion of TMEM106B, alongside knock-in mice encoding the T186S knock-in mutation (equivalent to the human T185S variant), and crossed both with a P301S transgenic tau model to study how these manipulations impacted disease phenotypes. We found that TMEM106B deletion accelerated cognitive decline, hind limb paralysis, tau pathology, and neurodegeneration. TMEM106B deletion also increased transcriptional correlation with human AD and the functional pathways enriched in KO:tau mice aligned with those of AD. In contrast, the coding variant protected against tau-associated cognitive decline, synaptic impairment, neurodegeneration, and paralysis without affecting tau pathology. Our findings reveal that TMEM106B is a critical safeguard against tau aggregation, and that loss of this protein has a profound effect on sequelae of tauopathy. Our study further demonstrates that the coding variant is functionally relevant and contributes to neuroprotection downstream of tau pathology to preserve cognitive function.
Collapse
Affiliation(s)
- George A Edwards
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Caleb A Wood
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Yang He
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Quynh Nguyen
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Peter J Kim
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Ruben Gomez-Gutierrez
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Kyung-Won Park
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Yong Xu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cody Zurhellen
- NeuroScience Associates, 10915 Lake Ridge Drive, Knoxville, TN, 37934, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Parodi L, Comeau ME, Georgakis MK, Mayerhofer E, Chung J, Falcone GJ, Malik R, Demel SL, Worrall BB, Koch S, Testai FD, Kittner SJ, McCauley JL, Hall CE, Mayson DJ, Elkind MSV, James ML, Woo D, Rosand J, Langefeld CD, Anderson CD. Deep Resequencing of the 1q22 Locus in Non-Lobar Intracerebral Hemorrhage. Ann Neurol 2024; 95:325-337. [PMID: 37787451 PMCID: PMC10843118 DOI: 10.1002/ana.26814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE Genome-wide association studies have identified 1q22 as a susceptibility locus for cerebral small vessel diseases, including non-lobar intracerebral hemorrhage (ICH) and lacunar stroke. In the present study, we performed targeted high-depth sequencing of 1q22 in ICH cases and controls to further characterize this locus and prioritize potential causal mechanisms, which remain unknown. METHODS A total of 95,000 base pairs spanning 1q22, including SEMA4A, SLC25A44, and PMF1/PMF1-BGLAP were sequenced in 1,055 spontaneous ICH cases (534 lobar and 521 non-lobar) and 1,078 controls. Firth regression and Rare Variant Influential Filtering Tool analysis were used to analyze common and rare variants, respectively. Chromatin interaction analyses were performed using Hi-C, chromatin immunoprecipitation followed by sequencing, and chromatin interaction analysis with paired-end tag databases. Multivariable Mendelian randomization assessed whether alterations in gene-specific expression relative to regionally co-expressed genes at 1q22 could be causally related to ICH risk. RESULTS Common and rare variant analyses prioritized variants in SEMA4A 5'-UTR and PMF1 intronic regions, overlapping with active promoter and enhancer regions based on ENCODE annotation. Hi-C data analysis determined that 1q22 is spatially organized in a single chromatin loop, and that the genes therein belong to the same topologically associating domain. Chromatin immunoprecipitation followed by sequencing and chromatin interaction analysis with paired-end tag data analysis highlighted the presence of long-range interactions between the SEMA4A-promoter and PMF1-enhancer regions prioritized by association testing. Multivariable Mendelian randomization analyses demonstrated that PMF1 overexpression could be causally related to non-lobar ICH risk. INTERPRETATION Altered promoter-enhancer interactions leading to PMF1 overexpression, potentially dysregulating polyamine catabolism, could explain demonstrated associations with non-lobar ICH risk at 1q22, offering a potential new target for prevention of ICH and cerebral small vessel disease. ANN NEUROL 2024;95:325-337.
Collapse
Affiliation(s)
- Livia Parodi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Mary E Comeau
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Marios K Georgakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Ernst Mayerhofer
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jaeyoon Chung
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Guido J Falcone
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Bradford B Worrall
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Sebastian Koch
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Fernando D Testai
- Department of Neurology & Neurorehabilitation, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven J Kittner
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacob L McCauley
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christiana E Hall
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
| | - Douglas J Mayson
- Division of Stroke, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Daniel Woo
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
15
|
Chemparathy A, Le Guen Y, Zeng Y, Gorzynski J, Jensen TD, Yang C, Kasireddy N, Talozzi L, Belloy M, Stewart I, Gitler AD, Wagner AD, Mormino E, Henderson VW, Wyss-Coray T, Ashley E, Cruchaga C, Greicius MD. A 3'UTR Insertion Is a Candidate Causal Variant at the TMEM106B Locus Associated With Increased Risk for FTLD-TDP. Neurol Genet 2024; 10:e200124. [PMID: 39911968 PMCID: PMC10848896 DOI: 10.1212/nxg.0000000000200124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/07/2025]
Abstract
Background and Objectives Single-nucleotide variants near TMEM106B associate with the risk of frontotemporal lobar dementia with TDP-43 inclusions (FTLD-TDP) and Alzheimer disease (AD) in genome-wide association studies (GWASs), but the causal variant at this locus remains unclear. Here, we asked whether a novel structural variant on TMEM106B is the causal variant. Methods An exploratory analysis identified structural variants on neurodegeneration-related genes. Subsequent analyses focused on an Alu element insertion on the 3'UTR of TMEM106B. This study included data from longitudinal aging and neurogenerative disease cohorts at Stanford University, case-control cohorts in the Alzheimer Disease Sequencing Project (ADSP), and expression and proteomics data from Washington University in St. Louis (WUSTL). Four hundred thirty-two individuals from 2 Stanford aging cohorts were whole-genome long-read and short-read sequenced. A total of 16,906 samples from ADSP were short-read sequenced. Genotypes, transcriptomics, and proteomics data were available in 1,979 participants from an aging and dementia cohort at WUSTL. Selection criteria were specific to each cohort. In primary analyses, the linkage disequilibrium between the TMEM106B locus variants in the FTLD-TDP GWAS and the 3'UTR insertion was estimated. We then estimated linkage by ancestry in the ADSP and evaluated the effect of the TMEM106B lead variant on mRNA and protein levels. Results The primary analysis included 432 participants (52.5% female, age range 45-92 years). We identified a 316 bp Alu insertion overlapping the TMEM106B 3'UTR tightly linked with top GWAS variants rs3173615(C) and rs1990622(A). In ADSP European ancestry participants, this insertion is in equivalent linkage with rs1990622(A) (R2 = 0.962, D' = 0.998) and rs3173615(C) (R2 = 0.960, D' = 0.996). In African ancestry participants, the insertion is in stronger linkage with rs1990622(A) (R2 = 0.992, D' = 0.998) than with rs3173615(C) (R2 = 0.811, D' = 0.994). In public data sets, rs1990622 was consistently associated with TMEM106B protein levels but not with mRNA expression. In the WUSTL data set, rs1990622 is associated with TMEM106B protein levels in plasma and CSF, but not with TMEM106B mRNA expression. Discussion We identified a novel Alu element insertion in the 3'UTR of TMEM106B in tight linkage with the lead FTLD-TDP risk variant. The lead variant is associated with TMEM106B protein levels, but not expression. The 3'UTR insertion is a lead candidate for the causal variant at this complex locus, pending confirmation with functional studies.
Collapse
Affiliation(s)
- Augustine Chemparathy
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Yann Le Guen
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Yi Zeng
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - John Gorzynski
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Tanner D Jensen
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Chengran Yang
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Nandita Kasireddy
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Lia Talozzi
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Michael Belloy
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Ilaria Stewart
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Aaron D Gitler
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Anthony D Wagner
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Elizabeth Mormino
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Victor W Henderson
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Tony Wyss-Coray
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Euan Ashley
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Carlos Cruchaga
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| | - Michael D Greicius
- From the Department of Neurology and Neurological Sciences (A.C., Y.L.G., N.K., L.T., M.B., I.S., V.W.H., T.W.-C., M.D.G.); Quantitative Sciences Unit (Y.L.G.), Department of Medicine; Department of Genetics (Y.Z., J.G., T.D.J., A.D.G., E.A.); Division of Cardiology (J.G., E.A.), Department of Medicine, Stanford University School of Medicine, CA; Neurogenomics and Informatics Center (C.Y., C.C.), Washington University School of Medicine, St. Louis, MO; Wu Tsai Neurosciences Institute (A.D.W., E.M.); Department of Psychology (A.D.W., E.M.); and Department of Epidemiology and Population Health (V.W.H.), Stanford University, CA
| |
Collapse
|
16
|
Zeng Y, Jain R, Lam M, Ahmed M, Guo H, Xu W, Zhong Y, Wei GH, Xu W, He HH. DNA methylation modulated genetic variant effect on gene transcriptional regulation. Genome Biol 2023; 24:285. [PMID: 38066556 PMCID: PMC10709945 DOI: 10.1186/s13059-023-03130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Expression quantitative trait locus (eQTL) analysis has emerged as an important tool in elucidating the link between genetic variants and gene expression, thereby bridging the gap between risk SNPs and associated diseases. We recently identified and validated a specific case where the methylation of a CpG site influences the relationship between the genetic variant and gene expression. RESULTS Here, to systematically evaluate this regulatory mechanism, we develop an extended eQTL mapping method, termed DNA methylation modulated eQTL (memo-eQTL). Applying this memo-eQTL mapping method to 128 normal prostate samples enables identification of 1063 memo-eQTLs, the majority of which are not recognized as conventional eQTLs in the same cohort. We observe that the methylation of the memo-eQTL CpG sites can either enhance or insulate the interaction between SNP and gene expression by altering CTCF-based chromatin 3D structure. CONCLUSIONS This study demonstrates the prevalence of memo-eQTLs paving the way to identify novel causal genes for traits or diseases associated with genetic variations.
Collapse
Affiliation(s)
- Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| | - Rahi Jain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Magnus Lam
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Haiyang Guo
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Wenjie Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yuan Zhong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
- Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Wei Xu
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
17
|
Nguyen Q, Wood CA, Kim PJ, Jankowsky JL. The TMEM106B T186S coding variant increases neurite arborization and synaptic density in primary hippocampal neurons. Front Neurosci 2023; 17:1275959. [PMID: 37901434 PMCID: PMC10603297 DOI: 10.3389/fnins.2023.1275959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
The lysosomal protein TMEM106B was identified as a risk modifier of multiple dementias including frontotemporal dementia and Alzheimer's disease. The gene comes in two major haplotypes, one associated with disease risk, and by comparison, the other with resilience. Only one coding polymorphism distinguishes the two alleles, a threonine-to-serine substitution at residue 185 (186 in mouse), that is inherited in disequilibrium with multiple non-coding variants. Transcriptional studies suggest synaptic, neuronal, and cognitive preservation in human subjects with the protective haplotype, while murine in vitro studies reveal dramatic effects of TMEM106B deletion on neuronal development. Despite this foundation, the field has not yet resolved whether coding variant is biologically meaningful, and if so, whether it has any specific effect on neuronal phenotypes. Here we studied how loss of TMEM106B or expression of the lone coding variant in isolation affected transcriptional signatures in the mature brain and neuronal structure during development in primary neurons. Homozygous expression of the TMEM106B T186S variant in knock-in mice increased cortical expression of genes associated with excitatory synaptic function and axon outgrowth, and promoted neurite branching, dendritic spine density, and synaptic density in primary hippocampal neurons. In contrast, constitutive TMEM106B deletion affected transcriptional signatures of myelination without altering neuronal development in vitro. Our findings show that the T186S variant is functionally relevant and may contribute to disease resilience during neurodevelopment.
Collapse
Affiliation(s)
- Quynh Nguyen
- Departments of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Caleb A. Wood
- Departments of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Peter J. Kim
- Departments of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Joanna L. Jankowsky
- Departments of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Neurology, Neurosurgery, and Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
18
|
T. Vicente C, Perneel J, Wynants S, Heeman B, Van den Broeck M, Baker M, Cheung S, Faura J, Mackenzie IRA, Rademakers R. C-terminal TMEM106B fragments in human brain correlate with disease-associated TMEM106B haplotypes. Brain 2023; 146:4055-4064. [PMID: 37100087 PMCID: PMC10545506 DOI: 10.1093/brain/awad133] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Transmembrane protein 106B (TMEM106B) is a tightly regulated glycoprotein predominantly localized to endosomes and lysosomes. Genetic studies have implicated TMEM106B haplotypes in the development of multiple neurodegenerative diseases with the strongest effect in frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), especially in progranulin (GRN) mutation carriers. Recently, cryo-electron microscopy studies showed that a C-terminal fragment (CTF) of TMEM106B (amino acid residues 120-254) forms amyloid fibrils in the brain of patients with FTLD-TDP, but also in brains with other neurodegenerative conditions and normal ageing brain. The functional implication of these fibrils and their relationship to the disease-associated TMEM106B haplotype remain unknown. We performed immunoblotting using a newly developed antibody to detect TMEM106B CTFs in the sarkosyl-insoluble fraction of post-mortem human brain tissue from patients with different proteinopathies (n = 64) as well as neuropathologically normal individuals (n = 10) and correlated the results with age and TMEM106B haplotype. We further compared the immunoblot results with immunohistochemical analyses performed in the same study population. Immunoblot analysis showed the expected ∼30 kDa band in the sarkosyl-insoluble fraction of frontal cortex tissue in at least some individuals with each of the conditions evaluated. Most patients with GRN mutations showed an intense band representing TMEM106B CTF, whereas in most neurologically normal individuals it was absent or much weaker. In the overall cohort, the presence of TMEM106B CTFs correlated strongly with both age (rs = 0.539, P < 0.001) and the presence of the TMEM106B risk haplotype (rs = 0.469, P < 0.001). Although there was a strong overall correlation between the results of immunoblot and immunohistochemistry (rs = 0.662, P < 0.001), 27 cases (37%) were found to have higher amounts of TMEM106B CTFs detected by immunohistochemistry, including most of the older individuals who were neuropathologically normal and individuals who carried two protective TMEM106B haplotypes. Our findings suggest that the formation of sarkosyl-insoluble TMEM106B CTFs is an age-related feature which is modified by TMEM106B haplotype, potentially underlying its disease-modifying effect. The discrepancies between immunoblot and immunohistochemistry in detecting TMEM106B pathology suggests the existence of multiple species of TMEM106B CTFs with possible biological relevance and disease implications.
Collapse
Affiliation(s)
- Cristina T. Vicente
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Jolien Perneel
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Sarah Wynants
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Bavo Heeman
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Marleen Van den Broeck
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32233, USA
| | - Simon Cheung
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC V5Z1M9, Canada
| | - Júlia Faura
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Ian R A Mackenzie
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC V5Z1M9, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32233, USA
| |
Collapse
|
19
|
Lee JY, Harney DJ, Teo JD, Kwok JB, Sutherland GT, Larance M, Don AS. The major TMEM106B dementia risk allele affects TMEM106B protein levels, fibril formation, and myelin lipid homeostasis in the ageing human hippocampus. Mol Neurodegener 2023; 18:63. [PMID: 37726834 PMCID: PMC10510131 DOI: 10.1186/s13024-023-00650-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The risk for dementia increases exponentially from the seventh decade of life. Identifying and understanding the biochemical changes that sensitize the ageing brain to neurodegeneration will provide new opportunities for dementia prevention and treatment. This study aimed to determine how ageing and major genetic risk factors for dementia affect the hippocampal proteome and lipidome of neurologically-normal humans over the age of 65. The hippocampus was chosen as it is highly susceptible to atrophy with ageing and in several neurodegenerative diseases. METHODS Mass spectrometry-based proteomic and lipidomic analysis of CA1 hippocampus samples from 74 neurologically normal human donors, aged 66-104, was used in combination with multiple regression models and gene set enrichment analysis to identify age-dependent changes in the proteome and lipidome. ANOVA was used to test the effect of major dementia risk alleles in the TMEM106B and APOE genes on the hippocampal proteome and lipidome, adjusting for age, gender, and post-mortem interval. Fibrillar C-terminal TMEM106B fragments were isolated using sarkosyl fractionation and quantified by immunoblotting. RESULTS Forty proteins were associated with age at false discovery rate-corrected P < 0.05, including proteins that regulate cell adhesion, the cytoskeleton, amino acid and lipid metabolism, and ribosomal subunits. TMEM106B, a regulator of lysosomal and oligodendrocyte function, was regulated with greatest effect size. The increase in TMEM106B levels with ageing was specific to carriers of the rs1990622-A allele in the TMEM106B gene that increases risk for frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and hippocampal sclerosis with ageing. Rs1990622-A was also associated with higher TMEM106B fibril content. Hippocampal lipids were not significantly affected by APOE genotype, however levels of myelin-enriched sulfatides and hexosylceramides were significantly lower, and polyunsaturated phospholipids were higher, in rs1990622-A carriers after controlling for APOE genotype. CONCLUSIONS Our study demonstrates that TMEM106B protein abundance is increased with brain ageing in humans, establishes that dementia risk allele rs1990622-A predisposes to TMEM106B fibril formation in the hippocampus, and provides the first evidence that rs1990622-A affects brain lipid homeostasis, particularly myelin lipids. Our data suggests that TMEM106B is one of a growing list of major dementia risk genes that affect glial lipid metabolism.
Collapse
Affiliation(s)
- Jun Yup Lee
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Dylan J Harney
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Jonathan D Teo
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - John B Kwok
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Greg T Sutherland
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Mark Larance
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- Charles Perkins Centre, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
20
|
Jiao HS, Yuan P, Yu JT. TMEM106B aggregation in neurodegenerative diseases: linking genetics to function. Mol Neurodegener 2023; 18:54. [PMID: 37563705 PMCID: PMC10413548 DOI: 10.1186/s13024-023-00644-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Mutations of the gene TMEM106B are risk factors for diverse neurodegenerative diseases. Previous understanding of the underlying mechanism focused on the impairment of lysosome biogenesis caused by TMEM106B loss-of-function. However, mutations in TMEM106B increase its expression level, thus the molecular process linking these mutations to the apparent disruption in TMEM106B function remains mysterious. MAIN BODY Recent new studies reported that TMEM106B proteins form intracellular amyloid filaments which universally exist in various neurodegenerative diseases, sometimes being the dominant form of protein aggregation. In light of these new findings, in this review we systematically examined previous efforts in understanding the function of TMEM106B in physiological and pathological conditions. We propose that TMEM106B aggregations could recruit normal TMEM106B proteins and interfere with their function. CONCLUSIONS TMEM106B mutations could lead to lysosome dysfunction by promoting the aggregation of TMEM106B and reducing these aggregations may restore lysosomal function, providing a potential therapeutic target for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Hai-Shan Jiao
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Peng Yuan
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
21
|
Long E, Wan P, Chen Q, Lu Z, Choi J. From function to translation: Decoding genetic susceptibility to human diseases via artificial intelligence. CELL GENOMICS 2023; 3:100320. [PMID: 37388909 PMCID: PMC10300605 DOI: 10.1016/j.xgen.2023.100320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
While genome-wide association studies (GWAS) have discovered thousands of disease-associated loci, molecular mechanisms for a considerable fraction of the loci remain to be explored. The logical next steps for post-GWAS are interpreting these genetic associations to understand disease etiology (GWAS functional studies) and translating this knowledge into clinical benefits for the patients (GWAS translational studies). Although various datasets and approaches using functional genomics have been developed to facilitate these studies, significant challenges remain due to data heterogeneity, multiplicity, and high dimensionality. To address these challenges, artificial intelligence (AI) technology has demonstrated considerable promise in decoding complex functional datasets and providing novel biological insights into GWAS findings. This perspective first describes the landmark progress driven by AI in interpreting and translating GWAS findings and then outlines specific challenges followed by actionable recommendations related to data availability, model optimization, and interpretation, as well as ethical concerns.
Collapse
Affiliation(s)
- Erping Long
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peixing Wan
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qingyu Chen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Parodi L, Comeau ME, Georgakis MK, Mayerhofer E, Chung J, Falcone GJ, Malik R, Demel SL, Worrall BB, Koch S, Testai FD, Kittner SJ, McCauley JL, Hall CE, Mayson DJ, Elkind MS, James ML, Woo D, Rosand J, Langefeld CD, Anderson CD. Deep resequencing of the 1q22 locus in non-lobar intracerebral hemorrhage. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.18.23288754. [PMID: 37162822 PMCID: PMC10168419 DOI: 10.1101/2023.04.18.23288754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Objective Genome-wide association studies have identified 1q22 as a susceptibility locus for cerebral small vessel diseases (CSVDs), including non-lobar intracerebral hemorrhage (ICH) and lacunar stroke. In the present study we performed targeted high-depth sequencing of 1q22 in ICH cases and controls to further characterize this locus and prioritize potential causal mechanisms, which remain unknown. Methods 95,000 base pairs spanning 1q22 , including SEMA4A, SLC25A44 and PMF1 / PMF1-BGLAP were sequenced in 1,055 spontaneous ICH cases (534 lobar and 521 non-lobar) and 1,078 controls. Firth regression and RIFT analysis were used to analyze common and rare variants, respectively. Chromatin interaction analyses were performed using Hi-C, ChIP-Seq and ChIA-PET databases. Multivariable Mendelian randomization (MVMR) assessed whether alterations in gene-specific expression relative to regionally co-expressed genes at 1q22 could be causally related to ICH risk. Results Common and rare variant analyses prioritized variants in SEMA4A 5'-UTR and PMF1 intronic regions, overlapping with active promoter and enhancer regions based on ENCODE annotation. Hi-C data analysis determined that 1q22 is spatially organized in a single chromatin loop and that the genes therein belong to the same Topologically Associating Domain. ChIP-Seq and ChIA-PET data analysis highlighted the presence of long-range interactions between the SEMA4A -promoter and PMF1 -enhancer regions prioritized by association testing. MVMR analyses demonstrated that PMF1 overexpression could be causally related to non-lobar ICH risk. Interpretation Altered promoter-enhancer interactions leading to PMF1 overexpression, potentially dysregulating polyamine catabolism, could explain demonstrated associations with non-lobar ICH risk at 1q22 , offering a potential new target for prevention of ICH and CSVD.
Collapse
|
23
|
Perneel J, Manoochehri M, Huey ED, Rademakers R, Goldman J. Case report: TMEM106B haplotype alters penetrance of GRN mutation in frontotemporal dementia family. Front Neurol 2023; 14:1160248. [PMID: 37077569 PMCID: PMC10106611 DOI: 10.3389/fneur.2023.1160248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second-most common young-onset dementia. Variants in the TMEM106B gene have been proposed as modifiers of FTD disease risk, especially in progranulin (GRN) mutation carriers. A patient in their 50s presented to our clinic with behavioral variant FTD (bvFTD). Genetic testing revealed the disease-causing variant c.349 + 1G > C in GRN. Family testing revealed that the mutation was inherited from an asymptomatic parent in their 80s and that the sibling also carries the mutation. Genetic analyses showed that the asymptomatic parent and sibling carry two copies of the protective TMEM106B haplotype (defined as c.554C > G, p.Thr185Ser), whereas the patient is heterozygous. This case report illustrates that combining TMEM106B genotyping with GRN mutation screening may provide more appropriate genetic counseling on disease risk in GRN families. Both the parent and sibling were counseled to have a significantly reduced risk for symptomatic disease. Implementing TMEM106B genotyping may also promote the collection of biosamples for research studies to improve our understanding of the risk-and disease-modifying effect of this important modifier gene.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Masood Manoochehri
- Department of Neurology, Columbia University, New York, NY, United States
| | - Edward D. Huey
- Department of Neurology, Columbia University, New York, NY, United States
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, United States
| | - Jill Goldman
- Department of Neurology, Columbia University, New York, NY, United States
| |
Collapse
|
24
|
Edwards GA, Wood CA, Nguyen Q, Kim PJ, Gomez-Gutierrez R, Park KW, Zurhellen C, Al-Ramahi I, Jankowsky JL. TMEM106B coding variant is protective and deletion detrimental in a mouse model of tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533978. [PMID: 36993574 PMCID: PMC10055407 DOI: 10.1101/2023.03.23.533978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
TMEM106B is a risk modifier for a growing list of age-associated dementias including Alzheimer’s and frontotemporal dementia, yet its function remains elusive. Two key questions that emerge from past work are whether the conservative T185S coding variant found in the minor haplotype contributes to protection, and whether the presence of TMEM106B is helpful or harmful in the context of disease. Here we address both issues while extending the testbed for study of TMEM106B from models of TDP to tauopathy. We show that TMEM106B deletion accelerates cognitive decline, hindlimb paralysis, neuropathology, and neurodegeneration. TMEM106B deletion also increases transcriptional overlap with human AD, making it a better model of disease than tau alone. In contrast, the coding variant protects against tau-associated cognitive decline, neurodegeneration, and paralysis without affecting tau pathology. Our findings show that the coding variant contributes to neuroprotection and suggest that TMEM106B is a critical safeguard against tau aggregation.
Collapse
|
25
|
Perneel J, Neumann M, Heeman B, Cheung S, Van den Broeck M, Wynants S, Baker M, Vicente CT, Faura J, Rademakers R, Mackenzie IRA. Accumulation of TMEM106B C-terminal fragments in neurodegenerative disease and aging. Acta Neuropathol 2023; 145:285-302. [PMID: 36527486 DOI: 10.1007/s00401-022-02531-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Several studies using cryogenic electron microscopy (cryo-EM) techniques recently reported the isolation and characterization of novel protein filaments, composed of a C-terminal fragment (CTF) of the endolysosomal transmembrane protein 106B (TMEM106B), from human post-mortem brain tissue with various neurodegenerative conditions and normal aging. Genetic variation in TMEM106B is known to influence the risk and presentation of several neurodegenerative diseases, especially frontotemporal dementia (FTD) caused by mutations in the progranulin gene (GRN). To further elucidate the significance of TMEM106B CTF, we performed immunohistochemistry with antibodies directed against epitopes within the filament-forming C-terminal region of TMEM106B. Accumulation of TMEM106B C-terminal immunoreactive (TMEM-ir) material was a common finding in all the conditions evaluated, including frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), Alzheimer's disease, tauopathies, synucleinopathies and neurologically normal aging. TMEM-ir material was present in a wide range of brain cell types and in a broad neuroanatomical distribution; however, there was no co-localization of TMEM-ir material with other neurodegenerative proteins in cellular inclusions. In most conditions, the presence and abundance of TMEM-ir aggregates correlated strongly with patient age and showed only a weak correlation with the TMEM106B haplotype or the primary pathological diagnosis. However, all patients with FTD caused by GRN mutations were found to have high levels of TMEM-ir material, including several who were relatively young (< 60 years). These findings suggest that the accumulation of TMEM106B CTF is a common age-related phenomenon, which may reflect lysosomal dysfunction. Although its significance in most neurodegenerative conditions remains uncertain, the consistent finding of extensive TMEM-ir material in cases of FTLD-TDP with GRN mutations further supports a pathomechanistic role of TMEM106B and lysosomal dysfunction in this specific disease population.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Manuela Neumann
- Department of Neuropathology, University of Tübingen, Tübingen, Germany.,Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Bavo Heeman
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Simon Cheung
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Marleen Van den Broeck
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Wynants
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Cristina T Vicente
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Júlia Faura
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ian R A Mackenzie
- Department of Pathology, Vancouver Coastal Health, Vancouver, BC, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Lack of a protective effect of the Tmem106b "protective SNP" in the Grn knockout mouse model for frontotemporal lobar degeneration. Acta Neuropathol Commun 2023; 11:21. [PMID: 36707901 PMCID: PMC9881268 DOI: 10.1186/s40478-023-01510-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/28/2023] Open
Abstract
Genetic variants in TMEM106B are a common risk factor for frontotemporal lobar degeneration and the most important modifier of disease risk in patients with progranulin (GRN) mutations (FTLD-GRN). TMEM106B is encoding a lysosomal transmembrane protein of unknown molecular function. How it mediates its disease-modifying function remains enigmatic. Several TMEM106B single nucleotide polymorphisms (SNPs) are significantly associated with disease risk in FTLD-GRN carriers, of which all except one are within intronic sequences of TMEM106B. Of note, the non-coding SNPs are in high linkage disequilibrium with the coding SNP rs3173615 located in exon six of TMEM106B, resulting in a threonine to serine change at amino acid 185 in the minor allele, which is protective in FTLD-GRN carriers. To investigate the functional consequences of this variant in vivo, we generated and characterized a knockin mouse model harboring the Tmem106bT186S variant. We analyzed the effect of this protective variant on FTLD pathology by crossing Tmem106bT186S mice with Grn-/- knockout mice, a model for GRN-mediated FTLD. We did not observe the amelioration of any of the investigated Grn-/- knockout phenotypes, including transcriptomic changes, lipid alterations, or microgliosis in Tmem106bT186S/T186S × Grn-/- mice, indicating that the Tmem106bT186S variant is not protective in the Grn-/- knockout mouse model. These data suggest that effects of the associated SNPs not directly linked to the amino acid exchange in TMEM106B are critical for the modifying effect.
Collapse
|
27
|
Lee JY, Harney D, Kwok J, Larance M, Don AS. The major TMEM106B dementia risk allele affects TMEM106B protein levels and myelin lipid homeostasis in the ageing human hippocampus. RESEARCH SQUARE 2023:rs.3.rs-2392941. [PMID: 36711721 PMCID: PMC9882607 DOI: 10.21203/rs.3.rs-2392941/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background The risk for dementia increases exponentially from the seventh decade of life. Identifying and understanding the biochemical changes that sensitize the ageing brain to neurodegeneration will provide new opportunities for dementia prevention and treatment. This study aimed to determine how ageing and major genetic risk factors for dementia affect the hippocampal proteome and lipidome of neurologically-normal humans over the age of 65. The hippocampus was chosen as it is highly susceptible to atrophy with ageing and in several neurodegenerative diseases. Methods Mass spectrometry-based proteomic and lipidomic analysis of CA1 hippocampus samples from 74 neurologically normal human donors, aged 66-104, was used in combination with multiple regression models and gene set enrichment analysis to identify age-dependent changes in the proteome and lipidome. ANOVA was used to test the effect of major dementia risk alleles in the TMEM106B and APOE genes on the hippocampal proteome and lipidome, adjusting for age, gender, and post-mortem interval. Results Forty proteins were associated with age at false discovery rate-corrected P < 0.05, including proteins that regulate cell adhesion, the cytoskeleton, amino acid and lipid metabolism, and ribosomal subunits. Transmembrane protein 106B (TMEM106B), a regulator of lysosomal and oligodendrocyte function, was regulated with greatest effect size. The increase in TMEM106B levels with age was specific to carriers of the rs1990622-A allele in the TMEM106B gene that is associated with increased risk for frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and hippocampal sclerosis with ageing. Hippocampal lipids were not significantly affected by APOE genotype, however levels of myelin-enriched sulfatides and hexosylceramides were significantly lower, and polyunsaturated phospholipids were higher, in rs1990622-A carriers after controlling for APOE genotype. Conclusions Our study provides the first evidence that TMEM106B protein abundance is increased with brain ageing in humans, and the first evidence that the major TMEM106B dementia risk allele affects brain lipid homeostasis, with a clear effect on myelin lipid content. Our data implies that TMEM106B is one of a growing list of major dementia risk genes that affect glial lipid metabolism.
Collapse
Affiliation(s)
- Jun Yup Lee
- The University of Sydney SMS: The University of Sydney School of Medical Sciences
| | | | - John Kwok
- The University of Sydney SMS: The University of Sydney School of Medical Sciences
| | - Mark Larance
- The University of Sydney SMS: The University of Sydney School of Medical Sciences
| | | |
Collapse
|
28
|
Perneel J, Rademakers R. Identification of TMEM106B amyloid fibrils provides an updated view of TMEM106B biology in health and disease. Acta Neuropathol 2022; 144:807-819. [PMID: 36056242 PMCID: PMC9547799 DOI: 10.1007/s00401-022-02486-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
Since the initial identification of TMEM106B as a risk factor for frontotemporal lobar degeneration (FTLD), multiple genetic studies have found TMEM106B variants to modulate disease risk in a variety of brain disorders and healthy aging. Neurodegenerative disorders are typically characterized by inclusions of misfolded proteins and since lysosomes are an important site for cellular debris clearance, lysosomal dysfunction has been closely linked to neurodegeneration. Consequently, many causal mutations or genetic risk variants implicated in neurodegenerative diseases encode proteins involved in endosomal-lysosomal function. As an integral lysosomal transmembrane protein, TMEM106B regulates several aspects of lysosomal function and multiple studies have shown that proper TMEM106B protein levels are crucial for maintaining lysosomal health. Yet, the precise function of TMEM106B at the lysosomal membrane is undetermined and it remains unclear how TMEM106B modulates disease risk. Unexpectedly, several independent groups recently showed that the C-terminal domain (AA120-254) of TMEM106B forms amyloid fibrils in the brain of patients with a diverse set of neurodegenerative conditions. The recognition that TMEM106B can form amyloid fibrils and is present across neurodegenerative diseases sheds new light on TMEM106B as a central player in neurodegeneration and brain health, but also raises important new questions. In this review, we summarize current knowledge and place a decade's worth of TMEM106B research into an exciting new perspective.
Collapse
Affiliation(s)
- Jolien Perneel
- VIB Center for Molecular Neurology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
29
|
Duong MT, Wolk DA. Limbic-Predominant Age-Related TDP-43 Encephalopathy: LATE-Breaking Updates in Clinicopathologic Features and Biomarkers. Curr Neurol Neurosci Rep 2022; 22:689-698. [PMID: 36190653 PMCID: PMC9633415 DOI: 10.1007/s11910-022-01232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently defined neurodegenerative disease characterized by amnestic phenotype and pathological inclusions of TAR DNA-binding protein 43 (TDP-43). LATE is distinct from rarer forms of TDP-43 diseases such as frontotemporal lobar degeneration with TDP-43 but is also a common copathology with Alzheimer's disease (AD) and cerebrovascular disease and accelerates cognitive decline. LATE contributes to clinicopathologic heterogeneity in neurodegenerative diseases, so it is imperative to distinguish LATE from other etiologies. RECENT FINDINGS Novel biomarkers for LATE are being developed with magnetic resonance imaging (MRI) and positron emission tomography (PET). When cooccurring with AD, LATE exhibits identifiable patterns of limbic-predominant atrophy on MRI and hypometabolism on 18F-fluorodeoxyglucose PET that are greater than expected relative to levels of local AD pathology. Efforts are being made to develop TDP-43-specific radiotracers, molecularly specific biofluid measures, and genomic predictors of TDP-43. LATE is a highly prevalent neurodegenerative disease distinct from previously characterized cognitive disorders.
Collapse
Affiliation(s)
- Michael Tran Duong
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Kung PJ, Elsayed I, Reyes-Pérez P, Bandres-Ciga S. Immunogenetic Determinants of Parkinson’s Disease Etiology. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S13-S27. [PMID: 35367971 PMCID: PMC9535568 DOI: 10.3233/jpd-223176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson’s disease (PD) is increasingly recognised as a systemic disorder in which inflammation might play a causative role rather than being a consequence or an epiphenomenon of the neurodegenerative process. Although growing genetic evidence links the central and peripheral immune system with both monogenic and sporadic PD, our understanding on how the immune system contributes to PD pathogenesis remains a daunting challenge. In this review, we discuss recent literature aimed at exploring the role of known genes and susceptibility loci to PD pathogenesis through immune system related mechanisms. Furthermore, we outline shared genetic etiologies and interrelations between PD and autoimmune diseases and underlining challenges and limitations faced in the translation of relevant allelic and regulatory risk loci to immune-pathological mechanisms. Lastly, with the field of immunogenetics expanding rapidly, we place these insights into a future context highlighting the prospect of immune modulation as a promising disease-modifying strategy.
Collapse
Affiliation(s)
- Pin-Jui Kung
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
- International Parkinson Disease Genomics Consortium (IPDGC)-Africa, University of Gezira, Wad Medani, Sudan
| | - Paula Reyes-Pérez
- Laboratorio Internacional de Investigacion sobre el Genoma Humano, Universidad Autonoma de México, Queretaro, Mexico
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
31
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
32
|
Diaz-Ortiz ME, Seo Y, Posavi M, Carceles Cordon M, Clark E, Jain N, Charan R, Gallagher MD, Unger TL, Amari N, Skrinak RT, Davila-Rivera R, Brody EM, Han N, Zack R, Van Deerlin VM, Tropea TF, Luk KC, Lee EB, Weintraub D, Chen-Plotkin AS. GPNMB confers risk for Parkinson's disease through interaction with α-synuclein. Science 2022; 377:eabk0637. [PMID: 35981040 PMCID: PMC9870036 DOI: 10.1126/science.abk0637] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many risk loci for Parkinson's disease (PD) have been identified by genome-wide association studies (GWASs), but target genes and mechanisms remain largely unknown. We linked the GWAS-derived chromosome 7 locus (sentinel single-nucleotide polymorphism rs199347) to GPNMB through colocalization analyses of expression quantitative trait locus and PD risk signals, confirmed by allele-specific expression studies in the human brain. In cells, glycoprotein nonmetastatic melanoma protein B (GPNMB) coimmunoprecipitated and colocalized with α-synuclein (aSyn). In induced pluripotent stem cell-derived neurons, loss of GPNMB resulted in loss of ability to internalize aSyn fibrils and develop aSyn pathology. In 731 PD and 59 control biosamples, GPNMB was elevated in PD plasma, associating with disease severity. Thus, GPNMB represents a PD risk gene with potential for biomarker development and therapeutic targeting.
Collapse
Affiliation(s)
- Maria E. Diaz-Ortiz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunji Seo
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marijan Posavi
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Carceles Cordon
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisia Clark
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nimansha Jain
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO, USA
| | - Rakshita Charan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Flagship Pioneering, Cambridge, MA, USA
| | - Michael D. Gallagher
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Travis L. Unger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Noor Amari
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R. Tyler Skrinak
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roseanne Davila-Rivera
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eliza M. Brody
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah Han
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Zack
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M. Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas F. Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelvin C. Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B. Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parkinson’s Disease Research, Education and Clinical Center (PADRECC), Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Alice S. Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Abstract
Enhancers control the establishment of spatiotemporal gene expression patterns throughout development. Over the past decade, the development of new technologies has improved our capacity to link enhancers with their target genes based on their colocalization within the same topological domains. However, the mechanisms that regulate how enhancers specifically activate some genes but not others within a given domain remain unclear. In this Review, we discuss recent insights into the factors controlling enhancer specificity, including the genetic composition of enhancers and promoters, the linear and 3D distance between enhancers and their target genes, and cell-type specific chromatin landscapes. We also discuss how elucidating the molecular principles of enhancer specificity might help us to better understand and predict the pathological consequences of human genetic, epigenetic and structural variants.
Collapse
Affiliation(s)
- Tomás Pachano
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| | - Endika Haro
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| |
Collapse
|
34
|
Gazal S, Weissbrod O, Hormozdiari F, Dey KK, Nasser J, Jagadeesh KA, Weiner DJ, Shi H, Fulco CP, O'Connor LJ, Pasaniuc B, Engreitz JM, Price AL. Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity. Nat Genet 2022; 54:827-836. [PMID: 35668300 PMCID: PMC9894581 DOI: 10.1038/s41588-022-01087-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/27/2022] [Indexed: 02/04/2023]
Abstract
Disease-associated single-nucleotide polymorphisms (SNPs) generally do not implicate target genes, as most disease SNPs are regulatory. Many SNP-to-gene (S2G) linking strategies have been developed to link regulatory SNPs to the genes that they regulate in cis. Here, we developed a heritability-based framework for evaluating and combining different S2G strategies to optimize their informativeness for common disease risk. Our optimal combined S2G strategy (cS2G) included seven constituent S2G strategies and achieved a precision of 0.75 and a recall of 0.33, more than doubling the recall of any individual strategy. We applied cS2G to fine-mapping results for 49 UK Biobank diseases/traits to predict 5,095 causal SNP-gene-disease triplets (with S2G-derived functional interpretation) with high confidence. We further applied cS2G to provide an empirical assessment of disease omnigenicity; we determined that the top 1% of genes explained roughly half of the SNP heritability linked to all genes and that gene-level architectures vary with variant allele frequency.
Collapse
Affiliation(s)
- Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Omer Weissbrod
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Farhad Hormozdiari
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kushal K Dey
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph Nasser
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karthik A Jagadeesh
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Huwenbo Shi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Bristol Myers Squibb, Cambridge, MA, USA
| | | | - Bogdan Pasaniuc
- Departments of Computational Medicine, Human Genetics, Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- BASE Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
35
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
36
|
Feng T, Luan L, Katz II, Ullah M, Van Deerlin VM, Trojanowski JQ, Lee EB, Hu F. TMEM106B deficiency impairs cerebellar myelination and synaptic integrity with Purkinje cell loss. Acta Neuropathol Commun 2022; 10:33. [PMID: 35287730 PMCID: PMC8919601 DOI: 10.1186/s40478-022-01334-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
TMEM106B, a type II lysosomal transmembrane protein, has recently been associated with brain aging, hypomyelinating leukodystrophy, frontotemporal lobar degeneration (FTLD) and several other brain disorders. TMEM106B is critical for proper lysosomal function and TMEM106B deficiency leads to myelination defects, FTLD related pathology, and motor coordination deficits in mice. However, the physiological and pathological functions of TMEM106B in the brain are still not well understood. In this study, we investigate the role of TMEM106B in the cerebellum, dysfunction of which has been associated with FTLD and other brain disorders. We found that TMEM106B is ubiquitously expressed in neurons in the cerebellum, with the highest levels in the Purkinje neurons. Aged TMEM106B-deficient mice show significant loss of Purkinje neurons specifically in the anterior lobe of the cerebellum. Increased microglia and astrocyte activation, as well as an accumulation of ubiquitinated proteins, p62 and TDP-43 were also detected in the cerebellum of aged TMEM106B deficient mice. In the young mice, myelination defects and a significant loss of synapses between Purkinje and deep cerebellar nuclei neurons were observed. Interestingly, TMEM106B deficiency causes distinct lysosomal phenotypes in different types of neurons and glia in the cerebellum and frontal cortex. In humans, TMEM106B rs1990622 risk allele (T/T) is associated with increased Purkinje neuron loss. Taken together, our studies support that TMEM106B regulates lysosomal function in a cell-type-specific manner and TMEM106B is critical for maintaining synaptic integrity and neural functions in the cerebellum.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Lin Luan
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Isabel Iscol Katz
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Mohammed Ullah
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute On Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute On Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
37
|
Amin S, Carling G, Gan L. New insights and therapeutic opportunities for progranulin-deficient frontotemporal dementia. Curr Opin Neurobiol 2022; 72:131-139. [PMID: 34826653 DOI: 10.1016/j.conb.2021.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023]
Abstract
Frontotemporal dementia (FTD) is the second most common form of dementia. It affects the frontal and temporal lobes of the brain and has a highly heterogeneous clinical representation with patients presenting with a wide range of behavioral, language, and executive dysfunctions. Etiology of FTD is complex and consists of both familial and sporadic cases. Heterozygous mutations in the GRN gene, resulting in GRN haploinsufficiency, cause progranulin (PGRN)-deficient FTD characterized with cytoplasmic mislocalization of TAR DNA-binding protein 43 kDa (TDP-43) aggregates. GRN codes for PGRN, a secreted protein that is also localized in the endolysosomes and plays a critical role in regulating lysosomal homeostasis. How PGRN deficiency modulates immunity and causes TDP-43 pathology and FTD-related neurodegeneration remains an active area of intense investigation. In the current review, we discuss some of the significant progress made in the past two years that links PGRN deficiency with microglial-associated neuroinflammation, TDP-43 pathology, and lysosomal dysfunction. We also review the opportunities and challenges toward developing therapies and biomarkers to treat PGRN-deficient FTD.
Collapse
Affiliation(s)
- Sadaf Amin
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
38
|
Pozojevic J, Cruz JN, Westenberger A. X-linked dystonia-parkinsonism: over and above a repeat disorder. MED GENET-BERLIN 2021; 33:319-324. [PMID: 38835428 PMCID: PMC11006257 DOI: 10.1515/medgen-2021-2105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/24/2021] [Indexed: 06/06/2024]
Abstract
X-linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative movement disorder, caused by a founder retrotransposon insertion in an intron of the TAF1 gene. This insertion contains a polymorphic hexanucleotide repeat (CCCTCT)n, the length of which inversely correlates with the age at disease onset (AAO) and other clinical parameters, aligning XDP with repeat expansion disorders. Nevertheless, many other pathogenic mechanisms are conceivably at play in XDP, indicating that in contrast to other repeat disorders, the (CCCTCT)n repeat may not be the actual (or only) disease cause. Here, we summarize and discuss genetic and molecular aspects of XDP, highlighting the role of the hexanucleotide repeat in age-related disease penetrance and expressivity.
Collapse
Affiliation(s)
- Jelena Pozojevic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Joseph Neos Cruz
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Disease Molecular Biology and Epigenetics Laboratory, University of the Philippines Diliman, Quezon City, Philippines
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
39
|
Mao F, Robinson JL, Unger T, Posavi M, Amado DA, Elman L, Grossman M, Wolk DA, Lee EB, Van Deerlin VM, Porta S, Lee VMY, Trojanowski JQ, Chen-Plotkin AS. TMEM106B modifies TDP-43 pathology in human ALS brain and cell-based models of TDP-43 proteinopathy. Acta Neuropathol 2021; 142:629-642. [PMID: 34152475 PMCID: PMC8812793 DOI: 10.1007/s00401-021-02330-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
The neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TAR DNA-binding protein-43 (TDP-43) inclusions (FTLD-TDP) share the neuropathological hallmark of aggregates of TDP-43. However, factors governing the severity and regional distribution of TDP-43 pathology, which may account for the divergent clinical presentations of ALS and FTLD-TDP, are not well understood. Here, we investigated the influence of genotypes at TMEM106B, a locus associated with risk for FTLD-TDP, and hexanucleotide repeat expansions in C9orf72, a known genetic cause for both ALS and FTLD-TDP, on global TDP-43 pathology and regional distribution of TDP-43 pathology in 899 postmortem cases from a spectrum of neurodegenerative diseases. We found that, among the 110 ALS cases, minor (C)-allele homozygotes at the TMEM106B locus sentinel SNP rs1990622 had more TDP-43 pathology globally, as well as in select brain regions. C9orf72 expansions similarly associated with greater TDP-43 pathology in ALS. However, adjusting for C9orf72 expansion status did not affect the relationship between TMEM106B genotype and TDP-43 pathology. To elucidate the direction of causality for this association, we directly manipulated TMEM106B levels in an inducible cell system that expresses mislocalized TDP-43 protein. We found that partial knockdown of TMEM106B, to levels similar to what would be expected in rs1990622 C allele carriers, led to development of more TDP-43 cytoplasmic aggregates, which were more insoluble, in this system. Taken together, our results support a causal role for TMEM106B in modifying the development of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Fei Mao
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - John L Robinson
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Travis Unger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marijan Posavi
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Elman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M Y Lee
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Tanaka H, Kreisberg JF, Ideker T. Genetic dissection of complex traits using hierarchical biological knowledge. PLoS Comput Biol 2021; 17:e1009373. [PMID: 34534210 PMCID: PMC8480841 DOI: 10.1371/journal.pcbi.1009373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 09/29/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Despite the growing constellation of genetic loci linked to common traits, these loci have yet to account for most heritable variation, and most act through poorly understood mechanisms. Recent machine learning (ML) systems have used hierarchical biological knowledge to associate genetic mutations with phenotypic outcomes, yielding substantial predictive power and mechanistic insight. Here, we use an ontology-guided ML system to map single nucleotide variants (SNVs) focusing on 6 classic phenotypic traits in natural yeast populations. The 29 identified loci are largely novel and account for ~17% of the phenotypic variance, versus <3% for standard genetic analysis. Representative results show that sensitivity to hydroxyurea is linked to SNVs in two alternative purine biosynthesis pathways, and that sensitivity to copper arises through failure to detoxify reactive oxygen species in fatty acid metabolism. This work demonstrates a knowledge-based approach to amplifying and interpreting signals in population genetic studies. Genome-wide association studies (GWAS) have identified many important loci for common diseases and other traits. However, the loci identified by these studies are almost always many steps away from an understanding of underlying biological mechanisms. Here we develop an approach using hierarchical biological knowledge to identify genes and pathways responsible for phenotypic traits. Variants identified by the new method could explain a substantially greater fraction of heritability than previously reported. Moreover, we identified mechanistic pathways by which each causal variant affects cellular function. For example, we find that sensitivity to hydroxyurea is tied to genetic variants in two alternative purine biosynthesis pathways, and that sensitivity to copper arises through failure to detoxify reactive oxygen species in fatty acid metabolism. The new approach is a potentially transformative concept for understanding the genetic drivers of phenotypic variance, with potential applications in understanding traits in biomedicine and agriculture.
Collapse
Affiliation(s)
- Hidenori Tanaka
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jason F. Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (JFK); (TI)
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (JFK); (TI)
| |
Collapse
|
41
|
Frydas A, Wauters E, van der Zee J, Van Broeckhoven C. Uncovering the impact of noncoding variants in neurodegenerative brain diseases. Trends Genet 2021; 38:258-272. [PMID: 34535299 DOI: 10.1016/j.tig.2021.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Neurodegenerative brain diseases (NBDs) are characterized by cognitive decline and movement impairments caused by neuronal loss in different brain regions. A large fraction of the genetic heritability of NBDs is not explained by the current known mutations. Genome-wide association studies identified novel disease-risk loci, adding to the genetic basis of NBDs. Many of the associated variants reside in noncoding regions with distinct molecular functions. Genetic variation in these regions can alter functions and contribute to disease pathogenesis. Here, we discuss noncoding variants associated with NBDs. Methods for better functional interpretation of noncoding variation will expand our knowledge of the genetic architecture of NBDs and broaden the routes for therapeutic strategies.
Collapse
Affiliation(s)
- Alexandros Frydas
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eline Wauters
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
42
|
Yan H, Tian S, Kleinstern G, Wang Z, Lee JH, Boddicker NJ, Cerhan JR, Kay NE, Braggio E, Slager SL. Chronic lymphocytic leukemia (CLL) risk is mediated by multiple enhancer variants within CLL risk loci. Hum Mol Genet 2021; 29:2761-2774. [PMID: 32744316 DOI: 10.1093/hmg/ddaa165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/02/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries. It has a strong genetic basis, showing a ~ 8-fold increased risk of CLL in first-degree relatives. Genome-wide association studies (GWAS) have identified 41 risk variants across 41 loci. However, for a majority of the loci, the functional variants and the mechanisms underlying their causal roles remain undefined. Here, we examined the genetic and epigenetic features associated with 12 index variants, along with any correlated (r2 ≥ 0.5) variants, at the CLL risk loci located outside of gene promoters. Based on publicly available ChIP-seq and chromatin accessibility data as well as our own ChIP-seq data from CLL patients, we identified six candidate functional variants at six loci and at least two candidate functional variants at each of the remaining six loci. The functional variants are predominantly located within enhancers or super-enhancers, including bi-directionally transcribed enhancers, which are often restricted to immune cell types. Furthermore, we found that, at 78% of the functional variants, the alternative alleles altered the transcription factor binding motifs or histone modifications, indicating the involvement of these variants in the change of local chromatin state. Finally, the enhancers carrying functional variants physically interacted with genes enriched in the type I interferon signaling pathway, apoptosis, or TP53 network that are known to play key roles in CLL. These results support the regulatory roles for inherited noncoding variants in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Huihuang Yan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Shulan Tian
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Geffen Kleinstern
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeong-Heon Lee
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Esteban Braggio
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
43
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
44
|
Natarajan K, Eisfeldt J, Hammond M, Laffita-Mesa JM, Patra K, Khoshnood B, Öijerstedt L, Graff C. Single-cell multimodal analysis in a case with reduced penetrance of Progranulin-Frontotemporal Dementia. Acta Neuropathol Commun 2021; 9:132. [PMID: 34344473 PMCID: PMC8336016 DOI: 10.1186/s40478-021-01234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/10/2022] Open
Abstract
We identified an autosomal dominant progranulin mutation carrier without symptoms of dementia in her lifetime (Reduced Penetrance Mutation Carrier, RedPenMC). This resistance to develop expected pathology presents a unique opportunity to interrogate neurodegenerative mechanisms. We performed multimodal single-nuclei analyses of post-mortem frontal cortex from RedPenMC, including transcriptomics and global levels of chromatin marks. RedPenMC had an increased ratio of GRN-expressing microglia, higher levels of activating histone mark H3k4me3 in microglia and lower levels of the repressive chromatin marks H3k9me1 and H3k9me3 in the frontal cortex than her affected mutation carrier son and evidence of higher protein levels of progranulin in both plasma and brain homogenates. Although the study is limited to one case, the results support that restoring brain progranulin levels may be sufficient to escape neurodegeneration and FTD. In addition to previously identified modifier genes, it is possible that epigenetic marks may contribute to the increased progranulin expression in cases of reduced penetrance. These findings may stimulate similar follow-up studies and new therapeutic approaches.
Collapse
|
45
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
46
|
Kwak JH, Lee K. Forebrain glutamatergic neuron-specific Ctcf deletion induces reactive microgliosis and astrogliosis with neuronal loss in adult mouse hippocampus. BMB Rep 2021. [PMID: 33612151 PMCID: PMC8249879 DOI: 10.5483/bmbrep.2021.54.6.265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
CCCTC-binding factor (CTCF), a zinc finger protein, is a transcription factor and regulator of chromatin structure. Forebrain excitatory neuron-specific CTCF deficiency contributes to inflammation via enhanced transcription of inflammation-related genes in the cortex and hippocampus. However, little is known about the long-term effect of CTCF deficiency on postnatal neurons, astrocytes, or microglia in the hippocampus of adult mice. To address this, we knocked out the Ctcf gene in forebrain glutamatergic neurons (Ctcf cKO) by crossing Ctcf-floxed mice with Camk2a-Cre mice and examined the hippocampi of 7.5-10-month-old male mice using immunofluorescence microscopy. We found obvious neuronal cell death and reactive gliosis in the hippocampal cornu ammonis (CA)1 in 7.5-10-month-old cKO mice. Prominent rod-shaped microglia that participate in immune surveillance were observed in the stratum pyramidale and radiatum layer, indicating a potential increase in inflammatory mediators released by hippocampal neurons. Although neuronal loss was not observed in CA3, and dentate gyrus (DG) CTCF depletion induced a significant increase in the number of microglia in the stratum oriens of CA3 and reactive microgliosis and astrogliosis in the molecular layer and hilus of the DG in 7.5-10-month-old cKO mice. These results suggest that long-term Ctcf deletion from forebrain excitatory neurons may contribute to reactive gliosis induced by neuronal damage and consequent neuronal loss in the hippocampal CA1, DG, and CA3 in sequence over 7 months of age.
Collapse
Affiliation(s)
- Ji-Hye Kwak
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Kyungmin Lee
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
47
|
The FTLD Risk Factor TMEM106B Regulates the Transport of Lysosomes at the Axon Initial Segment of Motoneurons. Cell Rep 2021; 30:3506-3519.e6. [PMID: 32160553 DOI: 10.1016/j.celrep.2020.02.060] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic variations in TMEM106B, coding for a lysosomal membrane protein, affect frontotemporal lobar degeneration (FTLD) in GRN- (coding for progranulin) and C9orf72-expansion carriers and might play a role in aging. To determine the physiological function of TMEM106B, we generated TMEM106B-deficient mice. These mice develop proximal axonal swellings caused by drastically enlarged LAMP1-positive vacuoles, increased retrograde axonal transport of lysosomes, and accumulation of lipofuscin and autophagosomes. Giant vacuoles specifically accumulate at the distal end and within the axon initial segment, but not in peripheral nerves or at axon terminals, resulting in an impaired facial-nerve-dependent motor performance. These data implicate TMEM106B in mediating the axonal transport of LAMP1-positive organelles in motoneurons and axonal sorting at the initial segment. Our data provide mechanistic insight into how TMEM106B affects lysosomal proteolysis and degradative capacity in neurons.
Collapse
|
48
|
The Role of White Matter Dysfunction and Leukoencephalopathy/Leukodystrophy Genes in the Aetiology of Frontotemporal Dementias: Implications for Novel Approaches to Therapeutics. Int J Mol Sci 2021; 22:ijms22052541. [PMID: 33802612 PMCID: PMC7961524 DOI: 10.3390/ijms22052541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a common cause of presenile dementia and is characterized by behavioural and/or language changes and progressive cognitive deficits. Genetics is an important component in the aetiology of FTD, with positive family history of dementia reported for 40% of cases. This review synthesizes current knowledge of the known major FTD genes, including C9orf72 (chromosome 9 open reading frame 72), MAPT (microtubule-associated protein tau) and GRN (granulin), and their impact on neuronal and glial pathology. Further, evidence for white matter dysfunction in the aetiology of FTD and the clinical, neuroimaging and genetic overlap between FTD and leukodystrophy/leukoencephalopathy are discussed. The review highlights the role of common variants and mutations in genes such as CSF1R (colony-stimulating factor 1 receptor), CYP27A1 (cytochrome P450 family 27 subfamily A member 1), TREM2 (triggering receptor expressed on myeloid cells 2) and TMEM106B (transmembrane protein 106B) that play an integral role in microglia and oligodendrocyte function. Finally, pharmacological and non-pharmacological approaches for enhancing remyelination are discussed in terms of future treatments of FTD.
Collapse
|
49
|
Physiological and pathological functions of TMEM106B: a gene associated with brain aging and multiple brain disorders. Acta Neuropathol 2021; 141:327-339. [PMID: 33386471 DOI: 10.1007/s00401-020-02246-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
TMEM106B, encoding a lysosome membrane protein, has been recently associated with brain aging, hypomyelinating leukodystrophy and multiple neurodegenerative diseases, such as frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). During the past decade, considerable progress has been made towards our understanding of the cellular and physiological functions of TMEM106B. TMEM106B regulates many aspects of lysosomal function, including lysosomal pH, lysosome movement, and lysosome exocytosis. Both an increase and decrease in TMEM106B levels result in lysosomal abnormalities. In mouse models, TMEM106B deficiency leads to lysosome trafficking and myelination defects and FTLD related pathology. In humans, alterations in TMEM106B levels or function are intimately linked to neuronal proportions, brain aging, and brain disorders. Further elucidation of the physiological function of TMEM106B and changes in TMEM106B under pathological conditions will facilitate therapeutic development to treat brain disorders associated with TMEM106B.
Collapse
|
50
|
Zhou X, Kukar T, Rademakers R. Lysosomal Dysfunction and Other Pathomechanisms in FTLD: Evidence from Progranulin Genetics and Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:219-242. [PMID: 33433878 DOI: 10.1007/978-3-030-51140-1_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been more than a decade since heterozygous loss-of-function mutations in the progranulin gene (GRN) were first identified as an important genetic cause of frontotemporal lobar degeneration (FTLD). Due to the highly diverse biological functions of the progranulin (PGRN) protein, encoded by GRN, multiple possible disease mechanisms have been proposed. Early work focused on the neurotrophic properties of PGRN and its role in the inflammatory response. However, since the discovery of homozygous GRN mutations in patients with a lysosomal storage disorder, investigation into the possible roles of PGRN and its proteolytic cleavage products granulins, in lysosomal function and dysfunction, has taken center stage. In this chapter, we summarize the GRN mutational spectrum and its associated phenotypes followed by an in-depth discussion on the possible disease mechanisms implicated in FTLD-GRN. We conclude with key outstanding questions which urgently require answers to ensure safe and successful therapy development for GRN mutation carriers.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- VIB Center for Molecular Neurology, University of Antwerp-CDE, Antwerp, Belgium.
| |
Collapse
|