1
|
Contreras-Capetillo SN, Abreu-González M, Centeno-Navarrete Y, Ferro-Muñoz SR, Ceballos-Zapata J, García-Martínez C. Loss-of-Function Variant in PPP1R12A -Related Urogenital and/or Brain Malformation Syndrome: Expanded Phenotype of Sex Reversal. Am J Med Genet A 2025; 197:e63876. [PMID: 39257322 DOI: 10.1002/ajmg.a.63876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Differences of sex development (DSDs) are a heterogeneous group of congenital conditions in which chromosomal, gonadal, or anatomical sex does not match. The broad spectrum of phenotypes associated with DSDs requires accurate diagnosis, which influences the care and quality of life of affected patients. The decreasing costs of next-generation sequencing (NGS) and international research collaborations in rare diseases have allowed the identification of new genes associated with DSDs. Recently, Hughes et al. in 2020 reported the association of loss-of-function (LoF) variants in PPP1R12A with morphological anomalies of the midline, including holoprosencephaly and urogenital malformations, also known as genitourinary and/or brain malformation syndrome (OMIM #618820). In this report, we describe a Mexican individual with hypertelorism, multiple skin hemangiomas, testicular atrophy, and sex reversal, in whom a c.1880delC frameshift variant in PPP1R12A was detected by exome sequencing. Segregation analysis confirmed it as a de novo variant through Sanger sequencing. The main objective of this report is to expand PPP1R12A-related urogenital and/or brain malformation syndrome.
Collapse
Affiliation(s)
- Silvina Noemí Contreras-Capetillo
- Hospital General Dr. Agustín O'Horán, Secretaría de Salud de Yucatán, Mérida, Yucatan, Mexico
- Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Melania Abreu-González
- Laboratorio de Biología Molecular y Secuenciación Masiva, Genos Médica Centro Especializado en Genética, Ciudad de México, Mexico
- Centro Médico ABC. Centro de Cáncer, Ciudad de México, Mexico
| | - Yahir Centeno-Navarrete
- Hospital General Dr. Agustín O'Horán, Secretaría de Salud de Yucatán, Mérida, Yucatan, Mexico
| | | | | | - Cesiah García-Martínez
- Hospital Regional de Alta Especialidad de la Península de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
2
|
Pallavicini G, Moccia A, Iegiani G, Parolisi R, Peirent ER, Berto GE, Lorenzati M, Tshuva RY, Ferraro A, Balzac F, Turco E, Salvi SU, Myklebust HF, Wang S, Eisenberg J, Chitale M, Girgla NS, Boda E, Reiner O, Buffo A, Di Cunto F, Bielas SL. Modeling primary microcephaly with human brain organoids reveals fundamental roles of CIT kinase activity. J Clin Invest 2024; 134:e175435. [PMID: 39316437 PMCID: PMC11527453 DOI: 10.1172/jci175435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Brain size and cellular heterogeneity are tightly regulated by species-specific proliferation and differentiation of multipotent neural progenitor cells (NPCs). Errors in this process are among the mechanisms of primary hereditary microcephaly (MCPH), a group of disorders characterized by reduced brain size and intellectual disability. Biallelic citron rho-interacting serine/threonine kinase (CIT) missense variants that disrupt kinase function (CITKI/KI) and frameshift loss-of-function variants (CITFS/FS) are the genetic basis for MCPH17; however, the function of CIT catalytic activity in brain development and NPC cytokinesis is unknown. Therefore, we created the CitKI/KI mouse model and found that it did not phenocopy human microcephaly, unlike biallelic CitFS/FS animals. Nevertheless, both Cit models exhibited binucleation, DNA damage, and apoptosis. To investigate human-specific mechanisms of CIT microcephaly, we generated CITKI/KI and CITFS/FS human forebrain organoids. We found that CITKI/KI and CITFS/FS organoids lost cytoarchitectural complexity, transitioning from pseudostratified to simple neuroepithelium. This change was associated with defects that disrupted the polarity of NPC cytokinesis, in addition to elevating apoptosis. Together, our results indicate that both CIT catalytic and scaffolding functions in NPC cytokinesis are critical for human corticogenesis. Species differences in corticogenesis and the dynamic 3D features of NPC mitosis underscore the utility of human forebrain organoid models for understanding human microcephaly.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | | | - Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Roberta Parolisi
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Emily R. Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gaia Elena Berto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Martina Lorenzati
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Rami Y. Tshuva
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Alessia Ferraro
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Fiorella Balzac
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | | | | | - Julia Eisenberg
- Department of Human Genetics and
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - Enrica Boda
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Orly Reiner
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Annalisa Buffo
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Stephanie L. Bielas
- Department of Human Genetics and
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Chen X, Li G, Zhang J, Hu L, Zhao G, Wu B, Wei F, Xiong F. The temporal protein signature analyses of developing human deciduous molar tooth germ. Proteomics 2024; 24:e2300396. [PMID: 38522031 DOI: 10.1002/pmic.202300396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The tooth serves as an exemplary model for developmental studies, encompassing epithelial-mesenchymal transition and cell differentiation. The essential factors and pathways identified in tooth development will help understand the natural development process and the malformations of mineralized tissues such as skeleton. The time-dependent proteomic changes were investigated through the proteomics of healthy human molars during embryonic stages, ranging from the cap-to-early bell stage. A comprehensive analysis revealed 713 differentially expressed proteins (DEPs) exhibiting five distinct temporal expression patterns. Through the application of weighted gene co-expression network analysis (WGCNA), 24 potential driver proteins of tooth development were screened, including CHID1, RAP1GDS1, HAPLN3, AKAP12, WLS, GSS, DDAH1, CLSTN1, AFM, RBP1, AGO1, SET, HMGB2, HMGB1, ANP32A, SPON1, FREM1, C8B, PRPS2, FCHO2, PPP1R12A, GPALPP1, U2AF2, and RCC2. Then, the proteomics and transcriptomics expression patterns of these proteins were further compared, complemented by single-cell RNA-sequencing (scRNA-seq). In summary, this study not only offers a wealth of information regarding the molecular intricacies of human embryonic epithelial and mesenchymal cell differentiation but also serves as an invaluable resource for future mechanistic inquiries into tooth development.
Collapse
Affiliation(s)
- Xiaohang Chen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Gaochi Li
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Jian Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Hu
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Guoqiang Zhao
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Fengxiang Wei
- Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Tong L, Wang X, Wang H, Yang R, Li X, Yin X. Functional analysis of a novel nonsense PPP1R12A variant in a Chinese family with infantile epilepsy. BMC Med Genomics 2024; 17:236. [PMID: 39334371 PMCID: PMC11429181 DOI: 10.1186/s12920-024-02009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Defects in PPP1R12A can lead to genitourinary and/or brain malformation syndrome (GUBS). GUBS is primarily characterized by neurological or genitourinary system abnormalities, but a few reported cases are associated with neonatal seizures. Here, we report a case of a female newborn with neonatal seizures caused by a novel variant in PPP1R12A, aiming to enhance the clinical and variant data of genetic factors related to epilepsy in early life. METHODS Whole-exome and Sanger sequencing were used for familial variant assessment, and bioinformatics was employed to annotate the variant. A structural model of the mutant protein was simulated using molecular dynamics (MD), and the free binding energy between PPP1R12A and PPP1CB was analyzed. A mutant plasmid was constructed, and mutant protein expression was analyzed using western blotting (WB), and the interaction between the mutant and PPP1CB proteins using co-immunoprecipitation (Co-IP) experiments. RESULTS The patient experienced tonic-clonic seizures on the second day after birth. Genetic testing revealed a heterozygous variant in PPP1R12A, NM_002480.3:c.2533 C > T (p.Arg845Ter). Both parents had the wild-type gene. MD suggested that loss of the C-terminal structure in the mutant protein altered its structural stability and increased the binding energy with PPP1CB, indicating unstable protein-protein interactions. On WB, a low-molecular-weight band was observed, indicating that the protein was truncated. Co-IP indicated that the mutant protein no longer interacted with PPP1CB, indicating an effect on the structural stability of the myosin phase complex. CONCLUSION The PPP1R12A c.2533 C > T variant may explain the neonatal seizures in the present case. The findings of this study expand the spectrum of PPP1R12A variants and highlight the potential significance of truncated proteins in the pathogenesis of GUBS.
Collapse
Affiliation(s)
- Ling Tong
- Department of Neonatology, Anhui Women and Children's Medical Center, No. 15, Yimin Street, Hefei, 230001, Anhui, China
| | - Xinxin Wang
- Department of Neonatology, Anhui Women and Children's Medical Center, No. 15, Yimin Street, Hefei, 230001, Anhui, China
| | - Huiqin Wang
- Department of Neonatology, Anhui Women and Children's Medical Center, No. 15, Yimin Street, Hefei, 230001, Anhui, China
| | - Rong Yang
- Department of Neonatology, Anhui Women and Children's Medical Center, No. 15, Yimin Street, Hefei, 230001, Anhui, China
| | - Xiaoyan Li
- Department of Neonatology, Anhui Women and Children's Medical Center, No. 15, Yimin Street, Hefei, 230001, Anhui, China
| | - Xiaoguang Yin
- Department of Neonatology, Anhui Women and Children's Medical Center, No. 15, Yimin Street, Hefei, 230001, Anhui, China.
| |
Collapse
|
5
|
Anitha A, Banerjee M, Thanseem I, Prakash A, Melempatt N, Sumitha PS, Iype M, Thomas SV. Rare Pathogenic Variants Identified in Whole Exome Sequencing of Monozygotic Twins With Autism Spectrum Disorder. Pediatr Neurol 2024; 158:113-123. [PMID: 39038432 DOI: 10.1016/j.pediatrneurol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a childhood-onset complex neurodevelopmental disorder characterized by problems with communication and social interaction and restricted, repetitive, stereotyped behavior. The prevalence of ASD is one in 36 children. The genetic architecture of ASD is complex in spite of its high heritability. To identify the potential candidate genes of ASD, we carried out a comprehensive genetic study of monozygotic (MZ) twins concordant or discordant for ASD. METHODS Five MZ twins and their parents were recruited for the study. Four of the twins were concordant, whereas one was discordant for ASD. Whole exome sequencing was conducted for the twins and their parents. The exome DNA was enriched using Twist Human Customized Core Exome Kit, and paired-end sequencing was performed on HiSeq system. RESULTS We identified several rare and pathogenic variants (homozygous recessive, compound heterozygous, de novo) in ASD-affected individuals. CONCLUSION We report novel variants in individuals diagnosed with ASD. Several of these genes are involved in brain-related functions and not previously reported in ASD. Intriguingly, some of the variants were observed in the genes involved in sensory perception (auditory [MYO15A, PLEC, CDH23, UBR3, GPSM2], olfactory [OR9K2], gustatory [TAS2R31], and visual [CDH23, UBR3]). This is the first comprehensive genetic study of MZ twins in an Indian population. Further validation is required to determine whether these variants are associated with ASD.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Moinak Banerjee
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Anil Prakash
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nisha Melempatt
- Department of Audiology and Speech Language Pathology (ASLP), ICCONS, Palakkad, Kerala, India
| | - P S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mary Iype
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India; Department of Pediatric Neurology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Sanjeev V Thomas
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India
| |
Collapse
|
6
|
Gippert S, Wagner M, Brunet T, Berruti R, Brugger M, Schwaibold EMC, Haack TB, Hoffmann GF, Bettendorf M, Choukair D. Exome sequencing (ES) of a pediatric cohort with chronic endocrine diseases: a single-center study (within the framework of the TRANSLATE-NAMSE project). Endocrine 2024; 85:444-453. [PMID: 37940764 PMCID: PMC11246252 DOI: 10.1007/s12020-023-03581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Endocrine disorders are heterogeneous and include a significant number of rare monogenic diseases. METHODS We performed exome sequencing (ES) in 106 children recruited from a single center within the TRANSLATE‑NAMSE project. They were categorized into subgroups: proportionate short stature (PSS), disproportionate short stature (DSS), hypopituitarism (H), differences in sexual development (DSD), syndromic diseases (SD) and others. RESULTS The overall diagnostic yield was 34.9% (n = 37/106), including 5 patients with variants in candidate genes, which have contributed to collaborations to identify gene-disease associations. The diagnostic yield varied significantly between subgroups: PSS: 16.6% (1/6); DSS: 18.8% (3/16); H: 17.1% (6/35); DSD: 37.5% (3/8); SD: 66.6% (22/33); others: 25% (2/8). Confirmed diagnoses included 75% ultrarare diseases. Three patients harbored more than one disease-causing variant, resulting in dual diagnoses. CONCLUSIONS ES is an effective tool for genetic diagnosis in pediatric patients with complex endocrine diseases. An accurate phenotypic description, including comprehensive endocrine diagnostics, as well as the evaluation of variants in multidisciplinary case conferences involving geneticists, are necessary for personalized diagnostic care. Here, we illustrate the broad spectrum of genetic endocrinopathies that have led to the initiation of specific treatment, surveillance, and family counseling.
Collapse
Affiliation(s)
- Sebastian Gippert
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Pediatric Neurology and Developmental Medicine, Hauner Children's Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Riccardo Berruti
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany and Centre for Rare Diseases, University of Tuebingen, Tübingen, Germany
| | - Georg F Hoffmann
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Bettendorf
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
7
|
Manjunath I, Gamez A, Jagadish A. Phenotypic Features in a New 12q21 Deletion and Its Association With Cardiofaciocutaneous Syndrome. Cureus 2024; 16:e59831. [PMID: 38854203 PMCID: PMC11156572 DOI: 10.7759/cureus.59831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Arriving at a diagnosis in children with developmental delay, cognitive impairments, and multiple physical abnormalities at birth can be very taxing due to many differential diagnoses and etiologies. Of the plethora of conditions that are seen among infants, chromosomal disorders, in particular, present with challenges in diagnosis and devastating consequences. In recent times, the advent of chromosomal microarray techniques has made it possible to easily identify chromosomal deletions and arrive at a diagnosis. This case comprises one of the very few cases reported in interstitial deletions of the long arm of chromosome 12. To date, only 14 patients with deletions, including the 12q21 region, have been reported. The main features are cardiac, renal, ocular, CNS, and developmental abnormalities. The shared features of all these cases might suggest a possible microdeletion syndrome. In this case report, we propose through descriptive analysis that a deletion of genes in the 12q21 region could lead to CFC syndrome. This work contributes to our understanding of the 12q21 deletion syndrome through the case discussion of a one-year-seven-month-old boy with a de novo deletion at 12q21.1q21.31 region that has never been reported previously.
Collapse
Affiliation(s)
- Indushree Manjunath
- Medical Intern, Sapthagiri Institute of Medical Sciences and Research Center, Bengaluru, IND
| | - Arturo Gamez
- Pediatric, Tender Care Pediatrics, Port St. Lucie, USA
| | - Anitha Jagadish
- Pediatric Medicine, Tender Care Pediatrics, Port St. Lucie, USA
| |
Collapse
|
8
|
Rosina E, Pezzani L, Apuril E, Pezzoli L, Marchetti D, Bellini M, Lucca C, Meossi C, Massimello M, Mariani M, Scatigno A, Cattaneo E, Colombo L, Maitz S, Cereda A, Milani D, Spaccini L, Bedeschi MF, Selicorni A, Iascone M. Comparison of first-tier whole-exome sequencing with a multi-step traditional approach for diagnosing paediatric outpatients: An Italian prospective study. Mol Genet Genomic Med 2024; 12:e2316. [PMID: 38041506 PMCID: PMC10767581 DOI: 10.1002/mgg3.2316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The recent guidelines suggest the use of genome-wide analyses, such as whole exome sequencing (WES), at the beginning of the diagnostic approach for cases with suspected genetic conditions. However, in many realities it still provides for the execution of a multi-step pathway, thus requiring several genetic tests to end the so-called 'diagnostic odyssey'. METHODS We reported the results of GENE Project (Genomic analysis Evaluation NEtwork): a multicentre prospective cohort study on 125 paediatric outpatients with a suspected genetic disease in which we performed first-tier trio-WES, including exome-based copy number variation analysis, in parallel to a 'traditional approach' of two/three sequential genetic tests. RESULTS First-tier trio-WES detected a conclusive diagnosis in 41.6% of patients, way above what was found with routine genetic testing (25%), with a time-to-result of about 50 days. Notably, the study showed that 44% of WES-reached diagnoses would be missed with the traditional approach. The diagnostic rate (DR) of the two approaches varied in relation to the phenotypic class of referral and to the proportion of cases with a defined diagnostic suspect, proving the major difference for neurodevelopmental disorders. Moreover, trio-WES analysis detected variants in candidate genes of unknown significance (EPHA4, DTNA, SYNCRIP, NCOR1, TFDP1, SPRED3, EDA2R, PHF12, PPP1R12A, WDR91, CDC42BPG, CSNK1D, EIF3H, TMEM63B, RIPPLY3) in 19.4% of undiagnosed cases. CONCLUSION Our findings represent real-practice evidence of how first-tier genome-wide sequencing tests significantly improve the DR for paediatric outpatients with a suspected underlying genetic aetiology, thereby allowing a time-saving setting of the correct management, follow-up and family planning.
Collapse
Affiliation(s)
- Erica Rosina
- Laboratory of Medical GeneticsASST Papa Giovanni XXIIIBergamoItaly
| | | | - Erika Apuril
- Laboratory of Medical GeneticsASST Papa Giovanni XXIIIBergamoItaly
| | - Laura Pezzoli
- Laboratory of Medical GeneticsASST Papa Giovanni XXIIIBergamoItaly
| | | | - Matteo Bellini
- Laboratory of Medical GeneticsASST Papa Giovanni XXIIIBergamoItaly
| | - Camilla Lucca
- Laboratory of Medical GeneticsASST Papa Giovanni XXIIIBergamoItaly
| | - Camilla Meossi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Marta Massimello
- Department of PediatricsFondazione IRCCS San Gerardo dei TintoriMonzaItaly
| | - Milena Mariani
- Department of PediatricsASST Lariana Sant' Anna HospitalComoItaly
| | | | - Elisa Cattaneo
- Clinical Genetics Unit, Department of Obstetrics and GynecologyV. Buzzi Children's Hospital, University of MilanMilanItaly
| | - Lorenzo Colombo
- Neonatal Intensive Care Unit (NICU)Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Silvia Maitz
- Medical Genetics ServiceIOSI, Ente Ospedaliero CantonaleLuganoSwitzerland
| | - Anna Cereda
- Paediatric UnitASST Papa Giovanni XXIIIBergamoItaly
| | - Donatella Milani
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Luigina Spaccini
- Clinical Genetics Unit, Department of Obstetrics and GynecologyV. Buzzi Children's Hospital, University of MilanMilanItaly
| | | | - Angelo Selicorni
- Department of PediatricsASST Lariana Sant' Anna HospitalComoItaly
| | - Maria Iascone
- Laboratory of Medical GeneticsASST Papa Giovanni XXIIIBergamoItaly
| |
Collapse
|
9
|
Diao Y, Sun W, Zhang Z, Zhao B, Chen X. Clinical report and genetic analysis of a neonate with genitourinary and/or brain malformation syndrome caused by a non-coding sequence variant of PPP1R12A. Mol Genet Genomic Med 2023; 11:e2223. [PMID: 37272772 PMCID: PMC10568382 DOI: 10.1002/mgg3.2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Genitourinary and/or brain malformation syndrome (GUBS) is a recently discovered syndrome involving abnormalities of the neurological or urogenital system. PPP1R12A may be the pathological gene causing this syndrome. Currently, to our knowledge, there is only one study related to GUBS in the world. Here, we report a clinical case of a Chinese newborn with congenital micropenis caused by a non-coding sequence pathogenic variant of PPP1R12A, providing additional evidence on genetic causes of genital malformation. METHODS The genetic cause of the patient's malformation was detected using trio-whole exome sequencing and Sanger sequencing, and reverse transcription-PCR analysis was performed by constructing the minigene mutant plasmid in vitro. RESULTS Genetic testing revealed a novel heterozygous variant, c.2666+3A>G, of the PPP1R12A gene of the patient. The parents at this site were wild-type, indicating that this might be a de novo variant. The minigene experiment showed that the c.2666+3A>G plasmid led to the deletion of 17 bp in exon 20, and a new mRNA product c.2650_2666del (p.Thr884IleTer2) with skipping of exon 20 was produced. This may lead to PPP1R12A haploinsufficiency and cause biological harm. CONCLUSIONS To our knowledge, this is the first clinical study on a rare variant of PPP1R12A in the Chinese population. The c.2666+3A>G may lead to external genitalia malformation, such as congenital micropenis in male neonates. The results of this study further verified the correlation between GUBS and PPP1R12A haploinsufficiency and revealed the important role of a non-coding sequence variant in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Yanxia Diao
- Department of PediatricsThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Weiwei Sun
- Beijing Chigene Translational Medicine Research Center Co., LtdBeijingChina
| | - Zhen Zhang
- Department of PediatricsThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Bing Zhao
- Department of PediatricsThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Xin Chen
- Department of PediatricsThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| |
Collapse
|
10
|
Li Z, Bao X, Liu X, Wang W, Yang J, Zhu X, Wang S. Transcriptome Profiling Based at Different Time Points after Hatching Deepened Our Understanding on Larval Growth and Development of Amphioctopus fangsiao. Metabolites 2023; 13:927. [PMID: 37623871 PMCID: PMC10456336 DOI: 10.3390/metabo13080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
As the quality of life improves, there is an increasing demand for nutrition-rich marine organisms like fish, shellfish, and cephalopods. To address this, artificial cultivation of these organisms is being explored along with ongoing research on their growth and development. A case in point is Amphioctopus fangsiao, a highly valued cephalopod known for its tasty meat, nutrient richness, and rapid growth rate. Despite its significance, there is a dearth of studies on the A. fangsiao growth mechanism, particularly of its larvae. In this study, we collected A. fangsiao larvae at 0, 4, 12, and 24 h post-hatching and conducted transcriptome profiling. Our analysis identified 4467, 5099, and 4181 differentially expressed genes (DEGs) at respective intervals, compared to the 0 h sample. We further analyzed the expression trends of these DEGs, noting a predominant trend of continuous upregulation. Functional exploration of this trend entailed GO and KEGG functional enrichment along with protein-protein interaction network analyses. We identified GLDC, DUSP14, DPF2, GNAI1, and ZNF271 as core genes, based on their high upregulation rate, implicated in larval growth and development. Similarly, CLTC, MEF2A, PPP1CB, PPP1R12A, and TJP1, marked by high protein interaction numbers, were identified as hub genes and the gene expression levels identified via RNA-seq analysis were validated through qRT-PCR. By analyzing the functions of key and core genes, we found that the ability of A. fangsiao larvae to metabolize carbohydrates, lipids, and other energy substances during early growth may significantly improve with the growth of the larvae. At the same time, muscle related cells in A. fangsiao larvae may develop rapidly, promoting the growth and development of larvae. Our findings provide preliminary insights into the growth and developmental mechanism of A. fangsiao, setting the stage for more comprehensive understanding and broader research into cephalopod growth and development mechanisms.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xibo Zhu
- Fishery Technology Service Center of Lanshan District, Rizhao 276800, China
| | - Shuhai Wang
- Ocean and Aquatic Research Center of Hekou District, Dongying 257200, China
| |
Collapse
|
11
|
The Enigmatic Genetic Landscape of Hereditary Hearing Loss: A Multistep Diagnostic Strategy in the Italian Population. Biomedicines 2023; 11:biomedicines11030703. [PMID: 36979683 PMCID: PMC10045163 DOI: 10.3390/biomedicines11030703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Hearing loss is the most frequent sensorineural disorder, affecting approximately 1:1000 newborns. Hereditary forms (HHL) represent 50–60% of cases, highlighting the relevance of genetic testing in deaf patients. HHL is classified as non-syndromic (NSHL—70% of cases) or syndromic (SHL—30% of cases). In this study, a multistep and integrative approach aimed at identifying the molecular cause of HHL in 102 patients, whose GJB2 analysis already showed a negative result, is described. In NSHL patients, multiplex ligation probe amplification and long-range PCR analyses of the STRC gene solved 13 cases, while whole exome sequencing (WES) identified the genetic diagnosis in 26 additional ones, with a total detection rate of 47.6%. Concerning SHL, WES detected the molecular cause in 55% of cases. Peculiar findings are represented by the identification of four subjects displaying a dual molecular diagnosis and eight affected by non-syndromic mimics, five of them presenting Usher syndrome type 2. Overall, this study provides a detailed characterisation of the genetic causes of HHL in the Italian population. Furthermore, we highlighted the frequency of Usher syndrome type 2 carriers in the Italian population to pave the way for a more effective implementation of diagnostic and follow-up strategies for this disease.
Collapse
|
12
|
Bando H, Brinkmeier ML, Castinetti F, Fang Q, Lee MS, Saveanu A, Albarel F, Dupuis C, Brue T, Camper SA. Heterozygous variants in SIX3 and POU1F1 cause pituitary hormone deficiency in mouse and man. Hum Mol Genet 2023; 32:367-385. [PMID: 35951005 PMCID: PMC9851746 DOI: 10.1093/hmg/ddac192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023] Open
Abstract
Congenital hypopituitarism is a genetically heterogeneous condition that is part of a spectrum disorder that can include holoprosencephaly. Heterozygous mutations in SIX3 cause variable holoprosencephaly in humans and mice. We identified two children with neonatal hypopituitarism and thin pituitary stalk who were doubly heterozygous for rare, likely deleterious variants in the transcription factors SIX3 and POU1F1. We used genetically engineered mice to understand the disease pathophysiology. Pou1f1 loss-of-function heterozygotes are unaffected; Six3 heterozygotes have pituitary gland dysmorphology and incompletely ossified palate; and the Six3+/-; Pou1f1+/dw double heterozygote mice have a pronounced phenotype, including pituitary growth through the palate. The interaction of Pou1f1 and Six3 in mice supports the possibility of digenic pituitary disease in children. Disruption of Six3 expression in the oral ectoderm completely ablated anterior pituitary development, and deletion of Six3 in the neural ectoderm blocked the development of the pituitary stalk and both anterior and posterior pituitary lobes. Six3 is required in both oral and neural ectodermal tissues for the activation of signaling pathways and transcription factors necessary for pituitary cell fate. These studies clarify the mechanism of SIX3 action in pituitary development and provide support for a digenic basis for hypopituitarism.
Collapse
Affiliation(s)
- Hironori Bando
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Frederic Castinetti
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Qing Fang
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Mi-Sun Lee
- Michigan Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandru Saveanu
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Frédérique Albarel
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Clémentine Dupuis
- Department of Pediatrics, Centre Hospitalier Universitaire de Grenoble-Alpes, site Nord, Hôpital Couple Enfants, Grenoble, France
| | - Thierry Brue
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Picard JY, Morin G, Devouassoux-Shisheboran M, Van der Smagt J, Klosowski S, Pienkowski C, Pierre-Renoult P, Masson C, Bole C, Josso N. Persistent Müllerian duct syndrome associated with genetic defects in the regulatory subunit of myosin phosphatase. Hum Reprod 2022; 37:2952-2959. [PMID: 36331510 DOI: 10.1093/humrep/deac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
STUDY QUESTION Can mutations of genes other than AMH or AMHR2, namely PPP1R12A coding myosin phosphatase, lead to persistent Müllerian duct syndrome (PMDS)? SUMMARY ANSWER The detection of PPP1R12A truncation mutations in five cases of PMDS suggests that myosin phosphatase is involved in Müllerian regression, independently of the anti-Müllerian hormone (AMH) signaling cascade. WHAT IS KNOWN ALREADY Mutations of AMH and AMHR2 are detectable in an overwhelming majority of PMDS patients but in 10% of cases, both genes are apparently normal, suggesting that other genes may be involved. STUDY DESIGN, SIZE, DURATION DNA samples from 39 PMDS patients collected from 1990 to present, in which Sanger sequencing had failed to detect biallelic AMH or AMHR2 mutations, were screened by massive parallel sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS To rule out the possibility that AMH or AMHR2 mutations could have been missed, all DNA samples of good quality were analyzed by targeted next-generation sequencing. Twenty-four samples in which the absence of AMH or AMHR2 biallelic mutations was confirmed were subjected to whole-exome sequencing with the aim of detecting variants of other genes potentially involved in PMDS. MAIN RESULTS AND THE ROLE OF CHANCE Five patients out of 24 (21%) harbored deleterious truncation mutations of PP1R12A, the gene coding for the regulatory subunit of myosin phosphatase, were detected. In addition to PMDS, three of these patients presented with ileal and one with esophageal atresia. The congenital abnormalities associated with PMDS in our patients are consistent with those described in the literature for PPP1R12A variants and have never been described in cases of AMH or AMHR2 mutations. The role of chance is therefore extremely unlikely. LIMITATIONS, REASONS FOR CAUTION The main limitation of the study is the lack of experimental validation of the role of PPP1R12A in Müllerian regression. Only circumstantial evidence is available, myosin phosphatase is required for cell mobility, which plays a major role in Müllerian regression. Alternatively, PPP1R12A mutations could affect the AMH transduction pathway. WIDER IMPLICATIONS OF THE FINDINGS The study supports the conclusion that failure of Müllerian regression in males is not necessarily associated with a defect in AMH signaling. Extending the scope of molecular analysis should shed light upon the mechanism of the initial steps of male sex differentiation. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by la Fondation Maladies Rares, GenOmics 2021_0404 and la Fondation pour la Recherche Médicale, grant EQU201903007868. The authors report no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jean-Yves Picard
- Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, Lipodystrophies, Adaptations Métaboliques et Hormonales et Vieillissement, UMR_S 938, Paris, France
| | - Gilles Morin
- Department of Medical Genetics, Centre Hospitalo-Universitaire d'Amiens, Amiens, France
| | | | | | - Serge Klosowski
- Service de Néonatologie, Centre Universitaire de Lens, Lens, France
| | | | | | - Cécile Masson
- Bioinformatics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes University, Sorbonne Paris Cite University, Paris, France
| | - Christine Bole
- Genomics Core Facility, Institut Imagine, Structure Fédérative de Recherche Necker, INSERM 1163, INSERM US24/CNRS UAR3633, Paris Descartes University, Sorbonne Paris Cité University, Paris, France
| | - Nathalie Josso
- Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, Lipodystrophies, Adaptations Métaboliques et Hormonales et Vieillissement, UMR_S 938, Paris, France
| |
Collapse
|
14
|
Vaneynde P, Verbinnen I, Janssens V. The role of serine/threonine phosphatases in human development: Evidence from congenital disorders. Front Cell Dev Biol 2022; 10:1030119. [PMID: 36313552 PMCID: PMC9608770 DOI: 10.3389/fcell.2022.1030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Reversible protein phosphorylation is a fundamental regulation mechanism in eukaryotic cell and organismal physiology, and in human health and disease. Until recently, and unlike protein kinases, mutations in serine/threonine protein phosphatases (PSP) had not been commonly associated with disorders of human development. Here, we have summarized the current knowledge on congenital diseases caused by mutations, inherited or de novo, in one of 38 human PSP genes, encoding a monomeric phosphatase or a catalytic subunit of a multimeric phosphatase. In addition, we highlight similar pathogenic mutations in genes encoding a specific regulatory subunit of a multimeric PSP. Overall, we describe 19 affected genes, and find that most pathogenic variants are loss-of-function, with just a few examples of gain-of-function alterations. Moreover, despite their widespread tissue expression, the large majority of congenital PSP disorders are characterised by brain-specific abnormalities, suggesting a generalized, major role for PSPs in brain development and function. However, even if the pathogenic mechanisms are relatively well understood for a small number of PSP disorders, this knowledge is still incomplete for most of them, and the further identification of downstream targets and effectors of the affected PSPs is eagerly awaited through studies in appropriate in vitro and in vivo disease models. Such lacking studies could elucidate the exact mechanisms through which these diseases act, and possibly open up new therapeutic avenues.
Collapse
Affiliation(s)
- Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
- *Correspondence: Veerle Janssens,
| |
Collapse
|
15
|
Di Nora A, De Costa G, Di Mari A, Montemagno M, Pavone V, Pavone P. A New 12q21 Deletion Syndrome: A Case Report and Literature Review. Glob Med Genet 2022; 9:214-218. [PMID: 35873668 PMCID: PMC9303074 DOI: 10.1055/s-0042-1748171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diagnosis in children with physical and intellective anomalies is very challenging because of the wide spectrum of causes. Array-based comparative genomic hybridization (CGH) has acquired an important role in pediatric diagnostic work up. Interstitial deletion of the long arm of chromosome 12 are rare. To date, deletions including the 12q21 region were reported in only 13 patients. The main features are development delay, eyes and central nervous system anomalies, and heart and kidney defects. We describe a 3-year-old boy with a de novo 15 Mb deletion at 12q21.1q21.32, never reported in the last cases. By screening the critical region and reviewing the literature, we identified SYT1, PPP1R12A, and CEP290 such as pathogenetic genes.
Collapse
Affiliation(s)
- Alessandra Di Nora
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Greta De Costa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessia Di Mari
- Department of Radiology, University of Catania, Catania, Italy
| | - Marco Montemagno
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-San Marco, University of Catania, Catania, Italy
| | - Vito Pavone
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, University Hospital Policlinico-San Marco, University of Catania, Catania, Italy
| | - Piero Pavone
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, Hospital “Policlinico G. Rodolico,” Catania, Italy
| |
Collapse
|
16
|
Brain Organization and Human Diseases. Cells 2022; 11:cells11101642. [PMID: 35626679 PMCID: PMC9139716 DOI: 10.3390/cells11101642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The cortex is a highly organized structure that develops from the caudal regions of the segmented neural tube. Its spatial organization sets the stage for future functional arealization. Here, we suggest using a developmental perspective to describe and understand the etiology of common cortical malformations and their manifestation in the human brain.
Collapse
|
17
|
12q21 Interstitial Deletions: Seven New Syndromic Cases Detected by Array-CGH and Review of the Literature. Genes (Basel) 2022; 13:genes13050780. [PMID: 35627165 PMCID: PMC9141874 DOI: 10.3390/genes13050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Interstitial deletions of the long arm of chromosome 12 are rare, with a dozen patients carrying a deletion in 12q21 being reported. Recently a critical region (CR) has been delimited and could be responsible for the more commonly described clinical features, such as developmental delay/intellectual disability, congenital genitourinary and brain malformations. Other, less frequent, clinical signs do not seem to be correlated to the proposed CR. We present seven new patients harboring non-recurrent deletions ranging from 1 to 18.5 Mb differentially scattered across 12q21. Alongside more common clinical signs, some patients have rarer features such as heart defects, hearing loss, hypotonia and dysmorphisms. The correlation of haploinsufficiency of genes outside the CR to specific signs contributes to our knowledge of the effect of the deletion of this gene-poor region of chromosome 12q. This work underlines the still important role of copy number variations in the diagnostic setting of syndromic patients and the positive reflection on management and family genetic counseling.
Collapse
|
18
|
Barratt KS, Drover KA, Thomas ZM, Arkell RM. Patterning of the antero-ventral mammalian brain: Lessons from holoprosencephaly comparative biology in man and mouse. WIREs Mech Dis 2022; 14:e1552. [PMID: 35137563 DOI: 10.1002/wsbm.1552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Adult form and function are dependent upon the activity of specialized signaling centers that act early in development at the embryonic midline. These centers instruct the surrounding cells to adopt a positional fate and to form the patterned structures of the phylotypic embryo. Abnormalities in these processes have devastating consequences for the individual, as exemplified by holoprosencephaly in which anterior midline development fails, leading to structural defects of the brain and/or face. In the 25 years since the first association between human holoprosencephaly and the sonic hedgehog gene, a combination of human and animal genetic studies have enhanced our understanding of the genetic and embryonic causation of this congenital defect. Comparative biology has extended the holoprosencephaly network via the inclusion of gene mutations from multiple signaling pathways known to be required for anterior midline formation. It has also clarified aspects of holoprosencephaly causation, showing that it arises when a deleterious variant is present within a permissive genome, and that environmental factors, as well as embryonic stochasticity, influence the phenotypic outcome of the variant. More than two decades of research can now be distilled into a framework of embryonic and genetic causation. This framework means we are poised to move beyond our current understanding of variants in signaling pathway molecules. The challenges now at the forefront of holoprosencephaly research include deciphering how the mutation of genes involved in basic cell processes can also cause holoprosencephaly, determining the important constituents of the holoprosencephaly permissive genome, and identifying environmental compounds that promote holoprosencephaly. This article is categorized under: Congenital Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology Congenital Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Kristen S Barratt
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kyle A Drover
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zoe M Thomas
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
19
|
Regulation of myosin light-chain phosphorylation and its roles in cardiovascular physiology and pathophysiology. Hypertens Res 2022; 45:40-52. [PMID: 34616031 DOI: 10.1038/s41440-021-00733-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/19/2021] [Accepted: 07/08/2021] [Indexed: 01/22/2023]
Abstract
The regulation of muscle contraction is a critical function in the cardiovascular system, and abnormalities may be life-threatening or cause illness. The common basic mechanism in muscle contraction is the interaction between the protein filaments myosin and actin. Although this interaction is primarily regulated by intracellular Ca2+, the primary targets and intracellular signaling pathways differ in vascular smooth muscle and cardiac muscle. Phosphorylation of the myosin regulatory light chain (RLC) is a primary molecular switch for smooth muscle contraction. The equilibrium between phosphorylated and unphosphorylated RLC is dynamically achieved through two enzymes, myosin light chain kinase, a Ca2+-dependent enzyme, and myosin phosphatase, which modifies the Ca2+ sensitivity of contractions. In cardiac muscle, the primary target protein for Ca2+ is troponin C on thin filaments; however, RLC phosphorylation also plays a modulatory role in contraction. This review summarizes recent advances in our understanding of the regulation, physiological function, and pathophysiological involvement of RLC phosphorylation in smooth and cardiac muscles.
Collapse
|
20
|
Cicek D, Warr N, Yesil G, Kocak Eker H, Bas F, Poyrazoglu S, Darendeliler F, Direk G, Hatipoglu N, Eltan M, Yavas Abali Z, Gurpinar Tosun B, Kaygusuz SB, Seven Menevse T, Helvacioglu D, Turan S, Bereket A, Reeves R, Simon M, Mackenzie M, Teboul L, Greenfield A, Guran T. Broad-spectrum XX and XY gonadal dysgenesis in patients with a homozygous L193S variant in PPP2R3C. Eur J Endocrinol 2021; 186:65-72. [PMID: 34714774 PMCID: PMC8679844 DOI: 10.1530/eje-21-0910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022]
Abstract
CONTEXT Homozygous and heterozygous variants in PPP2R3C are associated with syndromic 46,XY complete gonadal dysgenesis (Myo-Ectodermo-Gonadal Dysgenesis (MEGD) syndrome), and impaired spermatogenesis, respectively. This study expands the role of PPP2R3C in the aetiology of gonadal dysgenesis (GD). METHOD We sequenced the PPP2R3C gene in four new patients from three unrelated families. The clinical, laboratory, and molecular characteristics were investigated. We have also determined the requirement for Ppp2r3c in mice (C57BL6/N) using CRISPR/Cas9 genome editing. RESULTS A homozygous c.578T>C (p.L193S) PPP2R3C variant was identified in one 46,XX girl with primary gonadal insufficiency, two girls with 46,XY complete GD, and one undervirilised boy with 46,XY partial GD. The patients with complete GD had low gonadal and adrenal androgens, low anti-Müllerian hormone, and high follicle-stimulating hormone and luteinizing hormone concentrations. All patients manifested characteristic features of MEGD syndrome. Heterozygous Ppp2r3c knockout mice appeared overtly normal and fertile. Inspection of homozygous embryos at 14.5, 9.5, and 8.5 days post coitum(dpc) revealed evidence of dead embryos. We conclude that loss of function of Ppp2r3c is not compatible with viability in mice and results in embryonic death from 7.5 dpc or earlier. CONCLUSION Our data indicate the essential roles for PPP2R3C in mouse and human development. Germline homozygous variants in human PPP2R3C are associated with distinctive syndromic GD of varying severity in both 46,XY and 46,XX individuals.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Child
- Consanguinity
- Embryo, Mammalian
- Female
- Gonadal Dysgenesis, 46,XX/genetics
- Gonadal Dysgenesis, 46,XX/pathology
- Gonadal Dysgenesis, 46,XY/genetics
- Gonadal Dysgenesis, 46,XY/pathology
- Homozygote
- Humans
- Leucine/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation, Missense
- Pedigree
- Pregnancy
- Protein Phosphatase 2/genetics
- Serine/genetics
Collapse
Affiliation(s)
- Dilek Cicek
- Department of Paediatric Endocrinology and Diabetes, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Nick Warr
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, Oxfordshire, UK
| | - Gozde Yesil
- Department of Medical Genetics, Istanbul University, School of Medicine, Istanbul, Turkey
| | - Hatice Kocak Eker
- Department of Medical Genetics, Konya Training and Research Hospital, Konya, Turkey
| | - Firdevs Bas
- Department of Pediatric Endocrinology and Diabetes, Istanbul University, School of Medicine, Istanbul, Turkey
| | - Sukran Poyrazoglu
- Department of Pediatric Endocrinology and Diabetes, Istanbul University, School of Medicine, Istanbul, Turkey
| | - Feyza Darendeliler
- Department of Pediatric Endocrinology and Diabetes, Istanbul University, School of Medicine, Istanbul, Turkey
| | - Gul Direk
- Department of Paediatric Endocrinology and Diabetes, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Nihal Hatipoglu
- Department of Paediatric Endocrinology and Diabetes, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Mehmet Eltan
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Zehra Yavas Abali
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Busra Gurpinar Tosun
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Sare Betul Kaygusuz
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Tuba Seven Menevse
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Didem Helvacioglu
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
| | - Richard Reeves
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, Oxfordshire, UK
| | - Michelle Simon
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, Oxfordshire, UK
| | - Matthew Mackenzie
- Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, Oxfordshire, UK
| | - Lydia Teboul
- Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell, Oxfordshire, UK
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell, Oxfordshire, UK
| | - Tulay Guran
- Department of Paediatric Endocrinology and Diabetes, Marmara University, School of Medicine, Istanbul, Turkey
- Correspondence should be addressed to T Guran;
| |
Collapse
|
21
|
Sex Chromosomes and Master Sex-Determining Genes in Turtles and Other Reptiles. Genes (Basel) 2021; 12:genes12111822. [PMID: 34828428 PMCID: PMC8622242 DOI: 10.3390/genes12111822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022] Open
Abstract
Among tetrapods, the well differentiated heteromorphic sex chromosomes of birds and mammals have been highly investigated and their master sex-determining (MSD) gene, Dmrt1 and SRY, respectively, have been identified. The homomorphic sex chromosomes of reptiles have been the least studied, but the gap with birds and mammals has begun to fill. This review describes our current knowledge of reptilian sex chromosomes at the cytogenetic and molecular level. Most of it arose recently from various studies comparing male to female gene content. This includes restriction site-associated DNA sequencing (RAD-Seq) experiments in several male and female samples, RNA sequencing and identification of Z- or X-linked genes by male/female comparative transcriptome coverage, and male/female transcriptomic or transcriptome/genome substraction approaches allowing the identification of Y- or W-linked transcripts. A few putative master sex-determining (MSD) genes have been proposed, but none has been demonstrated yet. Lastly, future directions in the field of reptilian sex chromosomes and their MSD gene studies are considered.
Collapse
|
22
|
de Castro VF, Mattos D, de Carvalho FM, Cavalcanti DP, Duenas-Roque MM, Llerena J, Cosentino VR, Honjo RS, Leite JCL, Sanseverino MT, de Souza MPA, Bernardi P, Bolognese AM, Santana da Silva LC, Barbero P, Correia PS, Bueno LSM, Savastano CP, Orioli IM. New SHH and Known SIX3 Variants in a Series of Latin American Patients with Holoprosencephaly. Mol Syndromol 2021; 12:219-233. [PMID: 34421500 DOI: 10.1159/000515044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
Holoprosencephaly (HPE) is the failure of the embryonic forebrain to develop into 2 hemispheres promoting midline cerebral and facial defects. The wide phenotypic variability and causal heterogeneity make genetic counseling difficult. Heterozygous variants with incomplete penetrance and variable expressivity in the SHH, SIX3, ZIC2, and TGIF1 genes explain ∼25% of the known causes of nonchromosomal HPE. We studied these 4 genes and clinically described 27 Latin American families presenting with nonchromosomal HPE. Three new SHH variants and a third known SIX3 likely pathogenic variant found by Sanger sequencing explained 15% of our cases. Genotype-phenotype correlation in these 4 families and published families with identical or similar driver gene, mutated domain, conservation of residue in other species, and the type of variant explain the pathogenicity but not the phenotypic variability. Nine patients, including 2 with SHH pathogenic variants, presented benign variants of the SHH, SIX3, ZIC2, and TGIF1 genes with potential alteration of splicing, a causal proposition in need of further studies. Finding more families with the same SIX3 variant may allow further identification of genetic or environmental modifiers explaining its variable phenotypic expression.
Collapse
Affiliation(s)
- Viviane Freitas de Castro
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Daniel Mattos
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Flavia Martinez de Carvalho
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Laboratorio Epidemiol. Malformações Congênitas, IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Milagros M Duenas-Roque
- ECLAMC at Servicio de Genética, Hospital Nacional Edgardo Rebagliati Martins/EsSalud, Lima, Peru
| | - Juan Llerena
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Centro de Genética Médica, IFF/FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Pricila Bernardi
- Núcleo de Genética Clínica, Departamento de Clínica Médica/UFSC, Florianópolis, Brazil
| | - Ana Maria Bolognese
- Departamento de Ortodontia, Faculdade de Odontologia/UFRJ, Rio de Janeiro, Brazil
| | - Luiz Carlos Santana da Silva
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,Laboratório de Erros Inatos de Metabolismo, Instituto de Ciências Biológicas/UFP, Belém, Brazil
| | - Pablo Barbero
- RENAC, Centro Nacional de Genética Médica Dr. Eduardo E. Castilla/MS, Buenos Aires, Argentina
| | | | | | | | - Iêda Maria Orioli
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| |
Collapse
|
23
|
Corrêa T, Santos-Rebouças CB, Mayndra M, Schinzel A, Riegel M. Shared Neurodevelopmental Perturbations Can Lead to Intellectual Disability in Individuals with Distinct Rare Chromosome Duplications. Genes (Basel) 2021; 12:genes12050632. [PMID: 33922640 PMCID: PMC8146713 DOI: 10.3390/genes12050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosomal duplications are associated with a large group of human diseases that arise mainly from dosage imbalance of genes within the rearrangements. Phenotypes range widely but are often associated with global development delay, intellectual disability, autism spectrum disorders, and multiple congenital abnormalities. How different contiguous genes from a duplicated genomic region interact and dynamically affect the expression of each other remains unclear in most cases. Here, we report a genomic comparative delineation of genes located in duplicated chromosomal regions 8q24.13q24.3, 18p11.32p11.21, and Xq22.3q27.2 in three patients followed up at our genetics service who has the intellectual disability (ID) as a common phenotype. We integrated several genomic data levels by identification of gene content within the duplications, protein-protein interactions, and functional analysis on specific tissues. We found functional relationships among genes from three different duplicated chromosomal regions, reflecting interactions of protein-coding genes and their involvement in common cellular subnetworks. Furthermore, the sharing of common significant biological processes associated with ID has been demonstrated between proteins from the different chromosomal regions. Finally, we elaborated a shared model of pathways directly or indirectly related to the central nervous system (CNS), which could perturb cognitive function and lead to ID in the three duplication conditions.
Collapse
Affiliation(s)
- Thiago Corrêa
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul UFRGS, Porto Alegre 91501-970, Brazil;
| | - Cíntia B. Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20511-010, Brazil;
| | - Maytza Mayndra
- Children’s Hospital Jeser Amarante Faria, Joinville 89204-310, Brazil;
| | - Albert Schinzel
- Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland;
| | - Mariluce Riegel
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul UFRGS, Porto Alegre 91501-970, Brazil;
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
- Correspondence:
| |
Collapse
|
24
|
PPP1R12A Pathogenic Variants Associated with Human Congenital Malformations Syndrome. Am J Med Genet A 2021; 182:616-617. [PMID: 32153129 DOI: 10.1002/ajmg.a.61525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
26
|
Addissie YA, Troia A, Wong ZC, Everson JL, Kozel BA, Muenke M, Lipinski RJ, Malecki KMC, Kruszka P. Identifying environmental risk factors and gene-environment interactions in holoprosencephaly. Birth Defects Res 2020; 113:63-76. [PMID: 33111505 DOI: 10.1002/bdr2.1834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Holoprosencephaly is the most common malformation of the forebrain (1 in 250 embryos) with severe consequences for fetal and child development. This study evaluates nongenetic factors associated with holoprosencephaly risk, severity, and gene-environment interactions. METHODS For this retrospective case control study, we developed an online questionnaire focusing on exposures to common and rare toxins/toxicants before and during pregnancy, nutritional factors, maternal health history, and demographic factors. Patients with holoprosencephaly were primarily ascertained from our ongoing genetic and clinical studies of holoprosencephaly. Controls included children with Williams-Beuren syndrome (WBS) ascertained through online advertisements in a WBD support group and fliers. RESULTS Difference in odds of exposures between cases and controls as well as within cases with varying holoprosencephaly severity were studied. Cases included children born with holoprosencephaly (n = 92) and the control group consisted of children with WBS (n = 56). Pregnancy associated risk associated with holoprosencephaly included maternal pregestational diabetes (9.2% of cases and 0 controls, p = .02), higher alcohol consumption (adjusted odds ratio [aOR], 1.73; 95% CI, 0.88-15.71), and exposure to consumer products such as aerosols or sprays including hair sprays (aOR, 2.46; 95% CI, 0.89-7.19). Significant gene-environment interactions were identified including for consumption of cheese (p < .05) and espresso drinks (p = .03). CONCLUSION The study identifies modifiable risk factors and gene-environment interactions that should be considered in future prevention of holoprosencephaly. Studies with larger HPE cohorts will be needed to confirm these findings.
Collapse
Affiliation(s)
- Yonit A Addissie
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Angela Troia
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Zoe C Wong
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Beth A Kozel
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristen M C Malecki
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Kruszka P. Reply: Another case of holoprosencephaly associated with RAD21 loss-of-function variant. Brain 2020; 143:e65. [PMID: 32712652 PMCID: PMC7825475 DOI: 10.1093/brain/awaa177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Casamayor A, Ariño J. Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:231-288. [PMID: 32951813 DOI: 10.1016/bs.apcsb.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphatase 1 is a major Ser/Thr protein phosphatase activity in eukaryotic cells. It is composed of a catalytic polypeptide (PP1C), with little substrate specificity, that interacts with a large variety of proteins of diverse structure (regulatory subunits). The diversity of holoenzymes that can be formed explain the multiplicity of cellular functions under the control of this phosphatase. In quite a few cases, regulatory subunits have an inhibitory role, downregulating the activity of the phosphatase. In this chapter we shall introduce PP1C and review the most relevant families of PP1C regulatory subunits, with particular emphasis in describing the structural basis for their interaction.
Collapse
Affiliation(s)
- Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| |
Collapse
|
29
|
Beames TG, Lipinski RJ. Gene-environment interactions: aligning birth defects research with complex etiology. Development 2020; 147:147/21/dev191064. [PMID: 32680836 DOI: 10.1242/dev.191064] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developmental biologists rely on genetics-based approaches to understand the origins of congenital abnormalities. Recent advancements in genomics have made it easier than ever to investigate the relationship between genes and disease. However, nonsyndromic birth defects often exhibit non-Mendelian inheritance, incomplete penetrance or variable expressivity. The discordance between genotype and phenotype indicates that extrinsic factors frequently impact the severity of genetic disorders and vice versa. Overlooking gene-environment interactions in birth defect etiology limits our ability to identify and eliminate avoidable risks. We present mouse models of sonic hedgehog signaling and craniofacial malformations to illustrate both the importance of and current challenges in resolving gene-environment interactions in birth defects. We then prescribe approaches for overcoming these challenges, including use of genetically tractable and environmentally responsive in vitro systems. Combining emerging technologies with molecular genetics and traditional animal models promises to advance our understanding of birth defect etiology and improve the identification and protection of vulnerable populations.
Collapse
Affiliation(s)
- Tyler G Beames
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA .,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
30
|
Niclass T, Le Guyader G, Beneteau C, Joubert M, Pizzuti A, Giuffrida MG, Bernardini L, Gilbert-Dussardier B, Bilan F, Egloff M. 12q21 deletion syndrome: Narrowing the critical region down to 1.6 Mb including SYT1 and PPP1R12A. Am J Med Genet A 2020; 182:2133-2138. [PMID: 32633079 DOI: 10.1002/ajmg.a.61734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/04/2020] [Accepted: 05/21/2020] [Indexed: 11/12/2022]
Abstract
Deletions in the 12q21 region are rare and non-recurrent CNVs. To date, only 11 patients with deletions in this region have been reported in the literature. These patients most often presented with syndromic intellectual deficiency, ventriculomegaly or hydrocephalus, ectodermal abnormalities, growth retardation and renal and cardiac malformations, suggesting a recognizable microdeletion syndrome. We report three new patients with overlapping deletions of the 12q21 region, including the smallest deletion reported to date and the first case characterized by array CGH during pregnancy. We describe specific clinical findings and shared facial features as developmental delay, ectodermal abnormalities, ventriculomegaly or hydrocephalus, axial hypotonia or spastic diplegia, growth retardation, heart defect, hydronephrosis, ureteral reflux or horseshoe kidney, large thorax or pectus excavatum, syndactyly of 2-3 toes, pterygium coli or excess nuchal skin, large anterior fontanel, low set ears, prominent forehead, short-upturned nose with nostril hypoplasia, microretrognathia and hypertelorism. These new patients and a comprehensive review of the literature allow us to define a minimum critical region spanning 1.6 Mb in 12q21. By screening the critical region using prediction tools, we identified two candidate genes: SYT1and PPP1R12A.
Collapse
Affiliation(s)
- Tanguy Niclass
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Gwenael Le Guyader
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,EA 3808 NEUVACOD, Université de Poitiers, Poitiers, France
| | - Claire Beneteau
- Department of Medical Genetics, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Madeleine Joubert
- Department of Anatomic and Fetal Pathology, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Antonio Pizzuti
- Department of Medical Genetics, Policlinico di Roma, Rome, Italy
| | - Maria Grazia Giuffrida
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cytogenetics Unit, San Giovanni Rotondo, FG, Italy
| | - Laura Bernardini
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cytogenetics Unit, San Giovanni Rotondo, FG, Italy
| | - Brigitte Gilbert-Dussardier
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,EA 3808 NEUVACOD, Université de Poitiers, Poitiers, France
| | - Frederic Bilan
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,EA 3808 NEUVACOD, Université de Poitiers, Poitiers, France
| | - Matthieu Egloff
- Department of Medical Genetics, Centre Hospitalier Universitaire de Poitiers, Poitiers, France.,Laboratoire de Neurosciences Experimentales et Cliniques, INSERM, Poitiers, France
| |
Collapse
|