1
|
Hitz MP, Dombrowsky G, Melnik N, Vey C. Current and future diagnostics of congenital heart disease (CHD). MED GENET-BERLIN 2025; 37:95-102. [PMID: 40207043 PMCID: PMC11976401 DOI: 10.1515/medgen-2025-2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Congenital heart defects (CHD) are one of the most common anomalies found among live births and represent a complex multifactorial condition. Given that more than 90 % of cases survive due to improved early treatment options (e.g., catheter intervention, surgical procedure, and improved intensive care), genotype-informed patient follow-up should consider lifelong treatment considering different types of comorbidities. Unfortunately, a thorough genetic workup is only offered to a minority of CHD patients. However, a comprehensive understanding of the genetic underpinnings combined with in-depth phenotyping would strengthen our knowledge regarding the impact of environmental (e.g., pre-gestational diabetes) and genetic causes ranging from aneuploidies to single variants and more complex inheritance patterns on early heart development. Therefore, comprehensive genetic analysis in these patients is an essential way of predicting the prognosis and recurrence risk in families and ultimately improving patients' quality of life due to better therapeutic options. In this review, we examine the different types of variants and genes of different molecular genetics techniques to assess the diagnostic yield in different CHD sub-phenotypes. Given the complex inheritance pattern observed in CHD, we also consider possible future methods and frameworks to improve diagnostics and allow for better genotype-phenotype correlation in this patient group. Predicting recurrence risk and prognosis in CHD patients will ultimately allow for better treatment and lifelong therapeutic outcomes for CHD patients.
Collapse
Affiliation(s)
- Marc-Phillip Hitz
- Carl von Ossietzky UniversityInstitute of Medical GeneticsRahel-Straus-Str. 1026133OldenburgGermany
| | - Gregor Dombrowsky
- Carl von Ossietzky UniversityInstitute of Medical GeneticsRahel-Straus-Str. 1026133OldenburgGermany
| | - Nico Melnik
- Carl von Ossietzky UniversityInstitute of Medical GeneticsRahel-Straus-Str. 1026133OldenburgGermany
| | - Chiara Vey
- Carl von Ossietzky UniversityInstitute of Medical GeneticsRahel-Straus-Str. 1026133OldenburgGermany
| |
Collapse
|
2
|
Chen H, LaFlamme CW, Wang YD, Blan AW, Koehler N, Mendonca Moraes R, Olszewski AR, Almanza Fuerte EP, Bonkowski ES, Bajpai R, Lavado A, Pruett-Miller SM, Mefford HC. Patient-derived models of UBA5-associated encephalopathy identify defects in neurodevelopment and highlight potential therapeutic avenues. Sci Transl Med 2025; 17:eadn8417. [PMID: 40333994 DOI: 10.1126/scitranslmed.adn8417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in endoplasmic reticulum (ER) homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy, and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures from two patients with compound heterozygous variants in UBA5. Both shared the same missense variant, which encodes a hypomorphic allele (p.A371T), along with a nonsense variant (p.G267* or p.A123fs*4). Single-cell RNA sequencing of 100-day organoids identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and reduction in size of patient-derived organoids. Mechanistically, we showed that ER homeostasis is perturbed along with an exacerbated unfolded protein response pathway in engineered U87-MG cells and patient-derived organoids expressing UBA5 pathogenic variants. We also assessed two potential therapeutic modalities that augmented UBA5 protein abundance to rescue aberrant molecular and cellular phenotypes. We assessed SINEUP, a long noncoding RNA that augments translation efficiency, and CRISPRa, a modified CRISPR-Cas9 approach to augment transcription efficiency to increase UBA5 protein production. Our study provides a humanized model that allows further investigations of UBA5 variants in the brain and highlights promising approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christy W LaFlamme
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aidan W Blan
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nikki Koehler
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Renata Mendonca Moraes
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Athena R Olszewski
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Edith P Almanza Fuerte
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily S Bonkowski
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alfonso Lavado
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Wirth T, Kumar KR, Zech M. Long-Read Sequencing: The Third Generation of Diagnostic Testing for Dystonia. Mov Disord 2025. [PMID: 40265723 DOI: 10.1002/mds.30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/14/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Long-read sequencing methodologies provide powerful capacity to identify all types of genomic variations in a single test. Long-read platforms such as Oxford Nanopore and PacBio have the potential to revolutionize molecular diagnostics by reaching unparalleled accuracies in genetic discovery and long-range phasing. In the field of dystonia, promising results have come from recent pilot studies showing improved detection of disease-causing structural variants and repeat expansions. Increases in throughput and ongoing reductions in cost will facilitate the incorporation of long-read approaches into mainstream diagnostic practice. Although these developments are likely to transform clinical care, there is currently a discrepancy between the potential benefits of long-read sequencing and the application of this technique to dystonia. In this review we highlight current opportunities and limitations of adopting long-read sequencing methods for the investigation of patients with dystonia. We provide examples of long-read sequencing integration into diagnostic evaluation and the study of pathomechanisms in individuals with dystonic disorders. The goal of this article is to stimulate research into the application and optimization of long-read analysis strategies in dystonia, thus enabling more precise understanding of the underlying etiology in the future. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wirth
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), INSERM-U964/CNRS-UMR7104/Strasbourg University, Illkirch-Graffenstaden, France
- Strasbourg Translational Medicine Federation (FMTS), Strasbourg University, Strasbourg, France
| | - Kishore R Kumar
- Translational Neurogenomics Group, Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology and Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michael Zech
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
4
|
Munro R, Payne A, Holmes N, Moore C, Cahyani I, Loose M. Enhancing nanopore adaptive sampling for PromethION using readfish at scale. Genome Res 2025; 35:877-885. [PMID: 39884748 PMCID: PMC12047233 DOI: 10.1101/gr.279329.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
A unique feature of Oxford Nanopore Technologies sequencers, adaptive sampling, allows precise DNA molecule selection from sequencing libraries. Here, we present enhancements to our tool, readfish, enabling all features for the industrial scale PromethION sequencer, including standard and "barcode-aware" adaptive sampling. We demonstrate effective coverage enrichment and assessment of multiple human genomes for copy number and structural variation on a single PromethION flow cell.
Collapse
Affiliation(s)
- Rory Munro
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Alexander Payne
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Nadine Holmes
- Deepseq, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Chris Moore
- Deepseq, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Inswasti Cahyani
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom;
| |
Collapse
|
5
|
Montano C, Timp W. Evolution of genome-wide methylation profiling technologies. Genome Res 2025; 35:572-582. [PMID: 40228903 PMCID: PMC12047278 DOI: 10.1101/gr.278407.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
In this mini-review, we explore the advancements in genome-wide DNA methylation profiling, tracing the evolution from traditional methods such as methylation arrays and whole-genome bisulfite sequencing to the cutting-edge single-molecule profiling enabled by long-read sequencing (LRS) technologies. We highlight how LRS is transforming clinical and translational research, particularly by its ability to simultaneously measure genetic and epigenetic information, providing a more comprehensive understanding of complex disease mechanisms. We discuss current challenges and future directions in the field, emphasizing the need for innovative computational tools and robust, reproducible approaches to fully harness the capabilities of LRS in molecular diagnostics.
Collapse
Affiliation(s)
- Carolina Montano
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| |
Collapse
|
6
|
Jensen TD, Ni B, Reuter CM, Gorzynski JE, Fazal S, Bonner D, Ungar RA, Goddard PC, Raja A, Ashley EA, Bernstein JA, Zuchner S, Greicius MD, Montgomery SB, Schatz MC, Wheeler MT, Battle A. Integration of transcriptomics and long-read genomics prioritizes structural variants in rare disease. Genome Res 2025; 35:914-928. [PMID: 40113264 PMCID: PMC12047269 DOI: 10.1101/gr.279323.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 01/06/2025] [Indexed: 03/22/2025]
Abstract
Rare structural variants (SVs)-insertions, deletions, and complex rearrangements-can cause Mendelian disease, yet they remain difficult to accurately detect and interpret. We sequenced and analyzed Oxford Nanopore Technologies long-read genomes of 68 individuals from the undiagnosed disease network (UDN) with no previously identified diagnostic mutations from short-read sequencing. Using our optimized SV detection pipelines and 571 control long-read genomes, we detected 716 long-read rare (MAF < 0.01) SV alleles per genome on average, achieving a 2.4× increase from short reads. To characterize the functional effects of rare SVs, we assessed their relationship with gene expression from blood or fibroblasts from the same individuals and found that rare SVs overlapping enhancers were enriched (LOR = 0.46) near expression outliers. We also evaluated tandem repeat expansions (TREs) and found 14 rare TREs per genome; notably, these TREs were also enriched near overexpression outliers. To prioritize candidate functional SVs, we developed Watershed-SV, a probabilistic model that integrates expression data with SV-specific genomic annotations, which significantly outperforms baseline models that do not incorporate expression data. Watershed-SV identified a median of eight high-confidence functional SVs per UDN genome. Notably, this included compound heterozygous deletions in FAM177A1 shared by two siblings, which were likely causal for a rare neurodevelopmental disorder. Our observations demonstrate the promise of integrating long-read sequencing with gene expression toward improving the prioritization of functional SVs and TREs in rare disease patients.
Collapse
Affiliation(s)
- Tanner D Jensen
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Chloe M Reuter
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - John E Gorzynski
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sarah Fazal
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Devon Bonner
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Rachel A Ungar
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Pagé C Goddard
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Archana Raja
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Euan A Ashley
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jonathan A Bernstein
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, California 94305, USA;
- Department of Pathology, Stanford University, Stanford, California 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, California 94305, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Matthew T Wheeler
- Center for Undiagnosed Diseases, Stanford University, Stanford, California 94305, USA;
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
- GREGoR Stanford Site, Stanford University, Stanford, California 94305, USA
| | - Alexis Battle
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
7
|
Del Gobbo GF, Boycott KM. The additional diagnostic yield of long-read sequencing in undiagnosed rare diseases. Genome Res 2025; 35:559-571. [PMID: 39900460 PMCID: PMC12047273 DOI: 10.1101/gr.279970.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Long-read sequencing (LRS) is a promising technology positioned to study the significant proportion of rare diseases (RDs) that remain undiagnosed as it addresses many of the limitations of short-read sequencing, detecting and clarifying additional disease-associated variants that may be missed by the current standard diagnostic workflow for RDs. Some key areas where additional diagnostic yields may be realized include: (1) detection and resolution of structural variants (SVs); (2) detection and characterization of tandem repeat expansions; (3) coverage of regions of high sequence similarity; (4) variant phasing; (5) the use of de novo genome assemblies for reference-based or graph genome variant detection; and (6) epigenetic and transcriptomic evaluations. Examples from over 50 studies support that the main areas of added diagnostic yield currently lie in SV detection and characterization, repeat expansion assessment, and phasing (with or without DNA methylation information). Several emerging studies applying LRS in cohorts of undiagnosed RDs also demonstrate that LRS can boost diagnostic yields following negative standard-of-care clinical testing and provide an added yield of 7%-17% following negative short-read genome sequencing. With this evidence of improved diagnostic yield, we discuss the incorporation of LRS into the diagnostic care pathway for undiagnosed RDs, including current challenges and considerations, with the ultimate goal of ending the diagnostic odyssey for countless individuals with RDs.
Collapse
Affiliation(s)
- Giulia F Del Gobbo
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 5B2
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 5B2;
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada K1H 8L1
| |
Collapse
|
8
|
Rafehi H, Fearnley LG, Read J, Snell P, Davies KC, Scott L, Gillies G, Thompson GC, Field TA, Eldo A, Bodek S, Butler E, Chen L, Drago J, Goel H, Hackett A, Halmagyi GM, Hannaford A, Kotschet K, Kumar KR, Kumble S, Lee-Archer M, Malhotra A, Paine M, Poon M, Pope K, Reardon K, Ring S, Ronan A, Silsby M, Smyth R, Stutterd C, Wallis M, Waterston J, Wellings T, West K, Wools C, Wu KHC, Szmulewicz DJ, Delatycki MB, Bahlo M, Lockhart PJ. A prospective trial comparing programmable targeted long-read sequencing and short-read genome sequencing for genetic diagnosis of cerebellar ataxia. Genome Res 2025; 35:769-785. [PMID: 40015980 PMCID: PMC12047251 DOI: 10.1101/gr.279634.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/21/2024] [Indexed: 03/01/2025]
Abstract
The cerebellar ataxias (CAs) are a heterogeneous group of disorders characterized by progressive incoordination. Seventeen repeat expansion (RE) loci have been identified as the primary genetic cause and account for >80% of genetic diagnoses. Despite this, diagnostic testing is limited and inefficient, often utilizing single gene assays. This study evaluates the effectiveness of long- and short-read sequencing as diagnostic tools for CA. We recruited 110 individuals (48 females, 62 males) with a clinical diagnosis of CA. Short-read genome sequencing (SR-GS) was performed to identify pathogenic RE and also non-RE variants in 356 genes associated with CA. Independently, long-read sequencing with adaptive sampling (LR-AS) was performed to identify pathogenic RE. SR-GS provided a genetic diagnosis for 38% of the cohort (40/110) including seven non-RE pathogenic variants. RE causes disease in 33 individuals, with the most common condition being SCA27B (n = 24). In comparison, LR-AS identified pathogenic RE in 29 individuals. RE identification for the two methods was concordant apart from four SCA27B cases not detected by LR-AS due to low read depth. For both technologies manual review of the RE alignment enhances diagnostic outcomes. Orthogonal testing for SCA27B revealed a 15% and 0% false positive rate for SR-GS and LR-AS, respectively. In conclusion, both technologies are powerful screening tools for CA. SR-GS is a mature technology currently used by diagnostic providers, requiring only minor changes in bioinformatic workflows to enable CA diagnostics. LR-AS offers considerable advantages in the context of RE detection and characterization but requires optimization before clinical implementation.
Collapse
Affiliation(s)
- Haloom Rafehi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Liam G Fearnley
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Justin Read
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Centre, Melbourne, Victoria 3004, Australia
| | - Penny Snell
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Kayli C Davies
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Liam Scott
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Greta Gillies
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Genevieve C Thompson
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Tess A Field
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Aleena Eldo
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Simon Bodek
- Austin Health, Heidelberg, Victoria 3084, Australia
| | - Ernest Butler
- Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Luke Chen
- Department of Neurology, Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - John Drago
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Himanshu Goel
- Hunter Genetics, Hunter New England Health Service, Waratah, New South Wales 2298, Australia
| | - Anna Hackett
- Hunter Genetics, Hunter New England Health Service, Waratah, New South Wales 2298, Australia
- University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - G Michael Halmagyi
- Neurology Department, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
- Central Clinical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Andrew Hannaford
- Department of Neurology, Westmead Hospital, Hawkesbury Westmead, New South Wales 2145, Australia
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Camperdown, New South Wales 2050, Australia
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Katya Kotschet
- Department of Clinical Neurosciences, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales 2050, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
- School of Medicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Smitha Kumble
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Clinical Genetics, Austin Health, Viewbank, Victoria 3084, Australia
| | - Matthew Lee-Archer
- Department of Neurology, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Abhishek Malhotra
- Department of Neuroscience, University Hospital Geelong, Geelong, Victoria 3220, Australia
| | - Mark Paine
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia
| | - Michael Poon
- Neurology Footscray, Footscray, Victoria 3011, Australia
| | - Kate Pope
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Katrina Reardon
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
- Department of Neurology, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Steven Ring
- Albury Wodonga Health, West Albury, New South Wales 2640, Australia
| | - Anne Ronan
- University of Newcastle, Callaghan, New South Wales 2308, Australia
- Newcastle Medical Genetics, Lambton, New South Wales 2299, Australia
| | - Matthew Silsby
- Department of Neurology, Westmead Hospital, Hawkesbury Westmead, New South Wales 2145, Australia
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Camperdown, New South Wales 2050, Australia
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Renee Smyth
- St Vincent's Clinical Genomics, St Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | - Chloe Stutterd
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Royal Hobart Hospital, Hobart, Tasmania 7001, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - John Waterston
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Centre, Melbourne, Victoria 3004, Australia
| | - Thomas Wellings
- Department of Neurology, John Hunter Hospital, New Lambton Heights, New South Wales 2305, Australia
| | - Kirsty West
- Genomic Medicine, The Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Christine Wools
- Department of Neurology, Calvary Health Care Bethlehem, Caulfield South Victoria 3162, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Kathy H C Wu
- St Vincent's Clinical Genomics, St Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
- School of Medicine, University of Notre Dame, Darlinghurst, New South Wales 2010, Australia
- Discipline of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - David J Szmulewicz
- Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia
- Bionics Institute, East Melbourne, Victoria 3002, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia;
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
9
|
Pilz RA, Skowronek D, Bonde LD, Kałużewski T, Schamuhn OJ, Busch R, Gach A, Rath M, Steinhagen-Thiessen E, Felbor U. Oxford Nanopore long-read sequencing with CRISPR/Cas9-mediated target selection for accurate characterization of copy number variants in the LDLR gene. Eur J Med Genet 2025; 74:105003. [PMID: 39993709 DOI: 10.1016/j.ejmg.2025.105003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/06/2025] [Accepted: 02/22/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION Familial hypercholesterolemia (FH) affects around 1 in 250 people. Most FH cases are caused by pathogenic LDLR variants, with copy number variations (CNVs) accounting for about 10 %. However, short-read gene panel sequencing and multiplex ligation-dependent probe amplification (MLPA) are limited in the specification of CNV breakpoints and the identification of complex structural variants (SVs). MATERIALS AND METHODS We designed crRNAs for Cas9-mediated target selection of LDLR and performed long-read sequencing (LRS) on an Oxford Nanopore MinION device using high-molecular-weight (HMW) DNA or DNA from standard purification. After establishing the LRS approach, we characterized two known LDLR CNVs and tested two individuals with strong clinical evidence of FH but no pathogenic variant in short-read gene panel sequencing. RESULTS Complete coverage of LDLR was achieved for both HMW DNA and DNA from standard purification. LRS allowed us to specify CNV breakpoints and showed that the known LDLR deletion is 19.2 kb in size encompassing exons 1-2 and the 5'-untranslated and promoter regions. Furthermore, LRS verified the in tandem localization of a large LDLR duplication covering exons 4-8. Both CNVs were classified as loss-of-function. Moreover, breakpoint information enabled confirmatory analysis by PCR and Sanger sequencing for both CNVs. No SVs were detected in two apparently mutation-negative FH probands using our approach. CONCLUSIONS Nanopore LRS with CRISPR/Cas9-mediated target selection allows for accurate characterization of CNVs and can therefore serve as a complementary method to short-read sequencing-based FH diagnostics by facilitating variant interpretation and enabling cost-effective PCR-based variant confirmation in subsequent familial analyses.
Collapse
Affiliation(s)
- Robin A Pilz
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany.
| | - Dariush Skowronek
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany.
| | - Loisa D Bonde
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany.
| | - Tadeusz Kałużewski
- Department of Genetics, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland.
| | - Ole J Schamuhn
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany.
| | - Raila Busch
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.
| | - Agnieszka Gach
- Department of Genetics, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland.
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| | - Elisabeth Steinhagen-Thiessen
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Berlin, Germany; Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, Rostock, Germany.
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
10
|
Akiba K, Matsubara K, Hattori A, Fukami M. Intragenic duplication of PHEX in a girl with X-linked hypophosphatemia: a case report with review of literature. Endocr J 2025; 72:413-419. [PMID: 39710377 PMCID: PMC11997267 DOI: 10.1507/endocrj.ej24-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Over 70 intragenic copy-number variations (CNVs) of PHEX have been identified in patients with X-linked hypophosphatemia (XLH). However, the underlying mechanism of these CNVs has been poorly investigated. Furthermore, although PHEX undergoes X chromosome inactivation (XCI), the association between XLH in women with heterozygous PHEX variants and skewed XCI remains unknown. In this study, we determined the precise genomic structure and the XCI status of a girl with XLH who showed short stature and bowing of the legs at 2 years old. Laboratory tests revealed low levels of serum phosphate and elevated levels of alkaline phosphatase and fibroblast growth factor 23. Multiplex ligation-dependent probe amplification and targeted long-read sequencing revealed that she carried a 24.6-kb intragenic duplication of PHEX. The duplication was tandemly aligned in a head-to-tail orientation. The duplication breakpoints shared a 2-bp microhomology, indicating that this CNV resulted from a replication-based error. Trio sequencing results showed that the duplication was a de novo CNV that occurred on the paternally-derived allele. DNA methylation analysis demonstrated random XCI. A literature review of 12 previously reported cases of intragenic CNVs of PHEX revealed that the deletions/duplications can be ascribed to replication-based errors. Our findings and those of previous studies indicate that XLH-causative CNVs in PHEX predominantly arise from replication-based errors. Thus, the genomic region surrounding PHEX may be vulnerable to replication-based errors during gametogenesis or early embryogenesis. Our study provides supporting evidence that heterozygous PHEX variants can lead to XLH in women with random XCI.
Collapse
Affiliation(s)
- Kazuhisa Akiba
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo 183-8561, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
11
|
Javadzadeh S, Adamson A, Park J, Jo SY, Ding YC, Bakhtiari M, Bansal V, Neuhausen SL, Bafna V. Analysis of targeted and whole genome sequencing of PacBio HiFi reads for a comprehensive genotyping of gene-proximal and phenotype-associated Variable Number Tandem Repeats. PLoS Comput Biol 2025; 21:e1012885. [PMID: 40193344 PMCID: PMC11975116 DOI: 10.1371/journal.pcbi.1012885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Variable Number Tandem repeats (VNTRs) refer to repeating motifs of size greater than five bp. VNTRs are an important source of genetic variation, and have been associated with multiple Mendelian and complex phenotypes. However, the highly repetitive structures require reads to span the region for accurate genotyping. Pacific Biosciences HiFi sequencing spans large regions and is highly accurate but relatively expensive. Therefore, targeted sequencing approaches coupled with long-read sequencing have been proposed to improve efficiency and throughput. In this paper, we systematically explored the trade-off between targeted and whole genome HiFi sequencing for genotyping VNTRs. We curated a set of 10 , 787 gene-proximal (G-)VNTRs, and 48 phenotype-associated (P-)VNTRs of interest. Illumina reads only spanned 46% of the G-VNTRs and 71% of P-VNTRs, motivating the use of HiFi sequencing. We performed targeted sequencing with hybridization by designing custom probes for 9,999 VNTRs and sequenced 8 samples using HiFi and Illumina sequencing, followed by adVNTR genotyping. We compared these results against HiFi whole genome sequencing (WGS) data from 28 samples in the Human Pangenome Reference Consortium (HPRC). With the targeted approach only 4,091 (41%) G-VNTRs and only 4 (8%) of P-VNTRs were spanned with at least 15 reads. A smaller subset of 3,579 (36%) G-VNTRs had higher median coverage of at least 63 spanning reads. The spanning behavior was consistent across all 8 samples. Among 5,638 VNTRs with low-coverage ( < 15), 67% were located within GC-rich regions ( > 60%). In contrast, the 40X WGS HiFi dataset spanned 98% of all VNTRs and 49 (98%) of P-VNTRs with at least 15 spanning reads, albeit with lower coverage. Spanning reads were sufficient for accurate genotyping in both cases. Our findings demonstrate that targeted sequencing provides consistently high coverage for a small subset of low-GC VNTRs, but WGS is more effective for broad and sufficient sampling of a large number of VNTRs.
Collapse
Affiliation(s)
- Sara Javadzadeh
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Aaron Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Jonghun Park
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Se-Young Jo
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Yuan-Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Mehrdad Bakhtiari
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Vikas Bansal
- School of Medicine, University of California, San Diego La Jolla, California, United States of America
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
12
|
Sinha S, Rabea F, Ramaswamy S, Chekroun I, El Naofal M, Jain R, Alfalasi R, Halabi N, Yaslam S, Sheikh Hassani M, Shenbagam S, Taylor A, Uddin M, Almarri MA, Du Plessis S, Alsheikh-Ali A, Abou Tayoun A. Long read sequencing enhances pathogenic and novel variation discovery in patients with rare diseases. Nat Commun 2025; 16:2500. [PMID: 40087273 PMCID: PMC11909103 DOI: 10.1038/s41467-025-57695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 02/28/2025] [Indexed: 03/17/2025] Open
Abstract
With ongoing improvements in the detection of complex genomic and epigenomic variations, long-read sequencing (LRS) technologies could serve as a unified platform for clinical genetic testing, particularly in rare disease settings, where nearly half of patients remain undiagnosed using existing technologies. Here, we report a simplified funnel-down filtration strategy aimed at enhancing the identification of small and large deleterious variants as well as abnormal episignature disease profiles from whole-genome LRS data. This approach detected all pathogenic single nucleotide, structural, and methylation variants in a positive control set (N = 76) including an independent sample set with known methylation profiles (N = 57). When applied to patients who previously had negative short-read testing (N = 51), additional diagnoses were uncovered in 10% of cases, including a methylation profile at the spinal muscular atrophy locus utilized for diagnosing this life-threatening, yet treatable, condition. Our study illustrates the utility of LRS in clinical genetic testing and the discovery of novel disease variation.
Collapse
Affiliation(s)
- Shruti Sinha
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE.
| | - Fatma Rabea
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | | | - Ikram Chekroun
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Maha El Naofal
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | - Ruchi Jain
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | - Roudha Alfalasi
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | - Nour Halabi
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | - Sawsan Yaslam
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | | | | | - Alan Taylor
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Mohamed A Almarri
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Genome Center, Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, UAE
| | - Stefan Du Plessis
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Alawi Alsheikh-Ali
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Ahmad Abou Tayoun
- Dubai Health Genomic Medicine Center, Dubai Health, Dubai, UAE.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
| |
Collapse
|
13
|
Yoon JG, Lee S, Park S, Jang SS, Cho J, Kim MJ, Kim SY, Kim WJ, Lee JS, Chae JH. Identification of a novel non-coding deletion in Allan-Herndon-Dudley syndrome by long-read HiFi genome sequencing. BMC Med Genomics 2025; 18:41. [PMID: 40033291 PMCID: PMC11877835 DOI: 10.1186/s12920-024-02058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/27/2024] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Allan-Herndon-Dudley syndrome (AHDS) is an X-linked disorder caused by pathogenic variants in the SLC16A2 gene. Although most reported variants are found in protein-coding regions or adjacent junctions, structural variations (SVs) within non-coding regions have not been previously reported. METHODS We investigated two male siblings with severe neurodevelopmental disorders and spasticity, who had remained undiagnosed for over a decade and were negative from exome sequencing, utilizing long-read HiFi genome sequencing. We conducted a comprehensive analysis including short-tandem repeats (STRs) and SVs to identify the genetic cause in this familial case. RESULTS While coding variant and STR analyses yielded negative results, SV analysis revealed a novel hemizygous deletion in intron 1 of the SLC16A2 gene (chrX:74,460,691 - 74,463,566; 2,876 bp), inherited from their carrier mother and shared by the siblings. Determination of the breakpoints indicates that the deletion probably resulted from Alu/Alu-mediated rearrangements between homologous AluY pairs. The deleted region is predicted to include multiple transcription factor binding sites, such as Stat2, Zic1, Zic2, and FOXD3, which are crucial for the neurodevelopmental process, as well as a regulatory element including an eQTL (rs1263181) that is implicated in the tissue-specific regulation of SLC16A2 expression, notably in skeletal muscle and thyroid tissues. CONCLUSIONS This report, to our knowledge, is the first to describe a non-coding deletion associated with AHDS, demonstrating the potential utility of long-read sequencing for undiagnosed patients. Although interpreting variants in non-coding regions remains challenging, our study highlights this region as a high priority for future investigation and functional studies.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soojin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Se Song Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeso Cho
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Sook Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Nassir N, A Almarri M, Akter H, Hassan Khansaheb H, Uddin KMF, Abou Tayoun A, Du Plessis SS, Haber M, Alsheikh-Ali A, Uddin M. Advancing clinical genomics with Middle Eastern and South Asian pangenomes. Nat Med 2025; 31:725-727. [PMID: 40038508 DOI: 10.1038/s41591-025-03544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Affiliation(s)
- Nasna Nassir
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Mohamed A Almarri
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- Genome Center, Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates
| | - Hosneara Akter
- Genetics and Genomic Medicine Centre (GGMC), NeuroGen Healthcare, Dhaka, Bangladesh
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Hamda Hassan Khansaheb
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - K M Furkan Uddin
- Genetics and Genomic Medicine Centre (GGMC), NeuroGen Healthcare, Dhaka, Bangladesh
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Stefan S Du Plessis
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Marc Haber
- Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Alawi Alsheikh-Ali
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
- Dubai Health, Dubai, United Arab Emirates.
| | - Mohammed Uddin
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
- GenomeArc, Mississauga, Ontario, Canada.
| |
Collapse
|
15
|
Groopman E, Milo Rasouly H. Navigating Genetic Testing in Nephrology: Options and Decision-Making Strategies. Kidney Int Rep 2025; 10:673-695. [PMID: 40225372 PMCID: PMC11993218 DOI: 10.1016/j.ekir.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 04/15/2025] Open
Abstract
Technological advances such as next-generation sequencing (NGS) have enabled high-throughput assessment of the human genome, supporting the usage of genetic testing as a first-line tool across clinical medicine. Although individually rare, genetic causes account for end-stage renal disease in 10% to 15% of adults and 70% of children, and in many of these individuals, genetic testing can identify a specific etiology and meaningfully impact management. However, with numerous options for genetic testing available, nephrologists may feel uncomfortable integrating genetics into their clinical practice. Here, we aim to demystify the process of genetic test selection and highlight the opportunities for interdisciplinary collaboration between nephrologists and genetics professionals, thereby supporting precision medicine for patients with kidney disease. We first detail the various clinical genetic testing modalities, highlighting their technical advantages and limitations, and then discuss indications for their usage. Next, we provide a generalized workflow for genetic test selection among individuals with kidney disease and illustrate how this workflow can be applied to genetic test selection across diverse clinical contexts. We then discuss key areas related to the usage of genetic testing in clinical nephrology that merit further research and approaches to investigate them.
Collapse
Affiliation(s)
- Emily Groopman
- Pediatrics and Medical Genetics Combined Residency Program, Children’s National Hospital, Washington, DC, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
16
|
Hijikata M, Morimoto K, Ito M, Wakabayashi K, Miyabayashi A, Keicho N. Robust detection of pathogenic HYDIN variants that cause primary ciliary dyskinesia using RNA-seq of nasal mucosa. J Med Genet 2025; 62:180-184. [PMID: 39805680 DOI: 10.1136/jmg-2024-110400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Primary ciliary dyskinesia (PCD, OMIM 244400) is a rare genetic disorder that affects motile cilia and is characterised by impaired mucociliary clearance of the airway epithelium, which results in chronic upper and lower airway infections. While short-read next-generation sequencing technology has been used for the genetic testing of PCD, its effectiveness is limited in identifying variants in the HYDIN gene because of the nearly identical pseudogene HYDIN2 As we confirmed that the HYDIN2 gene was not expressed in airway cells, we obtained nasal mucosa biopsy specimens for total RNA sequencing (RNA-seq) with library enrichment using exome oligos. Among the 34 nasal samples from patients suspected of having PCD, three aberrant splicing patterns in HYDIN were identified in two samples. Variant calls from RNA-seq combined with long-read amplicon sequencing of genomic DNA detected four pathogenic variants exclusively in the HYDIN gene. Therefore, RNA-seq in combination with long-read sequencing significantly facilitates the accurate genetic diagnosis of PCD caused by HYDIN variants.
Collapse
Affiliation(s)
- Minako Hijikata
- Department of Pathophysiology and Host Defense, Japan Anti-Tuberculosis Association Research Institute of Tuberculosis, Kiyose, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Kiyose, Tokyo, Japan
| | - Masashi Ito
- Respiratory Disease Center, Fukujuji Hospital, Kiyose, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, Japan Anti-Tuberculosis Association Research Institute of Tuberculosis, Kiyose, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, Japan Anti-Tuberculosis Association Research Institute of Tuberculosis, Kiyose, Tokyo, Japan
| | - Naoto Keicho
- Japan Anti-Tuberculosis Association Research Institute of Tuberculosis, Tokyo, Japan
| |
Collapse
|
17
|
Negi S, Stenton SL, Berger SI, Canigiula P, McNulty B, Violich I, Gardner J, Hillaker T, O'Rourke SM, O'Leary MC, Carbonell E, Austin-Tse C, Lemire G, Serrano J, Mangilog B, VanNoy G, Kolmogorov M, Vilain E, O'Donnell-Luria A, Délot E, Miga KH, Monlong J, Paten B. Advancing long-read nanopore genome assembly and accurate variant calling for rare disease detection. Am J Hum Genet 2025; 112:428-449. [PMID: 39862869 PMCID: PMC11866955 DOI: 10.1016/j.ajhg.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
More than 50% of families with suspected rare monogenic diseases remain unsolved after whole-genome analysis by short-read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare-disease cohort of 98 samples from 41 families, using nanopore sequencing, achieving per sample ∼36× average coverage and 32-kb read N50 from a single flow cell. Our Napu pipeline generated assemblies, phased variants, and methylation calls. LRS covered, on average, coding exons in ∼280 genes and ∼5 known Mendelian disease-associated genes that were not covered by SRS. In comparison to SRS, LRS detected additional rare, functionally annotated variants, including structural variants (SVs) and tandem repeats, and completely phased 87% of protein-coding genes. LRS detected additional de novo variants and could be used to distinguish postzygotic mosaic variants from prezygotic de novos. Diagnostic variants were established by LRS in 11 probands, with diverse underlying genetic causes including de novo and compound heterozygous variants, large-scale SVs, and epigenetic modifications. Our study demonstrates LRS's potential to enhance diagnostic yield for rare monogenic diseases, implying utility in future clinical genomics workflows.
Collapse
Affiliation(s)
- Shloka Negi
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sarah L Stenton
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seth I Berger
- Children's National Research Institute, Washington, DC, USA
| | | | - Brandy McNulty
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ivo Violich
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Joshua Gardner
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Todd Hillaker
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sara M O'Rourke
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Melanie C O'Leary
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth Carbonell
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina Austin-Tse
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabrielle Lemire
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jillian Serrano
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Mangilog
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace VanNoy
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, USA
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emmanuèle Délot
- Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, USA
| | - Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jean Monlong
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
18
|
Lau NKC, Tong TTY, Chong YK, Ching CK. Solving a diagnostic challenge with nanopore long-read sequencing: a novel Alu element exonic insertion with false positive MLPA finding in SLC25A13 for citrin deficiency. Pathology 2025; 57:116-120. [PMID: 39472270 DOI: 10.1016/j.pathol.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 01/11/2025]
Affiliation(s)
- Nike Kwai Cheung Lau
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China.
| | - Tammy Tsz Yan Tong
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Yeow Kuan Chong
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Chor Kwan Ching
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| |
Collapse
|
19
|
Beaman MM, Yin W, Smith AJ, Sears PR, Leigh MW, Ferkol TW, Kearney B, Olivier KN, Kimple AJ, Clarke S, Huggins E, Nading E, Jung SH, Iyengar AK, Zou X, Dang H, Barrera A, Majoros WH, Rehder CW, Reddy TE, Ostrowski LE, Allen AS, Knowles MR, Zariwala MA, Crawford GE. Promoter Deletion Leading to Allele Specific Expression in a Genetically Unsolved Case of Primary Ciliary Dyskinesia. Am J Med Genet A 2025; 197:e63880. [PMID: 39364610 PMCID: PMC11698635 DOI: 10.1002/ajmg.a.63880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Variation in the non-coding genome represents an understudied mechanism of disease and it remains challenging to predict if single nucleotide variants, small insertions and deletions, or structural variants in non-coding genomic regions will be detrimental. Our approach using complementary RNA-seq and targeted long-read DNA sequencing can prioritize identification of non-coding variants that lead to disease via alteration of gene splicing or expression. We have identified a patient with primary ciliary dyskinesia with a pathogenic coding variant on one allele of the SPAG1 gene, while the second allele appears normal by whole exome sequencing despite an autosomal recessive inheritance pattern. RNA sequencing revealed reduced SPAG1 transcript levels and exclusive allele specific expression of the known pathogenic allele, suggesting the presence of a non-coding variant on the second allele that impacts transcription. Targeted long-read DNA sequencing identified a heterozygous 3 kilobase deletion of the 5' untranslated region of SPAG1, overlapping the promoter and first non-coding exon. This non-coding deletion was missed by whole exome sequencing and gene-specific deletion/duplication analysis, highlighting the importance of investigating the non-coding genome in patients with "missing" disease-causing variation. This paradigm demonstrates the utility of both RNA and long-read DNA sequencing in identifying pathogenic non-coding variants in patients with unexplained genetic disease.
Collapse
Affiliation(s)
- M. Makenzie Beaman
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710 USA
- Medical Scientist Training Program, Duke University, Durham, NC 27710 USA
- University Program in Genetics & Genomics, Duke University, Durham, NC 27710 USA
| | - Weining Yin
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Amanda J. Smith
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Patrick R. Sears
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Margaret W. Leigh
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Thomas W. Ferkol
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Brendan Kearney
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - Kenneth N. Olivier
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Adam J. Kimple
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Otolaryngology/Head & Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Shannon Clarke
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - Erin Huggins
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710 USA
| | - Erica Nading
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710 USA
| | - Seung-Hye Jung
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710 USA
| | - Apoorva K. Iyengar
- University Program in Genetics & Genomics, Duke University, Durham, NC 27710 USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - Xue Zou
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
- Program in Computational Biology & Bioinformatics, Duke University, Durham, NC 27710 USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Alejandro Barrera
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - William H. Majoros
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | | | - Timothy E. Reddy
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - Lawrence E. Ostrowski
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Andrew S. Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710 USA
- Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27710 USA
| | - Michael R. Knowles
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Maimoona A. Zariwala
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- These authors contributed equally
| | - Gregory E. Crawford
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27710 USA
- These authors contributed equally
| |
Collapse
|
20
|
Zhu Z, Lu S, Wang H, Wang F, Xu W, Zhu Y, Xue J, Yang L. Innovations in Transgene Integration Analysis: A Comprehensive Review of Enrichment and Sequencing Strategies in Biotechnology. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2716-2735. [PMID: 39760503 DOI: 10.1021/acsami.4c14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Understanding the integration of transgene DNA (T-DNA) in transgenic crops, animals, and clinical applications is paramount for ensuring the stability and expression of inserted genes, which directly influence desired traits and therapeutic outcomes. Analyzing T-DNA integration patterns is essential for identifying potential unintended effects and evaluating the safety and environmental implications of genetically modified organisms (GMOs). This knowledge is crucial for regulatory compliance and fostering public trust in biotechnology by demonstrating transparency in genetic modifications. This review highlights recent advancements in T-DNA integration analysis, specifically focusing on targeted DNA enrichment and sequencing strategies. We examine key technologies, such as polymerase chain reaction (PCR)-based methods, hybridization capture, RNA/DNA-guided endonuclease-mediated enrichment, and high-throughput resequencing, emphasizing their contributions to enhancing precision and efficiency in transgene integration analysis. We discuss the principles, applications, and recent developments in these techniques, underscoring their critical role in advancing biotechnological products. Additionally, we address the existing challenges and future directions in the field, offering a comprehensive overview of how innovative DNA-targeted enrichment and sequencing strategies are reshaping biotechnology and genomics.
Collapse
Affiliation(s)
- Zaobing Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| | - Shengtao Lu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| | - Hongchun Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Fan Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenting Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yulei Zhu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Jing Xue
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| |
Collapse
|
21
|
Wang Y, Zhu G, Li D, Pan Y, Li R, Zhou T, Mao A, Chen L, Zhu J, Zhu M. High clinical utility of long-read sequencing for precise diagnosis of congenital adrenal hyperplasia in 322 probands. Hum Genomics 2025; 19:3. [PMID: 39810276 PMCID: PMC11731552 DOI: 10.1186/s40246-024-00696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The molecular genetic diagnosis of congenital adrenal hyperplasia (CAH) is very challenging due to the high homology between the CYP21A2 gene and its pseudogene CYP21A1P. METHODOLOGY This study aims to assess the clinical efficacy of targeted long-read sequencing (T-LRS) by comparing it with a control method based on the combined assay (NGS, Multiplex ligation-dependent probe amplification and Sanger sequencing) and to introduce T-LRS as a first-tier diagnostic test for suspected CAH patients to improve the precise diagnosis of CAH. RESULTS A large cohort of 562 participants including 322 probands and 240 family members was enrolled for the perspective (96 probands) and prospective study (226 probands). The comparison analysis of T-LRS and control method have been performed. In the perspective study, 96 probands were identified using both the control method and T-LRS. Concordant results were detected in 85.42% (82/96) of probands. T-LRS performed more precise diagnosis in 14.58% (14/96) of probands. Among these, a novel 4141 kb deletion involving CYP21A2 and TNXB was established. A new diagnosis was improved by T-LRS. The duplications were also precisely identified to clarify the misdiagnosis by MLPA. In the prospective study, Variants were identified not only in CYP21A2 but also in HSD3B2 and CYP11B1 in 226 probands. Expand to 322 probands, the actual frequency of duplication haplotype (1.55%) could be calculated due to the accurate genotyping. Moreover, 75.47% of alleles with SNVs/indels, 22.20% of alleles with deletion chimeras. CONCLUSION T-LRS has higher resolution and reduced cost than control method with accurate diagnosis. The clinical utility of L-LRS could help to provide precision therapy to CAH patients, advance the life-long management of this complex disease and promote our understanding of CAH.
Collapse
Affiliation(s)
- Yunpeng Wang
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Gaohui Zhu
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Danhua Li
- Berry Genomics Corporation, Beijing, 102200, China
| | - Yu Pan
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Li
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Zhou
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, 102200, China
| | - Libao Chen
- Berry Genomics Corporation, Beijing, 102200, China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China.
| | - Min Zhu
- Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Xu R, Zhang M, Yang X, Tian W, Li C. Decoding complexity: The role of long-read sequencing in unraveling genetic disease etiologies. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108529. [PMID: 39788369 DOI: 10.1016/j.mrrev.2024.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
In recent years, next-generation high-throughput sequencing technology has been widely used in clinical practice for the identification and diagnosis of Mendelian diseases as an auxiliary detection method. Nevertheless, due to the limitations in read length and poor coverage of complex genomic regions, the etiology of many genetic diseases is unclear. Long-read sequencing (LRS) addresses these limitations of next-generation sequencing. LRS is an effective tool for the clinical study of the etiology of complex genetic diseases. In this review, we summarized the current research on the application of LRS in diseases across various systems. We also reported the improvements in the diagnostic rate and common variant types of LRS in different studies, providing a foundation for the discovery of new disease mechanisms, which is anticipated to play a crucial role in future research on genetic diseases.
Collapse
Affiliation(s)
- Ran Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Mengmeng Zhang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| | - Changyan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Basic Medical Sciences, An Hui Medical University, 230032, Hefei, China; School of Life Sciences, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding, Hebei 071000, China.
| |
Collapse
|
23
|
Mostovoy Y, Boone PM, Huang Y, Garimella KV, Tan KT, Russell BE, Salani M, de Esch CEF, Lemanski J, Curall B, Hauenstein J, Lucente D, Bowers T, DeSmet T, Gabriel S, Morton CC, Meyerson M, Hastie AR, Gusella J, Quintero-Rivera F, Brand H, Talkowski ME. Resolution of ring chromosomes, Robertsonian translocations, and complex structural variants from long-read sequencing and telomere-to-telomere assembly. Am J Hum Genet 2024; 111:2693-2706. [PMID: 39520989 PMCID: PMC11639088 DOI: 10.1016/j.ajhg.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Delineation of structural variants (SVs) at sequence resolution in highly repetitive genomic regions has long been intractable. The sequence properties, origins, and functional effects of classes of genomic rearrangements such as ring chromosomes and Robertsonian translocations thus remain unknown. To resolve these complex structures, we leveraged several recent milestones in the field, including (1) the emergence of long-read sequencing, (2) the gapless telomere-to-telomere (T2T) assembly, and (3) a tool (BigClipper) to discover chromosomal rearrangements from long reads. We applied these technologies across 13 cases with ring chromosomes, Robertsonian translocations, and complex SVs that were unresolved by short reads, followed by validation using optical genome mapping (OGM). Our analyses resolved 10 of 13 cases, including a Robertsonian translocation and all ring chromosomes. Multiple breakpoints were localized to genomic regions previously recalcitrant to sequencing such as acrocentric p-arms, ribosomal DNA arrays, and telomeric repeats, and involved complex structures such as a deletion-inversion and interchromosomal dispersed duplications. We further performed methylation profiling from long-read data to discover phased differential methylation in a gene promoter proximal to a ring fusion, suggesting a long-range position effect (LRPE) with heterochromatin spreading. Breakpoint sequences suggested mechanisms of SV formation such as microhomology-mediated and non-homologous end-joining, as well as non-allelic homologous recombination. These methods provide some of the first glimpses into the sequence resolution of Robertsonian translocations and illuminate the structural diversity of ring chromosomes and complex chromosomal rearrangements with implications for genome biology, prediction of LRPEs from integrated multi-omics technologies, and molecular diagnostics in rare disease cases.
Collapse
Affiliation(s)
- Yulia Mostovoy
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Philip M Boone
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yongqing Huang
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kiran V Garimella
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kar-Tong Tan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Bianca E Russell
- Division of Genetics, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Monica Salani
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Celine E F de Esch
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John Lemanski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin Curall
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tera Bowers
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tim DeSmet
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stacey Gabriel
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cynthia C Morton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Manchester Center for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - James Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Fabiola Quintero-Rivera
- Departments of Pathology, Laboratory Medicine, and Pediatrics, Division of Genetic and Genomic Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; Pediatric Surgery Research Laboratory, Department of Pediatrics, Boston, MA 02114, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
24
|
Sinnott-Armstrong N, Fields S, Roth F, Starita LM, Trapnell C, Villen J, Fowler DM, Queitsch C. Understanding genetic variants in context. eLife 2024; 13:e88231. [PMID: 39625477 PMCID: PMC11614383 DOI: 10.7554/elife.88231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
Over the last three decades, human genetics has gone from dissecting high-penetrance Mendelian diseases to discovering the vast and complex genetic etiology of common human diseases. In tackling this complexity, scientists have discovered the importance of numerous genetic processes - most notably functional regulatory elements - in the development and progression of these diseases. Simultaneously, scientists have increasingly used multiplex assays of variant effect to systematically phenotype the cellular consequences of millions of genetic variants. In this article, we argue that the context of genetic variants - at all scales, from other genetic variants and gene regulation to cell biology to organismal environment - are critical components of how we can employ genomics to interpret these variants, and ultimately treat these diseases. We describe approaches to extend existing experimental assays and computational approaches to examine and quantify the importance of this context, including through causal analytic approaches. Having a unified understanding of the molecular, physiological, and environmental processes governing the interpretation of genetic variants is sorely needed for the field, and this perspective argues for feasible approaches by which the combined interpretation of cellular, animal, and epidemiological data can yield that knowledge.
Collapse
Affiliation(s)
- Nasa Sinnott-Armstrong
- Herbold Computational Biology Program, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Stanley Fields
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Department of Medicine, University of WashingtonSeattleUnited States
| | - Frederick Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of TorontoTorontoCanada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai HospitalTorontoCanada
- Department of Computational and Systems Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Lea M Starita
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Cole Trapnell
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Judit Villen
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| | - Douglas M Fowler
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
- Department of Bioengineering, University of WashingtonSeattleUnited States
| | - Christine Queitsch
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman Baty Institute for Precision MedicineSeattleUnited States
| |
Collapse
|
25
|
Mori T, Fujimaru T, Liu C, Patterson K, Yamamoto K, Suzuki T, Chiga M, Sekine A, Ubara Y, Miller DE, Zalusky MP, Mandai S, Ando F, Mori Y, Kikuchi H, Susa K, Chong JX, Bamshad MJ, Tan YQ, Zhang F, Uchida S, Sohara E. CFAP47 is Implicated in X-Linked Polycystic Kidney Disease. Kidney Int Rep 2024; 9:3580-3591. [PMID: 39698362 PMCID: PMC11652189 DOI: 10.1016/j.ekir.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Autosomal dominant polycystic kidney disease (ADPKD) is a well-described condition in which approximately 80% of all cases have a genetic explanation; and among sporadic cases without a family history, the genetic bases remain unclear in approximately 30% of cases. This study aimed to identify genes associated with polycystic kidney disease (PKD) in patients with sporadic cystic kidney disease in which a clear genetic change was not identified in established genes. Methods A next-generation sequencing panel analyzed known genes related to kidney cysts in 118 sporadic cases, followed by whole-genome sequencing (WGS) on 47 unrelated individuals without identified candidate variants. Immunohistology examination was then conducted on both human kidney tissue and kidneys from CFAP47-/Y mice. Results Three male patients were found to have rare missense variants in the X-linked gene cilia and flagella-associated protein 47 (CFAP47), none of whom had a family history of the condition. CFAP47 was expressed in primary cilia of human kidney tubules, and knockout (KO) mice exhibited vacuolation of tubular cells and tubular dilation, providing evidence that CFAP47 is a causative gene involved in cyst formation. Conclusion This discovery of CFAP47 as a newly identified gene associated with PKD, displaying X-linked inheritance, emphasizes the need for further cases to understand the role of CFAP47 in PKD.
Collapse
Affiliation(s)
- Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takuya Fujimaru
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Chunyu Liu
- Soong Ching Ling Institute of Maternal and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
| | - Karynne Patterson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takefumi Suzuki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Motoko Chiga
- Clinical Laboratory, Institute of Science Tokyo Hospital, Tokyo, Japan
| | - Akinari Sekine
- Department of Nephrology and Rheumatology, Toranomon Hospital, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Yoshifumi Ubara
- Department of Nephrology and Rheumatology, Toranomon Hospital, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Danny E. Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Miranda P.G. Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Hiroaki Kikuchi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Jessica X. Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Feng Zhang
- Soong Ching Ling Institute of Maternal and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Jiao K, Zhang J, Wang N, Gu X, Chang X, Xia X, Zhu B, Gao M, Cheng N, Zhao C, Xi J, Zhu W. Human induced pluripotent stem cell line (FDHSi005-A) derived from a patient with a deep intronic variant in the GNE gene. Stem Cell Res 2024; 81:103562. [PMID: 39303320 DOI: 10.1016/j.scr.2024.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
GlcNAc2-epimerase myopathy is a rare autosomal recessive myopathy characterized by distal involvement in the lower extremities. Our study reprogrammed human-induced pluripotent stem cells from peripheral blood mononuclear cells of a patient with GNE gene deep intronic variant c.862 + 870C>T and c.478C>T compound heterozygous mutations that co-segregated with the disease. The generated iPSCs express pluripotent cell markers with no mycoplasma contamination. Additionally, these iPSCs demonstrated pluripotency, the capacity to differentiate into the three germ layers, and maintained normal karyotypes. Importantly, we identified that these iPSCs possess the same specific mutations as the patient, making them a robust model for studying GNE myopathy and developing potential therapeutic interventions.
Collapse
Affiliation(s)
- Kexin Jiao
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jialong Zhang
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ningning Wang
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xingyu Gu
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuechun Chang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Xingyu Xia
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bochen Zhu
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingshi Gao
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nachuan Cheng
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital Fudan University, No.12 Middle Wulumuqi Road, Shanghai, China; National Center for Neurological Disorders (NCND), Shanghai, China; Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Zemet R, Van den Veyver IB. Impact of prenatal genomics on clinical genetics practice. Best Pract Res Clin Obstet Gynaecol 2024; 97:102545. [PMID: 39265228 DOI: 10.1016/j.bpobgyn.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Genetic testing for prenatal diagnosis in the pre-genomic era primarily focused on detecting common fetal aneuploidies, using methods that combine maternal factors and imaging findings. The genomic era, ushered in by the emergence of new technologies like chromosomal microarray analysis and next-generation sequencing, has transformed prenatal diagnosis. These new tools enable screening and testing for a broad spectrum of genetic conditions, from chromosomal to monogenic disorders, and significantly enhance diagnostic precision and efficacy. This chapter reviews the transition from traditional karyotyping to comprehensive sequencing-based genomic analyses. We discuss both the clinical utility and the challenges of integrating prenatal exome and genome sequencing into prenatal care and underscore the need for ethical frameworks, improved prenatal phenotypic characterization, and global collaboration to further advance the field.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Division of Prenatal and Reproductive Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
28
|
Ghukasyan L, Khachatryan G, Sirunyan T, Minasyan A, Hakobyan S, Chavushyan A, Hayrapetyan V, Ghazaryan H, Martirosyan G, Mkrtchyan G, Vardanyan V, Mukuchyan V, Davidyants A, Zakharyan R, Arakelyan A. Genewise detection of variants in MEFV gene using nanopore sequencing. Front Genet 2024; 15:1493295. [PMID: 39678383 PMCID: PMC11638185 DOI: 10.3389/fgene.2024.1493295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Familial Mediterranean Fever (FMF) is a genetic disorder with complex inheritance patterns and genotype-phenotype associations, and it is highly prevalent in Armenia. FMF typically follows an autosomal recessive inheritance pattern (OMIM: 249100), though it can occasionally display a rare dominant inheritance pattern with variable penetrance (OMIM։134610). The disease is caused by mutations in the MEFV gene, which encodes the pyrin protein. While the 26 most prevalent mutations account for nearly 99% of all FMF cases, more than 60 pathogenic mutations have been identified. In this study, we aimed to develop an affordable nanopore sequencing method for full-length MEFV gene mutation detection to aid in the diagnosis and screening of FMF. We employed a multiplex amplicon sequencing approach, allowing for the processing of up to 12 samples on both Flow cells and Flongle flow cells. The results demonstrated near-complete concordance between nanopore variant calling and qPCR genotypes. Moreover, nanopore sequencing identified additional variants, which were confirmed by whole exome sequencing. Additionally, intronic and UTR variants were detected. Our findings demonstrate the feasibility of full-gene nanopore sequencing for detecting FMF-associated pathogenic variants. The method is cost-effective, with costs comparable to those of the qPCR test, making it particularly suitable for settings with limited laboratory infrastructure. Further clinical validation using larger sample cohorts will be necessary.
Collapse
Affiliation(s)
- Lilit Ghukasyan
- Laboratory of Human Genetics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Gisane Khachatryan
- Laboratory of Human Genetics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Department of Bioengineering, Bioinformatics and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | - Tamara Sirunyan
- Laboratory of Human Genetics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Department of Bioengineering, Bioinformatics and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | - Arpine Minasyan
- Laboratory of Human Genetics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Siras Hakobyan
- Research Group of Bioinformatics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Armenian Bioinformatics Institute, Yerevan, Armenia
| | - Andranik Chavushyan
- Laboratory of Human Genetics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Varduhi Hayrapetyan
- Laboratory of Human Genetics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Department of Bioengineering, Bioinformatics and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | - Hovsep Ghazaryan
- Laboratory of Human Genetics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Gevorg Martirosyan
- Laboratory of Human Genetics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Gohar Mkrtchyan
- Laboratory of Human Genetics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | - Valentina Vardanyan
- Department of Rheumatology, Yerevan State Medical University after Mkhitar Heratsi (YSMU), Yerevan, Armenia
- Department of Rheumatology, “Mikaelyan” Institute of Surgery, Yerevan, Armenia
| | - Vahan Mukuchyan
- Department of Internal Medicine and Rheumatology, Nairi Medical Center, Yerevan, Armenia
| | | | - Roksana Zakharyan
- Laboratory of Human Genetics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Department of Bioengineering, Bioinformatics and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | - Arsen Arakelyan
- Laboratory of Human Genetics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Department of Bioengineering, Bioinformatics and Molecular Biology, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
- Research Group of Bioinformatics, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| |
Collapse
|
29
|
De Clercq G, Vantomme L, Dewaele B, Callewaert B, Vanakker O, Janssens S, Loeys B, Strazisar M, De Coster W, Vermeesch JR, Dheedene A, Menten B. Full characterization of unresolved structural variation through long-read sequencing and optical genome mapping. Sci Rep 2024; 14:29142. [PMID: 39587234 PMCID: PMC11589705 DOI: 10.1038/s41598-024-80068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Structural variants (SVs) are important contributors to human disease. Their characterization remains however difficult due to their size and association with repetitive regions. Long-read sequencing (LRS) and optical genome mapping (OGM) can aid as their molecules span multiple kilobases and capture SVs in full. In this study, we selected six individuals who presented with unresolved SVs. We applied LRS onto all individuals and OGM to a subset of three complex cases. LRS detected and fully resolved the interrogated SV in all samples. This enabled a precise molecular diagnosis in two individuals. Overall, LRS identified 100% of the junctions at single-basepair level, providing valuable insights into their formation mechanisms without need for additional data sources. Application of OGM added straightforward variant phasing, aiding in the unravelment of complex rearrangements. These results highlight the potential of LRS and OGM as follow-up molecular tests for complete SV characterization. We show that they can assess clinically relevant structural variation at unprecedented resolution. Additionally, they detect (complex) cryptic rearrangements missed by conventional methods. This ultimately leads to an increased diagnostic yield, emphasizing their added benefit in a diagnostic setting. To aid their rapid adoption, we provide detailed laboratory and bioinformatics workflows in this manuscript.
Collapse
Affiliation(s)
- Griet De Clercq
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Lies Vantomme
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Barbara Dewaele
- Center for Human Genetics Leuven, University Hospital Leuven, Leuven, Belgium
| | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Olivier Vanakker
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Sandra Janssens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Bart Loeys
- Center for Medical Genetics Antwerp, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wouter De Coster
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Joris Robert Vermeesch
- Center for Human Genetics Leuven, University Hospital Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
30
|
Gulsuner S, AbuRayyan A, Mandell JB, Lee MK, Bernier GV, Norquist BM, Pierce SB, King MC, Walsh T. Long-read DNA and cDNA sequencing identify cancer-predisposing deep intronic variation in tumor-suppressor genes. Genome Res 2024; 34:1825-1831. [PMID: 39271294 PMCID: PMC11610570 DOI: 10.1101/gr.279158.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/20/2024] [Indexed: 09/15/2024]
Abstract
The vast majority of deeply intronic genomic variants are benign, but some extremely rare or private deep intronic variants lead to exonification of intronic sequence with abnormal transcriptional consequences. Damaging variants of this class are likely underreported as causes of disease for several reasons: Most clinical DNA and RNA testing does not include full intronic sequences; many of these variants lie in complex repetitive regions that cannot be aligned from short-read whole-genome sequence; and, until recently, consequences of deep intronic variants were not accurately predicted by in silico tools. We evaluated the frequency and consequences of rare deep intronic variants for families severely affected with breast, ovarian, pancreatic, and/or metastatic prostate cancer, but with no causal variant identified by any previous genomic or cDNA-based approach. For 10 tumor-suppressor genes, we used multiplexed adaptive sampling long-read DNA sequencing and cDNA sequencing, based on patient-derived DNA and RNA, to systematically evaluate deep intronic variation. We identified all variants across the full genomic loci of targeted genes, applied the in silico tools SpliceAI and Pangolin to predict variants of functional consequence, and then carried out long-read cDNA sequencing to identify aberrant transcripts. For eight of the 120 (6%) previously unsolved families, rare deep intronic variants in BRCA1, PALB2, and ATM create intronic pseudoexons that are spliced into transcripts, leading to premature truncations. These results suggest that long-read DNA and cDNA sequencing can be integrated into variant discovery, with strategies for accurately characterizing pathogenic variants.
Collapse
Affiliation(s)
- Suleyman Gulsuner
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| | - Amal AbuRayyan
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| | - Jessica B Mandell
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| | - Ming K Lee
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| | - Greta V Bernier
- UW Medicine-Valley Medical Center, Renton, Washington 98055, USA
| | - Barbara M Norquist
- Division of Gynecologic Oncology, University of Washington, Seattle, Washington 98195, USA
| | - Sarah B Pierce
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| | - Mary-Claire King
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA;
| | - Tom Walsh
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, Washington 98195-7720, USA
| |
Collapse
|
31
|
Hiatt SM, Lawlor JMJ, Handley LH, Latner DR, Bonnstetter ZT, Finnila CR, Thompson ML, Boston LB, Williams M, Rodriguez Nunez I, Jenkins J, Kelley WV, Bebin EM, Lopez MA, Hurst ACE, Korf BR, Schmutz J, Grimwood J, Cooper GM. Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders. Genome Res 2024; 34:1747-1762. [PMID: 39299904 PMCID: PMC11610584 DOI: 10.1101/gr.279227.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Variant detection from long-read genome sequencing (lrGS) has proven to be more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare diseases that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, nine of which (8/96, ∼9.4%) harbored pathogenic or likely pathogenic variants. Nine probands (∼9.4%) had variants that were accurately called in both srGS and lrGS and represent changes to clinical interpretation, mostly from recently published gene-disease associations. Seven cases included variants that were only correctly interpreted in lrGS, including copy-number variants (CNVs), an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality control and filtration. Thus, while reanalysis of older srGS data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS data sets grow allowing for better variant-frequency annotation, the additional lrGS-only rare disease yield will grow over time.
Collapse
Affiliation(s)
- Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA;
| | - James M J Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Lori H Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Donald R Latner
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Candice R Finnila
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Lori Beth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Melissa Williams
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Whitley V Kelley
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Michael A Lopez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA;
| |
Collapse
|
32
|
Gustafson JA, Gibson SB, Damaraju N, Zalusky MPG, Hoekzema K, Twesigomwe D, Yang L, Snead AA, Richmond PA, De Coster W, Olson ND, Guarracino A, Li Q, Miller AL, Goffena J, Anderson ZB, Storz SHR, Ward SA, Sinha M, Gonzaga-Jauregui C, Clarke WE, Basile AO, Corvelo A, Reeves C, Helland A, Musunuri RL, Revsine M, Patterson KE, Paschal CR, Zakarian C, Goodwin S, Jensen TD, Robb E, McCombie WR, Sedlazeck FJ, Zook JM, Montgomery SB, Garrison E, Kolmogorov M, Schatz MC, McLaughlin RN, Dashnow H, Zody MC, Loose M, Jain M, Eichler EE, Miller DE. High-coverage nanopore sequencing of samples from the 1000 Genomes Project to build a comprehensive catalog of human genetic variation. Genome Res 2024; 34:2061-2073. [PMID: 39358015 DOI: 10.1101/gr.279273.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Fewer than half of individuals with a suspected Mendelian or monogenic condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control data sets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project (1KGP) Oxford Nanopore Technologies Sequencing Consortium aims to generate LRS data from at least 800 of the 1KGP samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37× and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.
Collapse
Affiliation(s)
- Jonas A Gustafson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Sophia B Gibson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Nikhita Damaraju
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
- Institute for Public Health Genetics, University of Washington, Seattle, Washington 98195, USA
| | - Miranda P G Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Lei Yang
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Anthony A Snead
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp 2650, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Nathan D Olson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
- Human Technopole, Milan 20157, Italy
| | - Qiuhui Li
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Angela L Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Joy Goffena
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Zachary B Anderson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Sophie H R Storz
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Sydney A Ward
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Maisha Sinha
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA
| | - Claudia Gonzaga-Jauregui
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Mexico City 76230, Mexico
| | - Wayne E Clarke
- New York Genome Center, New York, New York 10013, USA
- Outlier Informatics Inc., Saskatoon, Saskatchewan S7H 1L4, Canada
| | - Anna O Basile
- New York Genome Center, New York, New York 10013, USA
| | - André Corvelo
- New York Genome Center, New York, New York 10013, USA
| | | | | | | | - Mahler Revsine
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Karynne E Patterson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Cate R Paschal
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington 98195, USA
| | - Christina Zakarian
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Tanner D Jensen
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Esther Robb
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | | | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Computer Science, Rice University, Houston, Texas 77251, USA
| | - Justin M Zook
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Mikhail Kolmogorov
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | - Richard N McLaughlin
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Michael C Zody
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Mexico City 76230, Mexico
| | - Matt Loose
- Deep Seq, School of Life Sciences, University of Nottingham, Nottingham NG7 2TQ, UK
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts 02115, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
33
|
Iyer SV, Goodwin S, McCombie WR. Leveraging the power of long reads for targeted sequencing. Genome Res 2024; 34:1701-1718. [PMID: 39567237 PMCID: PMC11610587 DOI: 10.1101/gr.279168.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/01/2024] [Indexed: 11/22/2024]
Abstract
Long-read sequencing technologies have improved the contiguity and, as a result, the quality of genome assemblies by generating reads long enough to span and resolve complex or repetitive regions of the genome. Several groups have shown the power of long reads in detecting thousands of genomic and epigenomic features that were previously missed by short-read sequencing approaches. While these studies demonstrate how long reads can help resolve repetitive and complex regions of the genome, they also highlight the throughput and coverage requirements needed to accurately resolve variant alleles across large populations using these platforms. At the time of this review, whole-genome long-read sequencing is more expensive than short-read sequencing on the highest throughput short-read instruments; thus, achieving sufficient coverage to detect low-frequency variants (such as somatic variation) in heterogenous samples remains challenging. Targeted sequencing, on the other hand, provides the depth necessary to detect these low-frequency variants in heterogeneous populations. Here, we review currently used and recently developed targeted sequencing strategies that leverage existing long-read technologies to increase the resolution with which we can look at nucleic acids in a variety of biological contexts.
Collapse
Affiliation(s)
- Shruti V Iyer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
34
|
Nyaga DM, Tsai P, Gebbie C, Phua HH, Yap P, Le Quesne Stabej P, Farrow S, Rong J, Toldi G, Thorstensen E, Stark Z, Lunke S, Gamet K, Van Dyk J, Greenslade M, O'Sullivan JM. Benchmarking nanopore sequencing and rapid genomics feasibility: validation at a quaternary hospital in New Zealand. NPJ Genom Med 2024; 9:57. [PMID: 39516456 PMCID: PMC11549486 DOI: 10.1038/s41525-024-00445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Approximately 200 critically ill infants and children in New Zealand are in high-dependency care, many suspected of having genetic conditions, requiring scalable genomic testing. We adopted an acute care genomics protocol from an accredited laboratory and established a clinical pipeline using Oxford Nanopore Technologies PromethION 2 solo system and Fabric GEM™ software. Benchmarking of the pipeline was performed using Global Alliance for Genomics and Health benchmarking tools and Genome in a Bottle samples (HG002-HG007). Evaluation of single nucleotide variants resulted in a precision and recall of 0.997 and 0.992, respectively. Small indel identification approached a precision of 0.922 and recall of 0.838. Large genomic variations from Coriell Copy Number Variation Reference Panel 1 were reliably detected with ~2 M long reads. Finally, we present results obtained from fourteen trio samples, ten of which were processed in parallel with a clinically accredited short-read rapid genomic testing pipeline (Newborn Genomics Programme; NCT06081075; 2023-10-12).
Collapse
Affiliation(s)
- Denis M Nyaga
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Clare Gebbie
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Hui Hui Phua
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Patrick Yap
- Genetic Health Service New Zealand-Northern Hub, Te Toka Tumai, Auckland, New Zealand
| | - Polona Le Quesne Stabej
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Sophie Farrow
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Jing Rong
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Gergely Toldi
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Starship Child Health, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Eric Thorstensen
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Kimberley Gamet
- Genetic Health Service New Zealand-Northern Hub, Te Toka Tumai, Auckland, New Zealand
| | - Jodi Van Dyk
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Mark Greenslade
- Diagnostic Genetics, Department of Pathology and Laboratory Medicine, Te Toka Tumai, Auckland, New Zealand
| | | |
Collapse
|
35
|
Li L, Sun Y. Circulating tumor DNA methylation detection as biomarker and its application in tumor liquid biopsy: advances and challenges. MedComm (Beijing) 2024; 5:e766. [PMID: 39525954 PMCID: PMC11550092 DOI: 10.1002/mco2.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) methylation, an innovative liquid biopsy biomarker, has emerged as a promising tool in early cancer diagnosis, monitoring, and prognosis prediction. As a noninvasive approach, liquid biopsy overcomes the limitations of traditional tissue biopsy. Among various biomarkers, ctDNA methylation has garnered significant attention due to its high specificity and early detection capability across diverse cancer types. Despite its immense potential, the clinical application of ctDNA methylation faces substantial challenges pertaining to sensitivity, specificity, and standardization. In this review, we begin by introducing the basic biology and common detection techniques of ctDNA methylation. We then explore recent advancements and the challenges faced in the clinical application of ctDNA methylation in liquid biopsies. This includes progress in early screening and diagnosis, identification of clinical molecular subtypes, monitoring of recurrence and minimal residual disease (MRD), prediction of treatment response and prognosis, assessment of tumor burden, and determination of tissue origin. Finally, we discuss the future perspectives and challenges of ctDNA methylation detection in clinical applications. This comprehensive overview underscores the vital role of ctDNA methylation in enhancing cancer diagnostic accuracy, personalizing treatments, and effectively monitoring disease progression, providing valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Lingyu Li
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yingli Sun
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| |
Collapse
|
36
|
Parmar JM, Laing NG, Kennerson ML, Ravenscroft G. Genetics of inherited peripheral neuropathies and the next frontier: looking backwards to progress forwards. J Neurol Neurosurg Psychiatry 2024; 95:992-1001. [PMID: 38744462 PMCID: PMC11503175 DOI: 10.1136/jnnp-2024-333436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Inherited peripheral neuropathies (IPNs) encompass a clinically and genetically heterogeneous group of disorders causing length-dependent degeneration of peripheral autonomic, motor and/or sensory nerves. Despite gold-standard diagnostic testing for pathogenic variants in over 100 known associated genes, many patients with IPN remain genetically unsolved. Providing patients with a diagnosis is critical for reducing their 'diagnostic odyssey', improving clinical care, and for informed genetic counselling. The last decade of massively parallel sequencing technologies has seen a rapid increase in the number of newly described IPN-associated gene variants contributing to IPN pathogenesis. However, the scarcity of additional families and functional data supporting variants in potential novel genes is prolonging patient diagnostic uncertainty and contributing to the missing heritability of IPNs. We review the last decade of IPN disease gene discovery to highlight novel genes, structural variation and short tandem repeat expansions contributing to IPN pathogenesis. From the lessons learnt, we provide our vision for IPN research as we anticipate the future, providing examples of emerging technologies, resources and tools that we propose that will expedite the genetic diagnosis of unsolved IPN families.
Collapse
Affiliation(s)
- Jevin M Parmar
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Preventive Genetics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
37
|
Zhang Y, Bi C, Nadeef S, Maddirevula S, Alqahtani M, Alkuraya FS, Li M. NanoRanger enables rapid single-base-pair resolution of genomic disorders. MED 2024; 5:1307-1325.e3. [PMID: 39047733 DOI: 10.1016/j.medj.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/13/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Delineating base-resolution breakpoints of complex rearrangements is crucial for an accurate clinical understanding of pathogenic variants and for carrier screening within family networks or the broader population. However, despite advances in genetic testing using short-read sequencing (SRS), this task remains costly and challenging. METHODS This study addresses the challenges of resolving missing disease-causing breakpoints in complex genomic disorders with suspected homozygous rearrangements by employing multiple long-read sequencing (LRS) strategies, including a novel and efficient strategy named nanopore-based rapid acquisition of neighboring genomic regions (NanoRanger). NanoRanger does not require large amounts of ultrahigh-molecular-weight DNA and stands out for its ease of use and rapid acquisition of large genomic regions of interest with deep coverage. FINDINGS We describe a cohort of 16 familial cases, each harboring homozygous rearrangements that defied breakpoint determination by SRS and optical genome mapping (OGM). NanoRanger identified the breakpoints with single-base-pair resolution, enabling accurate determination of the carrier status of unaffected family members as well as the founder nature of these genomic lesions and their frequency in the local population. The resolved breakpoints revealed that repetitive DNA, gene regulatory elements, and transcription activity contribute to genome instability in these novel recessive rearrangements. CONCLUSIONS Our data suggest that NanoRanger greatly improves the success rate of resolving base-resolution breakpoints of complex genomic disorders and expands access to LRS for the benefit of patients with Mendelian disorders. FUNDING M.L. is supported by KAUST Baseline Award no. BAS/1/1080-01-01 and KAUST Research Translation Fund Award no. REI/1/4742-01.
Collapse
Affiliation(s)
- Yingzi Zhang
- Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chongwei Bi
- Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Seba Nadeef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| | - Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Bioengineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
38
|
Kumar KR, Cowley MJ, Davis RL. The Next, Next-Generation of Sequencing, Promising to Boost Research and Clinical Practice. Semin Thromb Hemost 2024; 50:1039-1046. [PMID: 38733978 DOI: 10.1055/s-0044-1786756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Affiliation(s)
- Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Concord Clinical School, University of Sydney, Concord, NSW, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Mark J Cowley
- School of Clinical Medicine, UNSW Sydney, Randwick, NSW, Australia
- Children's Cancer Institute, UNSW Sydney, Randwick, NSW, Australia
| | - Ryan L Davis
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Neurogenetics Research Group, Kolling Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| |
Collapse
|
39
|
Engelbrecht E, Rodriguez OL, Watson CT. Addressing Technical Pitfalls in Pursuit of Molecular Factors That Mediate Immunoglobulin Gene Regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:651-662. [PMID: 39007649 PMCID: PMC11333172 DOI: 10.4049/jimmunol.2400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024]
Abstract
The expressed Ab repertoire is a critical determinant of immune-related phenotypes. Ab-encoding transcripts are distinct from other expressed genes because they are transcribed from somatically rearranged gene segments. Human Abs are composed of two identical H and L chain polypeptides derived from genes in IGH locus and one of two L chain loci. The combinatorial diversity that results from Ab gene rearrangement and the pairing of different H and L chains contributes to the immense diversity of the baseline Ab repertoire. During rearrangement, Ab gene selection is mediated by factors that influence chromatin architecture, promoter/enhancer activity, and V(D)J recombination. Interindividual variation in the composition of the Ab repertoire associates with germline variation in IGH, implicating polymorphism in Ab gene regulation. Determining how IGH variants directly mediate gene regulation will require integration of these variants with other functional genomic datasets. In this study, we argue that standard approaches using short reads have limited utility for characterizing regulatory regions in IGH at haplotype resolution. Using simulated and chromatin immunoprecipitation sequencing reads, we define features of IGH that limit use of short reads and a single reference genome, namely 1) the highly duplicated nature of the DNA sequence in IGH and 2) structural polymorphisms that are frequent in the population. We demonstrate that personalized diploid references enhance performance of short-read data for characterizing mappable portions of the locus, while also showing that long-read profiling tools will ultimately be needed to fully resolve functional impacts of IGH germline variation on expressed Ab repertoires.
Collapse
Affiliation(s)
- Eric Engelbrecht
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| |
Collapse
|
40
|
Ohori S, Numabe H, Mitsuhashi S, Tsuchida N, Uchiyama Y, Koshimizu E, Hamanaka K, Misawa K, Miyatake S, Mizuguchi T, Fujita A, Matsumoto N. Complex chromosomal 6q rearrangements revealed by combined long-molecule genomics technologies. Genomics 2024; 116:110894. [PMID: 39019410 DOI: 10.1016/j.ygeno.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/19/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Technologies for detecting structural variation (SV) have advanced with the advent of long-read sequencing, which enables the validation of SV at a nucleotide level. Optical genome mapping (OGM), a technology based on physical mapping, can also provide comprehensive SVs analysis. We applied long-read whole genome sequencing (LRWGS) to accurately reconstruct breakpoint (BP) segments in a patient with complex chromosome 6q rearrangements that remained elusive by conventional karyotyping. Although all BPs were precisely identified by LRWGS, there were two possible ways to construct the BP segments in terms of their orders and orientations. Thus, we also used OGM analysis. Notably, OGM recognized entire inversions exceeding 500 kb in size, which LRWGS could not characterize. Consequently, here we successfully unveil the full genomic structure of this complex chromosomal 6q rearrangement and cryptic SVs through combined long-molecule genomic analyses, showcasing how LRWGS and OGM can complement each other in SV analysis.
Collapse
Affiliation(s)
- Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Genetics, Kitasato University Hospital, Sagamihara 252-0375, Japan
| | - Hironao Numabe
- Department of Pediatrics, Tokyo Metropolitan Kita Medical Rehabilitation Center for the Handicapped, Kita-ku, Tokyo, 114-0033, Japan
| | - Satomi Mitsuhashi
- Department of Neurology, St.Marianna University School of Medicine Hospital, Kawasaki 216-8511, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama 236-0004, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo 103-0027, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Clinical Genetics, Yokohama City University Hospital, Yokohama 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama 236-0004, Japan; Department of Clinical Genetics, Yokohama City University Hospital, Yokohama 236-0004, Japan.
| |
Collapse
|
41
|
Negi S, Stenton SL, Berger SI, McNulty B, Violich I, Gardner J, Hillaker T, O'Rourke SM, O'Leary MC, Carbonell E, Austin-Tse C, Lemire G, Serrano J, Mangilog B, VanNoy G, Kolmogorov M, Vilain E, O'Donnell-Luria A, Délot E, Miga KH, Monlong J, Paten B. Advancing long-read nanopore genome assembly and accurate variant calling for rare disease detection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.22.24312327. [PMID: 39228712 PMCID: PMC11370519 DOI: 10.1101/2024.08.22.24312327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
More than 50% of families with suspected rare monogenic diseases remain unsolved after whole genome analysis by short read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing, and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare disease cohort of 98 samples, including 41 probands and some family members, using nanopore sequencing, achieving per sample ∼36x average coverage and 32 kilobase (kb) read N50 from a single flow cell. Our Napu pipeline generated assemblies, phased variants, and methylation calls. LRS covered, on average, coding exons in ∼280 genes and ∼5 known Mendelian disease genes that were not covered by SRS. In comparison to SRS, LRS detected additional rare, functionally annotated variants, including SVs and tandem repeats, and completely phased 87% of protein-coding genes. LRS detected additional de novo variants, and could be used to distinguish postzygotic mosaic variants from prezygotic de novos . Eleven probands were solved, with diverse underlying genetic causes including de novo and compound heterozygous variants, large-scale SVs, and epigenetic modifications. Our study demonstrates LRS's potential to enhance diagnostic yield for rare monogenic diseases, implying utility in future clinical genomics workflows.
Collapse
|
42
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Allan TJ, Zalusky MPG, Goffena J, Gibson SB, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel MN, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Gupta S, Jones EA, Weisz-Hubshman M, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic utility of DNA methylation analysis in genetically unsolved pediatric epilepsies and CHD2 episignature refinement. Nat Commun 2024; 15:6524. [PMID: 39107278 PMCID: PMC11303402 DOI: 10.1038/s41467-024-50159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Sequence-based genetic testing identifies causative variants in ~ 50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. We interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 582 individuals with genetically unsolved DEEs. We identify rare differentially methylated regions (DMRs) and explanatory episignatures to uncover causative and candidate genetic etiologies in 12 individuals. Using long-read sequencing, we identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and four copy number variants. We also identify pathogenic variants associated with episignatures. Finally, we refine the CHD2 episignature using an 850 K methylation array and bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate variants as 2% (12/582) for unsolved DEE cases.
Collapse
Affiliation(s)
- Christy W LaFlamme
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cassandra Rastin
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Soham Sengupta
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Helen E Pennington
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Mathematics & Statistics, Rhodes College, Memphis, TN, 38112, USA
| | - Sophie J Russ-Hall
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Emily S Bonkowski
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Edith P Almanza Fuerte
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Talia J Allan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Miranda Perez-Galey Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Joy Goffena
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Sophia B Gibson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Denis M Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Nico Lieffering
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Emily V Walker
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Scott R Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, 58100, Israel
| | - Tally Lerman-Sagie
- Fetal Neurology Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, 58100, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kristen L Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Nicolas Chatron
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Leigh Demain
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Genevieve
- Montpellier University, Inserm Unit 1183, Reference Center for Rare Diseases Developmental Anomaly and Malformative Syndrome, Clinical Genetic Department, CHU Montpellier, Montpellier, France
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Damien Sanlaville
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | | | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Genetic Department, Houston, TX, 77030, USA
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, 77030, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
- Florey Institute and Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada.
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
43
|
Knoers NV, van Eerde AM. The Role of Genetic Testing in Adult CKD. J Am Soc Nephrol 2024; 35:1107-1118. [PMID: 39288914 PMCID: PMC11377809 DOI: 10.1681/asn.0000000000000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Mounting evidence indicates that monogenic disorders are the underlying cause in a significant proportion of patients with CKD. In recent years, the diagnostic yield of genetic testing in these patients has increased significantly as a result of revolutionary developments in genetic sequencing techniques and sequencing data analysis. Identification of disease-causing genetic variant(s) in patients with CKD may facilitate prognostication and personalized management, including nephroprotection and decisions around kidney transplantation, and is crucial for genetic counseling and reproductive family planning. A genetic diagnosis in a patient with CKD allows for screening of at-risk family members, which is also important for determining their eligibility as kidney transplant donors. Despite evidence for clinical utility, increased availability, and data supporting the cost-effectiveness of genetic testing in CKD, especially when applied early in the diagnostic process, many nephrologists do not use genetic testing to its full potential because of multiple perceived barriers. Our aim in this article was to empower nephrologists to (further) implement genetic testing as a diagnostic means in their clinical practice, on the basis of the most recent insights and exemplified by patient vignettes. We stress why genetic testing is of significant clinical benefit to many patients with CKD, provide recommendations for which patients to test and which test(s) to order, give guidance about interpretation of genetic testing results, and highlight the necessity for and essential components of pretest and post-test genetic counseling.
Collapse
Affiliation(s)
- Nine V.A.M. Knoers
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
44
|
Kramer M, Goodwin S, Wappel R, Borio M, Offit K, Feldman DR, Stadler ZK, McCombie WR. Exploring the genetic and epigenetic underpinnings of early-onset cancers: Variant prioritization for long read whole genome sequencing from family cancer pedigrees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601096. [PMID: 39005350 PMCID: PMC11244929 DOI: 10.1101/2024.06.27.601096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Despite significant advances in our understanding of genetic cancer susceptibility, known inherited cancer predisposition syndromes explain at most 20% of early-onset cancers. As early-onset cancer prevalence continues to increase, the need to assess previously inaccessible areas of the human genome, harnessing a trio or quad family-based architecture for variant filtration, may reveal further insights into cancer susceptibility. To assess a broader spectrum of variation than can be ascertained by multi-gene panel sequencing, or even whole genome sequencing with short reads, we employed long read whole genome sequencing using an Oxford Nanopore Technology (ONT) PromethION of 3 families containing an early-onset cancer proband using a trio or quad family architecture. Analysis included 2 early-onset colorectal cancer family trios and one quad consisting of two siblings with testicular cancer, all with unaffected parents. Structural variants (SVs), epigenetic profiles and single nucleotide variants (SNVs) were determined for each individual, and a filtering strategy was employed to refine and prioritize candidate variants based on the family architecture. The family architecture enabled us to focus on inapposite variants while filtering variants shared with the unaffected parents, significantly decreasing background variation that can hamper identification of potentially disease causing differences. Candidate d e novo and compound heterozygous variants were identified in this way. Gene expression, in matched neoplastic and pre-neoplastic lesions, was assessed for one trio. Our study demonstrates the feasibility of a streamlined analysis of genomic variants from long read ONT whole genome sequencing and a way to prioritize key variants for further evaluation of pathogenicity, while revealing what may be missing from panel based analyses.
Collapse
|
45
|
Ou J, Wang J, Sun J, Ni M, Meng Q, Ding J, Fan H, Feng S, Huang Y, Li H, Fei J. Analysis of Preimplantation and Clinical Outcomes of Two Cases by Oxford Nanopore Sequencing. Reprod Sci 2024; 31:2123-2134. [PMID: 38347380 DOI: 10.1007/s43032-024-01470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/19/2024] [Indexed: 07/03/2024]
Abstract
It is challenging to distinguish embryos with a balanced translocation karyotype from a normal karyotype by existing conventional genetic testing methods. However, in germ-cell gamete generation, chromosome exchange and separation through cell meiosis form a different proportion of unbalanced gametes. Adverse birth events may occur, such as repeated miscarriages and fetal birth defects. In this study, the exact breakpoints of structural variation (SV) from two balanced translocation carrier families by using Nanopore long reads sequencing technology were obtained, and haplotype analysis and Sanger verified the accuracy of the detection results, confirming the application value of the Nanopore sequencing technology in the detection of balanced translocation before embryo implantation. Nanopore long-read sequencing was performed to find the precise breakpoint of chromosome-balanced translocation carriers. The breakpoints were subsequently verified by designing primers across the breakpoints and Sanger sequencing. Haplotype linkage analysis of SNPs which can be linked by a read block of families around the breakpoint regions was followed. After frozen (-thawed) embryo transfer (FET), prenatal cytogenetic analysis of amniotic fluid cells confirmed the predicted karyotypes from the transferred embryos. The presence of breakpoints was detected in three embryos of patient 1. No breakpoints were detected in either embryo of patient 2. One balanced translocated embryo from patient 1 and one normal euploid embryo from patient 2 were transplanted back into the patients, and amniotic fluid cells were analyzed for the karyotype of fetuses. The results were entirely consistent with the fetal karyotype. And through late follow-up, both patients successfully had a live birth fetus. The breakpoint location of the balanced chromosome translocation can be accurately found by Nanopore sequencing. The haplotype of carriers can be successfully constructed by Nanopore and sanger sequencing confirmed that the results were accurate. This is very advantageous for preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) detection in the families without proband.
Collapse
Affiliation(s)
- Jian Ou
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | | | - Jian Sun
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Mengxia Ni
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - QingXia Meng
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Jie Ding
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Haiyang Fan
- Peking Jabrehoo Med-Tech Co., Ltd, Beijing, China
| | - Shaohua Feng
- Peking Jabrehoo Med-Tech Co., Ltd, Beijing, China
| | - Yining Huang
- Peking Jabrehoo Med-Tech Co., Ltd, Beijing, China
| | - Hong Li
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China.
| | - Jia Fei
- Peking Jabrehoo Med-Tech Co., Ltd, Beijing, China.
| |
Collapse
|
46
|
Haffener PE, Al-Riyami AZ, Al-Zadjali S, Al-Rawahi M, Al Hosni S, Al Marhoobi A, Al Sheriyani A, Leffler EM. Characterization of Blood Group Variants in an Omani Population by Comparison of Whole Genome Sequencing and Serology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599396. [PMID: 38948735 PMCID: PMC11212902 DOI: 10.1101/2024.06.17.599396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Although blood group variation was first described over a century ago, our understanding of the genetic variation affecting antigenic expression on the red blood cell surface in many populations is lacking. This deficit limits the ability to accurately type patients, especially as serological testing is not available for all described blood groups, and targeted genotyping panels may lack rare or population-specific variants. Here, we perform serological assays across 24 antigens and whole genome sequencing on 100 Omanis, a population underrepresented in genomic databases. We inferred blood group phenotypes using the most commonly typed genetic variants. The comparison of serological to inferred phenotypes resulted in an average concordance of 96.9%. Among the 22 discordances, we identify seven known variants in four blood groups that, to our knowledge, have not been previously reported in Omanis. Incorporating these variants for phenotype inference, concordance increases to 98.8%. Additionally, we describe five candidate variants in the Lewis, Lutheran, MNS, and P1 blood groups that may affect antigenic expression, although further functional confirmation is required. Notably, we identify several blood group alleles most common in African populations, likely introduced to Oman by gene flow over the last thousand years. These findings highlight the need to evaluate individual populations and their population history when considering variants to include in genotype panels for blood group typing. This research will inform future work in blood banks and transfusion services.
Collapse
Affiliation(s)
- Paige E. Haffener
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Arwa Z. Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital, University Medical City, Muscat, Oman
| | - Shoaib Al-Zadjali
- Sultan Qaboos Comprehensive Cancer Center, University Medical City, Muscat, Oman
| | - Mohammed Al-Rawahi
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Saif Al Hosni
- Department of Hematology, Sultan Qaboos University Hospital, University Medical City, Muscat, Oman
| | - Ali Al Marhoobi
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Ellen M. Leffler
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
47
|
Jiao K, Cheng N, Huan X, Zhang J, Ding Y, Luan X, Liu L, Wang X, Zhu B, Du K, Fan J, Gao M, Xia X, Wang N, Wang T, Xi J, Luo S, Lu J, Zhao C, Yue D, Zhu W. Pseudoexon activation by deep intronic variation in GNE myopathy with thrombocytopenia. Muscle Nerve 2024; 69:708-718. [PMID: 38558464 DOI: 10.1002/mus.28092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION/AIMS GNE myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. Although over 300 GNE variants have been reported, some patients remain undiagnosed with monoallelic pathogenic variants. This study aims to analyze the entire GNE genomic region to identify novel pathogenic variants. METHODS Patients with clinically compatible GNE myopathy and monoallelic pathogenic variants in the GNE gene were enrolled. The other GNE pathogenic variant was verified using comprehensive methods including exon 2 quantitative polymerase chain reaction and nanopore long-read single-molecule sequencing (LRS). RESULTS A deep intronic GNE variant, c.862+870C>T, was identified in nine patients from eight unrelated families. This variant generates a cryptic splice site, resulting in the activation of a novel pseudoexon between exons 5 and 6. It results in the insertion of an extra 146 nucleotides into the messengerRNA (mRNA), which is predicted to result in a truncated humanGNE1(hGNE1) protein. Peanut agglutinin(PNA) lectin staining of muscle tissues showed reduced sialylation of mucin O-glycans on sarcolemmal glycoproteins. Notably, a third of patients with the c.862+870C>T variant exhibited thrombocytopenia. A common core haplotype harboring the deep intronic GNE variant was found in all these patients. DISCUSSION The transcript with pseudoexon activation potentially affects sialic acid biosynthesis via nonsense-mediated mRNA decay, or resulting in a truncated hGNE1 protein, which interferes with normal enzyme function. LRS is expected to be more frequently incorporated in genetic analysis given its efficacy in detecting hard-to-find pathogenic variants.
Collapse
Affiliation(s)
- Kexin Jiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Nachuan Cheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Xiao Huan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jialong Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Yu Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinghua Luan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LingChun Liu
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Xilu Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Bochen Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Kunzhao Du
- Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jiale Fan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, The Institutes of Brain Science, Shanghai, China
| | - Mingshi Gao
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingyu Xia
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Ningning Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Tao Wang
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Dongyue Yue
- Department of Neurology, Jing'an District Center Hospital of Shanghai, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| |
Collapse
|
48
|
Dias KR, Shrestha R, Schofield D, Evans CA, O'Heir E, Zhu Y, Zhang F, Standen K, Weisburd B, Stenton SL, Sanchis-Juan A, Brand H, Talkowski ME, Ma A, Ghedia S, Wilson M, Sandaradura SA, Smith J, Kamien B, Turner A, Bakshi M, Adès LC, Mowat D, Regan M, McGillivray G, Savarirayan R, White SM, Tan TY, Stark Z, Brown NJ, Pérez-Jurado LA, Krzesinski E, Hunter MF, Akesson L, Fennell AP, Yeung A, Boughtwood T, Ewans LJ, Kerkhof J, Lucas C, Carey L, French H, Rapadas M, Stevanovski I, Deveson IW, Cliffe C, Elakis G, Kirk EP, Dudding-Byth T, Fletcher J, Walsh R, Corbett MA, Kroes T, Gecz J, Meldrum C, Cliffe S, Wall M, Lunke S, North K, Amor DJ, Field M, Sadikovic B, Buckley MF, O'Donnell-Luria A, Roscioli T. Narrowing the diagnostic gap: Genomes, episignatures, long-read sequencing, and health economic analyses in an exome-negative intellectual disability cohort. Genet Med 2024; 26:101076. [PMID: 38258669 PMCID: PMC11786952 DOI: 10.1016/j.gim.2024.101076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
PURPOSE Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.
Collapse
Affiliation(s)
- Kerith-Rae Dias
- Neuroscience Research Australia, Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Rupendra Shrestha
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Deborah Schofield
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Carey-Anne Evans
- Neuroscience Research Australia, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Emily O'Heir
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Ying Zhu
- Neuroscience Research Australia, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia; The Genetics of Learning Disability Service, Waratah, NSW, Australia
| | - Futao Zhang
- Neuroscience Research Australia, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Krystle Standen
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sarah L Stenton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Alan Ma
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sondy Ghedia
- Department of Clinical Genetics, Royal North Shore Hospital, Sydney, NSW, Australia; Northern Clinical School, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Sarah A Sandaradura
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Disciplines of Child and Adolescent Health and Genetic Medicine, University of Sydney, Sydney, NSW 2050, Australia
| | - Janine Smith
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Benjamin Kamien
- Genetic Services of Western Australia, Perth, WA, Australia; School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Anne Turner
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Madhura Bakshi
- Department of Clinical Genetics, Liverpool Hospital, Sydney, NSW, Australia
| | - Lesley C Adès
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Disciplines of Child and Adolescent Health and Genetic Medicine, University of Sydney, Sydney, NSW 2050, Australia
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; Discipline of Paediatrics & Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Regan
- Monash Genetics, Monash Health, Melbourne, VIC, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Women's and Children's Hospital, South Australian Health and Medical Research Institute & University of Adelaide, Adelaide, SA, Australia
| | - Emma Krzesinski
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Lauren Akesson
- Melbourne Pathology, Melbourne, VIC, Australia; Department of Pathology, The Royal Melbourne Hospital, Melbourne, VIC, Australia; Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Paul Fennell
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tiffany Boughtwood
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia
| | - Lisa J Ewans
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; Discipline of Paediatrics & Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre London Health Sciences Centre, London, ON, Canada
| | - Christopher Lucas
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Louise Carey
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Hugh French
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Melissa Rapadas
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia
| | - Igor Stevanovski
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Corrina Cliffe
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - George Elakis
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Edwin P Kirk
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; Discipline of Paediatrics & Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Janice Fletcher
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Rebecca Walsh
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Thessa Kroes
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Cliff Meldrum
- State Wide Service, New South Wales Health Pathology, Sydney, NSW, Australia
| | - Simon Cliffe
- State Wide Service, New South Wales Health Pathology, Sydney, NSW, Australia
| | - Meg Wall
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Kathryn North
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia; Global Alliance for Genomics and Health, Toronto, ON, Canada
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Michael Field
- The Genetics of Learning Disability Service, Waratah, NSW, Australia
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Michael F Buckley
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Tony Roscioli
- Neuroscience Research Australia, Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia.
| |
Collapse
|
49
|
Marchant RG, Bryen SJ, Bahlo M, Cairns A, Chao KR, Corbett A, Davis MR, Ganesh VS, Ghaoui R, Jones KJ, Kornberg AJ, Lek M, Liang C, MacArthur DG, Oates EC, O'Donnell-Luria A, O'Grady GL, Osei-Owusu IA, Rafehi H, Reddel SW, Roxburgh RH, Ryan MM, Sandaradura SA, Scott LW, Valkanas E, Weisburd B, Young H, Evesson FJ, Waddell LB, Cooper ST. Genome and RNA sequencing boost neuromuscular diagnoses to 62% from 34% with exome sequencing alone. Ann Clin Transl Neurol 2024; 11:1250-1266. [PMID: 38544359 DOI: 10.1002/acn3.52041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 05/15/2024] Open
Abstract
OBJECTIVE Most families with heritable neuromuscular disorders do not receive a molecular diagnosis. Here we evaluate diagnostic utility of exome, genome, RNA sequencing, and protein studies and provide evidence-based recommendations for their integration into practice. METHODS In total, 247 families with suspected monogenic neuromuscular disorders who remained without a genetic diagnosis after standard diagnostic investigations underwent research-led massively parallel sequencing: neuromuscular disorder gene panel, exome, genome, and/or RNA sequencing to identify causal variants. Protein and RNA studies were also deployed when required. RESULTS Integration of exome sequencing and auxiliary genome, RNA and/or protein studies identified causal or likely causal variants in 62% (152 out of 247) of families. Exome sequencing alone informed 55% (83 out of 152) of diagnoses, with remaining diagnoses (45%; 69 out of 152) requiring genome sequencing, RNA and/or protein studies to identify variants and/or support pathogenicity. Arrestingly, novel disease genes accounted for <4% (6 out of 152) of diagnoses while 36.2% of solved families (55 out of 152) harbored at least one splice-altering or structural variant in a known neuromuscular disorder gene. We posit that contemporary neuromuscular disorder gene-panel sequencing could likely provide 66% (100 out of 152) of our diagnoses today. INTERPRETATION Our results emphasize thorough clinical phenotyping to enable deep scrutiny of all rare genetic variation in phenotypically consistent genes. Post-exome auxiliary investigations extended our diagnostic yield by 81% overall (34-62%). We present a diagnostic algorithm that details deployment of genomic and auxiliary investigations to obtain these diagnoses today most effectively. We hope this provides a practical guide for clinicians as they gain greater access to clinical genome and transcriptome sequencing.
Collapse
Affiliation(s)
- Rhett G Marchant
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Samantha J Bryen
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Melanie Bahlo
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Anita Cairns
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Department, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Katherine R Chao
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alastair Corbett
- Neurology Department, Repatriation General Hospital Concord, Concord, New South Wales, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, WA, Australia
| | - Vijay S Ganesh
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Neuromuscular Division, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Roula Ghaoui
- Department of Neurology, Central Adelaide Local Health Network/Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Kristi J Jones
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Clinical Genetics, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Andrew J Kornberg
- Department of Neurology, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Monkol Lek
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christina Liang
- Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Neurogenetics, Northern Clinical School, Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel G MacArthur
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Centre for Population Genomics, Garvan Institute of Medical Research/University of New South Wales, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Emily C Oates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Randwick, New South Wales, Australia
| | - Anne O'Donnell-Luria
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gina L O'Grady
- Starship Children's Health, Auckland District Health Board, Auckland, New Zealand
| | - Ikeoluwa A Osei-Owusu
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Haloom Rafehi
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Stephen W Reddel
- Neurology Department, Repatriation General Hospital Concord, Concord, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard H Roxburgh
- Department of Neurology, Auckland District Health Board, Auckland, New Zealand
- Centre of Brain Research Neurogenetics Research Clinic, University of Auckland, Auckland, New Zealand
| | - Monique M Ryan
- Department of Neurology, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sarah A Sandaradura
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Clinical Genetics, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Liam W Scott
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Elise Valkanas
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Ben Weisburd
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Helen Young
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Department of Neurology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Paediatrics, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Frances J Evesson
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Leigh B Waddell
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Sandra T Cooper
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
50
|
Mori T, Fujimaru T, Liu C, Patterson K, Yamamoto K, Suzuki T, Chiga M, Sekine A, Ubara Y, Miller DE, Zalusky MPG, Mandai S, Ando F, Mori Y, Kikuchi H, Susa K, Chong JX, Bamshad MJ, Tan YQ, Zhang F, Uchida S, Sohara E. CFAP47 is a novel causative gene implicated in X-linked polycystic kidney disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.05.24304760. [PMID: 38633811 PMCID: PMC11023651 DOI: 10.1101/2024.04.05.24304760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a well-described condition in which ~80% of cases have a genetic explanation, while the genetic basis of sporadic cystic kidney disease in adults remains unclear in ~30% of cases. This study aimed to identify novel genes associated with polycystic kidney disease (PKD) in patients with sporadic cystic kidney disease in which a clear genetic change was not identified in established genes. A next-generation sequencing panel analyzed known genes related to renal cysts in 118 sporadic cases, followed by whole-genome sequencing on 47 unrelated individuals without identified candidate variants. Three male patients were found to have rare missense variants in the X-linked gene Cilia And Flagella Associated Protein 47 (CFAP47). CFAP47 was expressed in primary cilia of human renal tubules, and knockout mice exhibited vacuolation of tubular cells and tubular dilation, providing evidence that CFAP47 is a causative gene involved in cyst formation. This discovery of CFAP47 as a newly identified gene associated with PKD, displaying X-linked inheritance, emphasizes the need for further cases to understand the role of CFAP47 in PKD.
Collapse
Affiliation(s)
- Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Fujimaru
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chunyu Liu
- Soong Ching Ling Institute of Maternal and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
| | - Karynne Patterson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kohei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takefumi Suzuki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoko Chiga
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinari Sekine
- Department of Nephrology and Rheumatology, Toranomon Hospital, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Yoshifumi Ubara
- Department of Nephrology and Rheumatology, Toranomon Hospital, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Danny E Miller
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
| | - Miranda PG Zalusky
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Kikuchi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Jessica X. Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
| | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Feng Zhang
- Soong Ching Ling Institute of Maternal and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Genetic Engineering, Institute of Medical Genetics and Genomics, Fudan University, Shanghai, China
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|