1
|
Elrod J, Boettcher M, Kipfmueller F, Schaible T, Knoefel Wolfram T, Mohr C, Herwig R, Samans M, Busse R, Nimptsch U, Wilms M. HOSPITAL VOLUME AND OUTCOME IN THE TREATMENT OF CONGENITAL DIAPHRAGMATIC HERNIA IN GERMANY - OBSERVATIONAL STUDY USING NATIONAL HOSPITAL DISCHARGE DATA FROM 2016 TO 2023. J Pediatr Surg 2025:162399. [PMID: 40490073 DOI: 10.1016/j.jpedsurg.2025.162399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/30/2025] [Accepted: 05/30/2025] [Indexed: 06/11/2025]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a critical malformation, with the neonatal period being particularly challenging and associated with high mortality. Data on the care structure and volume-outcome relationship in the treatment of children with CDH in Germany remain scarce. METHODS This study determined case numbers and outcomes of treatment of children aged 0-17 years, with CDH in Germany between 2016 and 2023 through a query of the nationwide DRG database at the Research Data Center of the Federal Statistical Office. Using the ICD-10 and OPS codes, inpatient cases with and without ECMO treatment were identified. The analysis included patient characteristics, hospital caseload, treatment characteristics and outcome parameters stratified by hospital caseload. RESULTS In the 8 years, a total of 1,470 newborns with CDH were born across 234 different hospitals, with a median annual caseload of 1 (IQR: 1-2). In-hospital mortality was 22.5%. Corrective surgery was performed in 1,539 cases across 103 hospitals. Mortality among patients who underwent corrective surgery was 4.8% in low-volume centers, 5.3% in medium-volume centers, and 9.6% in high-volume centers. A higher ECMO frequency was observed in high-volume centers (32.2% vs. 5.4% in medium-volume and 1.9% in low-volume). Among all ECMO-treated CDH patients, regardless of corrective surgery, mortality was 60.0%, 40.0%, and 36.5% in low-, medium-, and high-volume centers, respectively. CONCLUSIONS These findings indicate that high-volume centers treat a greater proportion of severe cases and that they may achieve better outcomes for the most critically ill patients, as reflected by lower ECMO-specific mortality.
Collapse
Affiliation(s)
- Julia Elrod
- University Hospital Mannheim, Heidelberg University, Department of Pediatric Surgery, Mannheim, Germany.
| | - Michael Boettcher
- University Hospital Mannheim, Heidelberg University, Department of Pediatric Surgery, Mannheim, Germany
| | - Florian Kipfmueller
- University Hospital Mannheim, Heidelberg University, Department of Neonatology and Pediatric Intensive Care Medicine, Mannheim, Germany
| | - Thomas Schaible
- University Hospital Mannheim, Heidelberg University, Department of Neonatology and Pediatric Intensive Care Medicine, Mannheim, Germany
| | - Trudo Knoefel Wolfram
- University Hospital Düsseldorf, Department of General-, Visceral-, Thorax and Pediatric Surgery, Düsseldorf, Germany
| | - Christoph Mohr
- University Hospital Mannheim, Heidelberg University, Department of Pediatric Surgery, Mannheim, Germany
| | - Ramona Herwig
- German Patient Organization for Congenital Diaphragmatic Hernia, Dornstadt, Germany
| | - Max Samans
- University Hospital Düsseldorf, Department of General-, Visceral-, Thorax and Pediatric Surgery, Düsseldorf, Germany
| | - Reinhard Busse
- Technische Universität Berlin, Department of Health Care Management, Berlin, Germany
| | - Ulrike Nimptsch
- Technische Universität Berlin, Department of Health Care Management, Berlin, Germany
| | - Miriam Wilms
- University Hospital Düsseldorf, Department of General-, Visceral-, Thorax and Pediatric Surgery, Düsseldorf, Germany; Patient Organization for People with Anorectal Malformations and Morbus Hirschsprung (SoMA e.V.), Munich, Germany
| |
Collapse
|
2
|
Rowe L, Mullegama SV, Lombardo R, Barnes C, Towner S, Snyder MT, Heidlebaugh A, Riordan H, Begtrup A, Crunk A, Cui H, Dameron AE, Folk L, Guillen Sacoto MJ, Juusola J, Redlich OL, Reich A, McGivern B. A proposed role for CDO1 in CNS development: Three children with rare missense variants and a neurological phenotype. HGG ADVANCES 2025; 6:100417. [PMID: 39949058 PMCID: PMC11946753 DOI: 10.1016/j.xhgg.2025.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Cysteine dioxygenase type 1 (CDO1) encodes a non-heme iron dioxygenase, which is involved in cysteine metabolism. While CDO1 has been proposed to be involved in multiple physiological processes, an association with congenital disease has yet to be well defined. This study presents detailed clinical and molecular information on three individuals with overlapping neurological features. All three individuals were found to have rare, conserved, de novo variants clustered in a conserved region of the CDO1 gene with no alternative genetic etiology identified. Features present in all three individuals included electroencephalogram abnormality or seizure, movement abnormalities, hypertonia, encephalopathy, severe microcephaly (-4 SD below mean), growth failure, feeding difficulty, and abnormal brain morphology. Other common features included global developmental delay, sleep disturbance, contractures, cerebral palsy, hyper-reflexia, hearing loss, and hypoxic respiratory failure. This study provides evidence supporting an association between de novo CDO1 missense variants and human neurological disease.
Collapse
Affiliation(s)
- Leah Rowe
- GeneDx, LLC, Gaithersburg, MD 20877, USA
| | | | - Rachel Lombardo
- Phoenix Children's Hospital, Division of Genetics and Metabolism, Phoenix, AZ 85016, USA
| | - Caitlin Barnes
- University of Virginia, Department of Pediatrics, Division of Genetics, Charlottesville, VA 22908, USA
| | - Shelley Towner
- University of Virginia, Department of Pediatrics, Division of Genetics, Charlottesville, VA 22908, USA
| | - Matthew T Snyder
- University of Virginia, Department of Pediatrics, Division of Genetics, Charlottesville, VA 22908, USA
| | - Alexis Heidlebaugh
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Heather Riordan
- Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Division of Pediatric Neurology, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Amy Crunk
- GeneDx, LLC, Gaithersburg, MD 20877, USA
| | - Hong Cui
- GeneDx, LLC, Gaithersburg, MD 20877, USA
| | | | | | | | | | | | - Adi Reich
- GeneDx, LLC, Gaithersburg, MD 20877, USA
| | | |
Collapse
|
3
|
Zanini G, Micheloni G, Sinigaglia G, Selleri V, Mattioli AV, Nasi M, Pierri CL, Pinti M. Modulation of Lonp1 Activity by Small Compounds. Biomolecules 2025; 15:553. [PMID: 40305312 PMCID: PMC12024584 DOI: 10.3390/biom15040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
The Lon protease homolog 1 (LONP1) is an ATP-dependent mitochondrial protease essential for maintaining proteostasis, bioenergetics, and cellular homeostasis. LONP1 plays a pivotal role in protein quality control, mitochondrial DNA maintenance, and oxidative phosphorylation system (OXPHOS) regulation, particularly under stress conditions. Dysregulation of LONP1 has been implicated in various pathologies, including cancer, metabolic disorders, and reproductive diseases, positioning it as a promising pharmacological target. This review examines compounds that modulate LONP1 activity, categorizing them into inhibitors and activators. Inhibitors such as CDDO and its derivatives selectively target LONP1, impairing mitochondrial proteolysis, inducing protein aggregation, and promoting apoptosis, particularly in cancer cells. Compounds like Obtusilactone A and proteasome inhibitors (e.g., MG262) demonstrate potent cytotoxicity, further expanding the therapeutic landscape. Conversely, LONP1 activators, including Artemisinin derivatives and 84-B10, restore mitochondrial function and protect against conditions such as polycystic ovary syndrome (PCOS) and acute kidney injury (AKI). Future research should focus on improving the specificity, bioavailability, and pharmacokinetics of these modulators. Advances in structural biology and drug discovery will enable the development of novel LONP1-targeted therapies, addressing diseases driven by mitochondrial dysfunction and proteostasis imbalance.
Collapse
Affiliation(s)
- Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
| | - Giulia Micheloni
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
| | - Giorgia Sinigaglia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
- Department of Quality-of-Life Sciences, University of Bologna, 40126 Bologna, Italy
| | - Milena Nasi
- Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (G.M.); (G.S.); (V.S.)
- National Institute for Cardiovascular Research—INRC, 40126 Bologna, Italy;
| |
Collapse
|
4
|
Weisz-Hubshman M, Burrage LC, Jangam SV, Rosenfeld JA, von Hardenberg S, Bergmann A, Richter MF, Rydzanicz M, Ploski R, Stembalska A, Chung WK, Hernan RR, Lim FY, Brunet T, Syrbe S, Keren B, Heide S, Murdock DR, Dai H, Xia F, Ketkar S, Dawson B, Narayanan V, Graves HK, Wangler MF, Bacino C, Lee B. De novo variants in RYBP are associated with a severe neurodevelopmental disorder and congenital anomalies. Genet Med 2025; 27:101369. [PMID: 39891528 DOI: 10.1016/j.gim.2025.101369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
PURPOSE Polycomb group proteins are key epigenetic transcriptional regulators. Multiple neurodevelopmental disorders are associated with pathogenic variants of the genes encoding Polycomb group proteins. RYBP is a core component of the noncanonical Polycomb Repressor Complex 1; however, its role in disease is unclear. METHODS Functional consequences of RYBP variants were assessed using in vitro cellular and in vivo Drosophila melanogaster studies. RESULTS We described 7 individuals with heterozygous de novo variants of RYBP and their clinical findings, including severe developmental delay, dysmorphisms, and multiple congenital anomalies. We showed that all single-nucleotide variants in RYBP localize to the N-terminal domain of the gene, which encodes the zinc-finger domain and ubiquitin-binding moiety. In vitro studies have demonstrated that the RYBP c.132C>G p.(Cys44Trp) variant causes reduced protein expression but does not affect the binding of YY1, RING1B, or ubiquitin. In vivo overexpression studies in Drosophila melanogaster showed a dramatic functional difference between human RYBP and its variant forms, affecting the C44 amino acid residue. DNA methylation studies suggested a possible episignature associated with RYBP-related disorder. CONCLUSION Heterozygous de novo variants in RYBP are associated with an identifiable syndromic neurodevelopmental disorder with multiple congenital anomalies.
Collapse
Affiliation(s)
- Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX.
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Anke Bergmann
- Department of Human Genetics, Hannover Medical University, Hannover, Germany
| | | | | | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Stembalska
- Department and Institute of Genetics, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Foong Y Lim
- Department of Pediatrics, Columbia University, New York, NY
| | - Theresa Brunet
- Technical University of Munich, School of Medicine, Institute of Human Genetics, Munich, Germany; Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr von Hauner Children's Hospital, LMU Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Steffen Syrbe
- Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Epileptology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Boris Keren
- Department of Genetics, Assistance Publique - Hôpitaux de Paris, University Hôpital Pitié-Salpêtrière, Paris, France
| | - Solveig Heide
- Department of Genetics, Assistance Publique - Hôpitaux de Paris, University Hôpital Pitié-Salpêtrière, Paris, France
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics, Houston, TX
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics, Houston, TX
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Vinodh Narayanan
- Arizona Pediatric Neurology and Neurogenetics Associates, Phoenix, AZ
| | - Hillary K Graves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Carlos Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX.
| |
Collapse
|
5
|
Luna G, Verheyden J, Tan C, Kim E, Hwa M, Sahi J, Shen Y, Chung W, McCulley D, Sun X. MYRF is Essential in Mesothelial Cells to Promote Lung Development and Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.635155. [PMID: 39990361 PMCID: PMC11844445 DOI: 10.1101/2025.02.13.635155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The mesothelium is a squamous monolayer that ensheathes internal organs, lines the body cavity, and the diaphragm. It serves as a protective barrier, coated in glycocalyx, and secretes lubricants to facilitate tissue movement. How the mesothelium forms is poorly understood. Here, we investigate Myrf , a transcription factor gene expressed in the mesothelium, because it carries variants in patients with Congenital Diaphragmatic Hernia (CDH), a disorder that affects the diaphragm, lung, and other organs. In mice, inactivation of Myrf early in organogenesis resulted in CDH and defective mesothelial specification, compromising its function as a signaling center for lung growth. Inactivation of Myrf later led to enhanced mesothelium differentiation into mesenchymal cell types through partial epithelial-to-mesenchymal transition (EMT), resulting in a unique accumulation of smooth muscle encasing the lung. In this role, MYRF functions in parallel with YAP/TAZ. Together, these findings establish MYRF as a critical regulator of mesothelium development, and when mutated, causes CDH.
Collapse
|
6
|
Lü Y, Yu Y, Chang J, Li M, Yang X, Zhou X, Hao N, Meng H, Li Z, Ma L, You H, Jian S, Wang Y, Li S, Yu Y, Yin K, Wang M, Jiang Y, Qi Q. Genetic Diagnosis and Clinical Features of Fetuses With Congenital Diaphragmatic Hernia. Prenat Diagn 2024. [PMID: 39681544 DOI: 10.1002/pd.6727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Congenital diaphragmatic hernia (CDH) is a rare abnormality with highly heterogeneous genetic causes. This study investigated chromosomal and monogenic abnormalities in fetal CDH patients and evaluated the efficacy of chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) for genetic diagnosis. The clinical features of the patients were also evaluated. METHODS We evaluated the genetic and clinical data of 51 prenatally diagnosed fetuses with CDH. CMA was performed for every patient. If CMA did not yield diagnostic results, the samples were subjected to WES. RESULTS Compared with fetuses with isolated CDH (n = 42), those with non-isolated CDH (n = 9) presented a higher genetic diagnostic rate (22.2% vs. 2.4%). The overall diagnostic yield was 5.9%, comprising 3.9% from chromosomal microarray analysis (CMA) and an additional 2.0% from whole exome sequencing (WES). CMA identified (1) mosaic trisomy 18 in a patient with isolated CDH; and (2) 4q terminal deletion syndrome in a patient with non-isolated CDH. WES identified a novel missense mutation, PLS3 c.1763A > G, associated with X-linked CDH in a patient with non-isolated CDH and a family history of recurrent CDH. CONCLUSION Genetic testing should be offered for all fetuses with CDH, regardless of whether the cases are isolated or non-isolated. WES should be considered if CMA fails to provide a diagnostic result, particularly in patients with non-isolated CDH and a family history of recurrent CDH.
Collapse
Affiliation(s)
- Yan Lü
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jiazhen Chang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Mengmeng Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xueting Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiya Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Na Hao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hua Meng
- Department of Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Zhenghong Li
- Department of Paediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Lishuang Ma
- Department of Neonatal Surgery, Children's Hospital of Capital Institute of Pediatrics, Capital Institute of Pediatrics, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shan Jian
- Department of Paediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ying Wang
- Department of Neonatal Surgery, Children's Hospital of Capital Institute of Pediatrics, Capital Institute of Pediatrics, Beijing, China
| | - Shengjie Li
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiqing Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Kaili Yin
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | | | - Yulin Jiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Qingwei Qi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Qiao L, Welch CL, Hernan R, Wynn J, Krishnan US, Zalieckas JM, Buchmiller T, Khlevner J, De A, Farkouh-Karoleski C, Wagner AJ, Heydweiller A, Mueller AC, de Klein A, Warner BW, Maj C, Chung D, McCulley DJ, Schindel D, Potoka D, Fialkowski E, Schulz F, Kipfmuller F, Lim FY, Magielsen F, Mychaliska GB, Aspelund G, Reutter HM, Needelman H, Schnater JM, Fisher JC, Azarow K, Elfiky M, Nöthen MM, Danko ME, Li M, Kosiński P, Wijnen RMH, Cusick RA, Soffer SZ, Cochius-Den Otter SCM, Schaible T, Crombleholme T, Duron VP, Donahoe PK, Sun X, High FA, Bendixen C, Brosens E, Shen Y, Chung WK. Common variants increase risk for congenital diaphragmatic hernia within the context of de novo variants. Am J Hum Genet 2024; 111:2362-2381. [PMID: 39332409 PMCID: PMC11568762 DOI: 10.1016/j.ajhg.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly often accompanied by other structural anomalies and/or neurobehavioral manifestations. Rare de novo protein-coding variants and copy-number variations contribute to CDH in the population. However, most individuals with CDH remain genetically undiagnosed. Here, we perform integrated de novo and common-variant analyses using 1,469 CDH individuals, including 1,064 child-parent trios and 6,133 ancestry-matched, unaffected controls for the genome-wide association study. We identify candidate CDH variants in 15 genes, including eight novel genes, through deleterious de novo variants. We further identify two genomic loci contributing to CDH risk through common variants with similar effect sizes among Europeans and Latinx. Both loci are in putative transcriptional regulatory regions of developmental patterning genes. Estimated heritability in common variants is ∼19%. Strikingly, there is no significant difference in estimated polygenic risk scores between isolated and complex CDH or between individuals harboring deleterious de novo variants and individuals without these variants. The data support a polygenic model as part of the CDH genetic architecture.
Collapse
Affiliation(s)
- Lu Qiao
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rebecca Hernan
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Usha S Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jill M Zalieckas
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Terry Buchmiller
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Khlevner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aliva De
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Amy J Wagner
- Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andreas Heydweiller
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C Mueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Brad W Warner
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Dai Chung
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - David J McCulley
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | | | | | | | - Felicitas Schulz
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Florian Kipfmuller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Foong-Yen Lim
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Frank Magielsen
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | - Gudrun Aspelund
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Heiko Martin Reutter
- Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Howard Needelman
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | - J Marco Schnater
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jason C Fisher
- New York University Grossman School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY 10016, USA
| | - Kenneth Azarow
- Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Melissa E Danko
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - Mindy Li
- Rush University Medical Center, Chicago, IL 60612, USA
| | - Przemyslaw Kosiński
- Department of Obstetrics, Perinatology and Gynecology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Robert A Cusick
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | | | - Suzan C M Cochius-Den Otter
- Department of Neonatology and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Vincent P Duron
- Department of Surgery (Pediatrics), Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Sun
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | - Frances A High
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charlotte Bendixen
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Xu L, Tan C, Barr J, Talaba N, Verheyden J, Chin JS, Gaboyan S, Kasaraneni N, Elgamal RM, Gaulton KJ, Lin G, Afshar K, Golts E, Meier A, Crotty Alexander LE, Borok Z, Shen Y, Chung WK, McCulley DJ, Sun X. Context-dependent roles of mitochondrial LONP1 in orchestrating the balance between airway progenitor versus progeny cells. Cell Stem Cell 2024; 31:1465-1483.e6. [PMID: 39181129 DOI: 10.1016/j.stem.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene Lonp1 led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of Bok, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.
Collapse
Affiliation(s)
- Le Xu
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chunting Tan
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justinn Barr
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole Talaba
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jamie Verheyden
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ji Sun Chin
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samvel Gaboyan
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nikita Kasaraneni
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ruth M Elgamal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyle J Gaulton
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Grace Lin
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Kamyar Afshar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eugene Golts
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Angela Meier
- Department of Anesthesiology, Division of Critical Care, University of California, San Diego, La Jolla, CA, USA
| | - Laura E Crotty Alexander
- Pulmonary and Critical Care Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David J McCulley
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Liu S, Yu L. Role of genetics and the environment in the etiology of congenital diaphragmatic hernia. WORLD JOURNAL OF PEDIATRIC SURGERY 2024; 7:e000884. [PMID: 39183805 PMCID: PMC11340715 DOI: 10.1136/wjps-2024-000884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital malformation characterized by failure of diaphragm closure during embryonic development, leading to pulmonary hypoplasia and pulmonary hypertension, which contribute significantly to morbidity and mortality. The occurrence of CDH and pulmonary hypoplasia is theorized to result from both abnormalities in signaling pathways of smooth muscle cells in pleuroperitoneal folds and mechanical compression by abdominal organs within the chest cavity on the developing lungs. Although, the precise etiology of diaphragm maldevelopment in CDH is not fully understood, it is believed that interplay between genes and the environment contributes to its onset. Approximately 30% of patients with CDH possess chromosomal or single gene defects and these patients tend to have inferior outcomes compared with those without genetic associations. At present, approximately 150 gene variants have been linked to the occurrence of CDH. The variable expression of the CDH phenotype in the presence of a recognized genetic predisposition can be explained by an environmental effect on gene penetrance and expression. The retinoic acid pathway is thought to play an essential role in the interactions of genes and environment in CDH. However, apart from the gradually maturing retinol hypothesis, there is limited evidence implicating other environmental factors in CDH occurrence. This review aims to describe the pathogenesis of CDH by summarizing the genetic defects and potential environmental influences on CDH development.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Cardiac & Thoracic Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Lan Yu
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Chao KR, Wang L, Panchal R, Liao C, Abderrazzaq H, Ye R, Schultz P, Compitello J, Grant RH, Kosmicki JA, Weisburd B, Phu W, Wilson MW, Laricchia KM, Goodrich JK, Goldstein D, Goldstein JI, Vittal C, Poterba T, Baxter S, Watts NA, Solomonson M, Tiao G, Rehm HL, Neale BM, Talkowski ME, MacArthur DG, O'Donnell-Luria A, Karczewski KJ, Radivojac P, Daly MJ, Samocha KE. The landscape of regional missense mutational intolerance quantified from 125,748 exomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.588920. [PMID: 38645134 PMCID: PMC11030311 DOI: 10.1101/2024.04.11.588920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation 1-12 . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) 13 against a null mutational model to identify transcripts that display regional differences in missense constraint. Missense-depleted regions are enriched for ClinVar 14 pathogenic variants, de novo missense variants from individuals with neurodevelopmental disorders (NDDs) 15,16 , and complex trait heritability. Following ClinGen calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less than 20% of their expected missense variation achieve moderate support for pathogenicity. We create a missense deleteriousness metric (MPC) that incorporates regional constraint and outperforms other deleteriousness scores at stratifying case and control de novo missense variation, with a strong enrichment in NDDs. These results provide additional tools to aid in missense variant interpretation.
Collapse
|
11
|
Renik-Jankowska W, Buczyńska A, Sidorkiewicz I, Kosiński P, Zbucka-Krętowska M. Exploring new perspectives on congenital diaphragmatic hernia: A comprehensive review. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167105. [PMID: 38428682 DOI: 10.1016/j.bbadis.2024.167105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Congenital diaphragmatic hernia (CDH) represents a developmental anomaly that profoundly impacts the embryonic development of both the respiratory and cardiovascular systems. Understanding the influences of developmental defects, their origins, and clinical consequences is of paramount importance for further research and the advancement of therapeutic strategies for this condition. In recent years, groundbreaking studies in the fields of metabolomics and genomics have significantly expanded our knowledge regarding the pathogenic mechanisms of CDH. These investigations introduce novel diagnostic and therapeutic avenues. CDH implies a scarcity of available information within this domain. Consequently, a comprehensive literature review has been undertaken to synthesize existing data, providing invaluable insights into this rare disease. Improved comprehension of the molecular underpinnings of CDH has the potential to refine diagnostic precision and therapeutic interventions, thus potentially enhancing clinical outcomes for CDH patients. The identification of potential biomarkers assumes paramount significance for early disease detection and risk assessment in CDH, facilitating prompt recognition and the implementation of appropriate interventions. The process of translating research findings into clinical practice is significantly facilitated by an exhaustive literature review. It serves as a pivotal step, enabling the integration of novel, more effective diagnostic and therapeutic modalities into the management of CDH patients.
Collapse
Affiliation(s)
- Weronika Renik-Jankowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Support Centre, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Przemysław Kosiński
- Department of Obstetrics, Perinatology, and Gynecology, Medical University of Warsaw, Żwirki i Wigury 63A, 02-091 Warszawa, Poland.
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
12
|
Kuroda Y, Saito Y, Enomoto Y, Naruto T, Kurosawa K. A novel ACTB variant in an atypical case of Baraitser-Winter syndrome with cerebellar hypoplasia and diaphragmatic hernia. Clin Dysmorphol 2024; 33:75-78. [PMID: 38348958 DOI: 10.1097/mcd.0000000000000484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Affiliation(s)
- Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center
| | - Yoko Saito
- Division of Medical Genetics, Kanagawa Children's Medical Center
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Takuya Naruto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center
| |
Collapse
|
13
|
Xie Y, Wu R, Li H, Dong W, Zhou G, Zhao H. Statistical methods for assessing the effects of de novo variants on birth defects. Hum Genomics 2024; 18:25. [PMID: 38486307 PMCID: PMC10938830 DOI: 10.1186/s40246-024-00590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
With the development of next-generation sequencing technology, de novo variants (DNVs) with deleterious effects can be identified and investigated for their effects on birth defects such as congenital heart disease (CHD). However, statistical power is still limited for such studies because of the small sample size due to the high cost of recruiting and sequencing samples and the low occurrence of DNVs. DNV analysis is further complicated by genetic heterogeneity across diseased individuals. Therefore, it is critical to jointly analyze DNVs with other types of genomic/biological information to improve statistical power to identify genes associated with birth defects. In this review, we discuss the general workflow, recent developments in statistical methods, and future directions for DNV analysis.
Collapse
Affiliation(s)
- Yuhan Xie
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ruoxuan Wu
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Hongyu Li
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Geyu Zhou
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
14
|
Rivas JFG, Clugston RD. The etiology of congenital diaphragmatic hernia: the retinoid hypothesis 20 years later. Pediatr Res 2024; 95:912-921. [PMID: 37990078 PMCID: PMC10920205 DOI: 10.1038/s41390-023-02905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect and a major cause of neonatal respiratory distress. Impacting ~2-3 in 10,000 births, CDH is associated with a high mortality rate, and long-term morbidity in survivors. Despite the significant impact of CDH, its etiology remains incompletely understood. In 2003, Greer et al. proposed the Retinoid Hypothesis, stating that the underlying cause of abnormal diaphragm development in CDH was related to altered retinoid signaling. In this review, we provide a comprehensive update to the Retinoid Hypothesis, discussing work published in support of this hypothesis from the past 20 years. This includes reviewing teratogenic and genetic models of CDH, lessons from the human genetics of CDH and epidemiological studies, as well as current gaps in the literature and important areas for future research. The Retinoid Hypothesis is one of the leading hypotheses to explain the etiology of CDH, as we continue to better understand the role of retinoid signaling in diaphragm development, we hope that this information can be used to improve CDH outcomes. IMPACT: This review provides a comprehensive update on the Retinoid Hypothesis, which links abnormal retinoic acid signaling to the etiology of congenital diaphragmatic hernia. The Retinoid Hypothesis was formulated in 2003. Twenty years later, we extensively review the literature in support of this hypothesis from both animal models and humans.
Collapse
Affiliation(s)
- Juan F Garcia Rivas
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, Edmonton, AB, Canada
| | - Robin D Clugston
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Werren EA, LaForce GR, Srivastava A, Perillo DR, Li S, Johnson K, Baris S, Berger B, Regan SL, Pfennig CD, de Munnik S, Pfundt R, Hebbar M, Jimenez-Heredia R, Karakoc-Aydiner E, Ozen A, Dmytrus J, Krolo A, Corning K, Prijoles EJ, Louie RJ, Lebel RR, Le TL, Amiel J, Gordon CT, Boztug K, Girisha KM, Shukla A, Bielas SL, Schaffer AE. TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome. Nat Commun 2024; 15:1640. [PMID: 38388531 PMCID: PMC10884030 DOI: 10.1038/s41467-024-45948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Delia R Perillo
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Shaokun Li
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Katherine Johnson
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Brandon Berger
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christian D Pfennig
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 98195, Seattle, WA, USA
| | - Raúl Jimenez-Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Jasmin Dmytrus
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Ken Corning
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - E J Prijoles
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | | | - Robert Roger Lebel
- Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thuy-Linh Le
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
| | - Jeanne Amiel
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, 75015, France
| | | | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, 1090, Austria
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, 1090, Austria
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
16
|
Li RK, Xiong YR, Pan SJ, Lei WT, Shu XM, Shi XQ, Tian MQ. Role of TRAK1 variants in epilepsy: genotype-phenotype analysis in a pediatric case of epilepsy with developmental disorder. Front Mol Neurosci 2024; 17:1342371. [PMID: 38410694 PMCID: PMC10894949 DOI: 10.3389/fnmol.2024.1342371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose The TRAK1 gene is mapped to chromosome 3p22.1 and encodes trafficking protein kinesin binding 1. The aim of this study was to investigate the genotype-phenotype of TRAK1-associated epilepsy. Methods Trio-based whole-exome sequencing was performed on a cohort of 98 patients with epilepsy of unknown etiologies. Protein modeling and the VarCards database were used to predict the damaging effects of the variants. Detailed neurological phenotypes of all patients with epilepsy having TRAK1 variants were analyzed to assess the genotype-phenotype correlations. Results A novel TRAK1 compound heterozygous variant comprising variant c.835C > T, p.Arg279Cys and variant c.2560A > C, p.Lys854Gln was identified in one pediatric patient. Protein modeling and VarCards database analyses revealed that the variants were damaging. The patient received a diagnosis of early infantile epileptic spasms with a developmental disorder; he became seizure-free through valproate and adrenocorticotropic hormone treatment. Further results for six variants in 12 patients with epilepsy indicated that biallelic TRAK1 variants (including homozygous or compound heterozygous variants) were associated with epilepsy with developmental disorders. Among these patients, eight (67%) had epileptic spasms and seven (58%) were intractable to anti-seizure medicines. Moreover, eight patients experienced refractory status epilepticus, of which seven (88%) died in early life. To our knowledge, this is the first reported case of epilepsy caused by TRAK1 compound heterozygous variants. Conclusion Biallelic TRAK1 variants can cause epilepsy and developmental disorders. In these patients, seizures progress to status epilepticus, suggesting a high risk for poor outcomes and the requirement of early treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mao-Qiang Tian
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Children’s Hospital of Guizhou Province, Zunyi, China
| |
Collapse
|
17
|
Stokes G, Li Z, Talaba N, Genthe W, Brix MB, Pham B, Wienhold MD, Sandok G, Hernan R, Wynn J, Tang H, Tabima DM, Rodgers A, Hacker TA, Chesler NC, Zhang P, Murad R, Yuan JXJ, Shen Y, Chung WK, McCulley DJ. Rescuing lung development through embryonic inhibition of histone acetylation. Sci Transl Med 2024; 16:eadc8930. [PMID: 38295182 PMCID: PMC12070813 DOI: 10.1126/scitranslmed.adc8930] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
A major barrier to the impact of genomic diagnosis in patients with congenital malformations is the lack of understanding regarding how sequence variants contribute to disease pathogenesis and whether this information could be used to generate patient-specific therapies. Congenital diaphragmatic hernia (CDH) is among the most common and severe of all structural malformations; however, its underlying mechanisms are unclear. We identified loss-of-function sequence variants in the epigenomic regulator gene SIN3A in two patients with complex CDH. Tissue-specific deletion of Sin3a in mice resulted in defects in diaphragm development, lung hypoplasia, and pulmonary hypertension, the cardinal features of CDH and major causes of CDH-associated mortality. Loss of SIN3A in the lung mesenchyme resulted in reduced cellular differentiation, impaired cell proliferation, and increased DNA damage. Treatment of embryonic Sin3a mutant mice with anacardic acid, an inhibitor of histone acetyltransferase, reduced DNA damage, increased cell proliferation and differentiation, improved lung and pulmonary vascular development, and reduced pulmonary hypertension. These findings demonstrate that restoring the balance of histone acetylation can improve lung development in the Sin3a mouse model of CDH.
Collapse
Affiliation(s)
- Giangela Stokes
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Zhuowei Li
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Nicole Talaba
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - William Genthe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maria B. Brix
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Betty Pham
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | | | - Gracia Sandok
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rebecca Hernan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Diana M. Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allison Rodgers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy A. Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Naomi C. Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Pan Zhang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rabi Murad
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jason X. -J. Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yufeng Shen
- Department of Systems Biology, Department of Biomedical Informatics, and JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J. McCulley
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| |
Collapse
|
18
|
Petit F, Longoni M, Wells J, Maser RS, Bogenschutz EL, Dysart MJ, Contreras HTM, Frénois F, Pober BR, Clark RD, Giampietro PF, Ropers HH, Hu H, Loscertales M, Wagner R, Ai X, Brand H, Jourdain AS, Delrue MA, Gilbert-Dussardier B, Devisme L, Keren B, McCulley DJ, Qiao L, Hernan R, Wynn J, Scott TM, Calame DG, Coban-Akdemir Z, Hernandez P, Hernandez-Garcia A, Yonath H, Lupski JR, Shen Y, Chung WK, Scott DA, Bult CJ, Donahoe PK, High FA. PLS3 missense variants affecting the actin-binding domains cause X-linked congenital diaphragmatic hernia and body-wall defects. Am J Hum Genet 2023; 110:1787-1803. [PMID: 37751738 PMCID: PMC10577083 DOI: 10.1016/j.ajhg.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and genetically heterogeneous structural birth defect associated with high mortality and morbidity. We describe eight unrelated families with an X-linked condition characterized by diaphragm defects, variable anterior body-wall anomalies, and/or facial dysmorphism. Using linkage analysis and exome or genome sequencing, we found that missense variants in plastin 3 (PLS3), a gene encoding an actin bundling protein, co-segregate with disease in all families. Loss-of-function variants in PLS3 have been previously associated with X-linked osteoporosis (MIM: 300910), so we used in silico protein modeling and a mouse model to address these seemingly disparate clinical phenotypes. The missense variants in individuals with CDH are located within the actin-binding domains of the protein but are not predicted to affect protein structure, whereas the variants in individuals with osteoporosis are predicted to result in loss of function. A mouse knockin model of a variant identified in one of the CDH-affected families, c.1497G>C (p.Trp499Cys), shows partial perinatal lethality and recapitulates the key findings of the human phenotype, including diaphragm and abdominal-wall defects. Both the mouse model and one adult human male with a CDH-associated PLS3 variant were observed to have increased rather than decreased bone mineral density. Together, these clinical and functional data in humans and mice reveal that specific missense variants affecting the actin-binding domains of PLS3 might have a gain-of-function effect and cause a Mendelian congenital disorder.
Collapse
Affiliation(s)
- Florence Petit
- Clinique de Génétique, CHU de Lille, Lille, France; EA7364 RADEME, Université de Lille, Lille, France
| | - Mauro Longoni
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Matthew J Dysart
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Hannah T M Contreras
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | | | - Barbara R Pober
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Robin D Clark
- Division of Genetics, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Hilger H Ropers
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hao Hu
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maria Loscertales
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Richard Wagner
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA; Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Xingbin Ai
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Harrison Brand
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Boris Keren
- Département de Génétique, Hôpital Pitié Salpétrière, CHU de Paris, Paris, France
| | - David J McCulley
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Lu Qiao
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Rebecca Hernan
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Tiana M Scott
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patricia Hernandez
- IDDRC/TCC, Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Hagith Yonath
- Internal Medicine A and Genetics Institute, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Frances A High
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Surgery, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
19
|
Zhong G, Choi YA, Shen Y. VBASS enables integration of single cell gene expression data in Bayesian association analysis of rare variants. Commun Biol 2023; 6:774. [PMID: 37491581 PMCID: PMC10368729 DOI: 10.1038/s42003-023-05155-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Rare or de novo variants have substantial contribution to human diseases, but the statistical power to identify risk genes by rare variants is generally low due to rarity of genotype data. Previous studies have shown that risk genes usually have high expression in relevant cell types, although for many conditions the identity of these cell types are largely unknown. Recent efforts in single cell atlas in human and model organisms produced large amount of gene expression data. Here we present VBASS, a Bayesian method that integrates single-cell expression and de novo variant (DNV) data to improve power of disease risk gene discovery. VBASS models disease risk prior as a function of expression profiles, approximated by deep neural networks. It learns the weights of neural networks and parameters of Gamma-Poisson likelihood models of DNV counts jointly from expression and genetics data. On simulated data, VBASS shows proper error rate control and better power than state-of-the-art methods. We applied VBASS to published datasets and identified more candidate risk genes with supports from literature or data from independent cohorts. VBASS can be generalized to integrate other types of functional genomics data in statistical genetics analysis.
Collapse
Affiliation(s)
- Guojie Zhong
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA
| | - Yoolim A Choi
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
- JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Wagner R, Amonkar GM, Wang W, Shui JE, Bankoti K, Tse WH, High FA, Zalieckas JM, Buchmiller TL, Zani A, Keijzer R, Donahoe PK, Lerou PH, Ai X. A Tracheal Aspirate-derived Airway Basal Cell Model Reveals a Proinflammatory Epithelial Defect in Congenital Diaphragmatic Hernia. Am J Respir Crit Care Med 2023; 207:1214-1226. [PMID: 36731066 PMCID: PMC10161756 DOI: 10.1164/rccm.202205-0953oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: Congenital diaphragmatic hernia (CDH) is characterized by incomplete closure of the diaphragm and lung hypoplasia. The pathophysiology of lung defects in CDH is poorly understood. Objectives: To establish a translational model of human airway epithelium in CDH for pathogenic investigation and therapeutic testing. Methods: We developed a robust methodology of epithelial progenitor derivation from tracheal aspirates of newborns. Basal stem cells (BSCs) from patients with CDH and preterm and term non-CDH control subjects were derived and analyzed by bulk RNA sequencing, assay for transposase accessible chromatin with sequencing, and air-liquid interface differentiation. Lung sections from fetal human CDH samples and the nitrofen rat model of CDH were subjected to histological assessment of epithelial defects. Therapeutics to restore epithelial differentiation were evaluated in human epithelial cell culture and the nitrofen rat model of CDH. Measurements and Main Results: Transcriptomic and epigenetic profiling of CDH and control BSCs reveals a proinflammatory signature that is manifested by hyperactive nuclear factor kappa B and independent of severity and hernia size. In addition, CDH BSCs exhibit defective epithelial differentiation in vitro that recapitulates epithelial phenotypes found in fetal human CDH lung samples and fetal tracheas of the nitrofen rat model of CDH. Furthermore, blockade of nuclear factor kappa B hyperactivity normalizes epithelial differentiation phenotypes of human CDH BSCs in vitro and in nitrofen rat tracheas in vivo. Conclusions: Our findings have identified an underlying proinflammatory signature and BSC differentiation defects as a potential therapeutic target for airway epithelial defects in CDH.
Collapse
Affiliation(s)
- Richard Wagner
- Division of Newborn Medicine and
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Gaurang M. Amonkar
- Division of Newborn Medicine and
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Wang
- Division of Newborn Medicine and
| | | | | | - Wai Hei Tse
- Departments of Surgery, Pediatrics & Child Health, Physiology & Pathophysiology, University of Manitoba and Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Frances A. High
- Division of Medical Genetics, Department of Pediatrics, and
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Surgery and
| | - Jill M. Zalieckas
- Division of Pediatric Surgery, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Terry L. Buchmiller
- Division of Pediatric Surgery, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Augusto Zani
- Department of Pediatric Surgery, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Keijzer
- Departments of Surgery, Pediatrics & Child Health, Physiology & Pathophysiology, University of Manitoba and Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Patricia K. Donahoe
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
21
|
Tang Y, Liu YX, Sheng Y, Fan LL, Zhang AQ, Zheng ZF. The first case report of CODAS syndrome in Chinese population caused by two LONP1 pathogenic mutations. Front Genet 2023; 13:1031856. [PMID: 36685982 PMCID: PMC9845248 DOI: 10.3389/fgene.2022.1031856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Background: CODAS syndrome (MIM 600373) is a multi-system developmental disorder characterized by cerebral, ocular, dental, auricular, and skeletal anomalies. CODAS syndrome is rare in the world and no cases have been reported in Chinese population so far. Mutations in the LONP1 gene can contribute to CODAS syndrome, while the underlying molecular mechanisms requires further investigation. Method: We described a Chinese boy who has suffered from cognition impairment, cataracts, caries, abnormal auricle and skeletal anomalies since birth. The patient's parents are non-consanguineous and healthy. Whole-exome sequencing (WES) was employed to explore the genetic entity of this family. Results: A compound heterozygous missense mutation (NM_004793: c.2009C>T/p.A670V and c.2014C>T/p.R672C) of LONP1 was identified in the patient. Considering the clinical phenotypes and genetic results, the patient was diagnosed as CODAS syndrome. Conclusion: Here we reported the first case with CODAS syndrome in Chinese population. WES identified a compound heterozygous missense mutation of LONP1 gene in the patients. Our study not only provided data for genetic counseling and clinical diagnosis to this family, but also expanded the clinical spectrum of LONP1-related CODAS syndrome.
Collapse
Affiliation(s)
- Yi Tang
- Department of Cardiology, Hunan Provincial People’s Hospital, The First Afliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, China
| | - Yu-Xing Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yue Sheng
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Ai-Qian Zhang
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Ai-Qian Zhang, ; Zhao-Fen Zheng,
| | - Zhao-Fen Zheng
- Department of Cardiology, Hunan Provincial People’s Hospital, The First Afliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, China,*Correspondence: Ai-Qian Zhang, ; Zhao-Fen Zheng,
| |
Collapse
|
22
|
Zhong G, Shen Y. Statistical models of the genetic etiology of congenital heart disease. Curr Opin Genet Dev 2022; 76:101967. [PMID: 35939966 PMCID: PMC10586490 DOI: 10.1016/j.gde.2022.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
Congenital heart disease (CHD) is a collection of anatomically and clinically heterogeneous structure anomalies of heart at birth. Finding genetic causes of CHD can not only shed light on developmental biology of heart, but also provide basis for improving clinical care and interventions. The optimal study design and analytical approaches to identify genetic causes depend on the underlying genetic architecture. A few well-known syndromes with CHD as core conditions, such as Noonan and CHARGE, have known monogenic causes. The genetic causes of most of CHD patients, however, are unknown and likely to be complex. In this review, we highlight recent studies that assume a complex genetic architecture of CHD with two main approaches. One is genomic sequencing studies aiming for identifying rare or de novo risk variants with large genetic effect. The other is genome-wide association studies optimized for common variants with moderate genetic effect.
Collapse
Affiliation(s)
- Guojie Zhong
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biological Studies, Columbia University Irving Medical Center, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
23
|
Zani A, Chung WK, Deprest J, Harting MT, Jancelewicz T, Kunisaki SM, Patel N, Antounians L, Puligandla PS, Keijzer R. Congenital diaphragmatic hernia. Nat Rev Dis Primers 2022; 8:37. [PMID: 35650272 DOI: 10.1038/s41572-022-00362-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a rare birth defect characterized by incomplete closure of the diaphragm and herniation of fetal abdominal organs into the chest that results in pulmonary hypoplasia, postnatal pulmonary hypertension owing to vascular remodelling and cardiac dysfunction. The high mortality and morbidity rates associated with CDH are directly related to the severity of cardiopulmonary pathophysiology. Although the aetiology remains unknown, CDH has a polygenic origin in approximately one-third of cases. CDH is typically diagnosed with antenatal ultrasonography, which also aids in risk stratification, alongside fetal MRI and echocardiography. At specialized centres, prenatal management includes fetal endoscopic tracheal occlusion, which is a surgical intervention aimed at promoting lung growth in utero. Postnatal management focuses on cardiopulmonary stabilization and, in severe cases, can involve extracorporeal life support. Clinical practice guidelines continue to evolve owing to the rapidly changing landscape of therapeutic options, which include pulmonary hypertension management, ventilation strategies and surgical approaches. Survivors often have long-term, multisystem morbidities, including pulmonary dysfunction, gastroesophageal reflux, musculoskeletal deformities and neurodevelopmental impairment. Emerging research focuses on small RNA species as biomarkers of severity and regenerative medicine approaches to improve fetal lung development.
Collapse
Affiliation(s)
- Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada. .,Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Wendy K Chung
- Department of Paediatrics, Columbia University, New York, NY, USA
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child and Clinical Department of Obstetrics and Gynaecology, University Hospitals, KU Leuven, Leuven, Belgium.,Institute for Women's Health, UCL, London, UK
| | - Matthew T Harting
- Department of Paediatric Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA.,The Comprehensive Center for CDH Care, Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Tim Jancelewicz
- Division of Pediatric Surgery, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shaun M Kunisaki
- Division of General Paediatric Surgery, Johns Hopkins Children's Center, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neil Patel
- Department of Neonatology, Royal Hospital for Children, Glasgow, UK
| | - Lina Antounians
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pramod S Puligandla
- Department of Paediatric Surgery, Harvey E. Beardmore Division of Paediatric Surgery, Montreal Children's Hospital of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Richard Keijzer
- Department of Surgery, Division of Paediatric Surgery, Paediatrics & Child Health, Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
24
|
Mitochondrial DNA Is a Vital Driving Force in Ischemia-Reperfusion Injury in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6235747. [PMID: 35620580 PMCID: PMC9129988 DOI: 10.1155/2022/6235747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
According to the latest Global Burden of Disease Study, cardiovascular disease (CVD) is the leading cause of death, and ischemic heart disease and stroke are the cause of death in approximately half of CVD patients. In CVD, mitochondrial dysfunction following ischemia-reperfusion (I/R) injury results in heart failure. The proper functioning of oxidative phosphorylation (OXPHOS) and the mitochondrial life cycle in cardiac mitochondria are closely related to mitochondrial DNA (mtDNA). Following myocardial I/R injury, mitochondria activate multiple repair and clearance mechanisms to repair damaged mtDNA. When these repair mechanisms are insufficient to restore the structure and function of mtDNA, irreversible mtDNA damage occurs, leading to mtDNA mutations. Since mtDNA mutations aggravate OXPHOS dysfunction and affect mitophagy, mtDNA mutation accumulation leads to leakage of mtDNA and proteins outside the mitochondria, inducing an innate immune response, aggravating cardiovascular injury, and leading to the need for external interventions to stop or slow the disease course. On the other hand, mtDNA released into the circulation after cardiac injury can serve as a biomarker for CVD diagnosis and prognosis. This article reviews the pathogenic basis and related research findings of mtDNA oxidative damage and mtDNA leak-triggered innate immune response associated with I/R injury in CVD and summarizes therapeutic options that target mtDNA.
Collapse
|
25
|
Willcox JAL, Geiger JT, Morton SU, McKean D, Quiat D, Gorham JM, Tai AC, DePalma S, Bernstein D, Brueckner M, Chung WK, Giardini A, Goldmuntz E, Kaltman JR, Kim R, Newburger JW, Shen Y, Srivastava D, Tristani-Firouzi M, Gelb B, Porter GA, Seidman JG, Seidman CE. Neither cardiac mitochondrial DNA variation nor copy number contribute to congenital heart disease risk. Am J Hum Genet 2022; 109:961-966. [PMID: 35397206 PMCID: PMC9118105 DOI: 10.1016/j.ajhg.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 11/28/2022] Open
Abstract
The well-established manifestation of mitochondrial mutations in functional cardiac disease (e.g., mitochondrial cardiomyopathy) prompted the hypothesis that mitochondrial DNA (mtDNA) sequence and/or copy number (mtDNAcn) variation contribute to cardiac defects in congenital heart disease (CHD). MtDNAcns were calculated and rare, non-synonymous mtDNA mutations were identified in 1,837 CHD-affected proband-parent trios, 116 CHD-affected singletons, and 114 paired cardiovascular tissue/blood samples. The variant allele fraction (VAF) of heteroplasmic variants in mitochondrial RNA from 257 CHD cardiovascular tissue samples was also calculated. On average, mtDNA from blood had 0.14 rare variants and 52.9 mtDNA copies per nuclear genome per proband. No variation with parental age at proband birth or CHD-affected proband age was seen. mtDNAcns in valve/vessel tissue (320 ± 70) were lower than in atrial tissue (1,080 ± 320, p = 6.8E-21), which were lower than in ventricle tissue (1,340 ± 280, p = 1.4E-4). The frequency of rare variants in CHD-affected individual DNA was indistinguishable from the frequency in an unaffected cohort, and proband mtDNAcns did not vary from those of CHD cohort parents. In both the CHD and the comparison cohorts, mtDNAcns were significantly correlated between mother-child, father-child, and mother-father. mtDNAcns among people with European (mean = 52.0), African (53.0), and Asian haplogroups (53.5) were calculated and were significantly different for European and Asian haplogroups (p = 2.6E-3). Variant heteroplasmic fraction (HF) in blood correlated well with paired cardiovascular tissue HF (r = 0.975) and RNA VAF (r = 0.953), which suggests blood HF is a reasonable proxy for HF in heart tissue. We conclude that mtDNA mutations and mtDNAcns are unlikely to contribute significantly to CHD risk.
Collapse
Affiliation(s)
- Jon A L Willcox
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua T Geiger
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - David McKean
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Quiat
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Angela C Tai
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven DePalma
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA
| | - Martina Brueckner
- Departments of Genetics and Pediatric Cardiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY 10019, USA
| | - Alessandro Giardini
- Cardiorespiratory Unit, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| | - Elizabeth Goldmuntz
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan R Kaltman
- Heart Development and Structural Diseases Branch, Division of Cardiovascular Sciences, NHLBI/NIH, Bethesda, MD 20892, USA
| | - Richard Kim
- Cardiothoracic Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics, Columbia University Medical Center, New York, NY 10019, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84132, USA
| | - Bruce Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - George A Porter
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cardiology, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard University, Boston, MA 02138, USA
| |
Collapse
|
26
|
Bendixen C, Brosens E, Chung WK. Genetic Diagnostic Strategies and Counseling for Families Affected by Congenital Diaphragmatic Hernia. Eur J Pediatr Surg 2021; 31:472-481. [PMID: 34911129 DOI: 10.1055/s-0041-1740337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and severe birth defect with variable clinical outcome and associated malformations in up to 60% of patients. Mortality and morbidity remain high despite advances in pre-, intra-, and postnatal management. We review the current literature and give an overview about the genetics of CDH to provide guidelines for clinicians with respect to genetic diagnostics and counseling for families. Until recently, the common practice was (molecular) karyotyping or chromosome microarray if the CDH diagnosis is made prenatally with a 10% diagnostic yield. Undiagnosed patients can be reflexed to trio exome/genome sequencing with an additional diagnostic yield of 10 to 20%. Even with a genetic diagnosis, there can be a range of clinical outcomes. All families with a child with CDH with or without additional malformations should be offered genetic counseling and testing in a family-based trio approach.
Collapse
Affiliation(s)
- Charlotte Bendixen
- Department of General, Visceral, Vascular and Thoracic Surgery, Unit of Pediatric Surgery, Universitätsklinikum Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Wendy Kay Chung
- Department of Medicine, Columbia University Irving Medical Center, New York, United States.,Department of Pediatrics, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
27
|
Brosens E, Peters NCJ, van Weelden KS, Bendixen C, Brouwer RWW, Sleutels F, Bruggenwirth HT, van Ijcken WFJ, Veenma DCM, Otter SCMCD, Wijnen RMH, Eggink AJ, van Dooren MF, Reutter HM, Rottier RJ, Schnater JM, Tibboel D, de Klein A. Unraveling the Genetics of Congenital Diaphragmatic Hernia: An Ongoing Challenge. Front Pediatr 2021; 9:800915. [PMID: 35186825 PMCID: PMC8852845 DOI: 10.3389/fped.2021.800915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital structural anomaly in which the diaphragm has not developed properly. It may occur either as an isolated anomaly or with additional anomalies. It is thought to be a multifactorial disease in which genetic factors could either substantially contribute to or directly result in the developmental defect. Patients with aneuploidies, pathogenic variants or de novo Copy Number Variations (CNVs) impacting specific genes and loci develop CDH typically in the form of a monogenetic syndrome. These patients often have other associated anatomical malformations. In patients without a known monogenetic syndrome, an increased genetic burden of de novo coding variants contributes to disease development. In early years, genetic evaluation was based on karyotyping and SNP-array. Today, genomes are commonly analyzed with next generation sequencing (NGS) based approaches. While more potential pathogenic variants are being detected, analysis of the data presents a bottleneck-largely due to the lack of full appreciation of the functional consequence and/or relevance of the detected variant. The exact heritability of CDH is still unknown. Damaging de novo alterations are associated with the more severe and complex phenotypes and worse clinical outcome. Phenotypic, genetic-and likely mechanistic-variability hampers individual patient diagnosis, short and long-term morbidity prediction and subsequent care strategies. Detailed phenotyping, clinical follow-up at regular intervals and detailed registries are needed to find associations between long-term morbidity, genetic alterations, and clinical parameters. Since CDH is a relatively rare disorder with only a few recurrent changes large cohorts of patients are needed to identify genetic associations. Retrospective whole genome sequencing of historical patient cohorts using will yield valuable data from which today's patients and parents will profit Trio whole genome sequencing has an excellent potential for future re-analysis and data-sharing increasing the chance to provide a genetic diagnosis and predict clinical prognosis. In this review, we explore the pitfalls and challenges in the analysis and interpretation of genetic information, present what is currently known and what still needs further study, and propose strategies to reap the benefits of genetic screening.
Collapse
Affiliation(s)
- Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Nina C J Peters
- Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Kim S van Weelden
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Charlotte Bendixen
- Unit of Pediatric Surgery, Department of General, Visceral, Vascular and Thoracic Surgery, University Hospital Bonn, Bonn, Germany
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank Sleutels
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Hennie T Bruggenwirth
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Danielle C M Veenma
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Suzan C M Cochius-Den Otter
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Alex J Eggink
- Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Marieke F van Dooren
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Heiko Martin Reutter
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany.,Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Robbert J Rottier
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - J Marco Schnater
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|