1
|
Rozanes E, Ben-Arzi A, Boas H, Ehrenberg M, Bialer O, Stiebel-Kalish H. Family Planning in Genetic Optic Atrophies in Israel, a Case Series and a Discussion of Ethical Considerations. J Neuroophthalmol 2025; 45:153-157. [PMID: 39080811 DOI: 10.1097/wno.0000000000002232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
BACKGROUND Patients with genetic optic atrophies must navigate all stages of life with their visual impairment, including the important milestone of family planning. Advances in genetic testing now allows physicians and affected families to consider medical help with the aim of preventing blindness through preconception, preimplantation, and perinatal methods. METHODS This case series presents 4 patients with different genetic optic atrophies (Leber hereditary optic neuropathy [LHON], autosomal dominant optic atrophy, Wolfram syndrome, and papillorenal syndrome) who were followed by the Neuro-Ophthalmology Unit at a tertiary medical center between 2010 and 2023 and were of child-bearing age. The aim of this study was to increase understanding in family planning options for patients with optic atrophies, raise awareness of the solutions available, and provide guidance for clinicians to support their patients. RESULTS Advances in medicine, genetics, and medical technology allow multidisciplinary teams to assist patients in fulfilling their desire for a genetically healthy offspring. Customized solutions can be designed to meet the specific challenges posed by each type of genetic optic atrophy. The solutions proposed in this series are based on genetic testing done in the parents, which then allows to plan medical and genetic intervention individually. The solutions opted for in this series range from the decision to not have another child until PGD (Preimplantation genetic diagnosis). CONCLUSIONS We describe how genetic advancements have made it possible for patients with the 4 most common hereditary optic atrophies to fulfill their wish to have children without visually threatening genetic mutations. We also review the recent literature on the penetrance of optic atrophy in OA-mutation carriers and raise 2 significant ethical considerations: the reduction of a future life to a non-life-threatening impairment and that of public expenditure for non-life-threatening conditions.
Collapse
Affiliation(s)
- Eliane Rozanes
- Ophthalmology Department (ER, AB-A, ME, OB, HS-K), Rabin Medical Center, Petah Tikva, Israel; Sackler Faculty of Medicine (ER, AB-A, ME, HS-K), Tel Aviv University, Tel Aviv, Israel; Neuro-Ophthalmology Unit (OB, HS-K), Rabin Medical Center, Petah Tikva, Israel; Ophthalmology Clinic (ME), Schneider Children's Medical Center in Israel, Petah Tikva, Israel; Faculty of Medicine (ER, AB-A, ME, HS-K), Tel Aviv University, Tel Aviv, Israel; Felsenstein Medical Research Center (HS-K), Rabin Medical Center and Tel Aviv University, Tel Aviv, Israel; The Van Leer Jerusalem Institute (HB), Jerusalem, Israel; and Ben Gurion University of the Negev (HB), Bersheba, Israel
| | | | | | | | | | | |
Collapse
|
2
|
Arany ES, Olimpio C, Paramonov I, Horvath R. Modifier variants in metabolic pathways are associated with an increased penetrance of Leber's Hereditary Optic Neuropathy. Eur J Hum Genet 2025:10.1038/s41431-025-01860-7. [PMID: 40346165 DOI: 10.1038/s41431-025-01860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a debilitating mitochondrial disease characterised by bilateral painless vision loss. Despite being the most prevalent mitochondrial disorder, the precise pathophysiological mechanisms underlying the penetrance of LHON remain poorly understood. Nuclear modifier genes have been long suspected to affect phenotype-severity, however, specific cellular pathways implicated in the disease penetrance have been only suggested recently. In recent years, autosomal recessive variants in nuclear genes involved in complex I function and metabolic pathways were recognised to cause a typical LHON phenotype. This was proposed as a new autosomal recessive disease mechanism for LHON (arLHON). The association between nuclear variants and the LHON phenotype makes the nuclear pathways disrupted in arLHON the strongest candidates to act as modifiers of mitochondrial LHON (mLHON). In this study we systematically investigated a large cohort of 23 symptomatic and 28 asymptomatic individuals carrying one of the three primary mitochondrial LHON variants. We identified several heterozygous pathogenic nuclear variants amongst the affected individuals that were consistently linked to metabolic and complex I related pathways, mirroring those disrupted in arLHON. Our findings are consistent with the presence of a second hit in specific biological pathways impairing ATP production. We propose that in addition to the primary mitochondrial variants, disruption in these nuclear-encoded pathways drives the clinical manifestation of LHON. Genes involved in the same pathways also emerge as exciting candidates for future association with arLHON. The present study deepens our understanding of LHON's pathophysiology and provides a new framework for identifying novel disease-modifying targets.
Collapse
Affiliation(s)
| | - Catarina Olimpio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ida Paramonov
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Mackey DA, Staffieri SE, Lopez Sanchez MIG, Kearns LS. Family and genetic counseling in Leber hereditary optic neuropathy. Ophthalmic Genet 2025; 46:101-109. [PMID: 39833125 DOI: 10.1080/13816810.2025.2451175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/25/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
AIM Leber hereditary optic neuropathy (LHON) predominantly manifests during adolescence or young adulthood, resulting in sudden and profound vision loss in individuals who previously had normal vision. This abrupt change significantly impacts daily life, necessitating emotional support, counseling and low-vision rehabilitative services to help affected individuals cope with the shock and adapt to their residual vision. The psychosocial burden of dealing with vision loss extends beyond the individuals directly affected by LHON, affecting matrilineal relatives who face the dual challenges of grieving for their loved one's vision loss and managing their own uncertainty about potential vision loss and its familial implications. METHOD We reviewed key information that needs to be obtained prior to genetic counseling for LHON. We reviewed key counseling issues within LHON-affected families and the issues pending several subgroups of family members with distinct and varying genetic counseling needs. RESULTS Family subgroups requiring specific counseling issues include the individuals affected by LHON, their mother, siblings, father, partner, and children. Genetic counseling plays an integral part of clinical care in families affected by LHON, providing tailored support and information to each subgroup. CONCLUSION To provide accurate information to families and guide them toward potential supports, treatments and preventive measures, health professionals need to be aware of the factors influencing visual recovery and individual risk of vision loss.
Collapse
Affiliation(s)
- David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
- School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Parkville, Victoria, Australia
| | - M Isabel G Lopez Sanchez
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Lisa S Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| |
Collapse
|
4
|
La Morgia C, Cascavilla ML, De Negri AM, Romano M, Canalini F, Rossi S, Centonze D, Filippi M. Recognizing Leber's Hereditary Optic Neuropathy to avoid delayed diagnosis and misdiagnosis. Front Neurol 2024; 15:1466275. [PMID: 39364415 PMCID: PMC11448350 DOI: 10.3389/fneur.2024.1466275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024] Open
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is a maternally inherited optic nerve disease primarily caused by mutations in mitochondrial DNA (mtDNA). The peak of onset is typically between 15 and 30 years, but variability exists. Misdiagnosis, often as inflammatory optic neuritis, delays treatment, compounded by challenges in timely genetic diagnosis. Given the availability of a specific treatment for LHON, its early diagnosis is imperative to ensure therapeutic appropriateness. This work gives an updated guidance about LHON differential diagnosis to clinicians dealing also with multiple sclerosi and neuromyelitis optica spectrtum disorders-related optic neuritis. LHON diagnosis relies on clinical signs and paraclinical evaluations. Differential diagnosis in the acute phase primarily involves distinguishing inflammatory optic neuropathies, considering clinical clues such as ocular pain, fundus appearance and visual recovery. Imaging analysis obtained with Optical Coherence Tomography (OCT) assists clinicians in early recognition of LHON and help avoiding misdiagnosis. Genetic testing for the three most common LHON mutations is recommended initially, followed by comprehensive mtDNA sequencing if suspicion persists despite negative results. We present and discuss crucial strategies for accurate diagnosis and management of LHON cases.
Collapse
Affiliation(s)
- Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Maria Lucia Cascavilla
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Marcello Romano
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | | | | | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
5
|
Rigobello L, Lugli F, Caporali L, Bartocci A, Fadanni J, Zerbetto F, Iommarini L, Carelli V, Ghelli AM, Musiani F. A computational study to assess the pathogenicity of single or combinations of missense variants on respiratory complex I. Int J Biol Macromol 2024; 273:133086. [PMID: 38871105 DOI: 10.1016/j.ijbiomac.2024.133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Variants found in the respiratory complex I (CI) subunit genes encoded by mitochondrial DNA can cause severe genetic diseases. However, it is difficult to establish a priori whether a single or a combination of CI variants may impact oxidative phosphorylation. Here we propose a computational approach based on coarse-grained molecular dynamics simulations aimed at investigating new CI variants. One of the primary CI variants associated with the Leber hereditary optic neuropathy (m.14484T>C/MT-ND6) was used as a test case and was investigated alone or in combination with two additional rare CI variants whose role remains uncertain. We found that the primary variant positioned in the E-channel region, which is fundamental for CI function, stiffens the enzyme dynamics. Moreover, a new mechanism for the transition between π- and α-conformation in the helix carrying the primary variant is proposed. This may have implications for the E-channel opening/closing mechanism. Finally, our findings show that one of the rare variants, located next to the primary one, further worsens the stiffening, while the other rare variant does not affect CI function. This approach may be extended to other variants candidate to exert a pathogenic impact on CI dynamics, or to investigate the interaction of multiple variants.
Collapse
Affiliation(s)
- Laura Rigobello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy
| | - Francesca Lugli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy.
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy
| | - Alessio Bartocci
- Department of Physics, University of Trento, Trento I-38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento I-38123, Italy
| | - Jacopo Fadanni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy
| | - Francesco Zerbetto
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna I-40126, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna I-40123, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna I-40124, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna I-40127, Italy.
| |
Collapse
|
6
|
Pasqualotto BA, Tegeman C, Frame AK, McPhedrain R, Halangoda K, Sheldon CA, Rintoul GL. Galactose-replacement unmasks the biochemical consequences of the G11778A mitochondrial DNA mutation of LHON in patient-derived fibroblasts. Exp Cell Res 2024; 439:114075. [PMID: 38710404 DOI: 10.1016/j.yexcr.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a visual impairment associated with mutations of mitochondrial genes encoding elements of the electron transport chain. While much is known about the genetics of LHON, the cellular pathophysiology leading to retinal ganglion cell degeneration and subsequent vision loss is poorly understood. The impacts of the G11778A mutation of LHON on bioenergetics, redox balance and cell proliferation were examined in patient-derived fibroblasts. Replacement of glucose with galactose in the culture media reveals a deficit in the proliferation of G11778A fibroblasts, imparts a reduction in ATP biosynthesis, and a reduction in capacity to accommodate exogenous oxidative stress. While steady-state ROS levels were unaffected by the LHON mutation, cell survival was diminished in response to exogenous H2O2.
Collapse
Affiliation(s)
- Bryce A Pasqualotto
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Carina Tegeman
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ariel K Frame
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan McPhedrain
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Kolitha Halangoda
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Claire A Sheldon
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gordon L Rintoul
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
7
|
Neuhofer CM, Prokisch H. Digenic Inheritance in Rare Disorders and Mitochondrial Disease-Crossing the Frontier to a More Comprehensive Understanding of Etiology. Int J Mol Sci 2024; 25:4602. [PMID: 38731822 PMCID: PMC11083678 DOI: 10.3390/ijms25094602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Our understanding of rare disease genetics has been shaped by a monogenic disease model. While the traditional monogenic disease model has been successful in identifying numerous disease-associated genes and significantly enlarged our knowledge in the field of human genetics, it has limitations in explaining phenomena like phenotypic variability and reduced penetrance. Widening the perspective beyond Mendelian inheritance has the potential to enable a better understanding of disease complexity in rare disorders. Digenic inheritance is the simplest instance of a non-Mendelian disorder, characterized by the functional interplay of variants in two disease-contributing genes. Known digenic disease causes show a range of pathomechanisms underlying digenic interplay, including direct and indirect gene product interactions as well as epigenetic modifications. This review aims to systematically explore the background of digenic inheritance in rare disorders, the approaches and challenges when investigating digenic inheritance, and the current evidence for digenic inheritance in mitochondrial disorders.
Collapse
Affiliation(s)
- Christiane M. Neuhofer
- Institute of Human Genetics, University Medical Center, Technical University of Munich, Trogerstr. 32, 81675 Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Centre Munich Neuherberg, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
- Institute of Human Genetics, Salzburger Landeskliniken, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Holger Prokisch
- Institute of Human Genetics, University Medical Center, Technical University of Munich, Trogerstr. 32, 81675 Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Centre Munich Neuherberg, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany
| |
Collapse
|
8
|
Vacchiano V, Palombo F, Ormanbekova D, Fiorini C, Fiorentino A, Caporali L, Mastrangelo A, Valentino ML, Capellari S, Liguori R, Carelli V. The genetic puzzle of a SOD1-patient with ocular ptosis and a motor neuron disease: a case report. Front Genet 2023; 14:1322067. [PMID: 38152653 PMCID: PMC10751346 DOI: 10.3389/fgene.2023.1322067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a complex genetic architecture, showing monogenic, oligogenic, and polygenic inheritance. In this study, we describe the case of a 71 years-old man diagnosed with ALS with atypical clinical features consisting in progressive ocular ptosis and sensorineural deafness. Genetic analyses revealed two heterozygous variants, in the SOD1 (OMIM*147450) and the TBK1 (OMIM*604834) genes respectively, and furthermore mitochondrial DNA (mtDNA) sequencing identified the homoplasmic m.14484T>C variant usually associated with Leber's Hereditary Optic Neuropathy (LHON). We discuss how all these variants may synergically impinge on mitochondrial function, possibly contributing to the pathogenic mechanisms which might ultimately lead to the neurodegenerative process, shaping the clinical ALS phenotype enriched by adjunctive clinical features.
Collapse
Affiliation(s)
- Veria Vacchiano
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Alessia Fiorentino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Andrea Mastrangelo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Kanazashi Y, Maejima K, Johnson TA, Sasagawa S, Jikuya R, Hasumi H, Matsumoto N, Maekawa S, Obara W, Nakagawa H. Mitochondrial DNA Variants at Low-Level Heteroplasmy and Decreased Copy Numbers in Chronic Kidney Disease (CKD) Tissues with Kidney Cancer. Int J Mol Sci 2023; 24:17212. [PMID: 38139039 PMCID: PMC10743237 DOI: 10.3390/ijms242417212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The human mitochondrial genome (mtDNA) is a circular DNA molecule with a length of 16.6 kb, which contains a total of 37 genes. Somatic mtDNA mutations accumulate with age and environmental exposure, and some types of mtDNA variants may play a role in carcinogenesis. Recent studies observed mtDNA variants not only in kidney tumors but also in adjacent kidney tissues, and mtDNA dysfunction results in kidney injury, including chronic kidney disease (CKD). To investigate whether a relationship exists between heteroplasmic mtDNA variants and kidney function, we performed ultra-deep sequencing (30,000×) based on long-range PCR of DNA from 77 non-tumor kidney tissues of kidney cancer patients with CKD (stages G1 to G5). In total, this analysis detected 697 single-nucleotide variants (SNVs) and 504 indels as heteroplasmic (0.5% ≤ variant allele frequency (VAF) < 95%), and the total number of detected SNVs/indels did not differ between CKD stages. However, the number of deleterious low-level heteroplasmic variants (pathogenic missense, nonsense, frameshift and tRNA) significantly increased with CKD progression (p < 0.01). In addition, mtDNA copy numbers (mtDNA-CNs) decreased with CKD progression (p < 0.001). This study demonstrates that mtDNA damage, which affects mitochondrial genes, may be involved in reductions in mitochondrial mass and associated with CKD progression and kidney dysfunction.
Collapse
Affiliation(s)
- Yuki Kanazashi
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
- Department of Human Genetics, Yokohama City University, Yokohama 236-0004, Japan;
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Todd A. Johnson
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| | - Ryosuke Jikuya
- Department of Urology, Yokohama City University, Yokohama 236-0004, Japan; (R.J.); (H.H.)
| | - Hisashi Hasumi
- Department of Urology, Yokohama City University, Yokohama 236-0004, Japan; (R.J.); (H.H.)
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University, Yokohama 236-0004, Japan;
| | - Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (S.M.); (W.O.)
| | - Wataru Obara
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (S.M.); (W.O.)
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; (Y.K.); (K.M.); (T.A.J.); (S.S.)
| |
Collapse
|
10
|
González-Martín-Moro J, Reche Sainz JA, Gracia T, Maroto Rodríguez B, Cabrejas Martínez L, Gutiérrez Ortiz C, Rojas P, Fraile Maya J, Blanco Calvo N, Muñoz Negrete F. Approaches to the epidemiology of NOHL in the region of Madrid: Survey of neuro-ophthalmologists. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2023; 98:673-679. [PMID: 37866435 DOI: 10.1016/j.oftale.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVE To estimate the epidemiology of Leber's optic neuropathy (NOHL) in the Region of Madrid. MATERIAL AND METHODS The neuro-ophthalmologists who work at public hospitals of the CAM were interviewed by telephone. They were asked about the number of patients with NOHL that they had diagnosed during the time that they had been responsible for the neuro-ophthalmology department of that public hospital. The time worked and the population attended by the hospital were used to calculate the number of inhabitant-years in follow-up by each center during the corresponding period. The basic information of each case (date of birth, mutation, date of visual loss) was registered to avoid duplications. RESULTS Our work estimates a global incidence of 2.34 cases for 10,000,000 inhabitants-year and a prevalence estimated from incidence of one case for each 106.682 inhabitants. This prevalence was very similar in all the studied areas and considerably lower than that reported by other studies. CONCLUSION This work constitutes the first approach to the epidemiology of this disease in Spain. The prevalence of LHON in the region of Madrid, is probably lower than that reported in the literature in other regions. The prevalence and the incidence were homogeneously low in the 26 studied areas.
Collapse
Affiliation(s)
- J González-Martín-Moro
- Servicio de Oftalmología, Hospital Universitario del Henares, Coslada, Madrid, Spain; Fundación para la Investigación Biomédica del Hospital Infanta Sofía y del Hospital Universitario del Henares, San Sebastián de los Reyes, Madrid, Spain; Departamento de Ciencias de la Salud, Universidad Francisco de Vitoria, Madrid, Spain.
| | - J A Reche Sainz
- Servicio de Oftalmología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - T Gracia
- Servicio de Oftalmología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - B Maroto Rodríguez
- Servicio de Oftalmología, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - L Cabrejas Martínez
- Servicio de Oftalmología, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - C Gutiérrez Ortiz
- Servicio de Oftalmología, Hospital Universitario Príncipe de Asturias, Madrid, Spain
| | - P Rojas
- Servicio de Oftalmología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - J Fraile Maya
- Servicio de Oftalmología, Hospital Universitario La Paz, Madrid, Spain
| | - N Blanco Calvo
- Servicio de Oftalmología, Hospital Niño Jesús, Madrid, Spain
| | - F Muñoz Negrete
- Servicio de Oftalmología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
11
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
12
|
Mackey DA, Ong JS, MacGregor S, Whiteman DC, Craig JE, Lopez Sanchez MIG, Kearns LS, Staffieri SE, Clarke L, McGuinness MB, Meteoukki W, Samuel S, Ruddle JB, Chen C, Fraser CL, Harrison J, Howell N, Hewitt AW. Is the disease risk and penetrance in Leber hereditary optic neuropathy actually low? Am J Hum Genet 2023; 110:170-176. [PMID: 36565701 PMCID: PMC9892764 DOI: 10.1016/j.ajhg.2022.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Pedigree analysis showed that a large proportion of Leber hereditary optic neuropathy (LHON) family members who carry a mitochondrial risk variant never lose vision. Mitochondrial haplotype appears to be a major factor influencing the risk of vision loss from LHON. Mitochondrial variants, including m.14484T>C and m.11778G>A, have been added to gene arrays, and thus many patients and research participants are tested for LHON mutations. Analysis of the UK Biobank and Australian cohort studies found more than 1 in 1,000 people in the general population carry either the m.14484T>C or the m.11778G>A LHON variant. None of the subset of carriers examined had visual acuity at 20/200 or worse, suggesting a very low penetrance of LHON. Haplogroup analysis of m.14484T>C carriers showed a high rate of haplogroup U subclades, previously shown to have low penetrance in pedigrees. Penetrance calculations of the general population are lower than pedigree calculations, most likely because of modifier genetic factors. This Matters Arising Response paper addresses the Watson et al. (2022) Matters Arising paper, published concurrently in The American Journal of Human Genetics.
Collapse
Affiliation(s)
- David A Mackey
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Hobart, 7000 TAS, Australia; The University of Western Australia, Centre for Ophthalmology and Visual Science, Lions Eye Institute, Nedlands, 6009 WA, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, 3002 VIC, Australia.
| | - Jue-Sheng Ong
- Statistical Genetics Laboratory, Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, 4006 QLD, Australia
| | - Stuart MacGregor
- Statistical Genetics Laboratory, Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, 4006 QLD, Australia
| | - David C Whiteman
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, 4006 QLD, Australia
| | - Jamie E Craig
- Flinders Medical Centre, Flinders University, Bedford Park, SA 5042, Australia
| | - M Isabel G Lopez Sanchez
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, 3002 VIC, Australia; Ophthalmology, University of Melbourne, Department of Surgery, Parkville, 3010 VIC, Australia
| | - Lisa S Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, 3002 VIC, Australia
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, 3002 VIC, Australia; Ophthalmology, University of Melbourne, Department of Surgery, Parkville, 3010 VIC, Australia
| | - Linda Clarke
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, 3002 VIC, Australia
| | - Myra B McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, 3002 VIC, Australia
| | - Wafaa Meteoukki
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, 3002 VIC, Australia
| | - Sona Samuel
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, 3002 VIC, Australia
| | - Jonathan B Ruddle
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, 3002 VIC, Australia; Ophthalmology, University of Melbourne, Department of Surgery, Parkville, 3010 VIC, Australia
| | - Celia Chen
- Flinders Medical Centre, Flinders University, Bedford Park, SA 5042, Australia
| | - Clare L Fraser
- Save Sight Institute, Discipline of Ophthalmology, Faculty of Health and Medicine, The University of Sydney, Sydney, 2000 NSW, Australia
| | - John Harrison
- Department of Ophthalmology, Royal Brisbane and Women's Hospital, Herston, 4006 QLD Australia
| | | | - Alex W Hewitt
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Hobart, 7000 TAS, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, 3002 VIC, Australia
| |
Collapse
|