1
|
Brown PA. Transcriptomic signatures of atheroresistance in the human atrium and ventricle highlight potential candidates for targeted atherosclerosis therapeutics. Biochem Biophys Rep 2025; 42:102007. [PMID: 40248137 PMCID: PMC12004712 DOI: 10.1016/j.bbrep.2025.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Atherosclerosis risk is not uniform throughout the cardiovascular system. This study therefore aimed to compare the transcriptomes of atheroresistant human atrium and ventricle with atheroprone coronary arteries to identify transcriptomic signatures of atheroresistance and potential targets for atherosclerosis therapeutics. Using publicly available gene read counts, differentially expressed genes between the atrium, ventricle, and coronary artery were identified for each contrast and validated against the Swiss Institute of Bioinformatics' Bgee database. Over-representation analysis and active-subnetwork-oriented enrichment assessment then identified enriched terms, which were grouped into endothelial dysfunction-related processes. Potential biological significance was further explored with pathway analysis. Among 21474 features, 12656 differentially expressed genes were identified across the three contrasts and associated with 1215 enriched terms. There were 315 down-regulated and 133 up-regulated genes associated with endothelial dysfunction-related processes across the contrasts, including immune modulators, cell adhesion molecules, and lipid metabolism- and coagulation-related molecules. Differentially expressed genes were associated with six down-regulated Kyoto Encyclopedia of Genes and Genomes pathways, related to immune cell and associated endothelium functions. Review of regulated genes associated with endothelial dysfunction-related processes and included in these pathways, indicate immune cell-associated B cell scaffold protein with ankyrin repeats 1, as well as arterial endothelial cell-associated vascular cell adhesion molecule 1 and cadherin 5, as potential atherosclerosis targets.
Collapse
Affiliation(s)
- Paul A. Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
2
|
Huang Z, Shen S, Li W, Wang M, Yang Y, Luo W, Han X, Xu Z, Min J, Long X, Huang W, Wu G, Wang Y, Liang G. Macrophage WEE1 Directly Binds to and Phosphorylates NF-κB p65 Subunit to Induce Inflammatory Response and Drive Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503192. [PMID: 40202104 DOI: 10.1002/advs.202503192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Atherosclerosis has an urgent need for new therapeutic targets. Protein kinases orchestrate multiple cellular events in atherosclerosis and may provide new therapeutic targets for atherosclerosis. Here, a protein kinase, WEE1 G2 checkpoint kinase (WEE1), promoting inflammation in atherosclerosis is identified. Kinase enrichment analysis and experimental evidences reveal macrophage WEE1 phosphorylation at S642 in human and mouse atherosclerotic tissues. RNA-seq analysis, combined with experiment studies using mutant WEE1 plasmids, shows that WEE1 phosphorylation, rather than WEE1 expression, mediated oxLDL-induced inflammation in macrophages. Macrophage-specific deletion of WEE1 or pharmacological inhibition of WEE1 kinase activity attenuates atherosclerosis by reducing inflammation in mice. Mechanistically, RNA-seq and co-immunoprecipitation followed by proteomics analysis are used to explore the mechanism and substrate of WEE1. p-WEE1 promoted inflammatory response through activating NF-κB shown and further revealed that WEE1 can directly bind to the p65 subunit. It is confirmed that p-WEE1 directly interacts with the RHD domain of p65 and phosphorylates p65 at S536, thereby facilitating subsequent NF-κB activation and inflammatory response in macrophages. The findings demonstrate that macrophage WEE1 drives NF-κB activation and atherosclerosis by directly phosphorylating p65 at S536. This study identifies WEE1 as a new upstream kinase of p65 and a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Zhuqi Huang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311000, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Sirui Shen
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weixin Li
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mengyang Wang
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China
| | - Yudie Yang
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wu Luo
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xue Han
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China
| | - Zheng Xu
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China
| | - Julian Min
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohong Long
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311000, China
| | - Weijian Huang
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311000, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 311399, China
| |
Collapse
|
3
|
Perry RN, Lenert G, Benavente ED, Ma A, Barbera N, Mokry M, de Kleijn DPV, de Winther MPJ, Mayr M, Björkegren JLM, den Ruijter HM, Civelek M. Female-biased vascular smooth muscle cell gene regulatory networks predict MYH9 as a key regulator of fibrous plaque phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645955. [PMID: 40236025 PMCID: PMC11996327 DOI: 10.1101/2025.03.28.645955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Atherosclerosis, a chronic inflammatory condition driving coronary artery disease (CAD), manifests in two primary plaque types: unstable atheromatous plaques and stable fibrous plaques. While significant research has focused on atheromatous plaques, recent studies emphasize the growing importance of fibrous plaques, particularly in females under 50 years of age, where erosion on fibrous plaques significantly contributes to coronary thrombosis. The molecular mechanisms underlying sex differences in atherosclerotic plaque characteristics, including vascular smooth muscle cell (VSMC) contributions, remain understudied. Therefore, we utilized sex-specific gene regulatory networks (GRNs) derived from VSMC gene expression data from 119 male and 32 female heart transplant donors to identify molecular drivers of fibrous plaques. GRN analysis revealed two female-biased networks in VSMC, GRN floralwhite and GRN yellowgreen , enriched for inflammatory signaling and actin remodeling pathways, respectively. Single-cell RNA sequencing of carotid plaques from female and male patients confirmed the sex specificity of these networks in VSMCs. Further sub cellular phenotyping of the single-cell RNA sequencing revealed a sex-specific gene expression signature within GRN yellowgreen for VSMCs enriched for contractile and vasculature development pathways. Bayesian network modeling of the GRN yellowgreen identified MYH9 as a key driver gene. Indeed, elevated MYH9 protein expression in atherosclerotic plaques was associated with higher smooth muscle cell content and lower lipid content in female plaques, suggesting its involvement in fibrous plaque formation. Further proteomic analysis confirmed MYH9's upregulation in female fibrous plaques only and its correlation with stable plaque features. These findings provide novel insights into sex-specific molecular mechanisms regulating fibrous plaque formation.
Collapse
|
4
|
Pepin ME, Schwartzman WE, Fang S, Vellarikkal SK, Atri DS, Reddy A, Xu Q, Hamel AR, Billaud M, Segrè AV, Gupta RM. Integrative analysis of single-cell transcriptomics and genetic associations identify cell states associated with vascular disease. Atherosclerosis 2025; 403:119108. [PMID: 40120433 DOI: 10.1016/j.atherosclerosis.2025.119108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 01/08/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Vascular diseases are accompanied by alterations in cellular phenotypes which underlie disease pathogenesis, with single-cell technologies aiding in the discovery of cellular heterogeneity among endothelial cell (EC) and vascular smooth muscle cell (VSMC) populations. In atherosclerotic disease, VSMCs are hypothesized to transition between contractile and synthetic states; however, the specific vascular subpopulations and intermediate cell states responsible for early vascular dysfunction remain unclear. METHODS We integrated newly generated and published single-nuclear RNA-sequencing (snRNA-seq) datasets to analyze normal (n = 7), aneurysmal (n = 9), and atherosclerotic (n = 2) flash-frozen human ascending thoracic aortas. Cell types and subtypes were defined using both top marker genes and canonical gene markers. Disease enrichment and relevant cell types were identified using newly developed computational tools to integrate GWAS data from multiple vascular disease-relevant studies with the single nuclei aortic expression profiles. RESULTS Nuclear dissociation and snRNA-seq identified ten distinct transcriptomic clusters from the integrated analysis representing all major vascular cell populations. Three distinct VSMC populations emerged that exhibited differential expression of extracellular matrix, contractile and pro-proliferative genes. Aneurysmal specimens were enriched for one fibroblast and one VSMC subpopulation compared to healthy tissue. RNA-trajectory analysis inferred a phenotypic continuum of gene expression between VSMC A and VSMC B or C and between two of the identified fibroblast types. VSMCs and Fibroblast C exhibited the greatest cell type-specific enrichment of genes mapped to GWAS loci for coronary artery disease (CAD), blood pressure, and migraine. Cell type-specific enrichment scores were more robust among the transcriptional profiles from non-diseased vascular tissue. CONCLUSIONS Our use of single-cell isolation and new computational methods prioritizes the cell types that most contribute to vascular disease pathogenesis. Specifically, tissue dissociation and single-nuclear transcriptomics better represent all vascular cell types, from which we demonstrate enrichment of pro-proliferative VSMCs in TAA and further implicate phenotypic switching as a likely pathologic mechanism. Integrated analysis of cell-specific gene expression and vascular disease GWAS data implicate genes and pathways associated with fibroblast and VSMC cell-state transitions.
Collapse
MESH Headings
- Humans
- Single-Cell Analysis
- Transcriptome
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Profiling/methods
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Male
- Aorta, Thoracic/pathology
- Aorta, Thoracic/metabolism
- Female
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/metabolism
- Genome-Wide Association Study
- RNA-Seq
Collapse
Affiliation(s)
- Mark E Pepin
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - William E Schwartzman
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Shi Fang
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Shamsudheen K Vellarikkal
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Deepak S Atri
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Ankith Reddy
- Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Qiaohan Xu
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Andrew R Hamel
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Marie Billaud
- Division of Cardiothoracic Surgery, Brigham & Women's Hospital, Boston, MA, USA
| | - Ayellet V Segrè
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rajat M Gupta
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Norland K, Schaid DJ, Kullo IJ. Enhancing polygenic scores for cardiometabolic traits through tissue- and cell-type-specific functional annotations. HGG ADVANCES 2025; 6:100427. [PMID: 40143549 PMCID: PMC12059674 DOI: 10.1016/j.xhgg.2025.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Functional genomic annotations can improve polygenic scores (PGS) within and between genetic ancestry groups. While general annotations are commonly used in PGS development, tissue- and cell-type-specific annotations derived from open chromatin and gene expression experiments may further enhance PGS for cardiometabolic traits. We developed PGS for 14 cardiometabolic traits in the UK Biobank using SBayesRC. We integrated GWAS summary statistics from FinnGen and GLGC with three annotation sources: (1) Baseline-LD model version 2.2 (general annotations), (2) cell-type-specific snATAC-seq peaks, and (3) tissue-specific eQTLs/sQTLs. We created PGS using two EUR LD reference panels (1.2 million [1.2M] HapMap3 variants and 7M imputed variants). Tissue- and cell-type-specific annotations showed stronger heritability enrichment than Baseline-LD annotations on average, particularly coronary snATAC-seq peaks and fine-mapped eQTLs. Without annotations, HapMap3 and 7M variant PGS performed similarly. However, with all annotations, 7M variant PGS outperformed HapMap3 variant PGS (8% average increase in relative performance in EUR). Compared to using no annotations, modeling Baseline-LD annotations improved performance by 5% for HapMap3 and 11% for 7M variant PGS, while modeling all annotations yielded improvements of 5% and 13%, respectively. Although annotations provided greater relative improvement for cross-ancestry prediction, they did not decrease the disparity in PGS performance between genetic ancestry groups. In conclusion, functional annotations improved PGS for cardiometabolic traits. Despite strong heritability enrichment, tissue- and cell-type-specific snATAC-seq and eQTL annotations provided marginal performance gains beyond general genomic annotations.
Collapse
Affiliation(s)
- Kristjan Norland
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Soehnlein O, Lutgens E, Döring Y. Distinct inflammatory pathways shape atherosclerosis in different vascular beds. Eur Heart J 2025:ehaf054. [PMID: 40036569 DOI: 10.1093/eurheartj/ehaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/01/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Studies suggest varying atherosclerotic cardiovascular disease (ASCVD) prevalence across arterial beds. Factors such as smoking expedite ASCVD progression in the abdominal aorta, while diabetes accelerates plaque development in lower limb arteries, and hypertension plays a significant role in ASCVD development in the coronary and carotid arteries. Moreover, superficial femoral atherosclerosis advances slower compared with atherosclerosis in coronary and carotid arteries. Furthermore, femoral atherosclerosis exhibits higher levels of ossification and calcification, but lower cholesterol concentrations compared with atherosclerotic lesions of other vascular beds. Such disparities exemplify the diverse progression of ASCVD across arterial beds, pointing towards differential mechanistic pathways in each vascular bed. Hence, this review summarizes current literature on immune-inflammatory mechanisms in various arterial beds in ASCVD to advance our understanding of this disease in an aging society with increased need of vascular bed and patient-specific treatment options.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), Von-Esmarch-Str. 56, University of Münster, 48149 Münster, Germany
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Experimental Cardiovascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Munich Heart Alliance Partner Site, Munich, Germany
| | - Yvonne Döring
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Munich Heart Alliance Partner Site, Munich, Germany
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
7
|
Lambert J, Jørgensen HF. Epigenetic regulation of vascular smooth muscle cell phenotypes in atherosclerosis. Atherosclerosis 2025; 401:119085. [PMID: 39709233 DOI: 10.1016/j.atherosclerosis.2024.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Vascular smooth muscle cells (VSMCs) in adult arteries maintain substantial phenotypic plasticity, which allows for the reversible cell state changes that enable vascular remodelling and homeostasis. In atherosclerosis, VSMCs dedifferentiate in response to lipid accumulation and inflammation, resulting in loss of their characteristic contractile state. Recent studies showed that individual, pre-existing VSMCs expand clonally and can acquire many different phenotypes in atherosclerotic lesions. The changes in gene expression underlying this phenotypic diversity are mediated by epigenetic modifications which affect transcription factor access and thereby gene expression dynamics. Additionally, epigenetic mechanisms can maintain cellular memory, potentially facilitating reversion to the contractile state. While technological advances have provided some insight, a comprehensive understanding of how VSMC phenotypes are governed in disease remains elusive. Here we review current literature in light of novel insight from studies at single-cell resolution. We also discuss how lessons from epigenetic studies of cellular regulation in other fields could help in translating the potential of targeting VSMC phenotype conversion into novel therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Lambert
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| |
Collapse
|
8
|
Antonczyk A, Kluzek K, Herbich N, Boroujeni ME, Krist B, Wronka D, Karlik A, Przybyl L, Plewinski A, Wesoly J, Bluyssen HAR. Identification of ALEKSIN as a novel multi-IRF inhibitor of IRF- and STAT-mediated transcription in vascular inflammation and atherosclerosis. Front Pharmacol 2025; 15:1471182. [PMID: 39840103 PMCID: PMC11747033 DOI: 10.3389/fphar.2024.1471182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
Cardiovascular diseases (CVDs) include atherosclerosis, which is an inflammatory disease of large and medium vessels that leads to atherosclerotic plaque formation. The key factors contributing to the onset and progression of atherosclerosis include the pro-inflammatory cytokines interferon (IFN)α and IFNγ and the pattern recognition receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger the activation of IFN regulatory factors (IRFs) and signal transducer and activator of transcription (STAT)s. Based on their promoting role in atherosclerosis, we hypothesized that the inhibition of pro-inflammatory target gene expression through multi-IRF inhibitors may be a promising strategy to treat CVDs. Using comparative in silico docking of multiple IRF-DNA-binding domain (DBD) models on a multi-million natural compound library, we identified the novel multi-IRF inhibitor, ALEKSIN. This compound targets the DBD of IRF1, IRF2, and IRF8 with the same affinity and simultaneously inhibits the expression of multiple IRF target genes in human microvascular endothelial cells (HMECs) in response to IIFNα and IFNγ. Under the same conditions, ALEKSIN also inhibited the phosphorylation of STATs, potentially through low-affinity STAT-SH2 binding but with lower potency than the known multi-STAT inhibitor STATTIC. This was in line with the common inhibition of ALEKSIN and STATTIC observed on the genome-wide expression of pro-inflammatory IRF/STAT/NF-κB target genes, as well as on the migration of HMECs. Finally, we identified a novel signature of 46 ALEKSIN and STATTIC commonly inhibited pro-atherogenic target genes, which was upregulated in atherosclerotic plaques in the aortas of high-fat diet-fed ApoEKO mice and associated with inflammation, proliferation, adhesion, chemotaxis, and response to lipids. Interestingly, the majority of these genes could be linked to macrophage subtypes present in aortic plaques in HFD-fed LDLR-KO mice. Together, this suggests that ALEKSIN represents a novel class of multi-IRF inhibitors, which inhibits IRF-, STAT-, and NF-κB-mediated transcription and could offer great promise for the treatment of CVDs. Furthermore, the ALEKSIN and STATTIC commonly inhibited pro-inflammatory gene signature could help monitor plaque progression during experimental atherosclerosis.
Collapse
Affiliation(s)
- Aleksandra Antonczyk
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Kluzek
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Natalia Herbich
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mahdi Eskandarian Boroujeni
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Bart Krist
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Dorota Wronka
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Karlik
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Adam Plewinski
- Animal Facility, Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A. R. Bluyssen
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
9
|
Supriami K, Urbut SM, Tello-Ayala JR, Unlu O, Friedman SF, Abou-Karam R, Koyama S, Uddin MM, Pomerantsev E, Lu MT, Honigberg MC, Aragam KG, Doshi-Velez F, Patel AP, Natarajan P, Ellinor PT, Fahed AC. Genomic Drivers of Coronary Artery Disease and Risk of Future Outcomes After Coronary Angiography. JAMA Netw Open 2025; 8:e2455368. [PMID: 39836422 PMCID: PMC11751748 DOI: 10.1001/jamanetworkopen.2024.55368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
Importance Disease characteristics of genetically mediated coronary artery disease (CAD) on coronary angiography and the association of genomic risk with outcomes after coronary angiography are not well understood. Objective To assess the angiographic characteristics and risk of post-coronary angiography outcomes of patients with genomic drivers of CAD: familial hypercholesterolemia (FH), high polygenic risk score (PRS), and clonal hematopoiesis of indeterminate potential (CHIP). Design, Setting, and Participants A retrospective cohort study of 3518 Mass General Brigham Biobank participants with genomic information who underwent coronary angiography was conducted between July 18, 2000, and August 1, 2023. Exposures The presence of a genomic risk factor of CAD, defined as FH variant, high CAD PRS, or CHIP driver variation. Main Outcomes and Measures Coronary artery disease presentation (stable or acute), angiographic CAD characteristics (severity and burden), angiographic outcomes (repeat angiogram, revascularization, and in-stent restenosis), and clinical outcomes (heart failure and all-cause mortality). Results Among 3518 participants (2467 [70.1%] male; median age, 64.0 [IQR, 55.0-72.0] years), 1509 (42.9%) had at least 1 genomic driver of CAD (26 FH, 1191 high CAD PRS, and 466 CHIP) that was associated with the presentation of acute coronary syndromes (adjusted odds ratio, 2.67; 95% CI, 2.19-3.26) and with the presence, burden, and severity of angiographic CAD. This association was driven by FH and CAD PRS. One SD of CAD PRS was associated with a 12.51-point higher Gensini score. During 9 years of follow-up, there was an increased risk among FH carriers for a repeat angiogram (adjusted hazard ratio [AHR], 1.70; 95% CI, 1.02-2.83), and revascularization (AHR, 1.97; 95% CI, 1.02-3.80), and among people with high CAD PRS (repeat angiogram: AHR, 1.79; 95% CI, 1.45-2.22; revascularization: AHR, 1.85; 95% CI, 1.37-2.50; and in-stent restenosis: AHR, 3.89; 95% CI, 2.16-7.01). CHIP carriers had no significant increase in angiographic outcomes but were at higher risk of heart failure (AHR, 1.58; 95% CI, 1.04-2.40) and all-cause mortality (AHR, 1.78; 95% CI, 1.47-2.16). Conclusions and Relevance The findings of this study suggest that germline monogenic and polygenic risk are associated with acute coronary syndromes presentation, severity and burden of atherosclerosis, and risk of repeat angiogram, revascularization, and in-stent restenosis. CHIP variant status is associated with incident heart failure and mortality after coronary angiography.
Collapse
Affiliation(s)
- Kelvin Supriami
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Sarah M. Urbut
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - José R. Tello-Ayala
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Ozan Unlu
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Samuel F. Friedman
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Roukoz Abou-Karam
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Satoshi Koyama
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Md Mesbah Uddin
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Eugene Pomerantsev
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Michael T. Lu
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston
| | - Michael C. Honigberg
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Krishna G. Aragam
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Finale Doshi-Velez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Aniruddh P. Patel
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| | - Pradeep Natarajan
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Personalized Medicine, Mass General Brigham, Boston, Massachusetts
| | - Patrick T. Ellinor
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Akl C. Fahed
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Boston
- Center for Genomic Medicine, Massachusetts General Hospital, Boston
| |
Collapse
|
10
|
Uchiyama S, Hoshino T, Minematsu K, Meledje ML, Charles H, Albers GW, Caplan LR, Donnan GA, Ferro JM, Hennerici MG, Molina C, Rothwell PM, Wong LKS, Amarenco P. Risk of major vascular events in patients without traditional risk factors after transient ischemic attack or minor ischemic stroke: An international prospective cohort. Eur Stroke J 2024:23969873241300071. [PMID: 39569585 PMCID: PMC11580120 DOI: 10.1177/23969873241300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION To investigate the clinical characteristics in patients without traditional risk factors (TRFs) after transient ischemic attack or minor ischemic stroke, who were recruited in the TIAregistry.org. PATIENTS AND METHODS A total of 3847 patients were analyzed. TRFs included hypertension, diabetes, hypercholesterolemia, current smoking, and atrial fibrillation. Background characteristics and outcomes at 1 and 5 years in patients without TRFs were compared to those in patients with TRFs. The primary outcome was major cardiovascular event (MACE), which was non-fatal stroke, non-fatal acute coronary syndrome, or vascular death. To evaluate the causes, we applied the ASCOD (atherosclerosis, small vessel disease, cardiac pathology, other causes or dissection) grading system. RESULTS One-year risk of MACE (5.3% vs 6.3%, hazard ratio (HR) 0.84, 95% confidence interval (CI) 0.53-1.31) was comparable between patients without TRFs (n = 402) and those with TRFs (n = 3445). Five-year risk of MACE was significantly lower in patients without TRFs than in those with TRFs (7.9% vs 13.9%, HR 0.57, 95% CI 0.39-0.82). In patients without TRFs, causal atherosclerosis was a potent risk factor (HR 5.67, 95% CI 2.68-12.02) and ipsilateral extra- or intra-cranial arterial stenosis was only significant predictor of MACE (interaction p = 0.0046) at 5 years. CONCLUSION AND DISCUSSION The 5-year risk of MACE was lower in patients without TRFs than those with TRFs, although a certain level of risk persisted in the absence of TRFs. The most significant predictor of MACE in patients without TRFs was arterial stenosis.
Collapse
Affiliation(s)
- Shinichiro Uchiyama
- Clinical Research Center for Medicine, International University of Health and Welfare, Department of Neurology, Akasaka Sanno Medical Center, Tokyo, Japan
| | - Takao Hoshino
- Department of Neurology, Tokyo Women’s Medical University, Tokyo, Japan
| | | | | | - Hugo Charles
- Department of Neurology and Stroke Center, Bichat Hospital, Paris, France
| | - Gregory W Albers
- Stanford Stroke Center, Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, USA
| | - Louis R Caplan
- Cerebrovascular Disease Service, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Geoffrey A Donnan
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - José M Ferro
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Michael G Hennerici
- Department of Neurology, Universitäts Medizin Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carlos Molina
- Department of Neurology, Stroke Unit, Vall d’Hebron University Hospital, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Peter M Rothwell
- Department of Clinical Neuroscience, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, Oxford, UK
| | - Lawrence KS Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Pierre Amarenco
- Department of Neurology and Stroke Center, Bichat Hospital, Paris, France
| |
Collapse
|
11
|
Aherrahrou R, Reinberger T, Hashmi S, Erdmann J. GWAS breakthroughs: mapping the journey from one locus to 393 significant coronary artery disease associations. Cardiovasc Res 2024; 120:1508-1530. [PMID: 39073758 DOI: 10.1093/cvr/cvae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Coronary artery disease (CAD) poses a substantial threat to global health, leading to significant morbidity and mortality worldwide. It has a significant genetic component that has been studied through genome-wide association studies (GWAS) over the past 17 years. These studies have made progress with larger sample sizes, diverse ancestral backgrounds, and the discovery of multiple genomic regions related to CAD risk. In this review, we provide a comprehensive overview of CAD GWAS, including information about the genetic makeup of the disease and the importance of ethnic diversity in these studies. We also discuss challenges of identifying causal genes and variants within GWAS loci with a focus on non-coding regions. Additionally, we highlight tissues and cell types relevant to CAD, and discuss clinical implications of GWAS findings including polygenic risk scores, sex-specific differences in CAD genetics, ethnical aspects of personalized interventions, and GWAS guided drug development.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, 74800 Karachi, Pakistan
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
12
|
Adebekun J, Nadig A, Saarah P, Asgari S, Kachuri L, Alagpulinsa DA. Genetic relations between type 1 diabetes, coronary artery disease and leukocyte counts. Diabetologia 2024; 67:2518-2529. [PMID: 39141130 DOI: 10.1007/s00125-024-06247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 08/15/2024]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is associated with excess coronary artery disease (CAD) risk even when known cardiovascular risk factors are accounted for. Genetic perturbation of haematopoiesis that alters leukocyte production is a novel independent modifier of CAD risk. We examined whether there are shared genetic determinants and causal relationships between type 1 diabetes, CAD and leukocyte counts. METHODS Genome-wide association study summary statistics were used to perform pairwise linkage disequilibrium score regression and heritability estimation from summary statistics (ρ-HESS) to respectively estimate the genome-wide and local genetic correlations, and two-sample Mendelian randomisation to estimate the causal relationships between leukocyte counts (335,855 healthy individuals), type 1 diabetes (18,942 cases, 501,638 control individuals) and CAD (122,733 cases, 424,528 control individuals). A latent causal variable (LCV) model was performed to estimate the genetic causality proportion of the genetic correlation between type 1 diabetes and CAD. RESULTS There was significant genome-wide genetic correlation (rg) between type 1 diabetes and CAD (rg=0.088, p=8.60 × 10-3) and both diseases shared significant genome-wide genetic determinants with eosinophil count (rg for type 1 diabetes [rg(T1D)]=0.093, p=7.20 × 10-3, rg for CAD [rg(CAD)]=0.092, p=3.68 × 10-6) and lymphocyte count (rg(T1D)=-0.052, p=2.76 × 10-2, rg(CAD)=0.176, p=1.82 × 10-15). Sixteen independent loci showed stringent Bonferroni significant local genetic correlations between leukocyte counts, type 1 diabetes and/or CAD. Cis-genetic regulation of the expression levels of genes within shared loci between type 1 diabetes and CAD was associated with both diseases as well as leukocyte counts, including SH2B3, CTSH, MORF4L1, CTRB1, CTRB2, CFDP1 and IFIH1. Genetically predicted lymphocyte, neutrophil and eosinophil counts were associated with type 1 diabetes and CAD (lymphocyte OR for type 1 diabetes [ORT1D]=0.67, p=2.02-19, ORCAD=1.09, p=2.67 × 10-6; neutrophil ORT1D=0.82, p=5.63 × 10-5, ORCAD=1.17, p=5.02 × 10-14; and eosinophil ORT1D=1.67, p=5.45 × 10-25, ORCAD=1.07, p=2.03 × 10-4. The genetic causality proportion between type 1 diabetes and CAD was 0.36 ± 0.16 (pLCV=1.30 × 10-2), suggesting a possible intermediary causal variable. CONCLUSIONS/INTERPRETATION This study sheds light on shared genetic mechanisms underlying type 1 diabetes and CAD, which may contribute to their co-occurrence through regulation of gene expression and leukocyte counts and identifies cellular and molecular targets for further investigation for disease prediction and potential drug discovery.
Collapse
Affiliation(s)
- Jolade Adebekun
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ajay Nadig
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Priscilla Saarah
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Samira Asgari
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Alagpulinsa
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Guo X, Xiao T, Lin L, Gao Q, Lai B, Liu X, Zhong Z. Proliferation capability of natural killer cells upon cytokines stimulation correlated negatively with serum lactate dehydrogenase level in coronary artery disease patients. Front Immunol 2024; 15:1436747. [PMID: 39286242 PMCID: PMC11402710 DOI: 10.3389/fimmu.2024.1436747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Natural killer (NK) cells are proposed to participate in coronary artery disease (CAD) development. However, little is known about how CAD patients' NK cells respond to different stimulatory factors in terms of proliferation capability. Methods and results Twenty-nine CAD patients' peripheral blood NK cells were isolated and individually treated with IL-2, IL-12, IL-15, IL-18, IL-21, cortisone acetate, hydrocortisone, or ascorbic acid for 36 hours, followed by cell cycle analysis using flow cytometry. The ratio of S and G2/M phase cell number to total cell number was defined as a proliferation index (PrI) and used for proliferative capability indication. The results showed that these eight factors resulted in different life cycle changes in the 29 NK cell samples. Remarkably, 28 out of 29 NK cell samples showed an obvious increase in PrI upon ascorbic acid treatment. The serum lactate dehydrogenase (LDH) level of the 29 CAD patients was measured. The results showed a negative correlation between serum LDH level and the CAD patients' NK cell PrI upon stimulation of interleukins, but not the non-interleukin stimulators. Consistently, a retrospective analysis of 46 CAD patients and 32 healthy donors showed that the circulating NK cell number negatively correlated with the serum LDH level in CAD patients. Unexpectedly, addition of LDH to NK cells significantly enhanced the production of IFN-γ, IL-10 and TNF-α, suggesting a strong regulatory role on NK cell's function. Conclusion Ascorbic acid could promote the proliferation of the CAD patients' NK cells; LDH serum level may function as an indicator for NK cell proliferation capability and an immune-regulatory factor.
Collapse
Affiliation(s)
- Xuemin Guo
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Ting Xiao
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Li Lin
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| | - Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, Hong Kong SAR, China
| | - Bifa Lai
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
| | - Xianhui Liu
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
| | - Zhixiong Zhong
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou, China
- Guangdong Engineering Technological Research Center for Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, China
| |
Collapse
|
14
|
Liu L, Wang Q, Li Y, Cai J, Wang Y, Li Y, Wang R, Sun L, Zheng X, Yin A. TAT-beclin1 treatment accelerates the development of atherosclerotic lesions in ApoE-deficient mice. FASEB J 2024; 38:e23765. [PMID: 38934372 DOI: 10.1096/fj.202400161rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
The importance of autophagy in atherosclerosis has garnered significant attention regarding the potential applications of autophagy inducers. However, the impact of TAT-Beclin1, a peptide inducer of autophagy, on the development of atherosclerotic plaques remains unclear. Single-cell omics analysis indicates a notable reduction in GAPR1 levels within fibroblasts, stromal cells, and macrophages during atherosclerosis. Tat-beclin1 (T-B), an autophagy-inducing peptide derived from Beclin1, could selectively bind to GAPR1, relieving its inhibition on Beclin1 and thereby augmenting autophagosome formation. To investigate its impact on atherosclerosic plaque progression, we established the ApoE-/- mouse model of carotid atherosclerotic plaques. Surprisingly, intravenous administration of Tat-beclin1 dramatically accelerated the development of carotid artery plaques. Immunofluorescence analysis suggested that macrophage aggregation and autophagosome formation within atherosclerotic plaques were significantly increased upon T-B treatment. However, immunofluorescence and transmission electron microscopy (TEM) analysis revealed a reduction in autophagy flux through lysosomes. In vitro, the interaction between T-B and GAPR1 was confirmed in RAW264.7 cells, resulting in the increased accumulation of p62/SQSTM1 and LC3-II in the presence of ox-LDL. Additionally, T-B treatment elevated the protein levels of p62/SQSTM1, LC3-II, and cleaved caspase 1, along with the secretion of IL-1β in response to ox-LDL exposure. In summary, our study underscores that T-B treatment amplifies abnormal autophagy and inflammation, consequently exacerbating atherosclerotic plaque development in ApoE-/- mice.
Collapse
Affiliation(s)
- Lianbo Liu
- Department of Thoracic and Cardiovascular Surgery, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Qingjie Wang
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yawen Li
- Department of Neonatology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Jiali Cai
- General Medicine Department, The First Hospital of Putian City, Putian, China
| | - Yexing Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Yun Li
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Ruxing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ling Sun
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaowei Zheng
- Public Health Research Center, Department of Public Health and Preventive Medicine, Wuxi School of Medicine Jiangnan University, Wuxi, China
| | - Anwen Yin
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
15
|
Ravindran A, Holappa L, Niskanen H, Skovorodkin I, Kaisto S, Beter M, Kiema M, Selvarajan I, Nurminen V, Aavik E, Aherrahrou R, Pasonen-Seppänen S, Fortino V, Laakkonen JP, Ylä-Herttuala S, Vainio S, Örd T, Kaikkonen MU. Translatome profiling reveals Itih4 as a novel smooth muscle cell-specific gene in atherosclerosis. Cardiovasc Res 2024; 120:869-882. [PMID: 38289873 PMCID: PMC11218691 DOI: 10.1093/cvr/cvae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
AIMS Vascular smooth muscle cells (SMCs) and their derivatives are key contributors to the development of atherosclerosis. However, studying changes in SMC gene expression in heterogeneous vascular tissues is challenging due to the technical limitations and high cost associated with current approaches. In this paper, we apply translating ribosome affinity purification sequencing to profile SMC-specific gene expression directly from tissue. METHODS AND RESULTS To facilitate SMC-specific translatome analysis, we generated SMCTRAP mice, a transgenic mouse line expressing enhanced green fluorescent protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a) under the control of the SMC-specific αSMA promoter. These mice were further crossed with the atherosclerosis model Ldlr-/-, ApoB100/100 to generate SMCTRAP-AS mice and used to profile atherosclerosis-associated SMCs in thoracic aorta samples of 15-month-old SMCTRAP and SMCTRAP-AS mice. Our analysis of SMCTRAP-AS mice showed that EGFP-L10a expression was localized to SMCs in various tissues, including the aortic wall and plaque. The TRAP fraction demonstrated high enrichment of known SMC-specific genes, confirming the specificity of our approach. We identified several genes, including Cemip, Lum, Mfge8, Spp1, and Serpina3, which are known to be involved in atherosclerosis-induced gene expression. Moreover, we identified several novel genes not previously linked to SMCs in atherosclerosis, such as Anxa4, Cd276, inter-alpha-trypsin inhibitor-4 (Itih4), Myof, Pcdh11x, Rab31, Serpinb6b, Slc35e4, Slc8a3, and Spink5. Among them, we confirmed the SMC-specific expression of Itih4 in atherosclerotic lesions using immunofluorescence staining of mouse aortic roots and spatial transcriptomics of human carotid arteries. Furthermore, our more detailed analysis of Itih4 showed its link to coronary artery disease through the colocalization of genome-wide association studies, splice quantitative trait loci (QTL), and protein QTL signals. CONCLUSION We generated a SMC-specific TRAP mouse line to study atherosclerosis and identified Itih4 as a novel SMC-expressed gene in atherosclerotic plaques, warranting further investigation of its putative function in extracellular matrix stability and genetic evidence of causality.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Apolipoprotein B-100/genetics
- Apolipoprotein B-100/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Aarthi Ravindran
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lari Holappa
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Henri Niskanen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Ilya Skovorodkin
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Susanna Kaisto
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Mustafa Beter
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Miika Kiema
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Ilakya Selvarajan
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Valtteri Nurminen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Einari Aavik
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Rédouane Aherrahrou
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Seppo Vainio
- Disease networks research unit, Faculty of Biochemistry and Molecular Medicine, Kvantum Institute, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Tiit Örd
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| |
Collapse
|
16
|
Grigoroiu-Serbanescu M, van der Veen T, Bigdeli T, Herms S, Diaconu CC, Neagu AI, Bass N, Thygesen J, Forstner AJ, Nöthen MM, McQuillin A. Schizophrenia polygenic risk scores, clinical variables and genetic pathways as predictors of phenotypic traits of bipolar I disorder. J Affect Disord 2024; 356:507-518. [PMID: 38640977 DOI: 10.1016/j.jad.2024.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
AIM We investigated the predictive value of polygenic risk scores (PRS) derived from the schizophrenia GWAS (Trubetskoy et al., 2022) (SCZ3) for phenotypic traits of bipolar disorder type-I (BP-I) in 1878 BP-I cases and 2751 controls from Romania and UK. METHODS We used PRSice-v2.3.3 and PRS-CS for computing SCZ3-PRS for testing the predictive power of SCZ3-PRS alone and in combination with clinical variables for several BP-I subphenotypes and for pathway analysis. Non-linear predictive models were also used. RESULTS SCZ3-PRS significantly predicted psychosis, incongruent and congruent psychosis, general age-of-onset (AO) of BP-I, AO-depression, AO-Mania, rapid cycling in univariate regressions. A negative correlation between the number of depressive episodes and psychosis, mainly incongruent and an inverse relationship between increased SCZ3-SNP loading and BP-I-rapid cycling were observed. In random forest models comparing the predictive power of SCZ3-PRS alone and in combination with nine clinical variables, the best predictions were provided by combinations of SCZ3-PRS-CS and clinical variables closely followed by models containing only clinical variables. SCZ3-PRS performed worst. Twenty-two significant pathways underlying psychosis were identified. LIMITATIONS The combined RO-UK sample had a certain degree of heterogeneity of the BP-I severity: only the RO sample and partially the UK sample included hospitalized BP-I cases. The hospitalization is an indicator of illness severity. Not all UK subjects had complete subphenotype information. CONCLUSION Our study shows that the SCZ3-PRS have a modest clinical value for predicting phenotypic traits of BP-I. For clinical use their best performance is in combination with clinical variables.
Collapse
Affiliation(s)
- Maria Grigoroiu-Serbanescu
- Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania.
| | - Tracey van der Veen
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - Tim Bigdeli
- SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Stefan Herms
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Human Genetics, University of Bonn, School of Medicine, University Hospital Bonn, Germany
| | | | | | - Nicholas Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - Johan Thygesen
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK; Institute of Health Informatics, University College London, London, UK
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine, University Hospital Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine, University Hospital Bonn, Germany
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| |
Collapse
|
17
|
Cheng X, Shihabudeen Haider Ali MS, Baki VB, Moran M, Su H, Sun X. Multifaceted roles of Meg3 in cellular senescence and atherosclerosis. Atherosclerosis 2024; 392:117506. [PMID: 38518516 PMCID: PMC11088985 DOI: 10.1016/j.atherosclerosis.2024.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND AND AIMS Long noncoding RNAs are involved in the pathogenesis of atherosclerosis. As long noncoding RNAs maternally expressed gene 3 (Meg3) prevents cellular senescence of hepatic vascular endothelium and obesity-induced insulin resistance, we decided to examine its role in cellular senescence and atherosclerosis. METHODS AND RESULTS By analyzing our data and human and mouse data from the Gene Expression Omnibus database, we found that Meg3 expression was reduced in humans and mice with cardiovascular disease, indicating its potential role in atherosclerosis. In Ldlr-/- mice fed a Western diet for 12 weeks, Meg3 silencing by chemically modified antisense oligonucleotides attenuated the formation of atherosclerotic lesions by 34.9% and 20.1% in male and female mice, respectively, revealed by en-face Oil Red O staining, which did not correlate with changes in plasma lipid profiles. Real-time quantitative PCR analysis of cellular senescence markers p21 and p16 revealed that Meg3 deficiency aggravates hepatic cellular senescence but not cellular senescence at aortic roots. Human Meg3 transgenic mice were generated to examine the role of Meg3 gain-of-function in the development of atherosclerosis induced by PCSK9 overexpression. Meg3 overexpression promotes atherosclerotic lesion formation by 29.2% in Meg3 knock-in mice independent of its effects on lipid profiles. Meg3 overexpression inhibits hepatic cellular senescence, while it promotes aortic cellular senescence likely by impairing mitochondrial function and delaying cell cycle progression. CONCLUSIONS Our data demonstrate that Meg3 promotes the formation of atherosclerotic lesions independent of its effects on plasma lipid profiles. In addition, Meg3 regulates cellular senescence in a tissue-specific manner during atherosclerosis. Thus, we demonstrated that Meg3 has multifaceted roles in cellular senescence and atherosclerosis.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | | | - Vijaya Bhaskar Baki
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Matthew Moran
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska - Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA; Nebraska Center for the Prevention of Obesity Diseases Through Dietary Molecules, University of Nebraska - Lincoln, USA.
| |
Collapse
|
18
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
19
|
Liu A, Fernandes BS, Citu C, Zhao Z. Unraveling the intercellular communication disruption and key pathways in Alzheimer's disease: an integrative study of single-nucleus transcriptomes and genetic association. Alzheimers Res Ther 2024; 16:3. [PMID: 38167548 PMCID: PMC10762817 DOI: 10.1186/s13195-023-01372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Recently, single-nucleus RNA-seq (snRNA-seq) analyses have revealed important cellular and functional features of Alzheimer's disease (AD), a prevalent neurodegenerative disease. However, our knowledge regarding intercellular communication mediated by dysregulated ligand-receptor (LR) interactions remains very limited in AD brains. METHODS We systematically assessed the intercellular communication networks by using a discovery snRNA-seq dataset comprising 69,499 nuclei from 48 human postmortem prefrontal cortex (PFC) samples. We replicated the findings using an independent snRNA-seq dataset of 56,440 nuclei from 18 PFC samples. By integrating genetic signals from AD genome-wide association studies (GWAS) summary statistics and whole genome sequencing (WGS) data, we prioritized AD-associated Gene Ontology (GO) terms containing dysregulated LR interactions. We further explored drug repurposing for the prioritized LR pairs using the Therapeutic Targets Database. RESULTS We identified 190 dysregulated LR interactions across six major cell types in AD PFC, of which 107 pairs were replicated. Among the replicated LR signals, we found globally downregulated communications in the astrocytes-to-neurons signaling axis, characterized, for instance, by the downregulation of APOE-related and Calmodulin (CALM)-related LR interactions and their potential regulatory connections to target genes. Pathway analyses revealed 44 GO terms significantly linked to AD, highlighting Biological Processes such as 'amyloid precursor protein processing' and 'ion transmembrane transport,' among others. We prioritized several drug repurposing candidates, such as cromoglicate, targeting the identified dysregulated LR pairs. CONCLUSIONS Our integrative analysis identified key dysregulated LR interactions in a cell type-specific manner and the associated GO terms in AD, offering novel insights into potential therapeutic targets involved in disrupted cell-cell communication in AD.
Collapse
Affiliation(s)
- Andi Liu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA
| | - Brisa S Fernandes
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA
| | - Citu Citu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA.
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
| |
Collapse
|
20
|
Fu Y, Zhang J, Liu Q, Yang L, Wu Q, Yang X, Wang L, Ding N, Xiong J, Gao Y, Ma S, Jiang Y. Unveiling the role of ABI3 and hub senescence-related genes in macrophage senescence for atherosclerotic plaque progression. Inflamm Res 2024; 73:65-82. [PMID: 38062164 PMCID: PMC10776483 DOI: 10.1007/s00011-023-01817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Atherosclerosis, characterized by abnormal arterial lipid deposition, is an age-dependent inflammatory disease and contributes to elevated morbidity and mortality. Senescent foamy macrophages are considered to be deleterious at all stages of atherosclerosis, while the underlying mechanisms remain largely unknown. In this study, we aimed to explore the senescence-related genes in macrophages diagnosis for atherosclerotic plaque progression. METHODS The atherosclerosis-related datasets were retrieved from the Gene Expression Omnibus (GEO) database, and cellular senescence-associated genes were acquired from the CellAge database. R package Limma was used to screen out the differentially expressed senescence-related genes (DE-SRGs), and then three machine learning algorithms were applied to determine the hub DE-SRGs. Next, we established a nomogram model to further confirm the clinical significance of hub DE-SRGs. Finally, we validated the expression of hub SRG ABI3 by Sc-RNA seq analysis and explored the underlying mechanism of ABI3 in THP-1-derived macrophages and mouse atherosclerotic lesions. RESULTS A total of 15 DE-SRGs were identified in macrophage-rich plaques, with five hub DE-SRGs (ABI3, CAV1, NINJ1, Nox4 and YAP1) were further screened using three machine learning algorithms. Subsequently, a nomogram predictive model confirmed the high validity of the five hub DE-SRGs for evaluating atherosclerotic plaque progression. Further, the ABI3 expression was upregulated in macrophages of advanced plaques and senescent THP-1-derived macrophages, which was consistent with the bioinformatics analysis. ABI3 knockdown abolished macrophage senescence, and the NF-κB signaling pathway contributed to ABI3-mediated macrophage senescence. CONCLUSION We identified five cellular senescence-associated genes for atherogenesis progression and unveiled that ABI3 might promote macrophage senescence via activation of the NF-κB pathway in atherogenesis progression, which proposes new preventive and therapeutic strategies of senolytic agents for atherosclerosis.
Collapse
Affiliation(s)
- Yajuan Fu
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Juan Zhang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qiujun Liu
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lan Yang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qianqian Wu
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaomin Yang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lexin Wang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Ning Ding
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jiantuan Xiong
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Yujing Gao
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China.
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China.
| | - Shengchao Ma
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China.
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China.
- School of Laboratory Medicine, Ningxia Medical University, Yinchuan, China.
| | - Yideng Jiang
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China.
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
21
|
Liu A, Fernandes BS, Citu C, Zhao Z. Unraveling the intercellular communication disruption and key pathways in Alzheimer's disease: An integrative study of single-nucleus transcriptomes and genetic association. RESEARCH SQUARE 2023:rs.3.rs-3335643. [PMID: 37790454 PMCID: PMC10543294 DOI: 10.21203/rs.3.rs-3335643/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Recently, single-nucleus RNA-seq (snRNA-seq) analyses have revealed important cellular and functional features of Alzheimer's disease (AD), a prevalent neurodegenerative disease. However, our knowledge regarding intercellular communication mediated by dysregulated ligand-receptor (LR) interactions remains very limited in AD brains. Methods We systematically assessed the intercellular communication networks by using a discovery snRNA-seq dataset comprising 69,499 nuclei from 48 human postmortem prefrontal cortex (PFC) samples. We replicated the findings using an independent snRNA-seq dataset of 56,440 nuclei from 18 PFC samples. By integrating genetic signals from AD genome-wide association studies (GWAS) summary statistics and whole genome sequencing (WGS) data, we prioritized AD-associated Gene Ontology (GO) terms containing dysregulated LR interactions. We further explored drug repurposing for the prioritized LR pairs using the Therapeutic Targets Database. Results We identified 316 dysregulated LR interactions across six major cell types in AD PFC, of which 210 pairs were replicated. Among the replicated LR signals, we found globally downregulated communications in astrocytes-to-neurons signaling axis, characterized, for instance, by the downregulation of APOE-related and Calmodulin (CALM)-related LR interactions and their potential regulatory connections to target genes. Pathway analyses revealed 60 GO terms significantly linked to AD, highlighting Biological Processes such as 'amyloid precursor protein processing' and 'ion transmembrane transport', among others. We prioritized several drug repurposing candidates, such as cromoglicate, targeting the identified dysregulated LR pairs. Conclusions Our integrative analysis identified key dysregulated LR interactions in a cell type-specific manner and the associated GO terms in AD, offering novel insights into potential therapeutic targets involved in disrupted cell-cell communication in AD.
Collapse
Affiliation(s)
- Andi Liu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston
| | - Brisa S Fernandes
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Citu Citu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| |
Collapse
|