1
|
Bowie KR, Garzotto M, Orwoll E, Karstens L. Body mass index and benign prostatic hyperplasia correlate with urinary microbiome diversity and lower urinary tract symptoms in men. COMMUNICATIONS MEDICINE 2025; 5:159. [PMID: 40328908 PMCID: PMC12056106 DOI: 10.1038/s43856-025-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Several studies have identified bacteria and other microbes in the bladder and lower urinary tract in the absence of infection. In women, the urinary microbiome has been associated with lower urinary tract symptoms (LUTS), however, similar studies have not been undertaken in large cohorts of men. Here we examine the urinary microbiome and its association with LUTS in a subset of 500 men aged 65-90 years from the Osteoporotic Fractures in Men (MrOS) study. METHODS Bacterial DNA was isolated from urine samples. The V4 region of the 16S rRNA gene was sequenced using Illumina Miseq. Microbiome characteristics, including diversity measures and urotypes, are examined for associations with clinical characteristics and lower urinary tract symptoms. RESULTS Here we identify significant associations between benign prostatic hyperplasia (BPH), age, and body mass index (BMI) with several diversity metrics. Our analysis reveals complex relationships between BMI, BPH, LUTS, and alpha diversity which give insight into the intricate dynamics of the urinary microbiome. CONCLUSIONS By beginning to uncover the interrelationships of BPH, BMI, LUTS, and the urinary microbiome, these results can inform future study design to better understand the heterogeneity of the male urinary microbiome.
Collapse
Affiliation(s)
- Kate R Bowie
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mark Garzotto
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Portland VA Medical Center, Portland, OR, USA
| | - Eric Orwoll
- Division of Endocrinology, Diabetes, and Clinical Nutrition, Oregon Health & Science University, Portland, OR, USA
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA.
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Chattrakulchai K, Pongchaikul P, Wattanayingcharoenchai R, Tantitham C, Manonai J. Urinary microbiomes in postmenopausal women with or without urinary symptoms of the genitourinary syndrome of menopause: a cross-sectional study. Sci Rep 2025; 15:12796. [PMID: 40229501 PMCID: PMC11997101 DOI: 10.1038/s41598-025-97725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
Some postmenopausal women suffer from genital and urinary symptoms, while others do not. Therefore, the hypoestrogenic status cannot entirely explain the occurrence of the genitourinary syndrome in menopause (GSM). Differences in the urinary microbiome might play a role in bladder function and vulnerability to urinary symptoms. This study aimed to compare characterization urinary microbiome in postmenopausal women who experienced GSM with urinary symptoms with that in those without urinary symptoms. Forty participants were screened for genital symptoms of GSM and then divided into the urinary symptoms group and the non-urinary symptoms group on the basis of a validated questionnaire. 16 S rRNA gene sequencing was performed to investigate microbial diversity. The alpha diversity was used to evaluate the species richness and evenness, while the beta diversity was used to estimate the differences in the urinary microbiome between the groups. Differential abundance analysis was used to investigate biomarkers in the groups by linear discriminant analysis effect size. The relationship between the urinary microbiome and urinary symptoms was assessed using Spearman's correlation analysis. The characteristics of the participants were not different between the groups. Gardnerella was found in 22.2% (4/18) and 11.1% (2/18) of participants in the urinary symptoms group and in the non-urinary symptoms group, respectively (p > 0.05). Alpha diversity was less in the urinary symptoms group than in the non-urinary symptoms group, but this was not significant. Beta diversity of the urinary microbiome was not significantly different between the two groups. A differential abundance analysis showed that the genus Prevotella was significantly dominant in postmenopausal women with GSM who reported urinary symptoms. Prevotella was marginally correlated with voiding symptoms (r2 = 0.44; p = 0.01). The bladder or urinary microbiome is closely related to urinary symptoms of GSM. Species richness and diversity are not significantly different between postmenopausal women with GSM with and without urinary symptoms. Prevotella is dominant in symptomatic women and slightly correlated with voiding symptoms.
Collapse
Affiliation(s)
- Kitti Chattrakulchai
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pisut Pongchaikul
- Ramathibodi Medical School, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Bang Pla, Bang Phli, Samut Prakan, 10540, Thailand.
| | - Rujira Wattanayingcharoenchai
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chananya Tantitham
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jittima Manonai
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Chieng CCY, Kong Q, Liou NSY, Neira Rey M, Dalby KL, Jones N, Khasriya R, Horsley H. Novel Techniques to Unravel Causative Bacterial Ecological Shifts in Chronic Urinary Tract Infection. Pathogens 2025; 14:299. [PMID: 40137784 PMCID: PMC11944610 DOI: 10.3390/pathogens14030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Chronic urinary tract infection (UTI) presents with protracted lower urinary tract symptoms and elevated urinary leukocyte counts, but its bacterial etiological agents remain obscure. In this cross-sectional investigation, we aimed to unravel the role of the bladder microbiota in chronic UTI pathogenesis by studying the host immune response. Urine samples were collected from healthy controls (HT), chronic UTI patients who had not initiated treatment (PT) and those undergoing treatment (OT), then sorted into white blood cell (WBC) and epithelial cell (EPC) fractions. Bacteria associated with both fractions were identified by chromogenic agar culture coupled with mass spectrometry and 16S rRNA sequencing. Distinct WBC-exclusive bacteria were observed in the healthy population, but this pattern was less obvious in patients, plausibly due to epithelial shedding and breaching of the urothelial barrier. We also described a bacterial fingerprint guided by Escherichia that was able to stratify patients based on symptom severity. Clustering analyses of mean rank changes revealed highly statistically significant upward and downward ecological shifts in communities of bacteria between the healthy and diseased populations. Interestingly, many of the most abundant genera identified in sequencing remained stable when compared between the study cohorts. We concluded that reshuffling of the urinary microbiome, rather than the activity of a single known urinary pathogen, could drive chronic UTI.
Collapse
Affiliation(s)
- Catherine C. Y. Chieng
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, UK; (C.C.Y.C.); (N.S.Y.L.); (M.N.R.); (K.L.D.)
| | - Qingyang Kong
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London NW3 2PF, UK; (Q.K.); (R.K.)
| | - Natasha S. Y. Liou
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, UK; (C.C.Y.C.); (N.S.Y.L.); (M.N.R.); (K.L.D.)
- EGA Institute for Women’s Health, University College London, London WC1E 6AU, UK
| | - Mariña Neira Rey
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, UK; (C.C.Y.C.); (N.S.Y.L.); (M.N.R.); (K.L.D.)
| | - Katie L. Dalby
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, UK; (C.C.Y.C.); (N.S.Y.L.); (M.N.R.); (K.L.D.)
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London NW3 2PF, UK; (Q.K.); (R.K.)
| | - Neil Jones
- Microbiology Department, Whittington Health NHS Trust, London N19 5NF, UK;
| | - Rajvinder Khasriya
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London NW3 2PF, UK; (Q.K.); (R.K.)
| | - Harry Horsley
- Centre for Kidney and Bladder Health, University College London, London NW3 2PF, UK; (C.C.Y.C.); (N.S.Y.L.); (M.N.R.); (K.L.D.)
| |
Collapse
|
4
|
Sheng Z, Xu J, Wang M, Xu X, Zhu J, Zeng S, Xu C, Zhang Z. The role of urinary microbiota in primary and recurrent bladder cancer: insights from a propensity score matching study. BMC Cancer 2025; 25:468. [PMID: 40087655 PMCID: PMC11907829 DOI: 10.1186/s12885-025-13817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Bladder cancer (BCa) is a common urinary malignancy with high recurrence rates in non-muscle invasive bladder cancer (NMIBC), posing significant clinical challenges. Emerging evidence links urinary microbiota to cancer progression; however, their role in BCa recurrence remains unclear. This study aimed to explore urinary microbiota differences between primary and recurrent BCa to identify potential microbiological markers and mechanisms associated with recurrence. METHODS Urine samples were collected from 170 BCa patients, including 125 with primary Bca(BCa_P) and 45 with recurrent BCa (BCa_R). All samples underwent 16 S rRNA gene sequencing, and clinical data were collected, including age, sex, body mass index (BMI), smoking history, pathological grade, and other biological characteristics. Propensity score matching (1:1 ratio, caliper = 0.02) minimized baseline differences, resulting in 39 matched pairs. Microbial diversity was analyzed using α and β diversity indices. Differential taxa were identified with Linear Discriminant Analysis Effect Size (LEfSe), and functional pathways were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). RESULTS Alpha diversity was significantly higher in BCa_P than BCa_R, particularly in Chao1 indices. β diversity revealed distinct microbial structures (ADONIS, P = 0.004, R² = 0.025). At the phylum level, both BCa_P and BCa_R were dominated by Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria, with Firmicutes significantly higher and Bacteroidetes lower in BCa_R. At the genus level, BCa_P was enriched in Sphingomonas, Corynebacterium, Capnocytophaga, Massilia, and Aquabacterium, while BCa_R showed higher levels of Aeromonas, Cupriavidus, and Bradyrhizobium. Functional predictions revealed glucose metabolism and oxidative stress pathways enriched in BCa_R, while pollutant degradation and TCA cycle pathways were prominent in BCa_P. CONCLUSION These findings reveal significant differences in urinary microbiota compositions and functional profiles between primary and recurrent BCa patients, with recurrent cases exhibiting reduced microbial diversity and enrichment of potentially pathogenic communities, highlighting their potential roles in tumor progression and recurrence. TRIAL REGISTRATION Registered with the Chinese Clinical Trial Registry (ChiCTR2300070969) on April 27, 2023.
Collapse
Affiliation(s)
- Zhaoyang Sheng
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Urology, The 904th Hospital, Joint Logistics Support Force, Wuxi, 214000, China
| | - Jinshan Xu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Maoyu Wang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xi Xu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jinpeng Zhu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shuxiong Zeng
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Zhensheng Zhang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Shaker P, Roshani Z, Timajchi E, Sharifi Z, Nikzadfar Goli S, Broumand B, Shafiee MA. The Role of Urinary Microbiome Analysis in the Diagnostic Approach and Management of Urinary Incontinence: A Systematic Review. Life (Basel) 2025; 15:309. [PMID: 40003717 PMCID: PMC11857253 DOI: 10.3390/life15020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Urinary incontinence (UI) is a significant global health issue that impacts mainly middle-aged women, severely affecting their quality of life. Emerging research highlights the urinary microbiome's complex role in the etiology and management of UI, with microbial dysbiosis potentially influencing symptom severity and treatment outcomes. This systematic review aimed to evaluate the current evidence on the urinary microbiome's role in diagnosing and managing UI, focusing on variations in microbial composition across UI subtypes. We identified 21 studies, mostly employing 16S rRNA sequencing to characterize urinary microbiota and their associations with various UI subtypes, including urgency urinary incontinence (UUI), overactive bladder (OAB), and stress urinary incontinence (SUI). The findings revealed distinct microbial patterns, such as reduced Lactobacillus levels and increased Gardnerella prevalence, particularly in UUI. Altered microbiome profiles correlated with symptom severity, with reduced Lactobacilli suggesting a protective role in maintaining urinary health. Specific microbial species, including Actinotignum schaalii and Aerococcus urinae, emerged as potential biomarkers for UI diagnosis. Despite promising findings, limitations such as small sample sizes, variability in microbiome profiling methods, and insufficient causal evidence underscore the need for further research.
Collapse
Affiliation(s)
- Pouyan Shaker
- College of Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | - Zohreh Roshani
- University Health Network (UHN), Toronto, ON M5T 2S8, Canada; (Z.R.); (Z.S.)
| | - Ehsan Timajchi
- Department of Human Biology, University of Toronto, Toronto, ON M5S 3J6, Canada;
| | - Zahra Sharifi
- University Health Network (UHN), Toronto, ON M5T 2S8, Canada; (Z.R.); (Z.S.)
| | - Sarah Nikzadfar Goli
- School of Arts, Sciences and Education, D’Youville University, Buffalo, NY 14201, USA;
| | | | - Mohammad Ali Shafiee
- Division of General Internal Medicine, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Chen R, Zou J, Chen J, Wang L, Kang R, Tang D. Immune aging and infectious diseases. Chin Med J (Engl) 2024; 137:3010-3049. [PMID: 39679477 PMCID: PMC11706578 DOI: 10.1097/cm9.0000000000003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT The rise in global life expectancy has led to an increase in the older population, presenting significant challenges in managing infectious diseases. Aging affects the innate and adaptive immune systems, resulting in chronic low-grade inflammation (inflammaging) and immune function decline (immunosenescence). These changes would impair defense mechanisms, increase susceptibility to infections and reduce vaccine efficacy in older adults. Cellular senescence exacerbates these issues by releasing pro-inflammatory factors, further perpetuating chronic inflammation. Moreover, comorbidities, such as cardiovascular disease and diabetes, which are common in older adults, amplify immune dysfunction, while immunosuppressive medications further complicate responses to infections. This review explores the molecular and cellular mechanisms driving inflammaging and immunosenescence, focusing on genomic instability, telomere attrition, and mitochondrial dysfunction. Additionally, we discussed how aging-associated immune alterations influence responses to bacterial, viral, and parasitic infections and evaluated emerging antiaging strategies, aimed at mitigating these effects to improve health outcomes in the aging population.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ju Zou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Jiawang Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Ling Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
7
|
Occhino JA, Byrnes JN, Wu PY, Chen J, Walther-Antonio MR. Preoperative vaginal microbiome as a predictor of postoperative urinary tract infection. Sci Rep 2024; 14:28990. [PMID: 39578602 PMCID: PMC11584769 DOI: 10.1038/s41598-024-78809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
This is a single Institute, prospective cohort study. We enrolled twenty-two postmenopausal women with pelvic organ prolapse planning to undergo vaginal hysterectomy with transvaginal pelvic reconstructive surgery, with or without a concomitant anti-incontinence procedure. Vaginal swabs and urine samples were longitudinally collected at five time points: preoperative consult visit (T1), day of surgery prior to surgical scrub (T2), immediately postoperative (T3), day of hospital discharge (T4), and at the postoperative exam visit (T5). Women experiencing urinary tract infection symptoms provided a sample set prior to antibiotic administration (T6). Microbiome analysis was performed on vaginal and urinary specimens at each time point. Region V3-V5 of the 16S ribosomal RNA gene was amplified and sequenced. DNA samples were analyzed for visit T1, T2, T5 and T6. Six (27.3%) participants developed postoperative urinary tract infection whose vaginal sample at first clinical visit (T1) revealed beta-diversity analysis with significant differences in microbiome structure and composition. Women diagnosed with a postoperative urinary tract infection had a vaginal microbiome characterized by low abundance of Lactobacillus and high prevalence of Prevotella and Gardnerella species. In our cohort, preoperative vaginal swabs can predict who will develop a urinary tract infection following transvaginal surgery for pelvic organ prolapse.ClinicalTrials.gov Identifier: NCT02751073.
Collapse
Affiliation(s)
- John A Occhino
- Division of Urogynecology, Mayo Clinic, Rochester, MN, USA.
| | - Jenifer N Byrnes
- Division of Urogynecology, Mayo Clinic, Rochester, MN, USA
- Summa Health System, Akron, OH, USA
| | - Pei-Ying Wu
- Department of Obstetrics & Gynecology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Surgery, Department of Obstetrics and Gynecology, Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marina R Walther-Antonio
- Department of Surgery, Department of Obstetrics and Gynecology, Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Balaouras G, Kostoulas P, Mikos T, Balaouras D, Chitzios D. The Study of Microbiome of the Female Genital Area in Relation to Pelvic Floor Dysfunction: A Systematic Review. Int Urogynecol J 2024; 35:1347-1362. [PMID: 38861007 DOI: 10.1007/s00192-024-05821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION AND HYPOTHESIS The aim of this article is to present a systematic literature review focused on microbiome diversity in women experiencing pelvic floor dysfunction. METHODS Utilizing PubMed/MedLine and Scopus, 25 pertinent studies were meticulously selected for this review. RESULTS A key theme identified is the potential of microbiomes as diagnostic tools. The findings consistently highlight Lactobacillus as recurrent microbiota. Additionally, Gardnerella, Streptococcus, Prevotella, Aerococcus, Staphylococcus, Proteus, and Bifidobacterium species were frequently observed. This suggests the influential role of these microorganisms in shaping female urological and reproductive health. A deeper understanding of these predominant bacterial genera could offer invaluable insights into healthy physiological states and various disorders. The complex relationship between microbial compositions and diverse health conditions paves the way for novel diagnostic and therapeutic approaches. As we further explore the complexities of microbiomes, their role becomes increasingly crucial in transforming women's health care. CONCLUSIONS These findings emphasize the need for personalized care, integrating the microbiome into a comprehensive health assessment and treatment framework. This review lays the groundwork for future medical strategies where the microbiome is a pivotal element in both preventive and therapeutic care.
Collapse
Affiliation(s)
- George Balaouras
- 1st Department of Obstetrics & Gynecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | | | - Themistoklis Mikos
- 1st Department of Obstetrics & Gynecology, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Dimitrios Balaouras
- Midwifery Department, International Hellenic University, Thessaloniki, Sindos, Greece
| | - Dimitrios Chitzios
- Midwifery Department, International Hellenic University, Thessaloniki, Sindos, Greece
| |
Collapse
|
9
|
Occhino JA, Byrnes JN, Wu PY, Walther-Antonio MR, Chen J. Preoperative Vaginal Microbiome as a Predictor of Postoperative Urinary Tract Infection. RESEARCH SQUARE 2024:rs.3.rs-4069233. [PMID: 38659758 PMCID: PMC11042435 DOI: 10.21203/rs.3.rs-4069233/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This is a single Institute, prospective cohort study. We collected twenty- two postmenopausal women with pelvic organ prolapse planning to undergo vaginal hysterectomy with transvaginal pelvic reconstructive surgery, with or without a concomitant anti-incontinence procedure. Vaginal swabs and urine samples were longitudinally collected at five time points: preoperative consult visit (T1), day of surgery prior to surgical scrub (T2), immediately postoperative (T3), day of hospital discharge (T4), and at the postoperative exam visit (T5). Women experiencing urinary tract infection symptoms provided a sample set prior to antibiotic administration (T6). Microbiome analysis on vaginal and urinary specimens at each time point. Region V3-V5 of the 16S ribosomal RNA gene was amplified and sequenced. Sample DNA was analyzed with visit T1, T2, T5 and T6. Six (27.3%) participants developed postoperative urinary tract infection whose vaginal sample at first clinical visit (T1) revealed beta-diversity analysis with significant differences in microbiome structure and composition. Women diagnosed with a postoperative urinary tract infection had a vaginal microbiome characterized by low abundance of Lactobacillus and high prevalence of Prevotella and Gardnerella species. In our cohort, preoperative vaginal swabs can predict who will develop a urinary tract infection following transvaginal surgery for pelvic organ prolapse.
Collapse
Affiliation(s)
| | | | - Pei-Ying Wu
- National Cheng Kung University Hospital, National Cheng Kung University
| | | | | |
Collapse
|
10
|
Quiros-Roldan E, Sottini A, Natali PG, Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024; 12:775. [PMID: 38674719 PMCID: PMC11051847 DOI: 10.3390/microorganisms12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST- Spedali Civili and DSCS- University of Brescia, 25123 Brescia, Italy;
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, Services Department, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control (MTCC), Via Pizzo Bernina, 14, 00141 Rome, Italy;
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
11
|
Carnes MU, Siddiqui NY, Karstens L, Gantz MG, Dinwiddie DL, Sung VW, Bradley M, Brubaker L, Ferrando CA, Mazloomdoost D, Richter HE, Rogers RG, Smith AL, Komesu YM. Urinary microbiome community types associated with urinary incontinence severity in women. Am J Obstet Gynecol 2024; 230:344.e1-344.e20. [PMID: 38937257 PMCID: PMC11211640 DOI: 10.1016/j.ajog.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
BACKGROUND Urinary microbiome (urobiome) studies have previously reported on specific taxa and community differences in women with mixed urinary incontinence compared with controls. Therefore, a hypothesis was made that higher urinary and vaginal microbiome diversity would be associated with increased urinary incontinence severity. OBJECTIVE This study aimed to test whether specific urinary or vaginal microbiome community types are associated with urinary incontinence severity in a population of women with mixed urinary incontinence. STUDY DESIGN This planned secondary, cross-sectional analysis evaluated associations between the urinary and vaginal microbiomes and urinary incontinence severity in a subset of Effects of Surgical Treatment Enhanced With Exercise for Mixed Urinary Incontinence trial participants with urinary incontinence. Incontinence severity was measured using bladder diaries and Urinary Distress Inventory questionnaires collected at baseline. Catheterized urine samples and vaginal swabs were concurrently collected before treatment at baseline to assess the urinary and vaginal microbiomes. Of note, 16S rRNA V4 to V6 variable regions were sequenced, characterizing bacterial taxa to the genus level using the DADA2 pipeline and SILVA database. Using Dirichlet multinomial mixtures methods, samples were clustered into community types based on core taxa. Associations between community types and severity measures (Urinary Distress Inventory total scores, Urinary Distress Inventory subscale scores, and the number of urinary incontinence episodes [total, urgency, and stress] from the bladder diary) were evaluated using linear regression models adjusted for age and body mass index. In addition, alpha diversity measures for richness (total taxa numbers) and evenness (proportional distribution of taxa abundance) were analyzed for associations with urinary incontinence episodes and community type. RESULTS Overall, 6 urinary microbiome community types were identified, characterized by varying levels of common genera (Lactobacillus, Gardnerella, Prevotella, Tepidimonas, Acidovorax, Escherichia, and others). The analysis of urinary incontinence severity in 126 participants with mixed urinary incontinence identified a Lactobacillus-dominated reference group with the highest abundance of Lactobacillus (mean relative abundance of 76%). A community characterized by fewer Lactobacilli (mean relative abundance of 19%) and greater alpha diversity was associated with higher total urinary incontinence episodes (2.67 daily leaks; 95% confidence interval, 0.76-4.59; P=.007) and urgency urinary incontinence episodes (1.75 daily leaks; 95% confidence interval, 0.24-3.27; P=.02) than the reference group. No significant association was observed between community type and stress urinary incontinence episodes or Urogenital Distress Inventory total or subscores. The composition of vaginal community types and urinary community types were similar but composed of slightly different bacterial taxa. Vaginal community types were not associated with urinary incontinence severity, as measured by bladder diary or Urogenital Distress Inventory total and subscale scores. Alpha diversity indicated that greater sample richness was associated with more incontinence episodes (observed genera P=.01) in urine. Measures of evenness (Shannon and Pielou) were not associated with incontinence severity in the urinary or vaginal microbiomes. CONCLUSION In the urobiome of women with mixed urinary incontinence, a community type with fewer Lactobacilli and more diverse bacteria was associated with more severe urinary incontinence episodes (total and urgency) compared with a community type with high predominance of a single genus, Lactobacillus. Whether mixed urinary incontinence severity is due to lesser predominance of Lactobacillus, greater presence of other non-Lactobacillus genera, or the complement of bacteria consisting of urobiome community types remains to be determined.
Collapse
Affiliation(s)
- Megan U Carnes
- Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC.
| | - Nazema Y Siddiqui
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Duke University, Durham, NC
| | - Lisa Karstens
- Division of Bioinformatics and Computational Biomedicine; Division of Urogynecology, Oregon Health & Science University, Portland, OR
| | - Marie G Gantz
- Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Darrell L Dinwiddie
- Division of Genetics, Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Vivian W Sung
- Division of Urogynecology, Department of Obstetrics and Gynecology, Warren Alpert Medical School of Brown University, Providence, RI
| | - Megan Bradley
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, PA
| | - Linda Brubaker
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, San Diego, CA
| | - Cecile A Ferrando
- Center for Urogynecology and Pelvic Reconstructive Surgery, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Donna Mazloomdoost
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Holly E Richter
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL
| | - Rebecca G Rogers
- Division of Urology, Department of Obstetrics and Gynecology, Albany Medical Center, Albany, NY
| | - Ariana L Smith
- Division of Urology, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Yuko M Komesu
- Division of Urogynecology, Department of Obstetrics and Gynecology, University of New Mexico Health Sciences and Services Building, Albuquerque, NM
| |
Collapse
|
12
|
Isali I, Helstrom EK, Uzzo N, Lakshmanan A, Nandwana D, Valentine H, Sindhani M, Abbosh P, Bukavina L. Current Trends and Challenges of Microbiome Research in Bladder Cancer. Curr Oncol Rep 2024; 26:292-298. [PMID: 38376627 PMCID: PMC10920447 DOI: 10.1007/s11912-024-01508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE OF THE REVIEW Microbiome research has provided valuable insights into the associations between microbial communities and bladder cancer. However, this field faces significant challenges that hinder the interpretation, generalization, and translation of findings into clinical practice. This review aims to elucidate these challenges and highlight the importance of addressing them for the advancement of microbiome research in bladder cancer. RECENT FINDINGS Recent findings underscore the complexities involved in microbiome research, particularly in the context of bladder cancer. Challenges include low microbial biomass in urine samples, potential contamination issues during collection and processing, variability in sequencing methods and primer selection, and the difficulty of establishing causality between microbiota and bladder cancer. Studies have shown the impact of sample storage conditions and DNA isolation kits on microbiome analysis, emphasizing the need for standardization. Additionally, variations in urine collection methods can introduce contamination and affect results. The choice of 16S rRNA gene amplicon sequencing or shotgun metagenomic sequencing introduces technical challenges, including primer selection and sequencing read length. Establishing causality between the microbiota and bladder cancer requires experimental methods like fecal microbiota transplantation and human microbiota-associated murine models, which face their own set of challenges. Translating microbiome research into therapeutic applications is hindered by methodological variability, incomplete understanding of bioactive molecules, imperfect animal models, and the inherent heterogeneity of microbiome communities among individuals. Microbiome research in bladder cancer presents significant challenges stemming from technical and conceptual complexities. Addressing these challenges through standardization, improved experimental models, and advanced analytical approaches is essential for advancing our understanding of the microbiome's role in bladder cancer and its potential clinical applications. Achieving this goal can lead to improved patient outcomes and novel therapeutic strategies in the future.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Emma K Helstrom
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nicole Uzzo
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ankita Lakshmanan
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Devika Nandwana
- Department of Urology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Henkel Valentine
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Mohit Sindhani
- Department of Urology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Philip Abbosh
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Laura Bukavina
- Department of Urology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Case Western Reserve School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
13
|
Jirillo E, Palmirotta R, Colella M, Santacroce L. A Bird's-Eye View of the Pathophysiologic Role of the Human Urobiota in Health and Disease: Can We Modulate It? PATHOPHYSIOLOGY 2024; 31:52-67. [PMID: 38390942 PMCID: PMC10885084 DOI: 10.3390/pathophysiology31010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
For a long time, urine has been considered sterile in physiological conditions, thanks to the particular structure of the urinary tract and the production of uromodulin or Tamm-Horsfall protein (THP) by it. More recently, thanks to the development and use of new technologies, i.e., next-generation sequencing and expanded urine culture, the identification of a microbial community in the urine, the so-called urobiota, became possible. Major phyla detected in the urine are represented by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Particularly, the female urobiota is largely represented by Lactobacillus spp., which are very active against urinary pathogenic Escherichia (E.) coli (UPEC) strains via the generation of lactic acid and hydrogen peroxide. Gut dysbiosis accounts for recurrent urinary tract infections (UTIs), so-called gut-bladder axis syndrome with the formation of intracellular bacterial communities in the course of acute cystitis. However, other chronic urinary tract infections are caused by bacterial strains of intestinal derivation. Monomicrobial and polymicrobial infections account for the outcome of acute and chronic UTIs, even including prostatitis and chronic pelvic pain. E. coli isolates have been shown to be more invasive and resistant to antibiotics. Probiotics, fecal microbial transplantation, phage therapy, antimicrobial peptides, and immune-mediated therapies, even including vaccines for the treatment of UTIs, will be described.
Collapse
Affiliation(s)
- Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
- Doctoral School, eCampus University, 22060 Novedrate, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.J.); (R.P.); (L.S.)
| |
Collapse
|
14
|
Kustrimovic N, Bilato G, Mortara L, Baci D. The Urinary Microbiome in Health and Disease: Relevance for Bladder Cancer. Int J Mol Sci 2024; 25:1732. [PMID: 38339010 PMCID: PMC10855347 DOI: 10.3390/ijms25031732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Bladder cancer (BC) constitutes one of the most diagnosed types of cancer worldwide. Advancements in and new methodologies for DNA sequencing, leading to high-throughput microbiota testing, have pinpointed discrepancies in urinary microbial fingerprints between healthy individuals and patients with BC. Although several studies suggest an involvement of microbiota dysbiosis in the pathogenesis, progression, and therapeutic response to bladder cancer, an established direct causal relationship remains to be elucidated due to the lack of standardized methodologies associated with such studies. This review compiles an overview of the microbiota of the human urinary tract in healthy and diseased individuals and discusses the evidence to date on microbiome involvement and potential mechanisms by which the microbiota may contribute to the development of BC. We also explore the potential profiling of urinary microbiota as a biomarker for risk stratification, as well as the prediction of the response to intravesical therapies and immunotherapy in BC patients. Further investigation into the urinary microbiome of BC patients is imperative to unravel the complexities of the role played by host-microbe interactions in shaping wellness or disease and yield valuable insights into and strategies for the prevention and personalized treatment of BC.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Giorgia Bilato
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
- Molecular Cardiology Laboratory, IRCCS—Policlinico San Donato, 20097 Milan, Italy
| |
Collapse
|
15
|
Bowie KR, Garzotto M, Orwoll E, Karstens L. BMI and BPH correlate with urinary microbiome diversity and lower urinary tract symptoms in men. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571758. [PMID: 38168244 PMCID: PMC10760175 DOI: 10.1101/2023.12.14.571758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Several studies have identified bacteria and other microbes in the bladder and lower urinary tract in the absence of infection. In women, the urinary microbiome has been associated with lower urinary tract symptoms (LUTS), however, similar studies have not been undertaken in large cohorts of men. Here we examine the urinary microbiome and its association with LUTS in a subset of 500 men aged 65 to 90 years from the Osteoporotic Fractures in Men (MrOS) study. We identified significant associations between benign prostatic hyperplasia (BPH), age, and body mass index (BMI) with several diversity metrics. Our analysis revealed complex relationships between BMI, BPH, LUTS, and alpha diversity which give insight into the intricate dynamics of the urinary microbiome. By beginning to uncover the interrelationships of BPH, BMI, LUTS, and the urinary microbiome, these results can inform future study design to better understand the heterogeneity of the male urinary microbiome.
Collapse
Affiliation(s)
- Kate R Bowie
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mark Garzotto
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Portland VA Medical Center, Portland, Oregon, USA
| | - Eric Orwoll
- Division of Endocrinology, Diabetes, and Clinical Nutrition, Oregon Health & Science University, Portland, Oregon, USA
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
16
|
Wang J, Feng J, Jia W, Yuan T, He X, Wu Q, Peng F, Gao W, Yang Z, Tao Y, Li Q. Genomic and phenotypic analysis of a novel clinical isolate of Corynebacterium pyruviciproducens. BMC Microbiol 2023; 23:385. [PMID: 38053056 PMCID: PMC10699042 DOI: 10.1186/s12866-023-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Corynebacterium pyruviciproducens is a recently described species of Corynebacterium. There are few reports on the microbiological characteristics of the new species, and there is a lack of reports on the genomic analysis of the species. RESULTS This study involved a clinical isolate from the pus of a hospital patient with sebaceous gland abscesses. The clinically isolated strain was identified as C. pyruviciproducens strain WYJY-01. In this study, referring to Koch's postulates, we observed the pathological changes of animal models infected by intraperitoneal injection and subcutaneous injection of pure culture of the strain WYJY-01. Furthermore, the strain WYJY-01 was isolated and cultured again from animal models' subcutaneous abscess drainage fluid. Subsequently, the genomics of the strain WYJY-01 was analyzed. By comparing various gene databases, this study predicted the core secondary metabolite gene cluster of the strain WYJY-01, virulence factor genes carried by prophage, pathogenicity islands, and resistance islands. In addition, the genomes of C. pyruviciproducens strain WYJY-01, ATCC BAA-1742 T, and UMB0763 were analyzed by comparative genomics, and the differential genes of strain WYJY-01 were compared, and their functions were analyzed. CONCLUSION The findings showed that the strain WYJY-01 had pathogenicity, supplementing the phenotype characteristics of C. pyruviciproducens. Meanwhile, this research revealed the possible molecular mechanism of the pathogenicity of the strain WYJY-01 at the gene level through whole genome sequence analysis, providing a molecular basis for further research.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, PR China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Jiajia Feng
- Clinical Laboratory, Weifang Maternal and Child Health Care Hospital, Weifang, Shandong, 261011, PR China
| | - Wei Jia
- Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, 261000, PR China
| | - Tingxun Yuan
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, PR China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Xinyu He
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, PR China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Qianqian Wu
- Clinical Laboratory, the Affiliated Hospital of Weifang Medical University, Weifang, 261031, PR China
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Yuanyong Tao
- Clinical Laboratory, the Affiliated Hospital of Weifang Medical University, Weifang, 261031, PR China.
| | - Qian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, PR China.
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
17
|
Haley E, Luke N, Korman H, Baunoch D, Wang D, Zhao X, Mathur M. Improving Patient Outcomes While Reducing Empirical Treatment with Multiplex-Polymerase-Chain-Reaction/Pooled-Antibiotic-Susceptibility-Testing Assay for Complicated and Recurrent Urinary Tract Infections. Diagnostics (Basel) 2023; 13:3060. [PMID: 37835804 PMCID: PMC10573050 DOI: 10.3390/diagnostics13193060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
This study compared rates of empirical-therapy use and negative patient outcomes between complicated and recurrent urinary tract infection (r/cUTI) cases diagnosed with a multiplex polymerase chain reaction or pooled antibiotic susceptibility testing (M-PCR/P-AST) vs. standard urine culture (SUC). Subjects were 577 symptomatic adults (n = 207 males and n = 370 females) presenting to urology/urogynecology clinics between 03/30/2022 and 05/24/2023. Treatment and outcomes were recorded by the clinician and patient surveys. The M-PCR/P-AST (n = 252) and SUC (n = 146) arms were compared after patient matching for confounding factors. The chi-square and Fisher's exact tests were used to analyze demographics and clinical outcomes between study arms. Reduced empirical-treatment use (28.7% vs. 66.7%), lower composite negative events (34.5% vs. 46.6%, p = 0.018), and fewer individual negative outcomes of UTI-related medical provider visits and UTI-related visits for hospitalization/an urgent care center/an emergency room (p < 0.05) were observed in the M-PCR/P-AST arm compared with the SUC arm. A reduction in UTI symptom recurrence in patients ≥ 60 years old was observed in the M-PCR/P-AST arm (p < 0.05). Study results indicate that use of the M-PCR/P-AST test reduces empirical antibiotic treatment and negative patient outcomes in r/cUTI cases.
Collapse
Affiliation(s)
- Emery Haley
- Department of Clinical Research, Pathnostics, Irvine, CA 92618, USA; (E.H.); (N.L.)
| | - Natalie Luke
- Department of Clinical Research, Pathnostics, Irvine, CA 92618, USA; (E.H.); (N.L.)
| | - Howard Korman
- Department of Urology, Comprehensive Urology—A Division of Michigan Healthcare Professionals, Royal Oak, MI 48073, USA;
| | - David Baunoch
- Department of Research and Development, Pathnostics, Irvine, CA 92618, USA;
| | - Dakun Wang
- Department of Scientific Writing, Stat4Ward, Pittsburgh, PA 15238, USA;
| | - Xinhua Zhao
- Department of Statistical Analysis, Stat4Ward, Pittsburgh, PA 15238, USA;
| | - Mohit Mathur
- Department of Medical Affairs, Pathnostics, Irvine, CA 92618, USA
| |
Collapse
|
18
|
Hashimoto K. Emerging role of the host microbiome in neuropsychiatric disorders: overview and future directions. Mol Psychiatry 2023; 28:3625-3637. [PMID: 37845499 PMCID: PMC10730413 DOI: 10.1038/s41380-023-02287-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
The human body harbors a diverse ecosystem of microorganisms, including bacteria, viruses, and fungi, collectively known as the microbiota. Current research is increasingly focusing on the potential association between the microbiota and various neuropsychiatric disorders. The microbiota resides in various parts of the body, such as the oral cavity, nasal passages, lungs, gut, skin, bladder, and vagina. The gut microbiota in the gastrointestinal tract has received particular attention due to its high abundance and its potential role in psychiatric and neurodegenerative disorders. However, the microbiota presents in other body tissues, though less abundant, also plays crucial role in immune system and human homeostasis, thus influencing the development and progression of neuropsychiatric disorders. For example, oral microbiota imbalance and associated periodontitis might increase the risk for neuropsychiatric disorders. Additionally, studies using the postmortem brain samples have detected the widespread presence of oral bacteria in the brains of patients with Alzheimer's disease. This article provides an overview of the emerging role of the host microbiota in neuropsychiatric disorders and discusses future directions, such as underlying biological mechanisms, reliable biomarkers associated with the host microbiota, and microbiota-targeted interventions, for research in this field.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
19
|
Ene A, Banerjee S, Wolfe AJ, Putonti C. Exploring the genotypic and phenotypic differences distinguishing Lactobacillus jensenii and Lactobacillus mulieris. mSphere 2023; 8:e0056222. [PMID: 37366621 PMCID: PMC10449518 DOI: 10.1128/msphere.00562-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii are dominant species of the urogenital microbiota. Prior studies suggest that these Lactobacillus species play a significant role in the urobiome of healthy females. In our prior genomic analysis of all publicly available L. jensenii and Lactobacillus mulieris genomes at the time (n = 43), we identified genes unique to these two closely related species. This motivated our further exploration here into their genotypic differences as well as into their phenotypic differences. First, we expanded genome sequence representatives of both species to 61 strains, including publicly available strains and nine new strains sequenced here. Genomic analyses conducted include phylogenetics of the core genome as well as biosynthetic gene cluster analysis and metabolic pathway analyses. Urinary strains of both species were assayed for their ability to utilize four simple carbohydrates. We found that L. jensenii strains can efficiently catabolize maltose, trehalose, and glucose, but not ribose, and L. mulieris strains can utilize maltose and glucose, but not trehalose and ribose. Metabolic pathway analysis clearly shows the lack of treB within L. mulieris strains, indicative of its inability to catabolize external sources of trehalose. While genotypic and phenotypic observations provide insight into the differences between these two species, we did not find any association with urinary symptom status. Through this genomic and phenotypic investigation, we identify markers that can be leveraged to clearly distinguish these two species in investigations of the female urogenital microbiota. IMPORTANCE We have expanded upon our prior genomic analysis of L. jensenii and L. mulieris strains, including nine new genome sequences. Our bioinformatic analysis finds that L. jensenii and L. mulieris cannot be distinguished by short-read 16S rRNA gene sequencing alone. Thus, to discriminate between these two species, future studies of the female urogenital microbiome should employ metagenomic sequencing and/or sequence species-specific genes, such as those identified here. Our bioinformatic examination also confirmed our prior observations of differences between the two species related to genes associated with carbohydrate utilization, which we tested here. We found that the transport and utilization of trehalose are key distinguishing traits of L. jensenii, which is further supported by our metabolic pathway analysis. In contrast with other urinary Lactobacillus species, we did not find strong evidence for either species, nor particular genotypes, to be associated with lower urinary tract symptoms (or the lack thereof).
Collapse
Affiliation(s)
- Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Groah SL, Rounds AK, Pérez-Losada M. Intravesical Lactobacillus rhamnosus GG Alters Urobiome Composition and Diversity Among People With Neurogenic Lower Urinary Tract Dysfunction. Top Spinal Cord Inj Rehabil 2023; 29:44-57. [PMID: 38076286 PMCID: PMC10644857 DOI: 10.46292/sci23-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Background Neurogenic bladder is associated with bacterial colonization and frequent urinary tract infections. Objectives To explore the effects of one to two doses of intravesical Lactobacillus rhamnosus GG (LGG) on the urobiomes of adults with spinal cord injury/disease (SCI/D) who manage their bladders with intermittent catheterization (IC). Methods This was a pilot substudy within an 18-month phase 1 clinical trial of self-instilled intravesical LGG for urinary symptoms as directed by the Self-Management Protocol using Probiotics (SMP-Pro). Urine samples were collected monthly when participants were asymptomatic. When SMP-Pro "trigger" symptoms (cloudier and/or more foul-smelling urine) occurred, urine samples were collected immediately pre-LGG instillation and 24 to 48 hours after LGG instillation. Urine was collected via a new catheter, immediately placed on ice/freezer, and processed within 12 hours. Genomic DNA was isolated, and the V4 region of the 16S rRNA bacterial gene was amplified and high throughput sequenced. Amplicon sequence variants were inferred and bacterial composition, community structure, and variation across clinical phenotypes were determined. Results 126 urine samples were collected from 26 participants (SCI/D = 23; multiple sclerosis = 2; spina bifida = 1) between 20 and 57 years of age. The urobiomes were characterized by four dominant phyla (>1%): Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria, which were comprised of six dominant genera (>3%): Escherichia/Shigella (29.1%), Klebsiella (22.4%), Proteus (15.2%), Aerococcus (6.3%), Streptococcus (6.0%), and Pluralibacter (3.0%). Post-LGG samples were associated with a decline in Escherichia/Shigella predominance (p < .001) and altered bacterial diversity (p < .05). Conclusion Among people with SCI/D who use IC, intravesical LGG alters the bacterial composition and diversity of the urine ecosystem, potentially disrupting the uropathogenic urobiome.
Collapse
Affiliation(s)
- Suzanne L. Groah
- MedStar National Rehabilitation Hospital, Washington, DC
- MedStar Georgetown University Hospital, Washington, DC
| | - Amanda K. Rounds
- MedStar National Rehabilitation Hospital, Washington, DC
- MedStar Health Research Institute, Hyattsville, Maryland
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC
| |
Collapse
|
21
|
Yang Y, Ma C, Li S, Cai W, Dai W, Zhang X, Yin L, Donge Tang, Liu F, Dai Y. Urinary microbiota and serum metabolite analysis in patients with diabetic kidney disease. Heliyon 2023; 9:e17040. [PMID: 37521000 PMCID: PMC10382294 DOI: 10.1016/j.heliyon.2023.e17040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023] Open
Abstract
Background Diabetic kidney disease (DKD) is a common and potentially fatal consequence of diabetes. Chronic renal failure or end-stage renal disease may result over time. Numerous studies have demonstrated the function of the microbiota in health and disease. The use of advanced urine culture techniques revealed the presence of resident microbiota in the urinary tract, undermining the idea of urine sterility. Studies have demonstrated that the urine microbiota is related with urological illnesses; nevertheless, the fundamental mechanisms by which the urinary microbiota influences the incidence and progression of DKD remain unclear. The purpose of this research was to describe key characteristics of the patients with DKD urinary microbiota in order to facilitate the development of diagnostic and therapeutic for DKD. Methods We evaluated the structure and composition of the microbiota extracted from urine samples taken from DKD patients (n = 19) and matched healthy controls (n = 15) using 16S rRNA gene sequencing. Meanwhile, serum metabolite profiles were compared using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Associations between clinical characteristics, urine microbiota, and serum metabolites were also examined. Finally, the interaction between urine microbiota and serum metabolites was clarified based on differential metabolite abundance analysis. Results The findings indicated that the DKD had a distinct urinary microbiota from the healthy controls (HC). Taxonomic investigations indicated that the DKD microbiome had less alpha diversity than a control group. Proteobacteria and Acidobacteria phyla increased in the DKD, while Firmicutes and Bacteroidetes decreased significantly (P < 0.05). Acidobacteria was the most prevalent microbiota in the DKD, as determined by the Linear discriminant analysis Effect Size (LEfSe) plot. Changes in the urinary microbiota of DKD also had an effect on the makeup of metabolites. Short-chain fatty acids (SCFAs) and protein-bound uremic toxins (PBUTs) were shown to be specific. Then we discovered that arginine and proline metabolism was the primary mechanism involved in the regulation of diabetic kidney disease. Conclusions This study placed the urinary microbiota and serum metabolite of DKD patients into a functional framework and identified the most abundant microbiota in DKD (Proteobacteria and Acidobacteria). Arginine metabolites may have a major effect on DKD patients, which correlated with the progression of DKD.
Collapse
Affiliation(s)
- Yan Yang
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Chiyu Ma
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, 518020, China
| | - Shishi Li
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Wanxia Cai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, 518020, China
| | - Weier Dai
- College of Natural Science, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Xinzhou Zhang
- Depart of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, 518020, China
| | - Lianghong Yin
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, 518020, China
| | - Fanna Liu
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong, 518020, China
| |
Collapse
|
22
|
Deen NS, Ahmed A, Tasnim NT, Khan N. Clinical relevance of expanded quantitative urine culture in health and disease. Front Cell Infect Microbiol 2023; 13:1210161. [PMID: 37593764 PMCID: PMC10428011 DOI: 10.3389/fcimb.2023.1210161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
"Expanded quantitative urine culture (EQUC)" is an enhanced culture protocol for the detection of viable microbes in urine specimens. Using a large volume of urine and different sets of cultural conditions, EQUC is able to uncover a wide range of bacteria and fungi (yeasts) that were otherwise undetected by the standard urinary culture. In addition to common urinary pathogens, EQUC has been shown to detect emerging and new pathogens, and commensal microbiota. Although the usefulness of EQUC protocol in clinical set up has not yet been fully established, recent studies have demonstrated that EQUC can provide valuable information regarding symptom resolution, treatment responses and diagnosis of major urinary disorders including urinary tract infections, urinary incontinence and other lower urinary tract symptoms. EQUC may also help in evaluating the utility of beneficial microbiota as biotherapeutics. This narrative minireview describes the current research findings regarding the clinical utility of EQUC in characterizing the role of urinary microbiome and uropathogens in health and disease. The literature which are written in English, available on "PubMed" and contain any of the terms- "expanded quantitative urine culture", "enhanced quantitative urine culture" and "EQUC" in the abstracts were used as the source articles to prepare this minireview.
Collapse
Affiliation(s)
- Nadia S. Deen
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | | | | |
Collapse
|
23
|
Sun JX, Xia QD, Zhong XY, Liu Z, Wang SG. The bladder microbiome of NMIBC and MIBC patients revealed by 2bRAD-M. Front Cell Infect Microbiol 2023; 13:1182322. [PMID: 37351184 PMCID: PMC10282653 DOI: 10.3389/fcimb.2023.1182322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
Background Bladder cancer (BCa) is the most common malignancy of the urinary tract which can be divided into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC), and their microbial differences are not fully understood. This study was conducted by performing 2bRAD sequencing for Microbiome (2bRAD-M) on NMIBC and MIBC tissue samples to investigate the microbiota differences between NMIBC and MIBC individuals. Methods A total of 22 patients with BCa, including 7 NMIBC and 15 MIBC, were recruited. Tumor tissues were surgically removed as samples and DNA was extracted. Type IIB restriction endonucleases were used to enzymatically cleave the microbial genome for each microbe's tag and map it to species-specific 2bRAD markers to enable qualitative and quantitative studies of microbes between MIBC and NMIBC tissues. Results A total of 527 species were detected. The microbial diversity of NMIBC tissues was significantly higher than that of MIBC tissues. Microbial composition of the two tumor tissues was similar, where Ralstonia_sp000620465 was the most dominant species. 4 species (Acinetobacter_guillouiae, Anoxybacillus_A_rupiensis, Brevibacillus_agri and Staphylococcus_lugdunensis) were enriched in NMIBC, while Ralstonia_mannitolilytica, Ralstonia_pickettii, and Ralstonia_sp000620465 were overrepresented in MIBC. 252 discriminatory character taxa were also revealed by linear discriminant analysis effect sizea (LEfSe). Species importance point plots identified Ralstonia_sp000620465, Cutibacterium_acnes and Ralstonia_pickettii as the three most important species between the two groups. Meanwhile, functional annotation analysis showed 3011 different COGs and 344 related signaling pathways between MIBC and NMIBC microbiome. Conclusion This first 2bRAD-M microbiome study on MIBC and NMIBC tissues revealed significant differences in the microbial environment between the two groups, which implies a potential association between tumor microbial dysbiosis and BCa, and provides a possible target and basis for subsequent studies on the mechanisms of BCa development and progression.
Collapse
Affiliation(s)
| | | | | | - Zheng Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Chen X, Cheng Y, Tian X, Li J, Ying X, Zhao Q, Wang M, Liu Y, Qiu Y, Yan X, Ren X. Urinary microbiota and metabolic signatures associated with inorganic arsenic-induced early bladder lesions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115010. [PMID: 37211000 DOI: 10.1016/j.ecoenv.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
Inorganic arsenic (iAs) contamination in drinking water is a global public health problem, and exposure to iAs is a known risk factor for bladder cancer. Perturbation of urinary microbiome and metabolome induced by iAs exposure may have a more direct effect on the development of bladder cancer. The aim of this study was to determine the impact of iAs exposure on urinary microbiome and metabolome, and to identify microbiota and metabolic signatures that are associated with iAs-induced bladder lesions. We evaluated and quantified the pathological changes of bladder, and performed 16S rDNA sequencing and mass spectrometry-based metabolomics profiling on urine samples from rats exposed to low (30 mg/L NaAsO2) or high (100 mg/L NaAsO2) iAs from early life (in utero and childhood) to puberty. Our results showed that iAs induced pathological bladder lesions, and more severe effects were noticed in the high-iAs group and male rats. Furthermore, six and seven featured urinary bacteria genera were identified in female and male offspring rats, respectively. Several characteristic urinary metabolites, including Menadione, Pilocarpine, N-Acetylornithine, Prostaglandin B1, Deoxyinosine, Biopterin, and 1-Methyluric acid, were identified significantly higher in the high-iAs groups. In addition, the correlation analysis demonstrated that the differential bacteria genera were highly correlated with the featured urinary metabolites. Collectively, these results suggest that exposure to iAs in early life not only causes bladder lesions, but also perturbs urinary microbiome composition and associated metabolic profiles, which shows a strong correlation. Those differential urinary genera and metabolites may contribute to bladder lesions, suggesting a potential for development of urinary biomarkers for iAs-induced bladder cancer.
Collapse
Affiliation(s)
- Xushen Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Ying Cheng
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qiuyi Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng Wang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuefeng Ren
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
25
|
Javan Balegh Marand A, Baars C, Heesakkers J, van den Munckhof E, Ghojazadeh M, Rahnama'i MS, Janssen D. Differences in the Urinary Microbiome of Patients with Overactive Bladder Syndrome with and without Detrusor Overactivity on Urodynamic Measurements. Life (Basel) 2023; 13:life13051199. [PMID: 37240844 DOI: 10.3390/life13051199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION It has been hypothesized that the urinary microbiome might play an important role in OAB. Studies have been conducted on the association between OAB symptoms and the microbiome, although a possible causality still has to be determined. MATERIAL AND METHODS In this study, 12 female patients, ≥18 years of age, with 'OAB DO+' and 9 female patients with 'OAB DO-' were included. Patients were excluded if they met one of the following exclusion criteria: bladder tumors and previous bladder operations; sacral neuromodulation; injection of Botox in the bladder; and TOT or TVT operations. Urine samples were collected and stored with patient informed consent and with the approval of the Hospital Ethical Review Board (Arnhem-Nijmegen). All OAB patients underwent urodynamics before collecting urine samples, and the diagnosis of detrusor overactivity was confirmed by two individual urologists. In addition, samples from 12 healthy controls who did not undergo urodynamic evaluation were analyzed. The 16S rRNA V1-V2 region amplification and gel electrophoresis were used to determine the microbiota. RESULTS 12 of the OAB patients had DO shown on their urodynamic studies; the remaining 9 patients had a normoactive detrusor on their urodynamic measurements. Overall, there were no substantial differences among the demographic characteristics of the subjects. The samples were classified as the following: 180 phyla, 180 classes, 179 orders, 178 families, 175 genera, and 138 species. The least commonly observed phyla were Proteobacteria, with an average presence of 10%, followed by Bacteroidetes with 15%, Actinobacteria with 16%, and Firmicutes with 41%. Most of the sequences could be classified according to the genus level for each sample. DISCUSSION Significant differences were observed in the urinary microbiome of patients with overactive bladder syndrome who have detrusor overactivity on urodynamics compared to OAB patients without detrusor overactivity and matched controls. OAB patients with detrusor overactivity have a significantly less diverse microbiome and show a higher proportion of Lactobacillus, particularly Lactobacillus iners. The results imply that the urinary microbiome could be involved in the pathogenesis of a specific phenotype of OAB. The urinary microbiome could be a new starting point to study the causes and treatments of OAB.
Collapse
Affiliation(s)
- Aida Javan Balegh Marand
- Department of Urology, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands
| | - Cléo Baars
- Department of Urology, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - John Heesakkers
- Department of Urology, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands
| | - Ellen van den Munckhof
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Morteza Ghojazadeh
- Viroclinics-DDL Diagnostic Laboratory, 2288 ER Rijswijk, The Netherlands
| | | | - Dick Janssen
- Department of Urology, Radboud University, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
26
|
Choi HW, Lee KW, Kim YH. Microbiome in urological diseases: Axis crosstalk and bladder disorders. Investig Clin Urol 2023; 64:126-139. [PMID: 36882171 PMCID: PMC9995957 DOI: 10.4111/icu.20220357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Since the identification of the human urinary microbiome, numerous studies have characterized this microbial community and improved our knowledge of its association with urinary diseases. This association between urinary diseases and microbiota is not confined to the urinary microbiota; it is interconnected with the microbiota of other organs. The gastrointestinal, vaginal, kidney, and bladder microbiota all affect urinary diseases because they work with their respective organs to control the growth and operation of the immune, metabolic, and nervous systems through dynamic bidirectional communication along the bladder-centered axis. Therefore, disturbances in the microbial communities may result in the emergence of urinary diseases. In this review, we describe the increasing and intriguing evidence of complicated and critical relationships that may contribute to the development and progression of urinary diseases through disruption of the microbiota in various organs.
Collapse
Affiliation(s)
- Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Kwang Woo Lee
- Department of Urology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Young Ho Kim
- Department of Urology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
27
|
Mueller MG, Das P, Andy U, Brennaman L, Dieter AA, Dwarica D, Kirby AC, Shepherd JP, Gregory WT, Amundsen CL. Longitudinal urinary microbiome characteristics in women with urgency urinary incontinence undergoing sacral neuromodulation. Int Urogynecol J 2023; 34:517-525. [PMID: 35608624 DOI: 10.1007/s00192-022-05219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/19/2022] [Indexed: 01/26/2023]
Abstract
INTRODUCTION AND HYPOTHESIS The objective was to evaluate the stability of the urinary microbiome communities in women undergoing sacral neuromodulation (SNM) for urgency urinary incontinence (UUI). We hypothesized that clinical response to SNM therapy would be associated with changes in the urinary microbiome. METHODS Women completed the Overactive Bladder Questionnaire Short-Form, the International Consultation on Incontinence Questionnaire Short Form, and the Female Sexual Function Index at baseline and 3 months post-SNM implantation. Transurethral urinary specimens were obtained for microbiome analysis at baseline and 3 months postoperatively. The V4 region of the 16S rRNA gene (515F-806R) was amplified with region-specific primers, and Amplicon Sequence Variants (ASVs) were identified with a closed-reference approach of taxonomic classification. Alpha-diversity was calculated using the phylogenetic (i.e., Faith's phylogenetic diversity) and nonphylogenetic metrics (i.e., Shannon diversity, and Pielou's evenness) using the QIIME2 plugin. Longitudinal paired volatility analysis was performed using the DEICODE and Gemelli plugin to account for host specificity across both time and space. RESULTS Nineteen women who underwent SNM and provided both baseline and 3-month urine samples were included in this analysis. Women reported improvement in objective (number of UUI episodes) and subjective (symptom severity and health-related quality of life) measures. Ninety percent of the bacteria were classified as Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. No significant differences were observed in each subject's beta-diversity at 3 months compared with their baseline microbiome. CONCLUSIONS Our descriptive pilot study of a cohort of women who had achieved objective and subjective improvements in UUI following SNM therapy demonstrates that the urinary microbiome remains relatively stable, despite variability amongst the cohort.
Collapse
Affiliation(s)
- Margaret G Mueller
- Northwestern University, 250 E. Superior St, Suite 05-2113, Chicago, IL, 60611, USA.
| | - Promi Das
- University of California, San Diego, CA, USA
| | - Uduak Andy
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ligon MM, Joshi CS, Fashemi BE, Salazar AM, Mysorekar IU. Effects of aging on urinary tract epithelial homeostasis and immunity. Dev Biol 2023; 493:29-39. [PMID: 36368522 PMCID: PMC11463731 DOI: 10.1016/j.ydbio.2022.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
A global increase in older individuals creates an increasing demand to understand numerous healthcare challenges related to aging. This population is subject to changes in tissue physiology and the immune response network. Older individuals are particularly susceptible to infectious diseases, with one of the most common being urinary tract infections (UTIs). Postmenopausal and older women have the highest risk of recurrent UTIs (rUTIs); however, why rUTIs become more frequent after menopause and during old age is incompletely understood. This increased susceptibility and severity among older individuals may involve functional changes to the immune system with age. Aging also has substantial effects on the epithelium and the immune system that led to impaired protection against pathogens, yet heightened and prolonged inflammation. How the immune system and its responses to infection changes within the bladder mucosa during aging has largely remained poorly understood. In this review, we highlight our understanding of bladder innate and adaptive immunity and the impact of aging and hormones and hormone therapy on bladder epithelial homeostasis and immunity. In particular, we elaborate on how the cellular and molecular immune landscape within the bladder can be altered during aging as aged mice develop bladder tertiary lymphoid tissues (bTLT), which are absent in young mice leading to profound age-associated change to the immune landscape in bladders that might drive the significant increase in UTI susceptibility. Knowledge of host factors that prevent or promote infection can lead to targeted treatment and prevention regimens. This review also identifies unique host factors to consider in the older, female host for improving rUTI treatment and prevention by dissecting the age-associated alteration of the bladder mucosal immune system.
Collapse
Affiliation(s)
- Marianne M Ligon
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chetanchandra S Joshi
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bisiayo E Fashemi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Arnold M Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular Microbiology and Virology, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Liptáková A, Čurová K, Záhumenský J, Visnyaiová K, Varga I. Microbiota of female genital tract – functional overview of microbial flora from vagina to uterine tubes and placenta. Physiol Res 2022. [DOI: 10.33549/physiolres.934960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microorganisms and eukaryotic human cells coexist in synergistic relationships in nearly every niche of the human body. The female genital tract consisting of the vagina, uterus with its cervix and endometrium, uterine tubes and ovaries – harbors its own typical microbiota, which accounts for 9 % of the total bacterial population in females. To this organ system, we also assigned the microbiome of the placenta, which has not been studied much until now. Among the spectrum of microbial species, the female genital tract is mainly dominated by Lactobacillus species, which are considered to be one of the simplest yet most important microbial communities. However, this relationship between macro- and micro-organisms seems to have a number of physiological functions, e.g., the vaginal and cervical microbiota have unique impact on reproductive health. The aim of this review was to provide current view on female genital tract microbiota and its role in reproductive health. We describe in detail the association of vaginal or tubal epithelium with microbiota or the role of microbiota in normal placental function.
Collapse
Affiliation(s)
| | - K Čurová
- Department of Medical and Clinical Microbiology, Faculty of Medicine, University of P. J. Šafárik, Košice, Slovak Republic.
| | | | | | | |
Collapse
|
30
|
Kim JK, Song SH, Jung G, Song B, Hong SK. Possibilities and limitations of using low biomass samples for urologic disease and microbiome research. Prostate Int 2022; 10:169-180. [PMID: 36570648 PMCID: PMC9747588 DOI: 10.1016/j.prnil.2022.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/12/2022] Open
Abstract
With the dogma of sterile urine no longer held as truth, numerous studies have implicated distinct changes in microbial diversity and composition to diseased subgroups in both benign and malignant urological diseases, ranging from overactive bladder to bladder and prostate cancer. Further facilitated by novel and effective techniques of urine culture and sequencing, analysis of the genitourinary microbiome holds high potential to identify biomarkers for disease and prognosis. However, the low biomass of samples included in microbiome studies of the urinary tract challenge researchers to draw definitive conclusions, confounded by technical and procedural considerations that must be addressed. Lack of samples and adequate true negative controls can lead to overestimation of microbial influence with clinical relevance. As such, results from currently available studies and assessment of their limitations required a thorough understanding. The purpose of this narrative review was to summarize notable microbiome studies in the field of urology with a focus on significant findings and limitations of study design. Methodological considerations in future research are also discussed.
Collapse
Affiliation(s)
- Jung Kwon Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Hun Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Gyoohwan Jung
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Byeongdo Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Urology, Seoul National University College of Medicine, Seoul, Korea,Corresponding author. Department of Urology, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, Korea.
| |
Collapse
|
31
|
LIPTÁKOVÁ A, ČUROVÁ K, ZÁHUMENSKÝ J, VISNYAIOVÁ K, VARGA I. Microbiota of female genital tract - functional overview of microbial flora from vagina to uterine tubes and placenta. Physiol Res 2022; 71:S21-S33. [PMID: 36592438 PMCID: PMC9853993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Microorganisms and eukaryotic human cells coexist in synergistic relationships in nearly every niche of the human body. The female genital tract consisting of the vagina, uterus with its cervix and endometrium, uterine tubes and ovaries - harbors its own typical microbiota, which accounts for 9 % of the total bacterial population in females. To this organ system, we also assigned the microbiome of the placenta, which has not been studied much until now. Among the spectrum of microbial species, the female genital tract is mainly dominated by Lactobacillus species, which are considered to be one of the simplest yet most important microbial communities. However, this relationship between macro- and micro-organisms seems to have a number of physiological functions, e.g., the vaginal and cervical microbiota have unique impact on reproductive health. The aim of this review was to provide current view on female genital tract microbiota and its role in reproductive health. We describe in detail the association of vaginal or tubal epithelium with microbiota or the role of microbiota in normal placental function.
Collapse
Affiliation(s)
- Adriana LIPTÁKOVÁ
- Institute of Microbiology, Faculty of Medicine, Comenius University in Bratislava, Slovak Republic
| | - Katarína ČUROVÁ
- Department of Medical and Clinical Microbiology, Faculty of Medicine, University of P. J. Šafárik in Košice, Slovak Republic
| | - Jozef ZÁHUMENSKÝ
- Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital Bratislava, Slovak Republic
| | - Kristína VISNYAIOVÁ
- Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University in Bratislava and University Hospital Bratislava, Slovak Republic
| | - Ivan VARGA
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Slovak Republic
| |
Collapse
|
32
|
de Cock M, Fonville M, de Vries A, Bossers A, van den Bogert B, Hakze-van der Honing R, Koets A, Sprong H, van der Poel W, Maas M. Screen the unforeseen: Microbiome-profiling for detection of zoonotic pathogens in wild rats. Transbound Emerg Dis 2022; 69:3881-3895. [PMID: 36404584 PMCID: PMC10099244 DOI: 10.1111/tbed.14759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Wild rats can host various zoonotic pathogens. Detection of these pathogens is commonly performed using molecular techniques targeting one or a few specific pathogens. However, this specific way of surveillance could lead to (emerging) zoonotic pathogens staying unnoticed. This problem may be overcome by using broader microbiome-profiling techniques, which enable broad screening of a sample's bacterial or viral composition. In this study, we investigated if 16S rRNA gene amplicon sequencing would be a suitable tool for the detection of zoonotic bacteria in wild rats. Moreover, we used virome-enriched (VirCapSeq) sequencing to detect zoonotic viruses. DNA from kidney samples of 147 wild brown rats (Rattus norvegicus) and 42 black rats (Rattus rattus) was used for 16S rRNA gene amplicon sequencing of the V3-V4 hypervariable region. Blocking primers were developed to reduce the amplification of rat host DNA. The kidney bacterial composition was studied using alpha- and beta-diversity metrics and statistically assessed using PERMANOVA and SIMPER analyses. From the sequencing data, 14 potentially zoonotic bacterial genera were identified from which the presence of zoonotic Leptospira spp. and Bartonella tribocorum was confirmed by (q)PCR or Sanger sequencing. In addition, more than 65% of all samples were dominated (>50% reads) by one of three bacterial taxa: Streptococcus (n = 59), Mycoplasma (n = 39) and Leptospira (n = 25). These taxa also showed the highest contribution to the observed differences in beta diversity. VirCapSeq sequencing in rat liver samples detected the potentially zoonotic rat hepatitis E virus in three rats. Although 16S rRNA gene amplicon sequencing was limited in its capacity for species level identifications and can be more difficult to interpret due to the influence of contaminating sequences in these low microbial biomass samples, we believe it has potential to be a suitable pre-screening method in the future to get a better overview of potentially zoonotic bacteria that are circulating in wildlife.
Collapse
Affiliation(s)
- Marieke de Cock
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Manoj Fonville
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ankje de Vries
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | - Ad Koets
- Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands.,Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hein Sprong
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wim van der Poel
- Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - Miriam Maas
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
33
|
Li S, Ma C, Yang Y, Cai W, Dai W, Zhang X, Yin L, Tang D, Liu F, Dai Y. Microbiome and metabolome analysis to clarify the interaction between the urine microbiota and serum metabolites in Chinese patients with immunoglobulin A nephropathy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1230. [PMID: 36544661 PMCID: PMC9761118 DOI: 10.21037/atm-22-5334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
Background The bacterial and metabolic networks in immunoglobin A nephropathy (IgAN), the most common type of primary chronic glomerulonephritis worldwide, have not been extensively studied. To help develop better methods for the diagnosis, treatment, and prognosis of IgAN, we characterized the alterations of the urinary microbiome and serum metabolome in patients with IgAN. Methods We analyzed serum and urine samples from Chinese patients with IgAN and healthy controls (HCs) using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 16S ribosomal RNA gene sequencing. Results Patients with IgAN had a higher relative abundance of Actinomyces and a lower relative abundance of Lactobacillus. The elements of metabolism have been affected, including free amino acids, polyunsaturated fatty acids, and oligopeptides. We also identified the 9 metabolites that might be the core metabolites, including guanidinoacetic acid, apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-forming)], and diethanolamine, which linked the metabolic networks between the urinary tract (UT) and blood. Other core metabolites, such as homocitrulline, apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase (ADP-forming)], butyrylcarnitine, formiminoglutamic acid (FIGLU), diethanolamine, and prolylhydroxyproline, were positively correlated with urinary mili-total protein (MTP). Conversely, Lactobacillus was negatively correlated with MTP. Conclusions We verified the connection between the disruption of the microbiota and serum metabolites, along with the clinical parameters, in patients with IgAN, which may help provide a tool for IgAN interventions.
Collapse
Affiliation(s)
- Shishi Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China;,Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Chiyu Ma
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yan Yang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Weier Dai
- College of Natural Science, The University of Texas at Austin, Austin, TX, USA
| | - Xinzhou Zhang
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Fanna Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
34
|
Neugent ML, Kumar A, Hulyalkar NV, Lutz KC, Nguyen VH, Fuentes JL, Zhang C, Nguyen A, Sharon BM, Kuprasertkul A, Arute AP, Ebrahimzadeh T, Natesan N, Xing C, Shulaev V, Li Q, Zimmern PE, Palmer KL, De Nisco NJ. Recurrent urinary tract infection and estrogen shape the taxonomic ecology and function of the postmenopausal urogenital microbiome. Cell Rep Med 2022; 3:100753. [PMID: 36182683 PMCID: PMC9588997 DOI: 10.1016/j.xcrm.2022.100753] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/28/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Postmenopausal women are severely affected by recurrent urinary tract infection (rUTI). The urogenital microbiome is a key component of the urinary environment. However, changes in the urogenital microbiome underlying rUTI susceptibility are unknown. Here, we perform shotgun metagenomics and advanced culture on urine from a controlled cohort of postmenopausal women to identify urogenital microbiome compositional and function changes linked to rUTI susceptibility. We identify candidate taxonomic biomarkers of rUTI susceptibility in postmenopausal women and an enrichment of lactobacilli in postmenopausal women taking estrogen hormone therapy. We find robust correlations between Bifidobacterium and Lactobacillus and urinary estrogens in women without urinary tract infection (UTI) history. Functional analyses reveal distinct metabolic and antimicrobial resistance gene (ARG) signatures associated with rUTI. Importantly, we find that ARGs are enriched in the urogenital microbiomes of women with rUTI history independent of current UTI status. Our data suggest that rUTI and estrogen shape the urogenital microbiome in postmenopausal women.
Collapse
Affiliation(s)
- Michael L Neugent
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Neha V Hulyalkar
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kevin C Lutz
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Vivian H Nguyen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jorge L Fuentes
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cong Zhang
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Amber Nguyen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Belle M Sharon
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Amy Kuprasertkul
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda P Arute
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tahmineh Ebrahimzadeh
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Nitya Natesan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vladimir Shulaev
- Department of Biological Sciences, The University of North Texas, Denton, TX, USA; Advanced Environmental Research Institute, The University of North Texas, Denton, TX, USA
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Philippe E Zimmern
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Nicole J De Nisco
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA; Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
35
|
Friedrich V, Choi HW. The Urinary Microbiome: Role in Bladder Cancer and Treatment. Diagnostics (Basel) 2022; 12:diagnostics12092068. [PMID: 36140470 PMCID: PMC9497549 DOI: 10.3390/diagnostics12092068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Commensal microbes have increasingly been found to be involved in the development and progression of cancer. The recent discovery of the urinary microbiome bolstered the notion that microbes might play a role in bladder cancer. Although microbial involvement in bladder neoplastic transformation and metastatic progression, except schisto somiasis, has not been established, accumulating research suggests that dysbiosis of the urinary microbiome can produce a chronically inflammatory urothelial microenvironment and lead to bladder cancer. In this review, we describe how the urinary microbiome might facilitate the development of bladder cancer by altering the host immune system and the kind of cytokines that are directly involved in these responses. We investigated the therapeutic possibilities of modulating the urinary microbiome, including immune checkpoint therapy. The responsiveness of patients to intravesical Bacillus Calmette-Guerin therapy was evaluated with respect to microbiome composition. We conclude by noting that the application of microbes to orchestrate the inflammatory response in the bladder may facilitate the development of treatments for bladder cancer.
Collapse
|
36
|
The Bladder Microbiome, Metabolome, Cytokines, and Phenotypes in Patients with Systemic Lupus Erythematosus. Microbiol Spectr 2022; 10:e0021222. [PMID: 35913213 PMCID: PMC9620774 DOI: 10.1128/spectrum.00212-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Emerging studies reveal unique bacterial communities in the human bladder, with alteration of composition associated to disease states. Systemic lupus erythematosus (SLE) is a complex autoimmune disease that is characterized by frequent impairment of the kidney. Here, we explored the bladder microbiome, metabolome, and cytokine profiles in SLE patients, as well as correlations between microbiome and metabolome, cytokines, and disease profiles. We recruited a group of 50 SLE patients and 50 individually matched asymptomatic controls. We used transurethral catheterization to collect urine samples, 16S rRNA gene sequencing to profile bladder microbiomes, and liquid chromatography-tandem mass spectrometry to perform untargeted metabolomic profiling. Compared to controls, SLE patients possessed unique bladder microbial communities and increased alpha diversity. These differences were accompanied by differences in urinary metabolomes, cytokines, and patients’ disease profiles. The SLE-enriched genera, including Bacteroides, were positively correlated with several SLE-enriched metabolites, including olopatadine. The SLE-depleted genera, such as Pseudomonas, were negatively correlated to SLE-depleted cytokines, including interleukin-8. Alteration of the bladder microbiome was associated with disease profile. For example, the genera Megamonas and Phocaeicola were negatively correlated with serum complement component 3, and Streptococcus was positively correlated with IgG. Our present study reveals associations between the bladder microbiome and the urinary metabolome, cytokines, and disease phenotypes. Our results could help identify biomarkers for SLE. IMPORTANCE Contrary to dogma, the human urinary bladder possesses its own unique bacterial community with alteration of composition associated with disease states. Systemic lupus erythematosus (SLE) is a complex autoimmune disease often characterized by kidney impairment. Here, we explored the bladder microbiome, metabolome, and cytokine profiles in SLE patients, as well as correlations between the microbiome and metabolome, cytokines, and disease profiles. Compared to controls, SLE patients possessed a unique bladder microbial community and elevated alpha diversity. These differences were accompanied by differences in bladder metabolomes, cytokines, and patients’ disease profiles. SLE-enriched genera were positively correlated with several SLE-enriched metabolites. SLE-depleted genera were negatively correlated to SLE-depleted cytokines. Alteration of the bladder microbiome was associated with disease profile. Thus, our study reveals associations between the bladder microbiome and the bladder metabolome, cytokines, and disease phenotypes. These results could help identify biomarkers for SLE.
Collapse
|
37
|
Monteiro M, Poor A, Muro B, Carnevale R, Leal D, Garbossa C, Moreno A, Almond G. The sow microbiome: Current and future perspectives to maximize the productivity in swine herds. JOURNAL OF SWINE HEALTH AND PRODUCTION 2022; 30:238-250. [DOI: 10.54846/jshap/1277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The development of new generation sequencing methods and the reduction in the cost per base sequenced over the past few years is drawing the attention of the pig industry to microbiome understanding and modulation. In recent years, there has been an increase in the number of articles published related to microbiome studies in swine. With respect to sows, microbiome studies mainly focused on the gut, with some studies evaluating the reproductive tract and mammary microbiome. However, studies about urinary microbiome are still lacking. The present literature indicates that the microbiome in the sow’s gut can affect the microbiome in other body parts. Moreover, the understanding of the dynamics and interactions among microbial populations within the sow or the herd has led to improvements in animal health and reproductive performance. This review provides new insights related to sow intestinal, urinary, mammary, and reproductive microbiomes and their relationships with reproductive outcomes, diseases, and early colonization in offspring by gathering the most recent work in this field as well as pinpoints information gaps that require further investigation. This literature review also sheds light on the knowledge regarding the role of microbiomes in the reduction of antimicrobial use.
Collapse
|
38
|
Johnson JA, Delaney LF, Ojha V, Rudraraju M, Hintze KR, Siddiqui NY, Sysoeva TA. Commensal Urinary Lactobacilli Inhibit Major Uropathogens In Vitro With Heterogeneity at Species and Strain Level. Front Cell Infect Microbiol 2022; 12:870603. [PMID: 35811675 PMCID: PMC9260849 DOI: 10.3389/fcimb.2022.870603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
The human urinary microbiome is thought to affect the development and progression of urinary tract infections (UTI), particularly recurrent UTIs in aging populations of women. To understand the possible interactions of urinary pathogens with commensal bacteria inhabiting the aging bladder, we conducted an initial functional assessment of a representative set of urinary lactobacilli that dominate this niche in postmenopausal women. We created a repository of urinary bladder bacteria isolated via Enhanced Quantitative Urinary Culture (EQUC) from healthy postmenopausal women, as well as those with a culture-proven recurrent UTI (rUTI) diagnosis. This repository contains lactobacilli strains from eight different species. As many other lactobacilli are known to inhibit human pathogens, we hypothesized that some urinary lactobacilli will have similar abilities to inhibit the growth of typical uropathogens and thus, provide a link between the urinary microbiome and the predisposition to the rUTI. Therefore, we screened the urinary lactobacilli in our repository for their ability to inhibit model uropathogens in vitro. We observed that many urinary isolates strongly inhibit model strains of gram-negative Escherichia coli and Klebsiella pneumoniae but demonstrate less inhibition of gram-positive Enterococcus faecalis. The observed inhibition affected model strains of uropathogens as well as clinical and multidrug-resistant isolates of those species. Our preliminary analysis of inhibition modes suggests a combination of pH-dependent and cell-dependent inhibition. Overall, inhibition strongly varies among species and strains of urinary lactobacilli. While the strength of the inhibition is not predictive of health outcomes in this limited repository, there is a high level of species and strain diversity that warrants future detailed investigations.
Collapse
Affiliation(s)
- James A. Johnson
- Department of Biology, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Lydia F. Delaney
- Department of Biology, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Vaishali Ojha
- Department of Biology, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Medha Rudraraju
- Department of Biology, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Kaylie R. Hintze
- Department of Biology, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Nazema Y. Siddiqui
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Duke University, Durham, NC, United States
| | - Tatyana A. Sysoeva
- Department of Biology, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
39
|
Johnson JA, Modliszewski JL, Siddiqui NY, Sysoeva TA. Draft Genome Sequence of a Lactobacillus gasseri Strain Isolated from the Catheterized Urine of a Healthy Postmenopausal Woman. Microbiol Resour Announc 2022; 11:e0002122. [PMID: 35532533 PMCID: PMC9202440 DOI: 10.1128/mra.00021-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/24/2022] [Indexed: 11/20/2022] Open
Abstract
Urinary microbiome composition has been found to associate with health status and to change with age. Lactobacillus gasseri is one of the most frequently found lactic acid bacteria in the vaginal and urinary tracts of women. Here, we report a draft genome sequence of a urinary L. gasseri strain isolated from a healthy postmenopausal woman.
Collapse
Affiliation(s)
- James A. Johnson
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Jennifer L. Modliszewski
- Duke University Center for Genomic and Computational Biology, Department of Bioinformatics and Biostatistics, Duke University, Durham, North Carolina, USA
| | - Nazema Y. Siddiqui
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina, USA
| | - Tatyana A. Sysoeva
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| |
Collapse
|
40
|
The Impact of Local Estrogen on the Urogenital Microbiome in Genitourinary Syndrome of Menopause: A Randomized-Controlled Trial. Female Pelvic Med Reconstr Surg 2022; 28:e157-e162. [PMID: 35420551 DOI: 10.1097/spv.0000000000001170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE The postmenopausal urinary bladder microbiome is not well defined. OBJECTIVES The aims of this study were to characterize the effect of vaginal estrogen on the vaginal and urinary bladder microbiome in postmenopausal women and describe any clinical associations with the symptoms of genitourinary syndrome of menopause. STUDY DESIGN This was a participant-masked, randomized controlled trial comparing the effect of a 12-week course of an estrogen-containing vaginal ring to a placebo vaginal ring. Standardized evaluations were performed at baseline and 12 weeks. Vaginal samples were obtained for pH, vaginal maturation index, and microbiome analysis. Concomitant catheterized urine samples were obtained for microbiome analysis. 16S ribosomal RNA gene sequencing was performed to characterize the resident microbial communities, with Lactobacillus relative abundance as the primary outcome variable. Genitourinary syndrome of menopause symptoms was measured using validated questionnaires (Pelvic Floor Distress Inventory-Short Form, Female Sexual Function Index, Vulvovaginal Symptoms Questionnaire). RESULTS Of the 39 postmenopausal women randomized, baseline characteristics were similar between arms, with a mean age of 62 years and mean vaginal pH of 5.0. Using intention-to-treat analysis, there were no significant changes in vaginal or urinary Lactobacillus relative abundance. Two participants in each arm removed their ring prior to the end of the study. Eighty percent of participants experienced at least 1 bothersome genitourinary syndrome of menopause symptom. Vulvovaginal dryness and urinary frequency were most common at baseline, whereas painful intercourse and urinary urgency were most common at the final visit, none of which were statistically significant. CONCLUSIONS Our study did not show a significant change in the bacterial composition of the vaginal or urinary bladder microbiome after either vaginal ring in this relatively asymptomatic postmenopausal population.
Collapse
|
41
|
Bladder Microbiota Are Associated with Clinical Conditions That Extend beyond the Urinary Tract. Microorganisms 2022; 10:microorganisms10050874. [PMID: 35630319 PMCID: PMC9147640 DOI: 10.3390/microorganisms10050874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Background. Since the discovery of the human urinary microbiota (UM), alterations in microbial community composition have been associated with various genitourinary conditions. The aim of this exploratory study was to examine possible associations of UM with clinical conditions beyond the urinary tract and to test some of the conclusions from previous studies on UM. Methods. Catheterised urine samples from 87 men were collected prior to endoscopic urological interventions under anaesthesia. The composition of the bacterial community in urine was characterized using the hypervariable V4 region of the 16S rRNA gene. Samples from 58 patients yielded a sufficient amount of bacterial DNA for analysis. Alpha diversity measures (number of operational taxonomic units, ACE, iChao2, Shannon and Simpson indices) were compared with the Kruskal–Wallis test. Beta diversity (differences in microbial community composition) was assessed using non-metric dimensional scaling in combination with the Prevalence in Microbiome Analysis algorithm. Results. Differences in bacterial richness and diversity were observed for the following variables: age, diabetes mellitus, dyslipidemia, smoking status and single-dose preoperative antibiotics. Differences in microbial community composition were observed in the presence of chronic kidney disease, lower urinary tract symptoms and antibiotic prophylaxis. Conclusions. UM appears to be associated with certain clinical conditions, including those unrelated to the urinary tract. Further investigation is needed before conclusions can be drawn for diagnostics and treatment.
Collapse
|
42
|
Li K, Chen C, Zeng J, Wen Y, Chen W, Zhao J, Wu P. Interplay between bladder microbiota and overactive bladder symptom severity: a cross‐sectional study. BMC Urol 2022; 22:39. [PMID: 35305613 PMCID: PMC8934487 DOI: 10.1186/s12894-022-00990-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background It is widely accepted that there exist microbiota communities in urinary tract of healthy individuals. Imbalance in the urinary microbiome plays important roles in the development of various benign urological conditions including lower urinary track symptoms (LUTS) and overactive bladder (OAB). However, whether alteration in urinary microbiome exerts influence on the severity of OAB symptom has yet to be elucidated. The purpose of this study is to examine the correlation between urinary microbiome and the severity of OAB. Methods A total of 70 OAB patients were recruited to finish overactive bladder symptom score (OABSS) questionnaires. Catheterized urine samples were obtained for 16S rRNA gene sequencing. The species richness and evenness were evaluated by α diversity, and the difference in urinary microbiome between patients with mild or moderate/severe severity was evaluated by β diversity. The relationship between urinary microbiome and the severity of OAB symptom was evaluated using Pearson’s correlation analysis. Results Mild patients (OABSS ≤ 5, n = 17) had lower bacterial diversity (Simpson index, P = 0.024) and richness (Chao1, P = 0.023) than those with moderate/severe symptom (OABSS > 5, n = 53). Beta-diversity of urinary microbiome between two groups were significantly different. Furthermore, the score of OABSS was positively correlated with the richness index (Chao1, P = 0.002) and diversity index (Shannon index, P = 0.044) of urinary microbiome. Certain bacterial genera (e.g., Porphyromona and Prevotella) were significantly correlated with severity of OAB sub-symptoms. Conclusion This study demonstrated that urinary microbiome was intimately correlated with the severity of OAB symptom and the increase of the diversity and richness of urinary microbiome was accompanied by more severe OAB symptoms, indicating that urinary dysbiosis may play pivotal roles in the deterioration of functional bladder diseases.
Collapse
|
43
|
Hrbacek J, Morais D, Cermak P, Hanacek V, Zachoval R. Alpha-diversity and microbial community structure of the male urinary microbiota depend on urine sampling method. Sci Rep 2021; 11:23758. [PMID: 34887510 PMCID: PMC8660768 DOI: 10.1038/s41598-021-03292-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Considerable variation exists in the methodology of urinary microbiota studies published so far including the cornerstone of any biomedical analysis: sample collection. The aim of this study was to compare the urinary microbiota of first-catch voided urine (FCU), mid-stream voided urine (MSU) and aseptically catheterised urine in men and define the most suitable urine sampling method. Forty-nine men (mean age 71.3 years) undergoing endoscopic urological procedures were enrolled in the study. Each of them contributed three samples: first-catch urine (FCU), mid-stream urine (MSU) and a catheterised urine sample. The samples were subjected to next-generation sequencing (NGS, n = 35) and expanded quantitative urine culture (EQUC, n = 31). Using NGS, Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant phyla in our population. The most abundant genera (in order of relative abundance) included: Prevotella, Veillonella, Streptococcus, Porphyromonas, Campylobacter, Pseudomonas, Staphylococcus, Ezakiella, Escherichia and Dialister. Eighty-two of 105 samples were dominated by a single genus. FCU, MSU and catheterised urine samples differed significantly in three of five alpha-diversity measures (ANOVA, p < 0.05): estimated number of operational taxonomic units, Chao1 and abundance-based coverage estimators. Beta-diversity comparisons using the PIME method (Prevalence Interval for Microbiome Evaluation) resulted in clustering of urine samples according to the mode of sampling. EQUC detected cultivable bacteria in 30/31 (97%) FCU and 27/31 (87%) MSU samples. Only 4/31 (13%) of catheterised urine samples showed bacterial growth. Urine samples obtained by transurethral catheterisation under aseptic conditions seem to differ from spontaneously voided urine samples. Whether the added value of a more exact reflection of the bladder microbiota free from urethral contamination outweighs the invasiveness of urethral catheterisation remains to be determined.
Collapse
Affiliation(s)
- Jan Hrbacek
- Department of Urology, 3rd Faculty of Medicine, Charles University, Thomayer University Hospital, Videnska 800, 14059, Prague, Czech Republic.
| | - Daniel Morais
- Laboratory of Environmental Microbiology, Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14200, Prague, Czech Republic
| | - Pavel Cermak
- Department of Clinical Microbiology, Thomayer University Hospital, Videnska 800, 14059, Prague, Czech Republic
| | - Vitezslav Hanacek
- Department of Urology, 3rd Faculty of Medicine, Charles University, Thomayer University Hospital, Videnska 800, 14059, Prague, Czech Republic
| | - Roman Zachoval
- Department of Urology, 3rd Faculty of Medicine, Charles University, Thomayer University Hospital, Videnska 800, 14059, Prague, Czech Republic
| |
Collapse
|
44
|
Abernethy MG, Tsuei A. The bladder microbiome and interstitial cystitis: is there a connection? Curr Opin Obstet Gynecol 2021; 33:469-473. [PMID: 34475365 DOI: 10.1097/gco.0000000000000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Interstitial cystitis/painful bladder syndrome (PBS) is a debilitating condition, the etiology of which remains unclear and for which there are variable and often unsatisfactory treatment options. Within the last decade, evolving knowledge regarding the presence and role of the urinary microbiome has led to investigations regarding its impact on symptoms and severity of interstitial cystitis PBS. RECENT FINDINGS Since 2017, five studies have investigated differences between the microbiome of female patients with interstitial cystitis /PBS to asymptomatic controls. While varied in methodology, specifically with regard to urine collection processing and microbial detection, the majority of studies (4/5) found no association between urinary microbiota and interstitial cystitis /PBS. SUMMARY Research regarding the role of the urinary microbiome and lower urinary tract function and dysfunction, including interstitial cystitis /BPS, remains in preliminary stages. While data regarding the role of lactobacillus in lower urinary tract homeostasis is inconclusive, further research is warranted.
Collapse
Affiliation(s)
- Melinda G Abernethy
- Department of Obstetrics and Gynecology and Female Pelvic Medicine and Reconstructive Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| | | |
Collapse
|
45
|
Shoemaker R, Kim J. Urobiome: An outlook on the metagenome of urological diseases. Investig Clin Urol 2021; 62:611-622. [PMID: 34729961 PMCID: PMC8566783 DOI: 10.4111/icu.20210312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
The urinary tract likely plays a role in the development of various urinary diseases due to the recently recognized notion that urine is not sterile. In this mini review, we summarize the current literature regarding the urinary microbiome and mycobiome and its relationship to various urinary diseases. It has been recently discovered that the healthy urinary tract contains a host of microorganisms, creating a urinary microbiome. The relative abundance and type of bacteria varies, but generally, deviations in the standard microbiome are observed in individuals with urologic diseases, such as bladder cancer, benign prostatic hyperplasia, urgency urinary incontinence, overactive bladder syndrome, interstitial cystitis, bladder pain syndrome, and urinary tract infections. However, whether this change is causative, or correlative has yet to be determined. In summary, the urinary tract hosts a complex microbiome. Changes in this microbiome may be indicative of urologic diseases and can be tracked to predict, prevent, and treat them in individuals. However, current analytical and sampling collection methods may present limitations to the development in the understanding of the urinary microbiome and its relationship with various urinary diseases. Further research on the differences between healthy and diseased microbiomes, the long-term effects of antibiotic treatments on the urobiome, and the effect of the urinary mycobiome on general health will be important in developing a comprehensive understanding of the urinary microbiome and its relationship to the human body.
Collapse
Affiliation(s)
- Rachel Shoemaker
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California, Los Angeles, CA, USA.,Department of Urology, Gachon University College of Medicine, Incheon, Korea.
| |
Collapse
|
46
|
Huang X, Pan T, Yan L, Jin T, Zhang R, Chen B, Feng J, Duan T, Xiang Y, Zhang M, Chen X, Yang Z, Zhang W, Ding X, Xie T, Sui X. The inflammatory microenvironment and the urinary microbiome in the initiation and progression of bladder cancer. Genes Dis 2021; 8:781-797. [PMID: 34522708 PMCID: PMC8427242 DOI: 10.1016/j.gendis.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that chronic inflammation may play a critical role in various malignancies, including bladder cancer. This hypothesis stems in part from inflammatory cells observed in the urethral microenvironment. Chronic inflammation may drive neoplastic transformation and the progression of bladder cancer by activating a series of inflammatory molecules and signals. Recently, it has been shown that the microbiome also plays an important role in the development and progression of bladder cancer, which can be mediated through the stimulation of chronic inflammation. In effect, the urinary microbiome can play a role in establishing the inflammatory urethral microenvironment that may facilitate the development and progression of bladder cancer. In other words, chronic inflammation caused by the urinary microbiome may promote the initiation and progression of bladder cancer. Here, we provide a detailed and comprehensive account of the link between chronic inflammation, the microbiome and bladder cancer. Finally, we highlight that targeting the urinary microbiome might enable the development of strategies for bladder cancer prevention and personalized treatment.
Collapse
Affiliation(s)
- Xingxing Huang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Pan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Lili Yan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Jin
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ruonan Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Bi Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Jiao Feng
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Duan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Yu Xiang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Mingming Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xiaying Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Zuyi Yang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Wenzheng Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Tian Xie
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| |
Collapse
|
47
|
Abstract
The introduction of next generation sequencing techniques has enabled the characterization of the urinary tract microbiome, which resulted in the rejection of the long-held notion of urinary bladder sterility. Since the discovery and confirmation of the human bladder microbiome, an increasing number of studies have defined this microbial community and understand better its relationship to urinary pathologies. The composition of microbial communities in the urinary tract is linked to a variety of urinary diseases. The purpose of this review is to provide an overview of current information about the urinary microbiome and diseases as well as the development of novel treatment methods.
Collapse
|
48
|
Xu H, Tamrat NE, Gao J, Xu J, Zhou Y, Zhang S, Chen Z, Shao Y, Ding L, Shen B, Wei Z. Combined Signature of the Urinary Microbiome and Metabolome in Patients With Interstitial Cystitis. Front Cell Infect Microbiol 2021; 11:711746. [PMID: 34527602 PMCID: PMC8436771 DOI: 10.3389/fcimb.2021.711746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 02/02/2023] Open
Abstract
Interstitial cystitis (IC) is a clinical syndrome characterized by frequency, urgency, and bladder pain or pelvic pain; however, the underlying pathophysiological mechanisms and diagnostic markers are unknown. In this study, microbiome and metabolome analysis were used to explain the urine signatures of IC patients. Urine samples from 20 IC patients and 22 control groups were analyzed by using 16S rRNA sequence and liquid chromatography coupled with mass spectrometry. Four opportunistic pathogen genera, including Serratia, Brevibacterium, Porphyromonas, and Citrobacter, were significantly upregulated in IC group. The altered metabolite signatures of the metabolome may be related to sphingosine metabolism, amino acid metabolism, and fatty acid biosynthesis. Meanwhile, the associations were observed between different metabolites and microbiomes of IC. The present study suggests that the combined signatures of IC in urine microbiome and metabolome may become its prospective diagnostic markers.
Collapse
Affiliation(s)
- Hewei Xu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Nebiyu Elias Tamrat
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jie Gao
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jie Xu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yiduo Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Sicong Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Zhengsen Chen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yunpeng Shao
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Liucheng Ding
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Baixin Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Zhongqing Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Mrofchak R, Madden C, Evans MV, Hale VL. Evaluating extraction methods to study canine urine microbiota. PLoS One 2021; 16:e0253989. [PMID: 34242284 PMCID: PMC8270191 DOI: 10.1371/journal.pone.0253989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The urinary microbiota is the collection of microbes present in urine that may play a role in host health. Studies of urine microbiota have traditionally relied upon culturing methods aimed at identifying pathogens. However, recent culture-free sequencing studies of the urine microbiota have determined that a diverse array of microbes is present in health and disease. To study these microbes and their potential role in diseases like bladder cancer or interstitial cystitis, consistent extraction and detection of bacterial DNA from urine is critical. However, urine is a low biomass substrate, requiring sensitive methods to capture DNA and making the risk of contamination high. To address this challenge, we collected urine samples from ten healthy dogs and extracted DNA from each sample using five different commercially available extraction methods. Extraction methods were compared based on total and bacterial DNA concentrations and bacterial community composition and diversity assessed through 16S rRNA gene sequencing. Significant differences in the urinary microbiota were observed by dog and sex but not extraction method. The Bacteremia Kit yielded the highest total DNA concentrations (Kruskal-Wallis, p = 0.165, not significant) and the highest bacterial DNA concentrations (Kruskal-Wallis, p = 0.044). Bacteremia also extracted bacterial DNA from the greatest number of samples. Taken together, these results suggest that the Bacteremia kit is an effective option for studying the urine microbiota. This work lays the foundation to study the urine microbiome in a wide range of urogenital diseases in dogs and other species.
Collapse
Affiliation(s)
- Ryan Mrofchak
- Department of Veterinary Preventive Medicine, Ohio State University College of Veterinary Medicine, Columbus, Ohio, United States of America
| | - Christopher Madden
- Department of Veterinary Preventive Medicine, Ohio State University College of Veterinary Medicine, Columbus, Ohio, United States of America
| | - Morgan V. Evans
- Department of Veterinary Preventive Medicine, Ohio State University College of Veterinary Medicine, Columbus, Ohio, United States of America
- Division of Environmental Health Sciences, Ohio State University College of Public Health, Columbus, Ohio, United States of America
| | - Vanessa L. Hale
- Department of Veterinary Preventive Medicine, Ohio State University College of Veterinary Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
50
|
Brown SE, Robinson CK, Shardell MD, Holm JB, Ravel J, Ghanem KG, Brotman RM. Assessing the Concordance Between Urogenital and Vaginal Microbiota: Can Urine Specimens Be Used as a Proxy for Vaginal Samples? Front Cell Infect Microbiol 2021; 11:671413. [PMID: 34268137 PMCID: PMC8276069 DOI: 10.3389/fcimb.2021.671413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Background The vaginal microbiota play a key role in defense against reproductive tract infections; however, many population-based women's health studies do not collect vaginal samples. Molecular examinations of urine samples have revealed common vaginal bacteria. We sought to assess the extent that community state type assignments of archived random-catch and clean-catch urine samples agreed with the paired vaginal samples in both reproductive-age and peri/post-menopausal women. Results Using archived samples, we evaluated the microbiota concordance among women in three studies: two with paired mid-vaginal/random-catch urine (N=91 reproductive-age participants and N=13 peri/post-menopausal participants), and one with paired mid-vaginal/clean-catch urine (N=99 reproductive-age participants). Microbiota composition was characterized by sequencing amplicons of the 16S rRNA gene V3-V4 regions and assigned to community state types. Similarity of paired samples was gauged using agreement of community state types and Yue-Clayton θ indices. Analysis of Composition of Microbiomes II indicated which taxa were differently relatively abundant in paired vaginal and urine samples. In reproductive-age women, random-catch and clean-catch urines were 89.0% and 86.9% concordant on five community state types with paired mid-vaginal swabs, and Kappa statistics indicated almost perfect agreement (κrandom-catch=.85, κclean-catch=.81, p<0.0001). A small number of pairs of samples were discordant (23/190, 12%), and discordant pairs tended to be between samples classified to L. iners-dominated and/or low-Lactobacillus states. Concordance and agreement remained similar when dichotomizing the microbiota to Lactobacillus-dominated versus low-Lactobacillus microbiota, as well as when evaluating separately the three subtypes of the low-Lactobacillus community state type IV. Median similarity of paired urine/vaginal samples was high (θrandom-catch=.85, θclean-catch=.88), and a comparison of the random-catch and clean-catch similarity scores showed no significant difference (p=.80). Concordance and similarity were lower for peri/post-menopausal women, but agreement remained substantial (76.9% concordant, κrandom-catch= 0.64, θrandom-catch=.62). Taxonomic-level analysis confirmed these findings. Conclusions Random-catch and clean-catch urine samples showed substantial agreement on bacterial composition to paired mid-vaginal samples, indicating that the genitourinary microbiota may be a reliable proxy for assessing the overall composition of the vaginal microbiota via community state types. This data suggests that urine samples can, with proper interpretation, be utilized as a surrogate for developing preliminary data and hypothesis-generating studies.
Collapse
Affiliation(s)
- Sarah E. Brown
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Courtney K. Robinson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michelle D. Shardell
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Johanna B. Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Khalil G. Ghanem
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States,*Correspondence: Rebecca M. Brotman,
| |
Collapse
|