1
|
Zheng H, Cao Z, Lv Y, Cai X. WTAP-mediated N6-methyladenine Modification of circEEF2 Promotes Lung Adenocarcinoma Tumorigenesis by Stabilizing CANT1 in an IGF2BP2-dependent Manner. Mol Biotechnol 2025; 67:1494-1508. [PMID: 38619801 DOI: 10.1007/s12033-024-01134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024]
Abstract
N6-methyladenosine (m6A) is a common posttranscriptional RNA modification and plays an important role in cancer biology. Circular RNAs (circRNAs) are also reported to participate in lung adenocarcinoma (LUAD) progression. Here, we aimed to investigate the functions of Wilms tumor 1-associating protein (WTAP) methyltransferase and circEEF2 in LUAD cell tumorigenesis, and probe whether circEEF2 functioned through WTAP-induced m6A modification and its potential mechanisms. Functional analyses were conducted by tube formation, sphere formation, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and transwell assays in vitro as well as tumor formation experiments in mice, respectively. The N6-methyladenine (m6A) modification in circEEF2 mRNA was determined by RNA immunoprecipitation (Me-RIP) assay. The interaction between IGF2BP2 (Insulin Like Growth Factor 2 MRNA-Binding Protein 2) and circEEF2 or Calcium-activated nucleotidase 1 (CANT1) mRNA was confirmed using RIP assay. LUAD tissues and cells showed high circEEF2 expression, and the deficiency of circEEF2 suppressed LUAD cell angiogenesis, stemness, proliferation, migration, and invasion. WTAP induced circEEF2 m6A modification. WTAP silencing repressed the oncogenic phenotypes of LUAD cells via stabilizing circEEF2 in an m6A-dependent manner. IGF2BP2 interacted with circEEF2 and CANT1, and WTAP and circEEF2 could regulate CANT1 expression through IGF2BP2. The inhibition of LUAD cell oncogenic phenotypes caused by circEEF2 deficiency was abolished by CANT1 overexpression. In addition, WTAP silencing impeded LUAD growth via modulating circEEF2 and CANT1 in vivo. WTAP-mediated m6A modification of circEEF2 promotes lung adenocarcinoma growth and tumorigenesis by stabilizing CANT1 through IGF2BP2.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Respiratory and Critical Care Medicine, Lishui People's Hospital, 15, Dazhong Street, Liandu District 323000, Lishui City, Zhejiang Province, China
| | - Zhuo Cao
- Department of Respiratory and Critical Care Medicine, Lishui People's Hospital, 15, Dazhong Street, Liandu District 323000, Lishui City, Zhejiang Province, China
| | - Yuankai Lv
- Department of Respiratory and Critical Care Medicine, Lishui People's Hospital, 15, Dazhong Street, Liandu District 323000, Lishui City, Zhejiang Province, China
| | - Xiaoping Cai
- Department of Respiratory and Critical Care Medicine, Lishui People's Hospital, 15, Dazhong Street, Liandu District 323000, Lishui City, Zhejiang Province, China.
| |
Collapse
|
2
|
Gramegna Tota C, Leone A, Khan A, Forlino A, Rossi A, Paganini C. Cant1 Affects Cartilage Proteoglycan Properties: Aggrecan and Decorin Characterization in a Mouse Model of Desbuquois Dysplasia Type 1. Biomolecules 2024; 14:1064. [PMID: 39334831 PMCID: PMC11430760 DOI: 10.3390/biom14091064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Desbuquois dysplasia type 1 (DBQD1) is a recessive chondrodysplasia caused by mutations in the CANT1 gene, encoding for the Golgi Calcium-Activated Nucleotidase 1 (CANT1). The enzyme hydrolyzes UDP, the by-product of glycosyltransferase reactions, but it might play other roles in different cell types. Using a Cant1 knock-out mouse, we demonstrated that CANT1 is crucial for glycosaminoglycan (GAG) synthesis; however, its impact on the biochemical properties of cartilage proteoglycans remains unknown. Thus, in this work, we characterized decorin and aggrecan from primary chondrocyte cultures and cartilage biopsies of mutant mice at post-natal day 4 by Western blots and further investigated their distribution in the cartilage extracellular matrix (ECM) by immunohistochemistry. We demonstrated that the GAG synthesis defect caused by CANT1 impairment led to the synthesis and secretion of proteoglycans with shorter GAG chains compared with wild-type animals. However, this alteration did not result in the synthesis and secretion of decorin and aggrecan in the unglycanated form. Interestingly, the defect was not cartilage-specific since also skin decorin showed a reduced hydrodynamic size. Finally, immunohistochemical studies in epiphyseal sections of mutant mice demonstrated that the proteoglycan structural defect moderately affected decorin distribution in the ECM.
Collapse
Affiliation(s)
- Chiara Gramegna Tota
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.G.T.); (A.L.); (A.K.); (A.F.)
| | - Alessandra Leone
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.G.T.); (A.L.); (A.K.); (A.F.)
- University School for Advanced Studies Pavia, IUSS Pavia, 27100 Pavia, Italy
| | - Asifa Khan
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.G.T.); (A.L.); (A.K.); (A.F.)
| | - Antonella Forlino
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.G.T.); (A.L.); (A.K.); (A.F.)
| | - Antonio Rossi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (C.G.T.); (A.L.); (A.K.); (A.F.)
| | - Chiara Paganini
- Centre for Inherited Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
3
|
Urzúa-Traslaviña CG, van Lieshout T, Boulogne F, Domanegg K, Zidan M, Bakker OB, Claringbould A, de Ridder J, Zwart W, Westra HJ, Deelen P, Franke L. Co-expression in tissue-specific gene networks links genes in cancer-susceptibility loci to known somatic driver genes. BMC Med Genomics 2024; 17:186. [PMID: 39010058 PMCID: PMC11247850 DOI: 10.1186/s12920-024-01941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The genetic background of cancer remains complex and challenging to integrate. Many somatic mutations within genes are known to cause and drive cancer, while genome-wide association studies (GWAS) of cancer have revealed many germline risk factors associated with cancer. However, the overlap between known somatic driver genes and positional candidate genes from GWAS loci is surprisingly small. We hypothesised that genes from multiple independent cancer GWAS loci should show tissue-specific co-regulation patterns that converge on cancer-specific driver genes. RESULTS We studied recent well-powered GWAS of breast, prostate, colorectal and skin cancer by estimating co-expression between genes and subsequently prioritising genes that show significant co-expression with genes mapping within susceptibility loci from cancer GWAS. We observed that the prioritised genes were strongly enriched for cancer drivers defined by COSMIC, IntOGen and Dietlein et al. The enrichment of known cancer driver genes was most significant when using co-expression networks derived from non-cancer samples of the relevant tissue of origin. CONCLUSION We show how genes within risk loci identified by cancer GWAS can be linked to known cancer driver genes through tissue-specific co-expression networks. This provides an important explanation for why seemingly unrelated sets of genes that harbour either germline risk factors or somatic mutations can eventually cause the same type of disease.
Collapse
Affiliation(s)
- Carlos G Urzúa-Traslaviña
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Tijs van Lieshout
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Floranne Boulogne
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Kevin Domanegg
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Mahmoud Zidan
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Olivier B Bakker
- Wellcome Sanger Institute, Human Genetics, Hinxton, UK
- Open Targets, Hinxton, UK
| | - Annique Claringbould
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- EMBL Heidelberg, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Jeroen de Ridder
- Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilbert Zwart
- Oncode Institute, Utrecht, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Myers MA, Arnold BJ, Bansal V, Balaban M, Mullen KM, Zaccaria S, Raphael BJ. HATCHet2: clone- and haplotype-specific copy number inference from bulk tumor sequencing data. Genome Biol 2024; 25:130. [PMID: 38773520 PMCID: PMC11110434 DOI: 10.1186/s13059-024-03267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Bulk DNA sequencing of multiple samples from the same tumor is becoming common, yet most methods to infer copy-number aberrations (CNAs) from this data analyze individual samples independently. We introduce HATCHet2, an algorithm to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 extends the earlier HATCHet method by improving identification of focal CNAs and introducing a novel statistic, the minor haplotype B-allele frequency (mhBAF), that enables identification of mirrored-subclonal CNAs. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 10 prostate cancer patients reveals previously unreported mirrored-subclonal CNAs affecting cancer genes.
Collapse
Affiliation(s)
- Matthew A Myers
- Department of Computer Science, Princeton University, Princeton, USA
| | - Brian J Arnold
- Center for Statistics and Machine Learning, Princeton University, Princeton, USA
| | - Vineet Bansal
- Princeton Research Computing, Princeton University, Princeton, NJ, USA
| | - Metin Balaban
- Department of Computer Science, Princeton University, Princeton, USA
| | - Katelyn M Mullen
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simone Zaccaria
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK.
| | | |
Collapse
|
5
|
Yang W, Liu Z, Liu T. Pan-cancer analysis predicts CANT1 as a potential prognostic, immunologic biomarker. Cell Signal 2024; 117:111107. [PMID: 38369265 DOI: 10.1016/j.cellsig.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND CANT1, calcium-activated nucleotidase 1, was reported to be upregulated in certain tumors. However, the function mechanism of CANT1 in pan-cancer is still unclear. METHODS We utilized the Cancer Genome Atlas Program (TCGA) and UALCAN databases to analyze CANT1 expression at the level of mRNA, protein, and promoter methylation in pan-cancer, and the cBioportal database to study the frequency of gene changes for CANT1. Wilcoxon test was applied to discuss the correlation between CANT1 and clinicopathological features in different tumor types. The prognosis of CANT1 in pan-cancer was discussed by Cox regression. Spearman analysis was applied to discuss the relationship of CANT1 with tumor mutation burden(TMB), microsatellite instability(MSI), immune cell infiltration, and immune checkpoints. The association between CANT1 expression and drug sensitivity for pan-cancer was investigated by the GSCALite database. In addition, we collected 40 cases of lung adenocarcinoma (LUAD) and adjacent normal tissues for immunohistochemical staining and investigated the relationship between CANT1 and clinicopathology and prognosis in LUAD. Finally, the molecular pathways involved in CANT1-related genes in LUAD were analyzed by gene set enrichment analysis(GSEA). RESULTS The CANT1 mRNA level was significant higher in 14 tumors, and CANT1 protein level was significant higher in 7 tumors compared with normal tissues. CANT1 expression was linked with the T stage, N stage, and pathological stage in some tumors, and overexpression CANT1 was associated with adverse overall survival(OS) and disease-specific survival(DSS) in kidney renal papillary cell carcinoma(KIRP), brain lower grade glioma(LGG), and LUAD. By Spearman correlation analysis, the results showed that CANT1 had a positive correlation with TMB and MSI in bladder urothelial carcinoma(BLCA), breast invasive carcinoma(BRCA), esophageal carcinoma(ESCA), LGG, and sarcoma(SARC). Furthermore, CANT1 was related to immune cell infiltration and immune checkpoints in several cancers. Drug sensitivity analysis suggested that CANT1 was inversely linked with three drugs. Immunohistochemical staining analysis showed that CANT1 expression was higher in LUAD than in normal tissues, and was related to N stage and pathological stage. Survival curves showed that CANT1 overexpression had poor OS and DSS. Time-dependent ROC curves revealed that the 1-year, 5-year, and 10-year OS and DSS in LUAD were above 0.5. CANT1-related genes in LUAD mainly participated in the pathway of dorso ventral axis formation, small cell lung cancer, DNA replication, O-glycan biosynthesis, and cell cycle. CONCLUSION CANT1 is considered a potential marker for prognosis in several tumors, and a promising target for tumor immunological treatment.
Collapse
Affiliation(s)
- Wei Yang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zhidong Liu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| | - Ting Liu
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| |
Collapse
|
6
|
Toghrayee Z, Montazeri H. Uncovering hidden cancer self-dependencies through analysis of shRNA-level dependency scores. Sci Rep 2024; 14:856. [PMID: 38195844 PMCID: PMC10776685 DOI: 10.1038/s41598-024-51453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/11/2024] Open
Abstract
Large-scale short hairpin RNA (shRNA) screens on well-characterized human cancer cell lines have been widely used to identify novel cancer dependencies. However, the off-target effects of shRNA reagents pose a significant challenge in the analysis of these screens. To mitigate these off-target effects, various approaches have been proposed that aggregate different shRNA viability scores targeting a gene into a single gene-level viability score. Most computational methods for discovering cancer dependencies rely on these gene-level scores. In this paper, we propose a computational method, named NBDep, to find cancer self-dependencies by directly analyzing shRNA-level dependency scores instead of gene-level scores. The NBDep algorithm begins by removing known batch effects of the shRNAs and selecting a subset of concordant shRNAs for each gene. It then uses negative binomial random effects models to statistically assess the dependency between genetic alterations and the viabilities of cell lines by incorporating all shRNA dependency scores of each gene into the model. We applied NBDep to the shRNA dependency scores available at Project DRIVE, which covers 26 different types of cancer. The proposed method identified more well-known and putative cancer genes compared to alternative gene-level approaches in pan-cancer and cancer-specific analyses. Additionally, we demonstrated that NBDep controls type-I error and outperforms statistical tests based on gene-level scores in simulation studies.
Collapse
Affiliation(s)
- Zohreh Toghrayee
- Department of Bioinformatics, Institute Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran
| | - Hesam Montazeri
- Department of Bioinformatics, Institute Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Liu T, Li ZZ, Sun L, Yang K, Chen JM, Han XY, Qi LM, Zhou XG, Wang P. Upregulated CANT1 is correlated with poor prognosis in hepatocellular carcinoma. BMC Cancer 2023; 23:1007. [PMID: 37858061 PMCID: PMC10588055 DOI: 10.1186/s12885-023-11463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND CANT1, as calcium-activated protein nucleotidase 1, is a kind of phosphatase. It is overexpressed in some tumors and related to poor prognosis, but few studies explore its function and carcinogenic mechanism in hepatocellular carcinoma (HCC). METHODS The expression of CANT1 mRNA and protein was analyzed by the Cancer Genome Atlas (TCGA) database and immunohistochemistry(IHC) staining. The relationship between CANT1 expression and clinicopathology was evaluated by various public databases. The receiver operating characteristic (ROC) curve was used to assess the diagnostic accuracy of CANT1 by the area under curve (AUC). Univariate, multivariate Cox regression and Kaplan-Meier curves were applied to evaluate the predictive value of CANT1 on the prognosis of HCC. Methsurv was used to analyze gene changes and DNA methylation, and its impact on prognosis. The enrichment analysis of DEGs associated with CANT1 revealed the biological process of CANT1 based on Gene Set Enrichment Analysis (GSEA). The relationship between immune cell infiltration level and CANT1 expression in HCC was investigated using the single-sample GSEA (ssGSEA) method and the Tumor Immune Estimation Resource (TIMER) database. Finally, the association between CANT1 and immune checkpoints and drug sensitivity was also analyzed. RESULTS CANT1 was highly expressed in 22 cancers, including HCC, and CANT1 overexpression in HCC was confirmed by IHC. The expression of CANT1 was correlated with clinical features, such as histologic grade. Highly expressed CANT1 caused poor overall survival (OS) of HCC patients. Univariate and multivariate regression analysis suggested that CANT1 was an independent prognostic marker. Of the 31 DNA methylation at CpG sites, three CpG sites were associated with the prognosis of HCC. GSEA indicated that CANT1 was mainly involved in the cell cycle, DNA replication, and etc. Moreover, CANT1 expression was correlated with immune cell infiltration and independently associated with the prognosis of HCC patients. Finally, CANT1 expression was correlated with most immune checkpoints and drug sensitivity. CONCLUSION CANT1 may be a latent oncogene of HCC, and associated with immune cells and immune checkpoints, which may assist in HCC treatment.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, China
| | - Zhi-Zhao Li
- Department of Cardiovascular medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, China
| | - Jia-Min Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, China
| | - Xiao-Yi Han
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, China
| | - Li-Ming Qi
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, China
| | - Xin-Gang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, China.
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
8
|
Niu Y, Fan L, Shi X, Wu J, Wang T, Hou X. Circ_0001715 accelerated lung adenocarcinoma process by the miR-1322/CANT1 axis. Diagn Pathol 2023; 18:91. [PMID: 37553672 PMCID: PMC10408075 DOI: 10.1186/s13000-023-01348-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/25/2023] [Indexed: 08/10/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a type of lung cancer, which belongs to non-small cell lung cancer and has seriously endangered the physical and mental health of people. The study of circRNAs (circRNAs) has been increasingly hot in recent years, in which circRNAs also play an important regulatory role in cancer. The aim of this study was to investigate the biological molecular mechanisms of circ_0001715 in the progression of LUAD. The expression of circ_0001715, miR-1322 and calcium-activated nucleotidase 1 (CANT1) in LUAD tissues and cell lines was assessed by quantitative reverse transcription PCR (RT-qPCR) and western bot assay. Clone formation assay, 5-Ethynyl-2'-Deoxyuridine (EDU) assay and wound healing assay were used to verify the proliferation ability of cells. Dual-luciferase reporter assay and RNA pull-down assay were performed to characterize the interactions between the three factors. Finally, a mouse tumor model was constructed to assess the tumorigenicity of circ_0001715. RT-qPCR assay results showed that circ_0001715 expression was significantly increased in LUAD tissues and cell lines. Finally, knockdown of circ_0001715 could inhibit tumor growth in vivo. Circ_0001715 regulated the progression of LUAD through the miR-1322/CANT1 axis. The results of this study provided ideas for understanding the molecular mechanisms of circ_0001715 in LUAD.
Collapse
Affiliation(s)
- Yue Niu
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Lina Fan
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Xiaoyu Shi
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Jia Wu
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China
| | - Tengqi Wang
- Department of Gastrointestinal Surgery, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China.
| | - Xiaofeng Hou
- Department of Oncology, Bayannur Hospital, No.98 Ulanbuhe Road, Linhe District, Bayannaoer City, Inner Mongolia Province, 015000, PR China.
| |
Collapse
|
9
|
Bai Y, He J, Ma Y, Liang H, Li M, Wu Y. Identification of DNA repair gene signature and potential molecular subtypes in hepatocellular carcinoma. Front Oncol 2023; 13:1180722. [PMID: 37260986 PMCID: PMC10227583 DOI: 10.3389/fonc.2023.1180722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/20/2023] [Indexed: 06/02/2023] Open
Abstract
DNA repair is a critical factor in tumor progression as it impacts tumor mutational burden, genome stability, PD-L1 expression, immunotherapy response, and tumor-infiltrating lymphocytes (TILs). In this study, we present a prognostic model for hepatocellular carcinoma (HCC) that utilizes genes related to the DNA damage response (DDR). Patients were stratified based on their risk score, and groups with lower risk scores demonstrated better survival rates compared to those with higher risk scores. The prognostic model's accuracy in predicting 1-, 3-, and 5-year survival rates for HCC patients was analyzed using receiver operator curve analysis (ROC). Results showed good accuracy in predicting survival rates. Additionally, we evaluated the prognostic model's potential as an independent factor for HCC prognosis, along with tumor stage. Furthermore, nomogram was employed to determine the overall survival year of patients with HCC based on this independent factor. Gene set enrichment analysis (GSEA) revealed that in the high-risk group, apoptosis, cell cycle, MAPK, mTOR, and WNT cascades were highly enriched. We used training and validation datasets to identify potential molecular subtypes of HCC based on the expression of DDR genes. The two subtypes differed in terms of checkpoint receptors for immunity and immune cell filtration capacity.Collectively, our study identified potential biomarkers of HCC prognosis, providing novel insights into the molecular mechanisms underlying HCC.
Collapse
Affiliation(s)
- Yi Bai
- Department of Critical Care Medicine, Panjin Liaoyou Baoshihua Hospital, Liaoning, China
| | - Jinyun He
- Department of hepatobiliary surgery, Panjin Liaoyou Baoshihua Hospital, Liaoning, China
| | - Yanquan Ma
- Department of Critical Care Medicine, Panjin Liaoyou Baoshihua Hospital, Liaoning, China
| | - He Liang
- Department of integrated Chinese and Western medicine, Panjin Liaoyou Baoshihua Hospital, Liaoning, China
| | - Ming Li
- Fuxin Municipal Discipline Inspection Commission, Liaoning, China
| | - Yan Wu
- Department of rheumatology and immunology, Panjin Liaoyou Baoshihua Hospital, Liaoning, China
| |
Collapse
|
10
|
CANT1 serves as a potential prognostic factor for lung adenocarcinoma and promotes cell proliferation and invasion in vitro. BMC Cancer 2022; 22:117. [PMID: 35090419 PMCID: PMC8796366 DOI: 10.1186/s12885-022-09175-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/03/2022] [Indexed: 01/15/2023] Open
Abstract
Background Calcium-activated nucleotidase 1 (CANT1), functions as a calcium-dependent nucleotidase with a preference for UDP. However, the potential clinical value of CANT1 in lung adenocarcinoma (LA) has not been fully clarified. Thus, we sought to identify its potential biological function and mechanism through bioinformatics analysis and in vitro experiments in LA. Methods In the present study, we comprehensively investigated the prognostic role of CANT1 in LA patients through bioinformatics analysis and in vitro experiments. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were utilized to analyze the expression of CANT1 in LA patients and their clinical-prognostic value. The immunohistochemistry staining was obtained from the Human Protein Atlas (HPA). A Cox regression model was used to evaluate prognostic factors. Gene ontology (GO) and Gene set enrichment analysis (GSEA) was performed to explore the potential regulatory mechanism of CANT1 in the development of LA. Moreover, we also examined the relationship between CANT1 expression and DNA methylation. Finally, we did in vitro experiments to evaluate the biological behavior and role of CANT1 in LA cells (LACs). Results Our study showed that the CANT1 expression was significantly elevated in the LA tissues compared with the normal lung tissues. Increased CANT1 expression was significantly associated with the TN stage. A univariate Cox analysis indicated that high CANT1 expression levels were correlated with poor overall survival (OS) in LA. Besides, CANT1 expression was independently associated with OS in multivariate analysis. GO and GSEA analysis showed the enrichment of mitotic nuclear division, DNA methylation, and DNA damage. Then we found that the high expression of CANT1 is positively correlated with hypomethylation. The methylation level was associated with prognosis in LA patients. Finally, in vitro experiments indicated that knockdown of CANT1 resulted in decreased cell proliferation, invasion, and G1 phase cell-cycle arrest in LACs. Conclusion The present study suggested that CANT1 may serve as a potential prognosis biomarker in patients with LA. High CANT1 expression and promoter demethylation was associated with worse outcome. Finally, in vitro experiments verified the biological functions and behaviors of CANT1 in LA.
Collapse
|
11
|
Gao F, Hu X, Liu W, Wu H, Mu Y, Zhao Y. Calcium-activated nucleotides 1 (CANT1)-driven nuclear factor-k-gene binding (NF-ĸB) signaling pathway facilitates the lung cancer progression. Bioengineered 2022; 13:3183-3193. [PMID: 35068336 PMCID: PMC8974139 DOI: 10.1080/21655979.2021.2003131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dysregulation of calcium-activated nucleotides 1 (CANT1) has been observed in different organs. Thus, its biological function in cancer has increasingly attracted researchers. The current work aims to study the CANT1 role in lung cancer and understand the underlying pathological mechanisms. High amplification of CANT1 was observed in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) tissues compared to normal tissues. The high-CANT1 patients showed a dismal prognosis in comparison with the low-CANT1 patients. Highly expressed CANT1 was significantly associated with the N stage of LUSC patients. Ectopic expression of CANT1 conspicuously increased the proliferation and viability of A549 cells. Conversely, CANT1 depletion resulted in adverse effects in H1299 cells. CANT1 depletion also resulted in the retardation of tumor growth in vivo. Mechanically, we found that CANT1 could elevate NF-ĸB (nuclear factor-k-gene binding) transcriptional activity in a concentration-dependent manner. This regulatory relationship was also established by the Western blot technique. Inhibiting NF-ĸB can significantly blunt the increased NF-κ-B Inhibitor-α (IκBα) expression caused by CANT1 overexpression in A549 cells. In conclusion, highly amplified CANT1 promotes the proliferation and viability of lung cancer cells. We also elucidate a new signaling axis of CANT1-NF-ĸB in lung cancer. This approach might be a promising strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Fangfang Gao
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| | - Xiufeng Hu
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| | - Wenjing Liu
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| | - Hongbo Wu
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| | - Yu Mu
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| | - Yanqiu Zhao
- Department of Internal Medicine, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhenzhou, China
| |
Collapse
|
12
|
Qiao G, Wang HB, Duan XN, Yan XF. The effect and mechanism of miR-607/CANT1 axis in lung squamous carcinoma. Anticancer Drugs 2021; 32:693-702. [PMID: 33675611 DOI: 10.1097/cad.0000000000001045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung squamous carcinoma (LUSC) is the second most frequent subtype of non-small cell lung cancer. Rarely gene alterations are identified in LUSC. Therefore, identifying LUSC-related genes to explain the relevant molecular mechanism is urgently needed. A potential biomarker, calcium-activated nucleotidase 1 (CANT1), was elevated in tissues of LUSC patients relative to normal cases based on the TCGA and/or GTEx database. CCK-8 and transwell tests were then implemented to measure the proliferative, invasive and migratory capacities, and showed that knockdown of CANT1 blocked LUSC cells proliferation. miR-607, predicted as an upstream factor for CANT1, was declined in LUSC using TargetScan analysis and luciferase activity test. Low miR-607 expression was related with unfavorable outcomes of LUSC patients. Moreover, miR-607 downregulation elevated cell viability, invasion and migration in LUSC cells, which was antagonized by si-CANT1. GEPIA website was accessed to estimate the relevance between CANT1 and epithelial-mesenchymal transition (EMT)-related positive factors. The protein levels of Fibronectin, Vimentin, Snail and β-catenin were altered due to the abnormal CANT1 and miR-607 expression. Together, these data unveiled that miR-607/CANT1 pair may exert a vital role in the progression of LUSC through mediating EMT process, which would furnish an available therapeutic therapy for LUSC.
Collapse
Affiliation(s)
- Gang Qiao
- Department of Integrative Medicine Oncology, Zibo Bashan Wanjie Hospital, Zibo
| | - Hai-Bo Wang
- Emergency department, Rizhao Central Hospital, Rizhao
| | - Xiu-Na Duan
- Department of Nuclear Medicine, Central Hospital of Shan County, Shan County, Heze, Shandong People's Republic of China
| | - Xiao-Fang Yan
- Department of Nuclear Medicine, Central Hospital of Shan County, Shan County, Heze, Shandong People's Republic of China
| |
Collapse
|
13
|
Li X, Sun H, Liu Q, Liu Y, Hou Y, Jin W. A pharmacophore-based classification better predicts the outcomes of HER2-negative breast cancer patients receiving the anthracycline- and/or taxane-based neoadjuvant chemotherapy. Cancer Med 2021; 10:4658-4674. [PMID: 34076352 PMCID: PMC8267145 DOI: 10.1002/cam4.4022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022] Open
Abstract
AIMS Prognosis of patients for human epidermal growth factor receptor 2 (HER2)-negative breast cancer post neoadjuvant chemotherapy is not well understood. The aim of this study was to develop a novel pharmacophore-based signature to better classify and predict the risk of HER2-negative patients after anthracycline-and/or taxane-based neoadjuvant chemotherapy (NACT). MAIN METHODS Anthracycline and taxane pharmacophore-based genes were obtained from PharmMapper. Drug-targeted genes (DTG) related clinical and bioinformatic analyses were undertaken in four GEO datasets. KEY FINDINGS We used 12 genes from the pharmacophore to develop a DTG score (DTG-S). The DTG-S classification exhibited significant prognostic ability with respect to disease free survival (DFS) for HER2-negative patients who receive at least one type of neoadjuvant chemotherapy that included anthracycline and/or taxane. DTG-S associated with a high predictive ability for pathological complete response (pCR) as well as for prognosis of breast cancer. Using the DTG-S classification in other prediction models may improve the reclassification accuracy for DFS. Combining the DTG-S with other clinicopathological factors may further improve its predictive ability of patients' outcomes. Gene ontology and KEGG pathway analysis showed that the biological processes of DTG-S high group were associated with the cell cycle, cell migration, and cell signal transduction pathways. Targeted drug analysis shows that some CDK inhibitors and PI3K-AKT pathway inhibitors may be useful for high DTG-S patients. SIGNIFICANCE The DTG-S classification adds prognostic and predictive information to classical parameters for HER2-negative patients who receive anthracycline-and/or taxane-based NACT, which could improve the patients' risk stratification and may help guide adjuvant treatment.
Collapse
Affiliation(s)
- Xuan Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hefen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiqi Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yifeng Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Su H, Fan J, Ma D, Zhu H. Identification and Characterization of Osmoregulation Related MicroRNAs in Gills of Hybrid Tilapia Under Three Types of Osmotic Stress. Front Genet 2021; 12:526277. [PMID: 33889171 PMCID: PMC8056028 DOI: 10.3389/fgene.2021.526277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Researchers have increasingly suggested that microRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression and protein translation in organs and respond to abiotic and biotic stressors. To understand the function of miRNAs in osmotic stress regulation of the gills of hybrid tilapia (Oreochromis mossambicus ♀ × Oreochromis urolepis hornorum ♂), high-throughput Illumina deep sequencing technology was used to investigate the expression profiles of miRNAs under salinity stress (S, 25‰), alkalinity stress (A, 4‰) and salinity-alkalinity stress (SA, S: 15‰, A: 4‰) challenges. The results showed that 31, 41, and 27 upregulated and 33, 42, and 40 downregulated miRNAs (P < 0.05) were identified in the salt stress, alkali stress, and saline-alkali stress group, respectively, which were compared with those in the control group (C). Fourteen significantly differently expressed miRNAs were selected randomly and then validated by a quantitative polymerase chain reaction. On the basis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, genes related to osmoregulation and biosynthesis were enriched in the three types of osmotic stress. In addition, three miRNAs and three predicted target genes were chosen to conduct a quantitative polymerase chain reaction in the hybrid tilapia and its parents during 96-h osmotic stress. Differential expression patterns of miRNAs provided the basis for research data to further investigate the miRNA-modulating networks in osmoregulation of teleost.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jiajia Fan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Dongmei Ma
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Huaping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
15
|
Stinnesbeck M, Kristiansen A, Ellinger J, Hauser S, Egevad L, Tolkach Y, Kristiansen G. Prognostic role of TSPAN1, KIAA1324 and ESRP1 in prostate cancer. APMIS 2021; 129:204-212. [PMID: 33455017 PMCID: PMC7986212 DOI: 10.1111/apm.13117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
The aim of this study was to validate prostate cancer‐associated genes on transcript level and to assess the prognostic value of the most promising markers by immunohistochemistry. Based on differentially expressed genes found in a previous study, 84 genes were further validated using mRNA expression data and follow‐up information from the Cancer Genome Atlas (TCGA) prostate cancer cohort (n = 497). Immunohistochemistry was used for validation of three genes in an independent, clinically annotated prostatectomy patient cohort (n = 175) with biochemical relapse as endpoint. Also, associations with clinicopathological variables were evaluated. Eleven protein‐coding genes from the list of 84 genes were associated with biochemical recurrence‐free survival on mRNA expression level in multivariate Cox‐analyses. Three of these genes (TSPAN1, ESRP1 and KIAA1324) were immunohistochemically validated using an independent cohort of prostatectomy patients. Both ESRP1 and KIAA1324 were independently associated with biochemical recurrence‐free survival. TSPAN1 was univariately prognostic but failed significance on multivariate analysis, probably due to its strong correlation with high Gleason scores. Multistep filtering using the publicly available TCGA cohort, data of an earlier expression profiling study which profiled 3023 cancer‐associated transcripts in 42 primary prostate cancer cases, identified two novel candidate prognostic markers (ESRP1 and KIAA1324) of primary prostate cancer for further study.
Collapse
Affiliation(s)
| | - Anna Kristiansen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jörg Ellinger
- Clinic of Urology, University Hospital Bonn, Bonn, Germany
| | - Stefan Hauser
- Clinic of Urology, University Hospital Bonn, Bonn, Germany
| | - Lars Egevad
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Tolkach
- Institute of Pathology, University Hospital Bonn, Bonn, Germany.,Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
16
|
Gorlov IP, Amos CI, Tsavachidis S, Begg C, Hernando E, Cheng C, Shen R, Orlow I, Luo L, Ernstoff MS, Parker J, Thomas NE, Gorlova OY, Berwick M. Human genes differ by their UV sensitivity estimated through analysis of UV-induced silent mutations in melanoma. Hum Mutat 2020; 41:1751-1760. [PMID: 32643855 PMCID: PMC7794094 DOI: 10.1002/humu.24078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 11/09/2022]
Abstract
We hypothesized that human genes differ by their sensitivity to ultraviolet (UV) exposure. We used somatic mutations detected by genome-wide screens in melanoma and reported in the Catalog Of Somatic Mutations In Cancer. As a measure of UV sensitivity, we used the number of silent mutations generated by C>T transitions in pyrimidine dimers of a given transcript divided by the number of potential sites for this type of mutations in the transcript. We found that human genes varied by UV sensitivity by two orders of magnitude. We noted that the melanoma-associated tumor suppressor gene CDKN2A was among the top five most UV-sensitive genes in the human genome. Melanoma driver genes have a higher UV-sensitivity compared with other genes in the human genome. The difference was more prominent for tumor suppressors compared with oncogene. The results of this study suggest that differential sensitivity of human transcripts to UV light may explain melanoma specificity of some driver genes. Practical significance of the study relates to the fact that differences in UV sensitivity among human genes need to be taken into consideration whereas predicting melanoma-associated genes by the number of somatic mutations detected in a given gene.
Collapse
Affiliation(s)
- Ivan P Gorlov
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | | | - Colin Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Chao Cheng
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Li Luo
- Department of Internal Medicine and Dermatology, University of New Mexico, Albuquerque, New Mexico
| | - Marc S Ernstoff
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Elm, and Carlton, Buffalo, New York
| | - Joel Parker
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nancy E Thomas
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina
| | - Olga Y Gorlova
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Marianne Berwick
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
17
|
Yang C, Huang X, Li Y, Chen J, Lv Y, Dai S. Prognosis and personalized treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico strategy towards precision oncology. Brief Bioinform 2020; 22:5891146. [PMID: 32789496 DOI: 10.1093/bib/bbaa164] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/03/2023] Open
Abstract
TP53 mutation is one of the most common genetic changes in hepatocellular carcinoma (HCC). It is of great clinical significance to tailor specialized prognostication approach and to explore more therapeutic options for TP53-mutant HCCs. In this study, a total of 1135 HCC patients were retrospectively analyzed. We developed a random forest-based prediction model to estimate TP53 mutational status, tackling the problem of limited sample size in TP53-mutant HCCs. A multi-step process was performed to develop robust poor prognosis-associated signature (PPS). Compared with previous established population-based signatures, PPS manifested superior ability to predict survival in TP53-mutant patients. After in silico screening of 2249 drug targets and 1770 compounds, we found that three targets (CANT1, CBFB and PKM) and two agents (irinotecan and YM-155) might have potential therapeutic implications in high-PPS patients. The results of drug targets prediction and compounds prediction complemented each other, presenting a comprehensive view of potential treatment strategy. Overall, our study has not only provided new insights into personalized prognostication approaches, but also thrown light on integrating tailored risk stratification with precision therapy.
Collapse
Affiliation(s)
- Chen Yang
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaowen Huang
- Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Li
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Junfei Chen
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yuanyuan Lv
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Shixue Dai
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, China
| |
Collapse
|
18
|
Clayton EA, Rishishwar L, Huang TC, Gulati S, Ban D, McDonald JF, Jordan IK. An atlas of transposable element-derived alternative splicing in cancer. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190342. [PMID: 32075558 PMCID: PMC7061986 DOI: 10.1098/rstb.2019.0342] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
Transposable element (TE)-derived sequences comprise more than half of the human genome, and their presence has been documented to alter gene expression in a number of different ways, including the generation of alternatively spliced transcript isoforms. Alternative splicing has been associated with tumorigenesis for a number of different cancers. The objective of this study was to broadly characterize the role of human TEs in generating alternatively spliced transcript isoforms in cancer. To do so, we screened for the presence of TE-derived sequences co-located with alternative splice sites that are differentially used in normal versus cancer tissues. We analysed a comprehensive set of alternative splice variants characterized for 614 matched normal-tumour tissue pairs across 13 cancer types, resulting in the discovery of 4820 TE-generated alternative splice events distributed among 723 cancer-associated genes. Short interspersed nuclear elements (Alu) and long interspersed nuclear elements (L1) were found to contribute the majority of TE-generated alternative splice sites in cancer genes. A number of cancer-associated genes, including MYH11, WHSC1 and CANT1, were shown to have overexpressed TE-derived isoforms across a range of cancer types. TE-derived isoforms were also linked to cancer-specific fusion transcripts, suggesting a novel mechanism for the generation of transcriptome diversity via trans-splicing mediated by dispersed TE repeats. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Evan A. Clayton
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lavanya Rishishwar
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Colombia
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
| | - Tzu-Chuan Huang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Saurabh Gulati
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Dongjo Ban
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - John F. McDonald
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - I. King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Colombia
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
| |
Collapse
|
19
|
Classification of early and late stage liver hepatocellular carcinoma patients from their genomics and epigenomics profiles. PLoS One 2019; 14:e0221476. [PMID: 31490960 PMCID: PMC6730898 DOI: 10.1371/journal.pone.0221476] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background Liver Hepatocellular Carcinoma (LIHC) is one of the major cancers worldwide, responsible for millions of premature deaths every year. Prediction of clinical staging is vital to implement optimal therapeutic strategy and prognostic prediction in cancer patients. However, to date, no method has been developed for predicting the stage of LIHC from the genomic profile of samples. Methods The Cancer Genome Atlas (TCGA) dataset of 173 early stage (stage-I), 177 late stage (stage-II, Stage-III and stage-IV) and 50 adjacent normal tissue samples for 60,483 RNA transcripts and 485,577 methylation CpG sites, was extensively analyzed to identify the key transcriptomic expression and methylation-based features using different feature selection techniques. Further, different classification models were developed based on selected key features to categorize different classes of samples implementing different machine learning algorithms. Results In the current study, in silico models have been developed for classifying LIHC patients in the early vs. late stage and cancerous vs. normal samples using RNA expression and DNA methylation data. TCGA datasets were extensively analyzed to identify differentially expressed RNA transcripts and methylated CpG sites that can discriminate early vs. late stages and cancer vs. normal samples of LIHC with high precision. Naive Bayes model developed using 51 features that combine 21 CpG methylation sites and 30 RNA transcripts achieved maximum MCC (Matthew’s correlation coefficient) 0.58 with an accuracy of 78.87% on the validation dataset in discrimination of early and late stage. Additionally, the prediction models developed based on 5 RNA transcripts and 5 CpG sites classify LIHC and normal samples with an accuracy of 96–98% and AUC (Area Under the Receiver Operating Characteristic curve) 0.99. Besides, multiclass models also developed for classifying samples in the normal, early and late stage of cancer and achieved an accuracy of 76.54% and AUC of 0.86. Conclusion Our study reveals stage prediction of LIHC samples with high accuracy based on the genomics and epigenomics profiling is a challenging task in comparison to the classification of cancerous and normal samples. Comprehensive analysis, differentially expressed RNA transcripts, methylated CpG sites in LIHC samples and prediction models are available from CancerLSP (http://webs.iiitd.edu.in/raghava/cancerlsp/).
Collapse
|
20
|
Huang Y, Feng Y, Ren H, Zhang M, Li H, Qiao Y, Feng T, Yang J, Wang W, Wang S, Liu Y, Song Y, Li Y, Jin J, Tan W, Lin D. Associations of Genetic Variations in MicroRNA Seed Regions With Acute Adverse Events and Survival in Patients With Rectal Cancer Receiving Postoperative Chemoradiation Therapy. Int J Radiat Oncol Biol Phys 2018; 100:1026-1033. [PMID: 29485044 DOI: 10.1016/j.ijrobp.2017.12.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of this study was to investigate the associations between single nucleotide polymorphisms (SNPs) in the seed regions of microRNAs and acute adverse events (AEs) and survival in patients with rectal cancer receiving postoperative chemoradiation therapy. METHODS AND MATERIALS Eighteen SNPs were genotyped in 365 patients with rectal cancer receiving postoperative chemoradiation therapy. The associations between genotypes and AEs were estimated by odds ratios and 95% confidence intervals (CIs), which were computed by using multivariate logistic regression models. The hazard ratios and 95% CIs to assess the death of patients for different genotypes were calculated by Cox proportional regression models. Overall survival and disease-free survival of patients with different genotypes were estimated by Kaplan-Meier plots, and the statistical significance was determined by using the log-rank test. RESULTS In these patients, the most common grade ≥2 AEs were diarrhea (44.1%), leukopenia (29.6%), and dermatitis (18.9%). With false discovery rate correction, SNP rs2273626 was significantly associated with a decreased risk of grade ≥2 leukopenia (odds ratio, 0.48; 95% CI, 0.31-0.74; P = .0009). In addition, SNP rs202195689 was associated with overall survival and disease-free survival in patients receiving postoperative chemoradiation therapy, with the hazard ratios for death being 2.02 (95% CI, 1.36-3.01; P = .0006) and 1.91 (95% CI, 1.36-2.70; P = .0002), respectively. However, no significant association between these SNPs and diarrhea and dermatitis was observed. CONCLUSIONS These results suggest that rs2273626 and rs202195689 in microRNA seed regions might serve as independent biomarkers for predicting AEs and prognosis in patients with rectal cancer receiving postoperative chemoradiation therapy. Independent replication of these findings is required to confirm these results.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanru Feng
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Ren
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmin Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Qiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihu Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulian Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueping Liu
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongwen Song
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology & Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Kelly RS, Sinnott JA, Rider JR, Ebot EM, Gerke T, Bowden M, Pettersson A, Loda M, Sesso HD, Kantoff PW, Martin NE, Giovannucci EL, Tyekucheva S, Heiden MV, Mucci LA. The role of tumor metabolism as a driver of prostate cancer progression and lethal disease: results from a nested case-control study. Cancer Metab 2016; 4:22. [PMID: 27980733 PMCID: PMC5142400 DOI: 10.1186/s40170-016-0161-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022] Open
Abstract
Background Understanding the biologic mechanisms underlying the development of lethal prostate cancer is critical for improved therapeutic and prevention strategies. In this study we explored the role of tumor metabolism in prostate cancer progression using mRNA expression profiling of seven metabolic pathways; fatty acid metabolism, glycolysis/gluconeogenesis, oxidative phosphorylation, pentose phosphate, purine metabolism, pyrimidine metabolism and the tricarboxylic acid cycle. Methods The study included 404 men with archival formalin-fixed, paraffin-embedded prostate tumor tissue from the prospective Health Professionals Follow-up Study and Physicians’ Health Study. Lethal cases (n = 113) were men who experienced a distant metastatic event or died of prostate cancer during follow-up. Non-lethal controls (n = 291) survived at least 8 years post-diagnosis without metastases. Of 404 men, 202 additionally had matched normal tissue (140 non-lethal, 62 lethal). Analyses compared expression levels between tumor and normal tissue, by Gleason grade and by lethal status. Secondary analyses considered the association with biomarkers of cell proliferation, apoptosis and angiogenesis. Results Oxidative phosphorylation and pyrimidine metabolism were identified as the most dysregulated pathways in lethal tumors (p < 0.007), and within these pathways, a number of novel differentially expressed genes were identified including POLR2K and APT6V1A. The associations were tumor specific as there was no evidence any pathways were altered in the normal tissue of lethal compared to non-lethal cases. Conclusions The results suggest prostate cancer progression and lethal disease are associated with alterations in key metabolic signaling pathways. Pathways supporting proliferation appeared to be of particular importance in prostate tumor aggressiveness. Electronic supplementary material The online version of this article (doi:10.1186/s40170-016-0161-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachel S Kelly
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA.,Channing Division of Network Medicine, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Jennifer A Sinnott
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jennifer R Rider
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA
| | - Ericka M Ebot
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Travis Gerke
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA.,Department of Epidemiology, College of Medicine and College of Public Health and Health Professions, University of Florida, Gainesville, FL USA
| | - Michaela Bowden
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Andreas Pettersson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA.,Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Massimo Loda
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA
| | - Howard D Sesso
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA.,Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA
| | - Philip W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Neil E Martin
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Svitlana Tyekucheva
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Matthew Vander Heiden
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139 USA.,Dana-Farber Cancer Institute, Boston, MA USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
22
|
Li H, Chen H, Liu F, Ren C, Wang S, Bo X, Shu W. Functional annotation of HOT regions in the human genome: implications for human disease and cancer. Sci Rep 2015; 5:11633. [PMID: 26113264 PMCID: PMC4481521 DOI: 10.1038/srep11633] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
Advances in genome-wide association studies (GWAS) and large-scale sequencing studies have resulted in an impressive and growing list of disease- and trait-associated genetic variants. Most studies have emphasised the discovery of genetic variation in coding sequences, however, the noncoding regulatory effects responsible for human disease and cancer biology have been substantially understudied. To better characterise the cis-regulatory effects of noncoding variation, we performed a comprehensive analysis of the genetic variants in HOT (high-occupancy target) regions, which are considered to be one of the most intriguing findings of recent large-scale sequencing studies. We observed that GWAS variants that map to HOT regions undergo a substantial net decrease and illustrate development-specific localisation during haematopoiesis. Additionally, genetic risk variants are disproportionally enriched in HOT regions compared with LOT (low-occupancy target) regions in both disease-relevant and cancer cells. Importantly, this enrichment is biased toward disease- or cancer-specific cell types. Furthermore, we observed that cancer cells generally acquire cancer-specific HOT regions at oncogenes through diverse mechanisms of cancer pathogenesis. Collectively, our findings demonstrate the key roles of HOT regions in human disease and cancer and represent a critical step toward further understanding disease biology, diagnosis, and therapy.
Collapse
Affiliation(s)
- Hao Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hebing Chen
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Feng Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chao Ren
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shengqi Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenjie Shu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
23
|
Comprehensive validation of published immunohistochemical prognostic biomarkers of prostate cancer -what has gone wrong? A blueprint for the way forward in biomarker studies. Br J Cancer 2014; 112:140-8. [PMID: 25422912 PMCID: PMC4453620 DOI: 10.1038/bjc.2014.588] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/17/2014] [Accepted: 10/25/2014] [Indexed: 02/06/2023] Open
Abstract
Background: Treatment planning of localised prostate cancer remains challenging. Besides conventional parameters, a wealth of prognostic biomarkers has been proposed so far. None of which, however, have successfully been implemented in a routine setting so far. The aim of our study was to systematically verify a set of published prognostic markers for prostate cancer. Methods: Following an in-depth PubMed search, 28 markers were selected that have been proposed as multivariate prognostic markers for primary prostate cancer. Their prognostic validity was examined in a radical prostatectomy cohort of 238 patients with a median follow-up of 60 months and biochemical progression as endpoint of the analysis. Immunohistochemical evaluation was performed using previously published cut-off values, but allowing for optimisation if necessary. Univariate and multivariate Cox regression were used to determine the prognostic value of biomarkers included in this study. Results: Despite the application of various cut-offs in the analysis, only four (14%) markers were verified as independently prognostic (AKT1, stromal AR, EZH2, and PSMA) for PSA relapse following radical prostatectomy. Conclusions: Apparently, many immunohistochemistry-based studies on prognostic markers seem to be over-optimistic. Codes of best practice, such as the REMARK guidelines, may facilitate the performance of conclusive and transparent future studies.
Collapse
|
24
|
Petrosyan A, Holzapfel MS, Muirhead DE, Cheng PW. Restoration of compact Golgi morphology in advanced prostate cancer enhances susceptibility to galectin-1-induced apoptosis by modifying mucin O-glycan synthesis. Mol Cancer Res 2014; 12:1704-16. [PMID: 25086069 DOI: 10.1158/1541-7786.mcr-14-0291-t] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Prostate cancer progression is associated with upregulation of sialyl-T antigen produced by β-galactoside α-2,3-sialyltransferase-1 (ST3Gal1) but not with core 2-associated polylactosamine despite expression of core 2 N-acetylglucosaminyltransferase-L (C2GnT-L/GCNT1). This property allows androgen-refractory prostate cancer cells to evade galectin-1 (LGALS1)-induced apoptosis, but the mechanism is not known. We have recently reported that Golgi targeting of glycosyltransferases is mediated by golgins: giantin (GOLGB1) for C2GnT-M (GCNT3) and GM130 (GOLGA2)-GRASP65 (GORASP1) or GM130-giantin for core 1 synthase. Here, we show that for Golgi targeting, C2GnT-L also uses giantin exclusively whereas ST3Gal1 uses either giantin or GM130-GRASP65. In addition, the compact Golgi morphology is detected in both androgen-sensitive prostate cancer and normal prostate cells, but fragmented Golgi and mislocalization of C2GnT-L are found in androgen-refractory cells as well as primary prostate tumors (Gleason grade 2-4). Furthermore, failure of giantin monomers to be phosphorylated and dimerized prevents Golgi from forming compact morphology and C2GnT-L from targeting the Golgi. On the other hand, ST3Gal1 reaches the Golgi by an alternate site, GM130-GRASP65. Interestingly, inhibition or knockdown of non-muscle myosin IIA (MYH9) motor protein frees up Rab6a GTPase to promote phosphorylation of giantin by polo-like kinase 3 (PLK3), which is followed by dimerization of giantin assisted by protein disulfide isomerase A3 (PDIA3), and restoration of compact Golgi morphology and targeting of C2GnT-L. Finally, the Golgi relocation of C2GnT-L in androgen-refractory cells results in their increased susceptibility to galectin-1-induced apoptosis by replacing sialyl-T antigen with polylactosamine. IMPLICATIONS This study demonstrates the importance of Golgi morphology and regulation of glycosylation and provides insight into how the Golgi influences cancer progression and metastasis.
Collapse
Affiliation(s)
- Armen Petrosyan
- Nebraska Western Iowa Health Care System, Veteran Affairs Research Service, Omaha, Nebraska. Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Melissa S Holzapfel
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - David E Muirhead
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pi-Wan Cheng
- Nebraska Western Iowa Health Care System, Veteran Affairs Research Service, Omaha, Nebraska. Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska. Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
25
|
Abstract
Selecting the best targets is a key challenge for drug discovery, and achieving this effectively, efficiently and systematically is particularly important for prioritizing candidates from the sizeable lists of potential therapeutic targets that are now emerging from large-scale multi-omics initiatives, such as those in oncology. Here, we describe an objective, systematic, multifaceted computational assessment of biological and chemical space that can be applied to any human gene set to prioritize targets for therapeutic exploration. We use this approach to evaluate an exemplar set of 479 cancer-associated genes, reveal the tension between biological relevance and chemical tractability, and describe major gaps in available knowledge that could be addressed to aid objective decision-making. We also propose drug repurposing opportunities and identify potentially druggable cancer-associated proteins that have been poorly explored with regard to the discovery of small-molecule modulators, despite their biological relevance.
Collapse
|
26
|
Sailer V, Stephan C, Wernert N, Perner S, Jung K, Dietel M, Kristiansen G. Comparison of p40 (ΔNp63) and p63 expression in prostate tissues--which one is the superior diagnostic marker for basal cells? Histopathology 2013; 63:50-6. [PMID: 23668398 DOI: 10.1111/his.12116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/21/2013] [Indexed: 11/29/2022]
Abstract
AIMS p63 is one of the standard markers for basal cells of the prostate gland. Recently, it has been suggested that the p63 isoform p40 might be more specific as a basal cell marker. In this study we compare the staining characteristics of p63 and p40 in normal and malignant prostate tissues. METHODS AND RESULTS A prostatectomy cohort (n = 640) in tissue microarray format was evaluated for p63 (clone 4A4) and for p40 (rabbit polyclonal) immunoreactivity in malignant and normal tissues. Immunoreactivity of basal and secretory cells was evaluated in a semiquantitative manner and compared case-wise. In normal tissues, p40 showed highly similar immunoreactivity compared to p63. The staining patterns were absolutely identical in 88% of cases. Additional cytoplasmic p40 staining in tumour cells occurred in 59.6% of cancer cases. Differences were seen in nuclear staining of carcinomas: 1.4% of carcinomas were p63-positive, whereas 0.6% were p40-positive. CONCLUSIONS In most cases, p40 stains prostatic basal cells as reliably as p63, with only minor differences. Aberrant staining of tumour cells is seen more rarely than with p63 (clone 4A4), establishing its higher specificity. However, additional cytoplasmic immunoreactivity narrows its eligibility for antibody cocktails (e.g. with alpha-methylacyl-CoA racemase).
Collapse
Affiliation(s)
- Verena Sailer
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Current World Literature. Curr Opin Urol 2013. [DOI: 10.1097/mou.0b013e3283605159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Rooklin DW, Lu M, Zhang Y. Revelation of a catalytic calcium-binding site elucidates unusual metal dependence of a human apyrase. J Am Chem Soc 2012; 134:15595-603. [PMID: 22928549 PMCID: PMC3461190 DOI: 10.1021/ja307267y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human soluble calcium-activated nucleotidase 1 (hSCAN-1) represents a new family of apyrase enzymes that catalyze the hydrolysis of nucleotide di- and triphosphates, thereby modulating extracellular purinergic and pyrimidinergic signaling. Among well-characterized phosphoryl transfer enzymes, hSCAN-1 is unique not only in its unusual calcium-dependent activation, but also in its novel phosphate-binding motif. Its catalytic site does not utilize backbone amide groups to bind phosphate, as in the common P-loop, but contains a large cluster of acidic ionizable side chains. By employing a state-of-the-art computational approach, we have revealed a previously uncharacterized catalytic calcium-binding site in hSCAN-1, which elucidates the unusual calcium-dependence of its apyrase activity. In a high-order coordination shell, the newly identified calcium ion organizes the active site residues to mediate nucleotide binding, to orient the nucleophilic water, and to facilitate the phosphoryl transfer reaction. From ab initio QM/MM molecular dynamics simulations with umbrella sampling, we have characterized a reverse protonation catalytic mechanism for hSCAN-1 and determined its free energy reaction profile. Our results are consistent with available experimental studies and provide new detailed insight into the structure-function relationship of this novel calcium-activated phosphoryl transfer enzyme.
Collapse
Affiliation(s)
- David W. Rooklin
- Department of Chemistry, New York University, New York, NY 10003
| | - Min Lu
- Public Health Research Institute Center, Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07103
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003
| |
Collapse
|
29
|
Migita T, Inoue S. Implications of the Golgi apparatus in prostate cancer. Int J Biochem Cell Biol 2012; 44:1872-6. [PMID: 22721754 DOI: 10.1016/j.biocel.2012.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022]
Abstract
The classical view of the Golgi apparatus is of a small membranous organelle involved in protein transport and secretion. Recent descriptions of the molecular network connecting the Golgi to other organelles demonstrate the essential roles of the Golgi in cellular activities as a stress sensor, apoptosis trigger, lipid/protein modifier, mitotic checkpoint, and a mediator of malignant transformation. Thus, the Golgi function should have a fundamental impact on cancer cell survival. Prostate cancer is initially responsive to androgenic hormones; however, it almost invariably progresses to a castration-refractory or hormone-insensitive state. Nevertheless, androgen signaling remains active at this stage and is important as a therapeutic target. Certain Golgi-associated molecules have recently been demonstrated to be regulated by androgen action, and the Golgi is emerging as a new therapeutic target in prostate cancer. The key Golgi-associated molecules essential for prostate cancer development and the potential therapeutic options targeting the Golgi apparatus are discussed.
Collapse
Affiliation(s)
- Toshiro Migita
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | | |
Collapse
|
30
|
FOXA1 Promotes Tumor Progression in Prostate Cancer and Represents a Novel Hallmark of Castration-Resistant Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:848-61. [DOI: 10.1016/j.ajpath.2011.10.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 09/23/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022]
|