1
|
Donison N, Palik J, Volkening K, Strong MJ. Cellular and molecular mechanisms of pathological tau phosphorylation in traumatic brain injury: implications for chronic traumatic encephalopathy. Mol Neurodegener 2025; 20:56. [PMID: 40349043 PMCID: PMC12065185 DOI: 10.1186/s13024-025-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Tau protein plays a critical role in the physiological functioning of the central nervous system by providing structural integrity to the cytoskeletal architecture of neurons and glia through microtubule assembly and stabilization. Under certain pathological conditions, tau is aberrantly phosphorylated and aggregates into neurotoxic fibrillary tangles. The aggregation and cell-to-cell propagation of pathological tau leads to the progressive deterioration of the nervous system. The clinical entity of traumatic brain injury (TBI) ranges from mild to severe and can promote tau aggregation by inducing cellular mechanisms and signalling pathways that increase tau phosphorylation and aggregation. Chronic traumatic encephalopathy (CTE), which is a consequence of repetitive TBI, is a unique tauopathy characterized by pathological tau aggregates located at the depths of the sulci and surrounding blood vessels. The mechanisms leading to increased tau phosphorylation and aggregation in CTE remain to be fully defined but are likely the result of the primary and secondary injury sequelae associated with TBI. The primary injury includes physical and mechanical damage resulting from the head impact and accompanying forces that cause blood-brain barrier disruption and axonal shearing, which primes the central nervous system to be more vulnerable to the subsequent secondary injury mechanisms. A complex interplay of neuroinflammation, oxidative stress, excitotoxicity, and mitochondrial dysfunction activate kinase and cell death pathways, increasing tau phosphorylation, aggregation and neurodegeneration. In this review, we explore the most recent insights into the mechanisms of tau phosphorylation associated with TBI and propose how multiple cellular pathways converge on tau phosphorylation, which may contribute to CTE progression.
Collapse
Affiliation(s)
- Neil Donison
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jacqueline Palik
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada.
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
2
|
Bruqi K, Strappazzon F. NDP52 and its emerging role in pathogenesis. Cell Death Dis 2025; 16:359. [PMID: 40319017 PMCID: PMC12049512 DOI: 10.1038/s41419-025-07668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Autophagy is a pro-survival process that regulates the degradation and renewal of cellular components, making it a crucial mechanism for cellular homeostasis. There are selective forms of autophagy that are specific to a number of substrates, such as pathogens (bacteria or viruses), protein aggregates or excess/damaged organelles. These processes involve as key players autophagy receptors, that link the cargo to be degraded to the autophagic machinery. Among them, NDP52 (also known as CALCOCO2) has been described to act as a "bridge" between the autophagy machinery and (1) damaged mitochondria in the mitophagy process; (2) pathogens during xenophagy or (3) proteins in the process of aggrephagy. The aim of this review is to summarize the major functions of NDP52, and to highlight the existence of two human NDP52 variants that have been described as risk or protective factors for Crohn's disease or Multiple Sclerosis and Alzheimer's disease patients, respectively. As these three diseases share common pathological features that lead to inflammation, such as mitochondria or gut microbiota dysfunctions, but also pathogenic infections, it seems clear that NDP52 could be a key player at the crossroad by acting indirectly on inflammation, and therefore a potential target for clinical applications and benefits.
Collapse
Affiliation(s)
- Krenare Bruqi
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du muscle, UMR5261, U1315, Institut Neuromyogène, Lyon, France
| | - Flavie Strappazzon
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du muscle, UMR5261, U1315, Institut Neuromyogène, Lyon, France.
| |
Collapse
|
3
|
Abbott V, Housden BE, Houldsworth A. Could immunotherapy and regulatory T cells be used therapeutically to slow the progression of Alzheimer's disease? Brain Commun 2025; 7:fcaf092. [PMID: 40078868 PMCID: PMC11896979 DOI: 10.1093/braincomms/fcaf092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease and other cognitive impairments are a growing problem in the healthcare world with the ageing population. There are currently no effective treatments available; however, it has been suggested that targeting neuroinflammation may be a successful approach in slowing the progression of neurodegeneration. Reducing the destructive hyperinflammatory pathology to maintain homeostasis in neural tissue is a promising option to consider. This review explores the mechanisms behind neuroinflammation and the effectiveness of immunotherapy in slowing the progression of cognitive decline in patients with Alzheimer's disease. The key components of neuroinflammation in Alzheimer's disease researched are microglia, astrocytes, cytokines and CD8+ effector T cells. The role of oxidative stress on modulating regulatory T cells and some of the limitations of regulatory T cell-based therapies are also explored. Increasing regulatory T cells can decrease activation of microglia, proinflammatory cytokines and astrocytes; however, it can also increase levels of inflammatory cytokines. There is a complex network of regulatory T cell interactions that reduce Alzheimer's disease pathology, which is not fully understood. Exploring the current literature, further research into the use of immunotherapy in Alzheimer's disease is vital to determine the potential of these techniques; however, there is sufficient evidence to suggest that increasing regulatory T cells count does prevent Alzheimer's disease symptoms and pathology in patients with Alzheimer's disease. Some exciting innovative therapies are muted to explore in the future. The function of regulatory T cells in the presence of reactive oxygen species and oxidative stress should be investigated further in patients with neurogenerative disorders to ascertain if combination therapies could reduce oxidative stress while also enhancing regulatory T cells function. Could methods of immunotherapy infuse exogenous functional Tregs or enhance the immune environment in favour of endogenous regulatory T cells differentiation, thus reducing neuroinflammation in neurodegenerative pathology, inhibiting the progression of Alzheimer's disease?
Collapse
Affiliation(s)
- Victoria Abbott
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| | - Benjamin E Housden
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Annwyne Houldsworth
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| |
Collapse
|
4
|
Grahl MVC, Hohl KS, Smaniotto T, Carlini CR. Microbial Trojan Horses: Virulence Factors as Key Players in Neurodegenerative Diseases. Molecules 2025; 30:687. [PMID: 39942791 PMCID: PMC11820544 DOI: 10.3390/molecules30030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in population demographics indicate that the elderly population will reach 2.1 billion worldwide by 2050. In parallel, there will be an increase in neurodegenerative diseases such as Alzheimer's and Parkinson's. This review explores dysbiosis occurring in these pathologies and how virulence factors contribute to the worsening or development of clinical conditions, and it summarizes existing and potential ways to combat microorganisms related to these diseases. Microbiota imbalances can contribute to the progression of neurodegenerative diseases by increasing intestinal permeability, exchanging information through innervation, and even acting as a Trojan horse affecting immune cells. The microorganisms of the microbiota produce virulence factors to protect themselves from host defenses, many of which contribute to neurodegenerative diseases. These virulence factors are expressed according to the genetic composition of each microorganism, leading to a wide range of factors to be considered. Among the main virulence factors are LPS, urease, curli proteins, amyloidogenic proteins, VacA, and CagA. These factors can also be packed into bacterial outer membrane vesicles, which transport proteins, RNA, and DNA, enabling distal communication that impacts various diseases, including Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Matheus V. C. Grahl
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | - Kelvin Siqueira Hohl
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Thiago Smaniotto
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Célia R. Carlini
- Center of Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Graduate Program of Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
5
|
Bartholomew SK, Winslow W, Sharma R, Pathak KV, Tallino S, Judd JM, Leon H, Turk J, Pirrotte P, Velazquez R. Glyphosate exposure exacerbates neuroinflammation and Alzheimer's disease-like pathology despite a 6-month recovery period in mice. J Neuroinflammation 2024; 21:316. [PMID: 39633366 PMCID: PMC11619132 DOI: 10.1186/s12974-024-03290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Glyphosate use in the United States (US) has increased each year since the introduction of glyphosate-tolerant crops in 1996, yet little is known about its effects on the brain. We recently found that C57BL/6J mice dosed with glyphosate for 14 days showed glyphosate and its major metabolite aminomethylphosphonic acid present in brain tissue, with corresponding increases in pro-inflammatory cytokine tumor necrosis factor-⍺ (TNF-⍺) in the brain and peripheral blood plasma. Since TNF-⍺ is elevated in neurodegenerative disorders such as Alzheimer's Disease (AD), in this study, we asked whether glyphosate exposure serves as an accelerant of AD pathogenesis. Additionally, whether glyphosate and aminomethylphosphonic acid remain in the brain after a recovery period has yet to be examined. METHODS We hypothesized that glyphosate exposure would induce neuroinflammation in control mice, while exacerbating neuroinflammation in AD mice, causing elevated Amyloid-β and tau pathology and worsening spatial cognition after recovery. We dosed 4.5-month-old 3xTg-AD and non-transgenic (NonTg) control mice with either 0, 50 or 500 mg/kg of glyphosate daily for 13 weeks followed by a 6-month recovery period. RESULTS We found that aminomethylphosphonic acid was detectable in the brains of 3xTg-AD and NonTg glyphosate-dosed mice despite the 6-month recovery. Glyphosate-dosed 3xTg-AD mice showed reduced survival, increased thigmotaxia in the Morris water maze, significant increases in the beta secretase enzyme (BACE-1) of amyloidogenic processing, amyloid-β (Aβ) 42 insoluble fractions, Aβ 42 plaque load and plaque size, and phosphorylated tau (pTau) at epitopes Threonine 181, Serine 396, and AT8 (Serine 202, Threonine 205). Notably, we found increased pro- and anti-inflammatory cytokines and chemokines persisting in both 3xTg-AD and NonTg brain tissue and in 3xTg-AD peripheral blood plasma. CONCLUSION Taken together, our results are the first to demonstrate that despite an extended recovery period, exposure to glyphosate elicits long-lasting pathological consequences. As glyphosate use continues to rise, more research is needed to elucidate the impact of this herbicide and its metabolites on the human brain, and their potential to contribute to dysfunctions observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Samantha K Bartholomew
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Ritin Sharma
- Integrated Mass Spectrometry Shared Resources, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Khyatiben V Pathak
- Integrated Mass Spectrometry Shared Resources, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Savannah Tallino
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jessica M Judd
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Hector Leon
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Julie Turk
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resources, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
6
|
Omasa T, Sawamoto A, Nakajima M, Okuyama S. Anti-Inflammatory and Neurotrophic Factor Production Effects of 3,5,6,7,8,3',4'-Heptamethoxyflavone in the Hippocampus of Lipopolysaccharide-Induced Inflammation Model Mice. Molecules 2024; 29:5559. [PMID: 39683718 DOI: 10.3390/molecules29235559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Citrus fruits contain several bioactive components. Among them, one of the major components is 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF), which has previously shown protective effects in the brain in some disease models; moreover, HMF has been shown to penetrate the brain. In recent years, inflammation has been identified as a defense response in the body; however, a chronic inflammatory response may trigger several diseases. Inflammation in the peripheral tissues spreads to the brain and is suggested to be closely associated with diseases of the central nervous system. HMF has shown anti-inflammatory effects in the hippocampus following global cerebral ischemia; however, its effects on acute and chronic inflammation in the brain remain unclear. Therefore, in the present study, we examined the effects of HMF in a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) administration. In this study, HMF suppressed LPS-induced microglial activation in the brains of acute inflammation model mice two days after LPS administration. In addition, 24 days after the administration of LPS in a chronic inflammation model, HMF promoted BDNF production and neurogenesis in the brain, which also tended to suppress tau protein phosphorylation at Ser396. These results suggest that HMF has anti-inflammatory and neurotrophic effects in the brains of model mice with lipopolysaccharide-induced systemic inflammation.
Collapse
Affiliation(s)
- Toshiki Omasa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| |
Collapse
|
7
|
Basheer N, Muhammadi MK, Freites CL, Avila M, Momand MUD, Hryntsova N, Smolek T, Katina S, Zilka N. TLR4-mediated chronic neuroinflammation has no effect on tangle pathology in a tauopathy mouse model. Front Aging Neurosci 2024; 16:1468602. [PMID: 39503044 PMCID: PMC11536299 DOI: 10.3389/fnagi.2024.1468602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is marked by the accumulation of fibrillary aggregates composed of pathological tau protein. Although neuroinflammation is frequently observed in conjunction with tau pathology, current preclinical evidence does not sufficiently establish a direct causal role in tau tangle formation. This study aimed to evaluate whether chronic Toll-like receptor 4 (TLR4) stimulation, induced by a high dose of lipopolysaccharide (LPS, 5 mg/kg), exacerbates neurofibrillary tangle (NFT) pathology in a transgenic mouse model of tauopathy that expresses human truncated 151-391/3R tau, an early feature of sporadic AD. Methods We utilized a transgenic mouse model of tauopathy subjected to chronic TLR4 stimulation via weekly intraperitoneal injections of LPS over nine consecutive weeks. Neurofibrillary tangle formation, microglial activation, and tau hyperphosphorylation in the brainstem and hippocampus were assessed through immunohistochemistry, immunofluorescence, and detailed morphometric analysis of microglia. Results Chronic LPS treatment led to a significant increase in the number of Iba-1+ microglia in the LPS-treated group compared to the sham group (p < 0.0001). Notably, there was a 1.5- to 1.7-fold increase in microglia per tangle-bearing neuron in the LPS-treated group. These microglia exhibited a reactive yet exhausted phenotype, characterized by a significant reduction in cell area (p < 0.0001) without significant changes in other morphometric parameters, such as perimeter, circumference, solidity, aspect ratio, or arborization degree. Despite extensive microglial activation, there was no observed reduction in tau hyperphosphorylation or a decrease in tangle formation in the brainstem, where pathology predominantly develops in this model. Discussion These findings suggest that chronic TLR4 stimulation in tau-transgenic mice results in significant microglial activation but does not influence tau tangle formation. This underscores the complexity of the relationship between neuroinflammation and tau pathology, indicating that additional mechanisms may be required for neuroinflammation to directly contribute to tau tangle formation.
Collapse
Affiliation(s)
- Neha Basheer
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Carlos Leandro Freites
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Martin Avila
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Miraj Ud Din Momand
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Natalia Hryntsova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislav Katina
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czechia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
8
|
Chandra S, Vassar RJ. Gut microbiome-derived metabolites in Alzheimer's disease: Regulation of immunity and potential for therapeutics. Immunol Rev 2024; 327:33-42. [PMID: 39440834 DOI: 10.1111/imr.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and cause of dementia. Despite the prevalence of AD, there is a lack of effective disease modifying therapies. Recent evidence indicates that the gut microbiome (GMB) may play a role in AD through its regulation of innate and adaptive immunity. Gut microbes regulate physiology through their production of metabolites and byproducts. Microbial metabolites may be beneficial or detrimental to the pathogenesis and progression of inflammatory diseases. A better understanding of the role GMB-derived metabolites play in AD may lead to the development of therapeutic strategies for AD. In this review, we summarize the function of bioactive GMB-derived metabolites and byproducts and their roles in AD models. We also call for more focus on this area in the gut-brain axis field in order to create effective therapies for AD.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert J Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
9
|
Park G, Kadyan S, Hochuli N, Salazar G, Laitano O, Chakrabarty P, Efron PA, Zafar MA, Wilber A, Nagpal R. An Enteric Bacterial Infection Triggers Neuroinflammation and Neurobehavioral Impairment in 3xTg-AD Transgenic Mice. J Infect Dis 2024; 230:S95-S108. [PMID: 39255397 PMCID: PMC11385593 DOI: 10.1093/infdis/jiae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is infamous for hospital-acquired infections and sepsis, which have also been linked to Alzheimer disease (AD)-related neuroinflammatory and neurodegenerative impairment. However, its causative and mechanistic role in AD pathology remains unstudied. METHODS A preclinical model of K. pneumoniae enteric infection and colonization is developed in an AD model (3xTg-AD mice) to investigate whether and how K. pneumoniae pathogenesis exacerbates neuropathogenesis via the gut-blood-brain axis. RESULTS K. pneumoniae, particularly under antibiotic-induced dysbiosis, was able to translocate from the gut to the bloodstream by penetrating the gut epithelial barrier. Subsequently, K. pneumoniae infiltrated the brain by breaching the blood-brain barrier. Significant neuroinflammatory phenotype was observed in mice with K. pneumoniae brain infection. K. pneumoniae-infected mice also exhibited impaired neurobehavioral function and elevated total tau levels in the brain. Metagenomic analyses revealed an inverse correlation of K. pneumoniae with gut biome diversity and commensal bacteria, highlighting how antibiotic-induced dysbiosis triggers an enteroseptic "pathobiome" signature implicated in gut-brain perturbations. CONCLUSIONS The findings demonstrate how infectious agents following hospital-acquired infections and consequent antibiotic regimen may induce gut dysbiosis and pathobiome and increase the risk of sepsis, thereby increasing the predisposition to neuroinflammatory and neurobehavioral impairments via breaching the gut-blood-brain barrier.
Collapse
Affiliation(s)
- Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Nathaniel Hochuli
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Gloria Salazar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - M Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Aaron Wilber
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
10
|
Zhao M, Wang Y, Shen Y, Wei C, Zhang G, Sun L. A review of the roles of pathogens in Alzheimer's disease. Front Neurosci 2024; 18:1439055. [PMID: 39224577 PMCID: PMC11366636 DOI: 10.3389/fnins.2024.1439055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease (AD) is one of the leading causes of dementia and is characterized by memory loss, mental and behavioral abnormalities, and impaired ability to perform daily activities. Even as a global disease that threatens human health, effective treatments to slow the progression of AD have not been found, despite intensive research and significant investment. In recent years, the role of infections in the etiology of AD has sparked intense debate. Pathogens invade the central nervous system through a damaged blood-brain barrier or nerve trunk and disrupt the neuronal structure and function as well as homeostasis of the brain microenvironment through a series of molecular biological events. In this review, we summarize the various pathogens involved in AD pathology, discuss potential interactions between pathogens and AD, and provide an overview of the promising future of anti-pathogenic therapies for AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Sun
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
11
|
Rather MA, Khan A, Jahan S, Siddiqui AJ, Wang L. Influence of Tau on Neurotoxicity and Cerebral Vasculature Impairment Associated with Alzheimer's Disease. Neuroscience 2024; 552:1-13. [PMID: 38871021 DOI: 10.1016/j.neuroscience.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease is a fatal chronic neurodegenerative condition marked by a gradual decline in cognitive abilities and impaired vascular function within the central nervous system. This affliction initiates its insidious progression with the accumulation of two aberrant protein entities including Aβ plaques and neurofibrillary tangles. These chronic elements target distinct brain regions, steadily erasing the functionality of the hippocampus and triggering the erosion of memory and neuronal integrity. Several assumptions are anticipated for AD as genetic alterations, the occurrence of Aβ plaques, altered processing of amyloid precursor protein, mitochondrial damage, and discrepancy of neurotropic factors. In addition to Aβ oligomers, the deposition of tau hyper-phosphorylates also plays an indispensable part in AD etiology. The brain comprises a complex network of capillaries that is crucial for maintaining proper function. Tau is expressed in cerebral blood vessels, where it helps to regulate blood flow and sustain the blood-brain barrier's integrity. In AD, tau pathology can disrupt cerebral blood supply and deteriorate the BBB, leading to neuronal neurodegeneration. Neuroinflammation, deficits in the microvasculature and endothelial functions, and Aβ deposition are characteristically detected in the initial phases of AD. These variations trigger neuronal malfunction and cognitive impairment. Intracellular tau accumulation in microglia and astrocytes triggers deleterious effects on the integrity of endothelium and cerebral blood supply resulting in further advancement of the ailment and cerebral instability. In this review, we will discuss the impact of tau on neurovascular impairment, mitochondrial dysfunction, oxidative stress, and the role of hyperphosphorylated tau in neuron excitotoxicity and inflammation.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States.
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail City, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States
| |
Collapse
|
12
|
Kühl F, Brand K, Lichtinghagen R, Huber R. GSK3-Driven Modulation of Inflammation and Tissue Integrity in the Animal Model. Int J Mol Sci 2024; 25:8263. [PMID: 39125833 PMCID: PMC11312333 DOI: 10.3390/ijms25158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, GSK3 is accepted as an enzyme strongly involved in the regulation of inflammation by balancing the pro- and anti-inflammatory responses of cells and organisms, thus influencing the initiation, progression, and resolution of inflammatory processes at multiple levels. Disturbances within its broad functional scope, either intrinsically or extrinsically induced, harbor the risk of profound disruptions to the regular course of the immune response, including the formation of severe inflammation-related diseases. Therefore, this review aims at summarizing and contextualizing the current knowledge derived from animal models to further shape our understanding of GSK3α and β and their roles in the inflammatory process and the occurrence of tissue/organ damage. Following a short recapitulation of structure, function, and regulation of GSK3, we will focus on the lessons learned from GSK3α/β knock-out and knock-in/overexpression models, both conventional and conditional, as well as a variety of (predominantly rodent) disease models reflecting defined pathologic conditions with a significant proportion of inflammation and inflammation-related tissue injury. In summary, the literature suggests that GSK3 acts as a crucial switch driving pro-inflammatory and destructive processes and thus contributes significantly to the pathogenesis of inflammation-associated diseases.
Collapse
Affiliation(s)
| | | | | | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.K.); (K.B.); (R.L.)
| |
Collapse
|
13
|
Jones TB, Chu P, Wilkey B, Lynch L, Jentarra G. Regional Differences in Microbial Infiltration of Brain Tissue from Alzheimer's Disease Patients and Control Individuals. Brain Sci 2024; 14:677. [PMID: 39061418 PMCID: PMC11274863 DOI: 10.3390/brainsci14070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and neuropathology including amyloid beta (Aβ) plaques and neurofibrillary tangles (tau). Factors initiating or driving these pathologies remain unclear, though microbes have been increasingly implicated. Our data and others' findings indicate that microbes may be common constituents of the brain. It is notable that Aβ and tau have antimicrobial properties, suggesting a response to microbes in the brain. We used 16S rRNA sequencing to compare major bacterial phyla in post-mortem tissues from individuals exhibiting a range of neuropathology and cognitive status in two brain regions variably affected in AD. Our data indicate that strong regional differences exist, driven in part by the varied presence of Proteobacteria and Firmicutes. We confirmed our data using ELISA of bacterial lipopolysaccharide (LPS) and lipoteichoic acid in the same brain tissue. We identified a potential association between the composition of phyla and the presence of neuropathology but not cognitive status. Declining cognition and increasing pathology correlated closely with serum LPS, but not brain levels of LPS, although brain LPS showed a strong negative correlation with cerebral amyloid angiopathy. Collectively, our data suggest a region-specific heterogeneity of microbial populations in brain tissue potentially associated with neurodegenerative pathology.
Collapse
Affiliation(s)
- T. Bucky Jones
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (T.B.J.); (P.C.); (L.L.)
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Ping Chu
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (T.B.J.); (P.C.); (L.L.)
| | - Brooke Wilkey
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
- School of Medicine, Creighton University, Phoenix, AZ 85012, USA
| | - Leigha Lynch
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (T.B.J.); (P.C.); (L.L.)
| | - Garilyn Jentarra
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA; (T.B.J.); (P.C.); (L.L.)
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| |
Collapse
|
14
|
Ritson M, Wheeler-Jones CPD, Stolp HB. Endothelial dysfunction in neurodegenerative disease: Is endothelial inflammation an overlooked druggable target? J Neuroimmunol 2024; 391:578363. [PMID: 38728929 DOI: 10.1016/j.jneuroim.2024.578363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Neurological diseases with a neurodegenerative component have been associated with alterations in the cerebrovasculature. At the anatomical level, these are centred around changes in cerebral blood flow and vessel organisation. At the molecular level, there is extensive expression of cellular adhesion molecules and increased release of pro-inflammatory mediators. Together, these has been found to negatively impact blood-brain barrier integrity. Systemic inflammation has been found to accelerate and exacerbate endothelial dysfunction, neuroinflammation and degeneration. Here, we review the role of cerebrovasculature dysfunction in neurodegenerative disease and discuss the potential contribution of intermittent pro-inflammatory systemic disease in causing endothelial pathology, highlighting a possible mechanism that may allow broad-spectrum therapeutic targeting in the future.
Collapse
Affiliation(s)
- Megan Ritson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | | | - Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| |
Collapse
|
15
|
Venkatesan D, Muthukumar S, Iyer M, Babu HWS, Gopalakrishnan AV, Yadav MK, Vellingiri B. Heavy metals toxicity on epigenetic modifications in the pathogenesis of Alzheimer's disease (AD). J Biochem Mol Toxicol 2024; 38:e23741. [PMID: 38816991 DOI: 10.1002/jbt.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD) is a progressive decline in cognitive ability and behavior which eventually disrupts daily activities. AD has no cure and the progression rate varies unlikely. Among various causative factors, heavy metals are reported to be a significant hazard in AD pathogenesis. Metal-induced neurodegeneration has been focused globally with thorough research to unravel the mechanistic insights in AD. Recently, heavy metals suggested to play an important role in epigenetic alterations which might provide evidential results on AD pathology. Epigenetic modifications are known to play towards novel therapeutic approaches in treating AD. Though many studies focus on epigenetics and heavy metal implications in AD, there is a lack of research on heavy metal influence on epigenetic toxicity in neurological disorders. The current review aims to elucidate the plausible role of cadmium (Cd), iron (Fe), arsenic (As), copper (Cu), and lithium (Li) metals on epigenetic factors and the increase in amyloid beta and tau phosphorylation in AD. Also, the review discusses the common methods of heavy metal detection to implicate in AD pathogenesis. Hence, from this review, we can extend the need for future research on identifying the mechanistic behavior of heavy metals on epigenetic toxicity and to develop diagnostic and therapeutic markers in AD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Sindduja Muthukumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
16
|
Zhan F, Lin G, Su L, Xue L, Duan K, Chen L, Ni J. The association between methylmalonic acid, a biomarker of mitochondrial dysfunction, and cause-specific mortality in Alzheimer's disease and Parkinson's disease. Heliyon 2024; 10:e29357. [PMID: 38681550 PMCID: PMC11053175 DOI: 10.1016/j.heliyon.2024.e29357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
Background Alzheimer's disease (AD) and Parkinson's disease (PD) are the leading causes of death among the elderly. Recent research has demonstrated that mitochondrial dysfunction, which is hallmark of neurodegenerative diseases, is a contributor to the development of these diseases. Methods and materials Methylmalonic acid (MMA), AD, PD, inflammatory markers and covariates were extracted from the National Health and Nutrition Examination Survey (NHANES). The classification of the inflammatory markers was done through quartile conversion. A restricted cubic spike function was performed to study their dose-response relationship. MMA subgroups from published studies were used to explore the correlation between different subgroups and cause-specific mortality. Multivariable weighted Cox regression was carried out to investigate MMA and cause-specific mortality in patients with AD and PD. Weighted survival analysis was used to study the survival differences among MMA subgroups. Results A non-linear correlation was observed between MMA and AD-specific death and PD-specific mortality. The presence of MMA Q4 was linked to increased death rates among AD patients (HR = 6.39, 95%CI: 1.19-35.24, P = 0.03) after controlling for potential confounders in a multivariable weighted Cox regression model. In PD patients, the MMA Q4 (Q4: HR: 5.51, 95 % CI: 1.26-24, P = 0.02) was also related to increased mortality. The results of survival analysis indicated that the poorer prognoses were observed in AD and PD patients with MMA Q4. Conclusion The higher level of mitochondria-derived circulating MMA was associated with a higher mortality rate in AD and PD patients. MMA has the potential to be a valuable indicator for evaluating AD and PD patients' prognosis in the clinic.
Collapse
Affiliation(s)
- Fangfang Zhan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Gaoteng Lin
- Department of Urology, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China
| | - Lifang Su
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, 351106, China
| | - Lihong Xue
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, 351106, China
| | - Kefei Duan
- Department of Geriatric Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Longfei Chen
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| |
Collapse
|
17
|
Brown GC, Heneka MT. The endotoxin hypothesis of Alzheimer's disease. Mol Neurodegener 2024; 19:30. [PMID: 38561809 PMCID: PMC10983749 DOI: 10.1186/s13024-024-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aβ expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
18
|
Nawaz AD, Haider MZ, Akhtar S. COVID-19 and Alzheimer's disease: Impact of lockdown and other restrictive measures during the COVID-19 pandemic. BIOMOLECULES & BIOMEDICINE 2024; 24:219-229. [PMID: 38078809 PMCID: PMC10950341 DOI: 10.17305/bb.2023.9680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 03/14/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection initially results in respiratory distress symptoms but can also lead to central nervous system (CNS) and neurological manifestations, significantly impacting coronavirus disease 2019 (COVID-19) patients with neurodegenerative diseases. Additionally, strict lockdown measures introduced to curtail the spread of COVID-19 have raised concerns over the wellbeing of patients with dementia and/or Alzheimer's disease. The aim of this review was to discuss the overlapping molecular pathologies and the potential bidirectional relationship between COVID-19 and Alzheimer's dementia, as well as the impact of lockdown/restriction measures on the neuropsychiatric symptoms (NPS) of patients with Alzheimer's dementia. Furthermore, we aimed to assess the impact of lockdown measures on the NPS of caregivers, exploring its potential effects on the quality and extent of care they provide to dementia patients.We utilized the PubMed and Google Scholar databases to search for articles on COVID-19, dementia, Alzheimer's disease, lockdown, and caregivers. Our review highlights that patients with Alzheimer's disease face an increased risk of COVID-19 infection and complications. Additionally, these patients are likely to experience greater cognitive decline. It appears that these issues are primarily caused by the SARS-CoV-2 infection and appear to be further exacerbated by restrictive/lockdown measures. Moreover, lockdown measures introduced during the pandemic have negatively impacted both the NPSs of caregivers and their perception of the wellbeing of their Alzheimer's patients. Thus, additional safeguard measures, along with pharmacological and non-pharmacological approaches, are needed to protect the wellbeing of dementia patients and their caregivers in light of this and possible future pandemics.
Collapse
Affiliation(s)
| | | | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
19
|
Ganesan K, Rentsch P, Langdon A, Milham LT, Vissel B. Modeling sporadic Alzheimer's disease in mice by combining Apolipoprotein E4 risk gene with environmental risk factors. Front Aging Neurosci 2024; 16:1357405. [PMID: 38476659 PMCID: PMC10927790 DOI: 10.3389/fnagi.2024.1357405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Developing effective treatment for Alzheimer's disease (AD) remains a challenge. This can be partially attributed to the fact that the mouse models used in preclinical research largely replicate familial form of AD, while majority of human cases are sporadic; both forms differ widely in the onset and origin of pathology, therefore requiring specific/targeted treatments. Methods In this study, we aimed to model sporadic AD in mice by combining two of the many risk factors that are strongly implicated in AD: ApoE4, a major genetic risk factor, together with an inflammatory stimuli. Accordingly, we subjected ApoE4 knock in (KI) mice, expressing humanized ApoE4, to low doses of Lipopolysaccharide (LPS) injections (i.p, weekly, for 4 months). Results We assessed these animals for behavioral impairments at 6 months of age using Open Field, Y-maze, and Barnes Maze Test. LPS induced hypoactivity was observed in the Open Field and Y-maze test, whereas spatial learning and memory was intact. We then quantified differences in dendritic spine density, which is a strong correlate of AD. ApoE4KI mice showed a significant reduction in the number of spines after treatment with LPS, whereas there were no obvious differences in the total number of microglia and astrocytes. Discussion To conclude, in the current study the APoEe4 risk gene increases the vulnerability of hippocampal neurons to inflammation induced spine loss, laying a foundation for an early sporadic AD mouse model.
Collapse
Affiliation(s)
- Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alexander Langdon
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Bartak M, Bąska P, Chodkowski M, Tymińska B, Bańbura MW, Cymerys J. Neurons cytoskeletal architecture remodeling during the replication cycle of mouse coronavirus MHV-JHM: a morphological in vitro study. BMC Vet Res 2024; 20:18. [PMID: 38195523 PMCID: PMC10775625 DOI: 10.1186/s12917-023-03813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024] Open
Abstract
Nowadays, the population is still struggling with a post-COVID19 syndrome known as long COVID, including a broad spectrum of neurological problems. There is an urgent need for a better understanding and exploration of the mechanisms of coronavirus neurotropism. For this purpose, the neurotropic strain of mouse hepatitis virus (MHV-JHM) originating from the beta-coronavirus genus, the same as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been used. The role of the cytoskeleton during virus replication in neurons in vitro was determined to understand the mechanisms of MHV-JHM neuroinfection. We have described for the first time the changes of actin filaments during MHV-JHM infection. We also observed productive replication of MHV-JHM in neurons during 168 h p.i. and syncytial cytopathic effect. We discovered that the MHV-JHM strain modulated neuronal cytoskeleton during infection, which were manifested by: (i) condensation of actin filaments in the cortical layer of the cytoplasm, (ii) formation of microtubule cisternae structures containing viral antigen targeting viral replication site (iii) formation of tunneling nanotubes used by MHV-JHM for intercellular transport. Additionally, we demonstrated that the use of cytoskeletal inhibitors have reduced virus replication in neurons, especially noscapine and nocodazole, the microtubule shortening factors.
Collapse
Affiliation(s)
- Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland.
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8 St., Warsaw, 02-786, Poland
| | - Marcin Chodkowski
- Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4 St., Warsaw, 01-063, Poland
| | - Beata Tymińska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland
| | - Marcin W Bańbura
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., Warsaw, 02-786, Poland.
| |
Collapse
|
21
|
Chu J, Zhang W, Liu Y, Gong B, Ji W, Yin T, Gao C, Liangwen D, Hao M, Chen C, Zhuang J, Gao J, Yin Y. Biomaterials-based anti-inflammatory treatment strategies for Alzheimer's disease. Neural Regen Res 2024; 19:100-115. [PMID: 37488851 PMCID: PMC10479833 DOI: 10.4103/1673-5374.374137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
The current therapeutic drugs for Alzheimer's disease only improve symptoms, they do not delay disease progression. Therefore, there is an urgent need for new effective drugs. The underlying pathogenic factors of Alzheimer's disease are not clear, but neuroinflammation can link various hypotheses of Alzheimer's disease; hence, targeting neuroinflammation may be a new hope for Alzheimer's disease treatment. Inhibiting inflammation can restore neuronal function, promote neuroregeneration, reduce the pathological burden of Alzheimer's disease, and improve or even reverse symptoms of Alzheimer's disease. This review focuses on the relationship between inflammation and various pathological hypotheses of Alzheimer's disease; reports the mechanisms and characteristics of small-molecule drugs (e.g., nonsteroidal anti-inflammatory drugs, neurosteroids, and plant extracts); macromolecule drugs (e.g., peptides, proteins, and gene therapeutics); and nanocarriers (e.g., lipid-based nanoparticles, polymeric nanoparticles, nanoemulsions, and inorganic nanoparticles) in the treatment of Alzheimer's disease. The review also makes recommendations for the prospective development of anti-inflammatory strategies based on nanocarriers for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jianjian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, UK
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Danqi Liangwen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
22
|
Sun J, Ince MN, Abraham C, Barrett T, Brenner LA, Cong Y, Dashti R, Dudeja PK, Elliott D, Griffith TS, Heeger PS, Hoisington A, Irani K, Kim TK, Kapur N, Leventhal J, Mohamadzadeh M, Mutlu E, Newberry R, Peled JU, Rubinstein I, Sengsayadeth S, Tan CS, Tan XD, Tkaczyk E, Wertheim J, Zhang ZJ. Modulating microbiome-immune axis in the deployment-related chronic diseases of Veterans: report of an expert meeting. Gut Microbes 2023; 15:2267180. [PMID: 37842912 PMCID: PMC10580853 DOI: 10.1080/19490976.2023.2267180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
The present report summarizes the United States Department of Veterans Affairs (VA) field-based meeting titled "Modulating microbiome-immune axis in the deployment-related chronic diseases of Veterans." Our Veteran patient population experiences a high incidence of service-related chronic physical and mental health problems, such as infection, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), various forms of hematological and non-hematological malignancies, neurologic conditions, end-stage organ failure, requiring transplantation, and posttraumatic stress disorder (PTSD). We report the views of a group of scientists who focus on the current state of scientific knowledge elucidating the mechanisms underlying the aforementioned disorders, novel therapeutic targets, and development of new approaches for clinical intervention. In conclusion, we dovetailed on four research areas of interest: 1) microbiome interaction with immune cells after hematopoietic cell and/or solid organ transplantation, graft-versus-host disease (GVHD) and graft rejection, 2) intestinal inflammation and its modification in IBD and cancer, 3) microbiome-neuron-immunity interplay in mental and physical health, and 4) microbiome-micronutrient-immune interactions during homeostasis and infectious diseases. At this VA field-based meeting, we proposed to explore a multi-disciplinary, multi-institutional, collaborative strategy to initiate a roadmap, specifically focusing on host microbiome-immune interactions among those with service-related chronic diseases to potentially identify novel and translatable therapeutic targets.
Collapse
Affiliation(s)
- Jun Sun
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - M. Nedim Ince
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Terrence Barrett
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
- Medicine, University of Kentucky, Lexington, KY, USA
| | - Lisa A. Brenner
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center, Aurora, CO, USA
- Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Yingzi Cong
- Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Reza Dashti
- Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Pradeep K. Dudeja
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - David Elliott
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas S. Griffith
- Minneapolis VA Medical Center, Minneapolis, MN, USA
- Urology, University of Minnesota, Minneapolis, MN, USA
| | - Peter S. Heeger
- Medicine/Nephrology, Cedars-Sinai Medical Center in Los Angeles, Los Angeles, CA, USA
| | - Andrew Hoisington
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center, Aurora, CO, USA
- Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Kaikobad Irani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Tae Kon Kim
- Tennessee Valley Healthcare System-Nashville VA, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, USA
| | - Neeraj Kapur
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
- Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Mansour Mohamadzadeh
- Microbiology, University of Texas Health Science Center at San Antonio, USA, TX, San Antonio
| | - Ece Mutlu
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Rodney Newberry
- Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Israel Rubinstein
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Salyka Sengsayadeth
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- Medicine, Yale University, New Haven, CT, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
- Medicine, University of Kentucky, Lexington, KY, USA
- Veterans Affairs Rocky Mountain Mental Illness Research, Education, and Clinical Center, Aurora, CO, USA
- Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Medicine, Stony Brook University, Stony Brook, NY, USA
- Minneapolis VA Medical Center, Minneapolis, MN, USA
- Urology, University of Minnesota, Minneapolis, MN, USA
- Medicine/Nephrology, Cedars-Sinai Medical Center in Los Angeles, Los Angeles, CA, USA
- Tennessee Valley Healthcare System-Nashville VA, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, USA
- Surgery, Northwestern University, Evanston, IL, USA
- Microbiology, University of Texas Health Science Center at San Antonio, USA, TX, San Antonio
- Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Adult Bone Marrow Transplantation Service Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Surgery, University of Arizona, Tucson, AZ, USA
- Tucson VA Medical Center, Tucson, AZ, USA
| | - Chen Sabrina Tan
- Iowa City Veterans Affairs Medical Center, Lowa city, IA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiao-Di Tan
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology/Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Eric Tkaczyk
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Jason Wertheim
- Surgery, University of Arizona, Tucson, AZ, USA
- Tucson VA Medical Center, Tucson, AZ, USA
| | | |
Collapse
|
23
|
Sriramula S, Theobald D, Parekh RU, Akula SM, O’Rourke DP, Eells JB. Emerging Role of Kinin B1 Receptor in Persistent Neuroinflammation and Neuropsychiatric Symptoms in Mice Following Recovery from SARS-CoV-2 Infection. Cells 2023; 12:2107. [PMID: 37626917 PMCID: PMC10453171 DOI: 10.3390/cells12162107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Evidence suggests that patients with long COVID can experience neuropsychiatric, neurologic, and cognitive symptoms. However, these clinical data are mostly associational studies complicated by confounding variables, thus the mechanisms responsible for persistent symptoms are unknown. Here we establish an animal model of long-lasting effects on the brain by eliciting mild disease in K18-hACE2 mice. Male and female K18-hACE2 mice were infected with 4 × 103 TCID50 of SARS-CoV-2 and, following recovery from acute infection, were tested in the open field, zero maze, and Y maze, starting 30 days post infection. Following recovery from SARS-CoV-2 infection, K18-hACE2 mice showed the characteristic lung fibrosis associated with SARS-CoV-2 infection, which correlates with increased expression of the pro-inflammatory kinin B1 receptor (B1R). These mice also had elevated expression of B1R and inflammatory markers in the brain and exhibited behavioral alterations such as elevated anxiety and attenuated exploratory behavior. Our data demonstrate that K18-hACE2 mice exhibit persistent effects of SARS-CoV-2 infection on brain tissue, revealing the potential for using this model of high sensitivity to SARS-CoV-2 to investigate mechanisms contributing to long COVID symptoms in at-risk populations. These results further suggest that elevated B1R expression may drive the long-lasting inflammatory response associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (D.T.); (R.U.P.)
| | - Drew Theobald
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (D.T.); (R.U.P.)
| | - Rohan Umesh Parekh
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (D.T.); (R.U.P.)
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Dorcas P. O’Rourke
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Jeffrey B. Eells
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
24
|
Yang L, Yan L, Tan W, Zhou X, Yang G, Yu J, Lu Z, Liu Y, Zou L, Li W, Yu L. Liang-Ge-San: a classic traditional Chinese medicine formula, attenuates acute inflammation via targeting GSK3β. Front Pharmacol 2023; 14:1181319. [PMID: 37456759 PMCID: PMC10338930 DOI: 10.3389/fphar.2023.1181319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Sepsis is a serious life-threatening health disorder with high morbidity and mortality rates that burden the world, but there is still a lack of more effective and reliable drug treatment. Liang-Ge-San (LGS) has been shown to have anti-inflammatory effects and is a promising candidate for the treatment of sepsis. However, the anti-sepsis mechanism of LGS has still not been elucidated. In this study, a set of genes related to inflammatory chemotaxis pathways was downloaded from Encyclopedia of Genes and Genomes (KEGG) and integrated with sepsis patient information from the Gene Expression Omnibus (GEO) database to perform differential gene expression analysis. Glycogen synthase kinase-3β (GSK-3β) was found to be the feature gene after these important genes were examined using the three algorithms Random Forest, support vector machine recursive feature elimination (SVM-REF), and least absolute shrinkage and selection operator (LASSO), and then intersected with possible treatment targets of LGS found through the search. Upon evaluation, the receiver operating characteristic (ROC) curve of GSK-3β indicated an important role in the pathogenesis of sepsis. Immune cell infiltration analysis suggested that GSK-3β expression was associated with a variety of immune cells, including neutrophils and monocytes. Next, lipopolysaccharide (LPS)-induced zebrafish inflammation model and macrophage inflammation model was used to validate the mechanism of LGS. We found that LGS could protect zebrafish against a lethal challenge with LPS by down-regulating GSK-3β mRNA expression in a dose-dependent manner, as indicated by a decreased neutrophils infiltration and reduction of inflammatory damage. The upregulated mRNA expression of GSK-3β in LPS-induced stimulated RAW 264.7 cells also showed the same tendency of depression by LGS. Critically, LGS could induce M1 macrophage polarization to M2 through promoting GSK-3β inactivation of phosphorylation. Taken together, we initially showed that anti-septic effects of LGS is related to the inhibition on GSK-3β, both in vitro and in vivo.
Collapse
Affiliation(s)
- Liling Yang
- Department of Pharmacy, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lijun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weifu Tan
- Department of Neonatology, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Xiangjun Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Guangli Yang
- Department of Central Laboratory, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yong Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Liyi Zou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wei Li
- Department of Neonatology, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Cui Z, Weng B, Yao Y, Shao H, Ye J, Qin A, Qian K. Chicken Glycogen Synthase Kinase 3β Suppresses Innate Immune Responses and Enhances Avian Leukosis Virus Replication in DF-1 Cells. Microbiol Spectr 2023; 11:e0523522. [PMID: 36995259 PMCID: PMC10269865 DOI: 10.1128/spectrum.05235-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
Glycogen synthase kinase 3β (GSK3β) is a widely distributed multifunctional serine/threonine kinase. In mammals, GSK3β regulates important life activities such as proinflammatory response, anti-inflammatory response, immunity, and cancer development. However, the biological functions of chicken GSK3β (chGSK3β) are still unknown. In the present study, the full-length cDNA of chGSK3β was first cloned and analyzed. Absolute quantification of chicken chGSK3β in 1-day-old specific-pathogen-free birds has shown that it is widely expressed in all tissues, with the highest level in brain and the lowest level in pancreas. Overexpression of chGSK3β in DF-1 cells significantly decreased the gene expression levels of interferon beta (IFN-β), IFN regulatory factor 7 (IRF7), Toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5), MX-1, protein kinase R (PKR), and oligoadenylate synthase-like (OASL), while promoting the replication of avian leukosis virus subgroup J (ALV-J). Conversely, levels of most of the genes detected in this study were increased when chGSK3β expression was knocked down using small interfering RNA (siRNA), which also inhibited the replication of ALV-J. These results suggest that chGSK3β plays an important role in the antiviral innate immune response in DF-1 cells, and it will be valuable to carry out further studies on the biological functions of chGSK3β. IMPORTANCE GSK3β regulates many life activities in mammals. Recent studies revealed that chGSK3β was involved in regulating antiviral innate immunity in DF-1 cells and also could positively regulate ALV-J replication. These results provide new insights into the biofunction of chGSK3β and the virus-host interactions of ALV-J. In addition, this study provides a basis for further research on the function of GSK3 in poultry.
Collapse
Affiliation(s)
- Zhouhao Cui
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Bei Weng
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey, United Kingdom
| | - Hongxia Shao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jianqiang Ye
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Aijian Qin
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Kun Qian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
26
|
Johnson AM, Lukens JR. The innate immune response in tauopathies. Eur J Immunol 2023; 53:e2250266. [PMID: 36932726 PMCID: PMC10247424 DOI: 10.1002/eji.202250266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Tauopathies, which include frontotemporal dementia, Alzheimer's disease, and chronic traumatic encephalopathy, are a class of neurological disorders resulting from pathogenic tau aggregates. These aggregates disrupt neuronal health and function leading to the cognitive and physical decline of tauopathy patients. Genome-wide association studies and clinical evidence have brought to light the large role of the immune system in inducing and driving tau-mediated pathology. More specifically, innate immune genes are found to harbor tauopathy risk alleles, and innate immune pathways are upregulated throughout the course of disease. Experimental evidence has expanded on these findings by describing pivotal roles for the innate immune system in the regulation of tau kinases and tau aggregates. In this review, we summarize the literature implicating innate immune pathways as drivers of tauopathy.
Collapse
Affiliation(s)
- Alexis M. Johnson
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
- BIG Training Graduate Program, UVA, Charlottesville, VA 22908, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
- BIG Training Graduate Program, UVA, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Marizzoni M, Mirabelli P, Mombelli E, Coppola L, Festari C, Lopizzo N, Luongo D, Mazzelli M, Naviglio D, Blouin JL, Abramowicz M, Salvatore M, Pievani M, Cattaneo A, Frisoni GB. A peripheral signature of Alzheimer's disease featuring microbiota-gut-brain axis markers. Alzheimers Res Ther 2023; 15:101. [PMID: 37254223 PMCID: PMC10230724 DOI: 10.1186/s13195-023-01218-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/21/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Increasing evidence links the gut microbiota (GM) to Alzheimer's disease (AD) but the mechanisms through which gut bacteria influence the brain are still unclear. This study tests the hypothesis that GM and mediators of the microbiota-gut-brain axis (MGBA) are associated with the amyloid cascade in sporadic AD. METHODS We included 34 patients with cognitive impairment due to AD (CI-AD), 37 patients with cognitive impairment not due to AD (CI-NAD), and 13 cognitively unimpaired persons (CU). We studied the following systems: (1) fecal GM, with 16S rRNA sequencing; (2) a panel of putative MGBA mediators in the blood including immune and endothelial markers as bacterial products (i.e., lipopolysaccharide, LPS), cell adhesion molecules (CAMs) indicative of endothelial dysfunction (VCAM-1, PECAM-1), vascular changes (P-, E-Selectin), and upregulated after infections (NCAM, ICAM-1), as well as pro- (IL1β, IL6, TNFα, IL18) and anti- (IL10) inflammatory cytokines; (3) the amyloid cascade with amyloid PET, plasma phosphorylated tau (pTau-181, for tau pathology), neurofilament light chain (NfL, for neurodegeneration), and global cognition measured using MMSE and ADAScog. We performed 3-group comparisons of markers in the 3 systems and calculated correlation matrices for the pooled group of CI-AD and CU as well as CI-NAD and CU. Patterns of associations based on Spearman's rho were used to validate the study hypothesis. RESULTS CI-AD were characterized by (1) higher abundance of Clostridia_UCG-014 and decreased abundance of Moryella and Blautia (p < .04); (2) elevated levels of LPS (p < .03), upregulation of CAMs, Il1β, IL6, and TNFα, and downregulation of IL10 (p < .05); (3) increased brain amyloid, plasma pTau-181, and NfL (p < 0.004) compared with the other groups. CI-NAD showed (1) higher abundance of [Eubacterium] coprostanoligenes group and Collinsella and decreased abundance of Lachnospiraceae_ND3007_group, [Ruminococcus]_gnavus_group and Oscillibacter (p < .03); (2) upregulation of PECAM-1 and TNFα (p < .03); (4) increased plasma levels of NfL (p < .02) compared with CU. Different GM genera were associated with immune and endothelial markers in both CI-NAD and CI-AD but these mediators were widely related to amyloid cascade markers only in CI-AD. CONCLUSIONS Specific bacterial genera are associated with immune and endothelial MGBA mediators, and these are associated with amyloid cascade markers in sporadic AD. The physiological mechanisms linking the GM to the amyloid cascade should be further investigated to elucidate their potential therapeutic implications.
Collapse
Affiliation(s)
- Moira Marizzoni
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy.
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy.
| | | | - Elisa Mombelli
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | | | - Cristina Festari
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Nicola Lopizzo
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Delia Luongo
- Istituto Di Biostrutture E Bioimmagini (I.B.B.) - CNR, Naples, Italy
| | - Monica Mazzelli
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Daniele Naviglio
- Dip.to Di Scienze Chimiche, Università Degli Studi Di Napoli - Federico II, Naples, Italy
| | - Jean-Louis Blouin
- Genetic Medicine Division, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Marc Abramowicz
- Genetic Medicine Division, University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Michela Pievani
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Annamaria Cattaneo
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giovanni B Frisoni
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Engler-Chiurazzi EB, Russell AE, Povroznik JM, McDonald KO, Porter KN, Wang DS, Hammock J, Billig BK, Felton CC, Yilmaz A, Schreurs BG, O'Callaghan JD, Zwezdaryk KJ, Simpkins JW. Intermittent systemic exposure to lipopolysaccharide-induced inflammation disrupts hippocampal long-term potentiation and impairs cognition in aging male mice. Brain Behav Immun 2023; 108:279-291. [PMID: 36549577 PMCID: PMC10019559 DOI: 10.1016/j.bbi.2022.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related cognitive decline, a common component of the brain aging process, is associated with significant impairment in daily functioning and quality of life among geriatric adults. While the complexity of mechanisms underlying cognitive aging are still being elucidated, microbial exposure and the multifactorial inflammatory cascades associated with systemic infections are emerging as potential drivers of neurological senescence. The negative cognitive and neurobiological consequences of a single pathogen-associated inflammatory experience, such as that modeled through treatment with lipopolysaccharide (LPS), are well documented. Yet, the brain aging impacts of repeated, intermittent inflammatory challenges are less well studied. To extend the emerging literature assessing the impact of infection burden on cognitive function among normally aging mice, here, we repeatedly exposed adult mice to intermittent LPS challenges during the aging period. Male 10-month-old C57BL6 mice were systemically administered escalating doses of LPS once every two weeks for 2.5 months. We evaluated cognitive consequences using the non-spatial step-through inhibitory avoidance task, and both spatial working and reference memory versions of the Morris water maze. We also probed several potential mechanisms, including cortical and hippocampal cytokine/chemokine gene expression, as well as hippocampal neuronal function via extracellular field potential recordings. Though there was limited evidence for an ongoing inflammatory state in cortex and hippocampus, we observed impaired learning and memory and a disruption of hippocampal long-term potentiation. These data suggest that a history of intermittent exposure to LPS-induced inflammation is associated with subtle but significantly impaired cognition among normally aging mice. The broader impact of these findings may have important implications for standard of care involving infections in aging individuals or populations at-risk for dementia.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA; Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA.
| | - A E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA; Magee Women's Research Institute, Allied Member, Pittsburgh, PA 15213, USA
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - K O McDonald
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - K N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - D S Wang
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J Hammock
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - B K Billig
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - C C Felton
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - A Yilmaz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - B G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| | - J D O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - K J Zwezdaryk
- Department of Microbiology and Immunology, Tulane Brain Institute, Tulane University, New Orleans, LA 70114, USA
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
29
|
Kalyan M, Tousif AH, Sonali S, Vichitra C, Sunanda T, Praveenraj SS, Ray B, Gorantla VR, Rungratanawanich W, Mahalakshmi AM, Qoronfleh MW, Monaghan TM, Song BJ, Essa MM, Chidambaram SB. Role of Endogenous Lipopolysaccharides in Neurological Disorders. Cells 2022; 11:cells11244038. [PMID: 36552802 PMCID: PMC9777235 DOI: 10.3390/cells11244038] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide (LPS) is a cell-wall immunostimulatory endotoxin component of Gram-negative bacteria. A growing body of evidence reveals that alterations in the bacterial composition of the intestinal microbiota (gut dysbiosis) disrupt host immune homeostasis and the intestinal barrier function. Microbial dysbiosis leads to a proinflammatory milieu and systemic endotoxemia, which contribute to the development of neurodegenerative diseases and metabolic disorders. Two important pathophysiological hallmarks of neurodegenerative diseases (NDDs) are oxidative/nitrative stress and inflammation, which can be initiated by elevated intestinal permeability, with increased abundance of pathobionts. These changes lead to excessive release of LPS and other bacterial products into blood, which in turn induce chronic systemic inflammation, which damages the blood-brain barrier (BBB). An impaired BBB allows the translocation of potentially harmful bacterial products, including LPS, and activated neutrophils/leucocytes into the brain, which results in neuroinflammation and apoptosis. Chronic neuroinflammation causes neuronal damage and synaptic loss, leading to memory impairment. LPS-induced inflammation causes inappropriate activation of microglia, astrocytes, and dendritic cells. Consequently, these alterations negatively affect mitochondrial function and lead to increases in oxidative/nitrative stress and neuronal senescence. These cellular changes in the brain give rise to specific clinical symptoms, such as impairment of locomotor function, muscle weakness, paralysis, learning deficits, and dementia. This review summarizes the contributing role of LPS in the development of neuroinflammation and neuronal cell death in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjunath Kalyan
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ahmed Hediyal Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Sankar Simla Praveenraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Vasavi Rakesh Gorantla
- Department of Anatomical sciences, School of Medicine, St. George’s University Grenada, West Indies FZ818, Grenada
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research & Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917, USA
- 21 Health Street, Consulting Services, 1 Christian Fields, London SW16 3JY, UK
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Correspondence: (B.-J.S.); (M.M.E.); (S.B.C.)
| |
Collapse
|
30
|
Green R, Mayilsamy K, McGill AR, Martinez TE, Chandran B, Blair LJ, Bickford PC, Mohapatra SS, Mohapatra S. SARS-CoV-2 infection increases the gene expression profile for Alzheimer's disease risk. Mol Ther Methods Clin Dev 2022; 27:217-229. [PMID: 36187720 PMCID: PMC9508696 DOI: 10.1016/j.omtm.2022.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 02/02/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused over 600,000,000 infections globally thus far. Up to 30% of individuals with mild to severe disease develop long COVID, exhibiting diverse neurologic symptoms including dementias. However, there is a paucity of knowledge of molecular brain markers and whether these can precipitate the onset of Alzheimer's disease (AD). Herein, we report the brain gene expression profiles of severe COVID-19 patients showing increased expression of innate immune response genes and genes implicated in AD pathogenesis. The use of a mouse-adapted strain of SARS-CoV-2 (MA10) in an aged mouse model shows evidence of viral neurotropism, prolonged viral infection, increased expression of tau aggregator FKBP51, interferon-inducible gene Ifi204, and complement genes C4 and C5AR1. Brain histopathology shows AD signatures including increased tau-phosphorylation, tau-oligomerization, and α-synuclein expression in aged MA10 infected mice. The results of gene expression profiling of SARS-CoV-2-infected and AD brains and studies in the MA10 aged mouse model taken together, for the first time provide evidence suggesting that SARS-CoV-2 infection alters expression of genes in the brain associated with the development of AD. Future studies of common molecular markers in SARS-CoV-2 infection and AD could be useful for developing novel therapies targeting AD.
Collapse
Affiliation(s)
- Ryan Green
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Taylor E. Martinez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Bala Chandran
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Byrd Alzheimer’s Research Institute, University of South Florida, Tampa, FL 33613, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Paula C. Bickford
- Center of Excellence for Aging and Brain Repair, Departments of Neurosurgery and Brain Repair, and Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, FL 33613, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Shyam S. Mohapatra
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| |
Collapse
|
31
|
Alipour M, Tebianian M, Tofigh N, Taheri RS, Mousavi SA, Naseri A, Ahmadi A, Munawar N, Shahpasand K. Active immunotherapy against pathogenic Cis pT231-tau suppresses neurodegeneration in traumatic brain injury mouse models. Neuropeptides 2022; 96:102285. [PMID: 36087426 DOI: 10.1016/j.npep.2022.102285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Traumatic brain injury (TBI), characterized by acute neurological impairment, is associated with a higher incidence of neurodegenerative diseases, particularly chronic traumatic encephalopathy (CTE), Alzheimer's disease (AD), and Parkinson's disease (PD), whose hallmarks include hyperphosphorylated tau protein. Recently, phosphorylated tau at Thr231 has been shown to exist in two distinct cis and trans conformations. Moreover, targeted elimination of cis P-tau by passive immunotherapy with an appropriate mAb that efficiently suppresses tau-mediated neurodegeneration in severe TBI mouse models has proven to be a useful tool to characterize the neurotoxic role of cis P-tau as an early driver of the tauopathy process after TBI. Here, we investigated whether active immunotherapy can develop sufficient neutralizing antibodies to specifically target and eliminate cis P-tau in the brain of TBI mouse models. First, we explored the therapeutic efficacy of two different vaccines. C57BL/6 J mice were immunized with either cis or trans P-tau conformational peptides plus adjuvant. After rmTBI in mice, we found that cis peptide administration developed a specific Ab that precisely targeted and neutralized cis P-tau, inhibited the development of neuropathology and brain dysfunction, and restored various structural and functional sequelae associated with TBI in chronic phases. In contrast, trans P-tau peptide application not only lacked neuroprotective properties, but also contributed to a number of neuropathological features, including progressive TBI-induced neuroinflammation, widespread tau-mediated neurodegeneration, worsening functional deficits, and brain atrophy. Taken together, our results suggest that active immunotherapy strategies against pathogenic cis P-tau can halt the process of tauopathy and would have profound clinical implications.
Collapse
Affiliation(s)
- Masoume Alipour
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Faculty of Basic Science and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
| | - Majid Tebianian
- Biotechnology Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Nahid Tofigh
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reyhaneh Sadat Taheri
- Department of Motor Behavior, Faculty of Physical Education and Sport Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Sayed Alireza Mousavi
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Asal Naseri
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amin Ahmadi
- Department of Biomedical Sciences, Tabriz Medical University, Tabriz, Iran
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, United Arab Emirates
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
32
|
De Vlieger L, Vandenbroucke RE, Van Hoecke L. Recent insights into viral infections as a trigger and accelerator in alzheimer's disease. Drug Discov Today 2022; 27:103340. [PMID: 35987492 PMCID: PMC9385395 DOI: 10.1016/j.drudis.2022.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which only symptomatic medication is available, except for the recently FDA-approved aducanumab. This lack of effective treatment urges us to investigate alternative paths that might contribute to disease development. In light of the recent SARS-CoV-2 pandemic and the disturbing neurological complications seen in some patients, it is desirable to (re)investigate the viability of the viral infection theory claiming that a microbe could affect AD initiation and/or progression. Here, we review the most important evidence for this theory with a special focus on two viruses, namely HSV-1 and SARS-CoV-2. Moreover, we discuss the possible involvement of extracellular vesicles (EVs). This overview will contribute to a more rational approach of potential treatment strategies for AD patients.
Collapse
Affiliation(s)
- Lize De Vlieger
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Lien Van Hoecke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Padovani A, Canale A, Schiavon L, Masciocchi S, Imarisio A, Risi B, Bonzi G, De Giuli V, Di Luca M, Ashton NJ, Blennow K, Zetterberg H, Pilotto A. Is amyloid involved in acute neuroinflammation? A CSF analysis in encephalitis. Alzheimers Dement 2022; 18:2167-2175. [PMID: 35084105 PMCID: PMC9787884 DOI: 10.1002/alz.12554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Several investigations have argued for a strong relationship between neuroinflammation and amyloid metabolism but it is still unclear whether inflammation exerts a pro-amyloidogenic effect, amplifies the neurotoxic effect of amyloid, or is protective. METHODS Forty-two patients with acute encephalitis (ENC) and 18 controls underwent an extended cerebrospinal fluid (CSF) panel of inflammatory, amyloid (Aβ40, 42, and 38, sAPP-α, sAPP-β), glial, and neuronal biomarkers. Linear and non-linear correlations between CSF biomarkers were evaluated studying conditional independence relationships. RESULTS CSF levels of inflammatory cytokines and neuronal/glial markers were higher in ENC compared to controls, whereas the levels of amyloid-related markers did not differ. Inflammatory markers were not associated with amyloid markers but exhibited a correlation with glial and neuronal markers in conditional independence analysis. DISCUSSION By an extensive CSF biomarkers analysis, this study showed that an acute neuroinflammation state, which is associated with glial activation and neuronal damage, does not influence amyloid homeostasis.
Collapse
Affiliation(s)
- Alessandro Padovani
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Antonio Canale
- Department of Statistical SciencesUniversity of PadovaPadovaItaly
| | - Lorenzo Schiavon
- Department of Statistical SciencesUniversity of PadovaPadovaItaly
| | - Stefano Masciocchi
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Alberto Imarisio
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Barbara Risi
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Giulio Bonzi
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | | | - Monica Di Luca
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden,Institute of PsychiatryPsychology and NeuroscienceMaurice Wohl Institute Clinical Neuroscience InstituteKing's College LondonLondonUK,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS FoundationLondonUK
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,Department of Neurodegenerative DiseasesUCL Institute of NeurologyLondonUK,UK Dementia Research Institute at UCLLondonUK
| | - Andrea Pilotto
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| |
Collapse
|
34
|
Zia N, Ravanfar P, Allahdadian S, Ghasemi M. Impact of COVID-19 on Neuropsychiatric Disorders. J Clin Med 2022; 11:5213. [PMID: 36079143 PMCID: PMC9456667 DOI: 10.3390/jcm11175213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Since the Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many studies have shown that besides common COVID-19 symptoms, patients may develop various neuropsychiatric conditions including anxiety, mood disorders, psychosis, neurodegenerative diseases (e.g., dementia), insomnia, and even substance abuse disorders. COVID-19 can also worsen the patients underlying neuropsychiatric and neurodevelopmental conditions during or after the system phase of disease. In this review, we discuss the impact of SARS-CoV-2 infection on development or status of neuropsychiatric conditions during or following COVID-19.
Collapse
Affiliation(s)
- Niloufar Zia
- Department of Psychology, Lesley University, Cambridge, MA 02138, USA
| | - Parsa Ravanfar
- Department of Psychiatry, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Sepideh Allahdadian
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
35
|
Gut Microbiome and Mycobiome Alterations in an In Vivo Model of Alzheimer’s Disease. Genes (Basel) 2022; 13:genes13091564. [PMID: 36140732 PMCID: PMC9498768 DOI: 10.3390/genes13091564] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Gut microbiota has emerged as an important key regulator of health and disease status. Indeed, gut microbial dysbiosis has been identified in an increasing number of diseases, including neurodegenerative disorders. Accordingly, microbial alterations have been reported also in Alzheimer’s disease (AD), suggesting possible pathogenetic mechanisms contributing to the development of specific AD hallmarks and exacerbating metabolic alterations and neuroinflammation. The identification of these mechanisms is crucial to develop novel, targeted therapies and identify potential biomarkers for diagnostic purposes. Thus, the possibility to have AD in vivo models to study this microbial ecosystem represents a great opportunity for translational applications. Here, we characterized both gut microbiome and mycobiome of 3xTg-AD mice, one of the most widely used AD models, to identify specific microbial alterations with respect to the wild-type counterpart. Interestingly, we found a significant reduction of the Coprococcus and an increased abundance of Escherichia_Shigella and Barnesiella genera in the AD mice compatible with a pro-inflammatory status and the development of AD-related pathogenetic features. Moreover, the fungal Dipodascaceae family was significantly increased, thus suggesting a possible contribution to the metabolic alterations found in AD. Our data point out the strict connection between bacterial dysbiosis and AD and, even if further studies are required to clarify the underlining mechanisms, it clearly indicates the need for extensive metagenomic studies over the bacterial counterpart.
Collapse
|
36
|
Mesmoudi S, Lapina C, Rodic M, Peschanski D. Multi-Data Integration Towards a Global Understanding of the Neurological Impact of Human Brain Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Front Integr Neurosci 2022; 16:756604. [PMID: 35910337 PMCID: PMC9326261 DOI: 10.3389/fnint.2022.756604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
As the COVID-19 pandemic continues to unfold, numerous neurological symptoms emerge. The literature reports more and more manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) related to headache, dizziness, impaired consciousness, cognitive impairment, and motor disorders. Moreover, the infection of SARS-CoV-2 may have a durable neurological impact. ACE2/TMPRSS2 is the main entry point into cells for some strains of coronaviruses (CoVs), including SARS-CoV-2, which uses it to target the central nervous system (CNS). The aim of this study was to characterize the scope of the potential complex impact of a SARS-CoV-2 infection in the brain. It concerns different scales: the topographic, cognitive, sensorimotor, and genetic one. We investigated which cognitive and sensorimotor functions are associated with the brain regions where ACE2/TMPRSS2 is overexpressed, hypothesising that they might be particularly affected by the infection. Furthermore, overexpressed genes in these regions are likely to be impacted by COVID-19. This general understanding is crucial to establish the potential neurological manifestations of the infection. Data on mRNA expression levels of genes were provided by the Allen Institute for Brain Science (AIBS), and the localisation of brain functions by the LinkRbrain platform. The latter was also used to analyze the spatial overlap between ACE2/TMPRSS2 overexpression, and either function-specific brain activations or regional overexpression of other genes. The characterisation of these overexpressed genes was based on the GeneCards platform and the gene GSE164332 from the Gene Expression Omnibus database. We analysed the cognitive and sensorimotor functions whose role might be impaired, of which 88 have been categorised into seven groups: memory and recollection, motor function, pain, lucidity, emotion, sensory, and reward. Furthermore, we categorised the genes showing a significant increase in concentration of their mRNAs in the same regions where ACE2/TMPRSS2 mRNA levels are the highest. Eleven groups emerged from a bibliographical research: neurodegenerative disease, immunity, inflammation, olfactory receptor, cancer/apoptosis, executive function, senses, ischemia, motor function, myelination, and dependence. The results of this exploration could be in relation to the neurological symptoms of COVID-19. Furthermore, some genes from peripheral blood are already considered as biomarker of COVID-19. This method could generate new hypotheses to explore the neurological manifestations of COVID-19.
Collapse
Affiliation(s)
- Salma Mesmoudi
- Paris-1-Panthéon-Sorbonne University CESSP-UMR 8209, Paris, France
- French National Centre for Scientific Research (CNRS), Paris, France
- MATRICE Equipex, Seine-Saint-Denis, France
- Complex Systems Institute Paris Île-de-France, Paris, France
| | - Colline Lapina
- French National Centre for Scientific Research (CNRS), Paris, France
- MATRICE Equipex, Seine-Saint-Denis, France
- Complex Systems Institute Paris Île-de-France, Paris, France
- Graduate School of Cognitive Engineering (ENSC), Talence, France
| | | | - Denis Peschanski
- Paris-1-Panthéon-Sorbonne University CESSP-UMR 8209, Paris, France
- French National Centre for Scientific Research (CNRS), Paris, France
- MATRICE Equipex, Seine-Saint-Denis, France
| |
Collapse
|
37
|
Abstract
Systemic inflammation elicited by sepsis can induce an acute cerebral dysfunction known as sepsis-associated encephalopathy (SAE). Recent evidence suggests that SAE is common but shows a dynamic trajectory over time. Half of all patients with sepsis develop SAE in the intensive care unit, and some survivors present with sustained cognitive impairments for several years after initial sepsis onset. It is not clear why some, but not all, patients develop SAE and also the factors that determine the persistence of SAE. Here, we first summarize the chronic pathology and the dynamic changes in cognitive functions seen after the onset of sepsis. We then outline the cerebral effects of sepsis, such as neuroinflammation, alterations in neuronal synapses and neurovascular changes. We discuss the key factors that might contribute to the development and persistence of SAE in older patients, including premorbid neurodegenerative pathology, side effects of sedatives, renal dysfunction and latent virus reactivation. Finally, we postulate that some of the mechanisms that underpin neuropathology in SAE may also be relevant to delirium and persisting cognitive impairments that are seen in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tatsuya Manabe
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
38
|
Targeting Microglia in Alzheimer’s Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules 2022; 27:molecules27134124. [PMID: 35807370 PMCID: PMC9268715 DOI: 10.3390/molecules27134124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a common, progressive, and devastating neurodegenerative disorder that mainly affects the elderly. Microglial dysregulation, amyloid-beta (Aβ) plaques, and intracellular neurofibrillary tangles play crucial roles in the pathogenesis of AD. In the brain, microglia play roles as immune cells to provide protection against virus injuries and diseases. They have significant contributions in the development of the brain, cognition, homeostasis of the brain, and plasticity. Multiple studies have confirmed that uncontrolled microglial function can result in impaired microglial mitophagy, induced Aβ accumulation and tau pathology, and a chronic neuroinflammatory environment. In the brain, most of the genes that are associated with AD risk are highly expressed by microglia. Although it was initially regarded that microglia reaction is incidental and induced by dystrophic neurites and Aβ plaques. Nonetheless, it has been reported by genome-wide association studies that most of the risk loci for AD are located in genes that are occasionally uniquely and highly expressed in microglia. This finding further suggests that microglia play significant roles in early AD stages and they be targeted for the development of novel therapeutics. In this review, we have summarized the molecular pathogenesis of AD, microglial activities in the adult brain, the role of microglia in the aging brain, and the role of microglia in AD. We have also particularly focused on the significance of targeting microglia for the treatment of AD.
Collapse
|
39
|
Neuroprotective Effect of Bcl-2 on Lipopolysaccharide-Induced Neuroinflammation in Cortical Neural Stem Cells. Int J Mol Sci 2022; 23:ijms23126399. [PMID: 35742844 PMCID: PMC9223771 DOI: 10.3390/ijms23126399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of neurodegenerative diseases due to increased levels of pro-inflammatory cytokines in the central nervous system (CNS). Chronic neuroinflammation induced by neurotoxic molecules accelerates neuronal damage. B-cell lymphoma 2 (Bcl-2) is generally accepted to be an important anti-apoptotic factor. However, the role of Bcl-2 in neuroprotection against neuroinflammation remains to be determined. The purpose of this study was to investigate the neuroprotective effect of Bcl-2 on lipopolysaccharide (LPS)-induced neuroinflammation in cortical neural stem cells (NSCs). LPS decreased mRNA and protein levels of Tuj-1, a neuron marker, and also suppressed neurite outgrowth, indicating that LPS results in inhibition of neuronal differentiation of NSCs. Furthermore, LPS treatment inhibited Bcl-2 expression during neuronal differentiation; inhibition of neuronal differentiation by LPS was rescued by Bcl-2 overexpression. LPS-induced pro-inflammatory cytokines, including interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), were decreased by Bcl-2 overexpression. Conversely, Bcl-2 siRNA increased the LPS-induced levels of IL-6 and TNF-α, and decreased neuronal differentiation of NSCs, raising the possibility that Bcl-2 mediates neuronal differentiation by inhibiting the LPS-induced inflammatory response in NSC. These results suggest that Bcl-2 has a neuroprotective effect by inhibiting the LPS-induced inflammatory response in NSCs.
Collapse
|
40
|
Autoimmune Effect of Antibodies against the SARS-CoV-2 Nucleoprotein. Viruses 2022; 14:v14061141. [PMID: 35746613 PMCID: PMC9228376 DOI: 10.3390/v14061141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 is continuing to spread around the world and drastically affect our daily life. New strains appear, and the severity of the course of the disease itself seems to be decreasing, but even people who have been ill on an outpatient basis suffer post-COVID consequences. Partly, it is associated with the autoimmune reactions, so debates about the development of new vaccines and the need for vaccination/revaccination continue. In this study we performed an analysis of the antibody response of patients with COVID-19 to linear and conformational epitopes of viral proteins using ELISA, chip array and western blot with analysis of correlations between antibody titer, disease severity, and complications. We have shown that the presence of IgG antibodies to the nucleoprotein can deteriorate the course of the disease, induce multiple direct COVID-19 symptoms, and contribute to long-term post-covid symptoms. We analyzed the cross reactivity of antibodies to SARS-CoV-2 with own human proteins and showed that antibodies to the nucleocapsid protein can bind to human proteins. In accordance with the possibility of HLA presentation, the main possible targets of the autoantibodies were identified. People with HLA alleles A01:01; A26:01; B39:01; B15:01 are most susceptible to the development of autoimmune processes after COVID-19.
Collapse
|
41
|
Baazaoui N, Iqbal K. COVID-19 and Neurodegenerative Diseases: Prion-Like Spread and Long-Term Consequences. J Alzheimers Dis 2022; 88:399-416. [DOI: 10.3233/jad-220105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
COVID-19 emerged as a global pandemic starting from Wuhan in China and spread at a lightning speed to the rest of the world. One of the potential long-term outcomes that we speculate is the development of neurodegenerative diseases as a long-term consequence of SARS-CoV-2 especially in people that have developed severe neurological symptoms. Severe inflammatory reactions and aging are two very strong common links between neurodegenerative diseases and COVID-19. Thus, patients that have very high viral load may be at high risk of developing long-term adverse neurological consequences such as dementia. We hypothesize that people with neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and aged people are at higher risk of getting the COVID-19 than normal adults. The basis of this hypothesis is the fact that SARS-CoV-2 uses as a receptor angiotensin-converting enzyme 2 to enter the host cell and that this interaction is calcium-dependent. This could then suggest a direct relationship between neurodegenerative diseases, ACE-2 expression, and the susceptibility to COVID-19. The analysis of the available literature showed that COVID-19 virus is neurotropic and was found in the brains of patients infected with this virus. Furthermore, that the risk of having the infection increases with dementia and that infected people with severe symptoms could develop dementia as a long-term consequence. Dementia could be developed following the acceleration of the spread of prion-like proteins. In the present review we discuss current reports concerning the prevalence of COVID-19 in dementia patients, the individuals that are at high risk of suffering from dementia and the potential acceleration of prion-like proteins spread following SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
42
|
Constant O, Maarifi G, Blanchet FP, Van de Perre P, Simonin Y, Salinas S. Role of Dendritic Cells in Viral Brain Infections. Front Immunol 2022; 13:862053. [PMID: 35529884 PMCID: PMC9072653 DOI: 10.3389/fimmu.2022.862053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
To gain access to the brain, a so-called immune-privileged organ due to its physical separation from the blood stream, pathogens and particularly viruses have been selected throughout evolution for their use of specific mechanisms. They can enter the central nervous system through direct infection of nerves or cerebral barriers or through cell-mediated transport. Indeed, peripheral lymphoid and myeloid immune cells can interact with the blood-brain and the blood-cerebrospinal fluid barriers and allow viral brain access using the "Trojan horse" mechanism. Among immune cells, at the frontier between innate and adaptive immune responses, dendritic cells (DCs) can be pathogen carriers, regulate or exacerbate antiviral responses and neuroinflammation, and therefore be involved in viral transmission and spread. In this review, we highlight an important contribution of DCs in the development and the consequences of viral brain infections.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Fabien P. Blanchet
- Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France
| |
Collapse
|
43
|
Schütze S, Döpke A, Kellert B, Seele J, Ballüer M, Bunkowski S, Kreutzfeldt M, Brück W, Nau R. Intracerebral Infection with E. coli Impairs Spatial Learning and Induces Necrosis of Hippocampal Neurons in the Tg2576 Mouse Model of Alzheimer’s Disease. J Alzheimers Dis Rep 2022; 6:101-114. [PMID: 35530117 PMCID: PMC9028720 DOI: 10.3233/adr-210049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background: In patients with Alzheimer’s disease (AD), bacterial infections are often associated with a cognitive decline. Animal models of genuine acute infections with viable bacteria which induce deterioration of neurodegenerative diseases are missing. Objective: We assessed the effect of an intracerebral infection with E. coli in a mouse model of AD. Methods: 13-month-old Tg2576 +/- mice and transgene negative littermates (Tg2576 -/-) received an intracerebral injection with E. coli K1 or saline followed by treatment with ceftriaxone starting 41 h post infection (p.i.) for 5 days. For 4 weeks, mice were monitored for clinical status, weight, motor functions, and neuropsychological status using the Morris water maze. ELISAs, stainings, and immunohistochemistry in brains were performed at the end of the experiment. Results: Mortality of the infection was approximately 20%. After 4 weeks, spatial learning of infected Tg2576 +/- mice was compromised compared to non-infected Tg2576 +/- mice (p < 0.05). E. coli infection did not influence spatial learning in Tg2576 -/- mice, or spatial memory in both Tg2576 +/- and -/- mice within 4 weeks p.i.. Necrosis of hippocampal neurons was induced in infected compared to non-infected Tg2576 +/- mice 4 weeks p.i., whereas brain concentrations of Aβ1–40, Aβ1–42, and phosphoTau as well as axonal damage and microglia density were not altered. Conclusion: Here, we proved in principle that a genuine acute bacterial infection can worsen cognitive functions of AD mice. Mouse models of subacute systemic infections are needed to develop new strategies for the treatment of bacterial infections in patients with AD in order to minimize their cognitive decline.
Collapse
Affiliation(s)
- Sandra Schütze
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Geriatrics, Neurogeriatric Section, AGAPLESION Frankfurter Diakonie Kliniken, Frankfurt, Germany
| | - Anika Döpke
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Benedikt Kellert
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Seele
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Melissa Ballüer
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie Bunkowski
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mario Kreutzfeldt
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Pathology and Immunology, University of Geneva and Division of Clinical Pathology, Geneva University Hospital, Centre Médical Universitaire, Geneva, Switzerland
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
44
|
Tang Z, Cheng X, Su X, Wu L, Cai Q, Wu H. Treponema denticola Induces Alzheimer-Like Tau Hyperphosphorylation by Activating Hippocampal Neuroinflammation in Mice. J Dent Res 2022; 101:992-1001. [PMID: 35193423 DOI: 10.1177/00220345221076772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Tau hyperphosphorylation and amyloid β (Aβ) deposition are the key pathological hallmarks of AD. Recent studies have shown that periodontitis is a significant risk factor for AD. The periodontal pathogen Porphyromonas gingivalis and its virulence factors have been shown to initiate and promote the hallmark pathologies and behavioral symptoms of AD. A possible link between Treponema denticola, another main periodontal pathogen, and AD has been reported. However, the role of T. denticola in AD pathogenesis is still unclear, and whether T. denticola and P. gingivalis exert a synergistic effect to promote AD development needs to be further studied. In this study, we investigated whether oral infection with T. denticola caused tau hyperphosphorylation in the hippocampi of mice and explored the underlying mechanisms. Orally administered T. denticola induced alveolar bone resorption, colonized brain tissues, and increased the activity of the phosphokinase GSK3β by activating neuroinflammation in the hippocampus, thus promoting the hyperphosphorylation of the tau protein at Ser396, Thr181, and Thr231 in mice. An in vitro study with BV2 and N2a cell models of T. denticola invasion also verified the role of this pathogen in tau phosphorylation. T. denticola and P. gingivalis were not found to exert a synergistic effect on tau phosphorylation. In summary, these findings provide new insight into the important role of T. denticola in AD pathogenesis, providing biological connections between periodontal diseases and AD.
Collapse
Affiliation(s)
- Z Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Hulse J, Bhaskar K. Crosstalk Between the NLRP3 Inflammasome/ASC Speck and Amyloid Protein Aggregates Drives Disease Progression in Alzheimer's and Parkinson's Disease. Front Mol Neurosci 2022; 15:805169. [PMID: 35185469 PMCID: PMC8850380 DOI: 10.3389/fnmol.2022.805169] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Two key pathological hallmarks of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are the accumulation of misfolded protein aggregates and the chronic progressive neuroinflammation that they trigger. Numerous original research and reviews have provided a comprehensive understanding of how aggregated proteins (amyloid β, pathological tau, and α-synuclein) contribute to the disease, including driving sterile inflammation, in part, through the aggregation of multi-protein inflammasome complexes and the ASC speck [composed of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3), Apoptosis-associated speck-like protein containing a C-terminal caspase activation and recruitment domain (ASC), and inflammatory caspase-1] involved in innate immunity. Here, we provide a unique perspective on the crosstalk between the aggregation-prone proteins involved in AD/PD and the multi-protein inflammasome complex/ASC speck that fuels feed-forward exacerbation of each other, driving neurodegeneration. Failed turnover of protein aggregates (both AD/PD related aggregates and the ASC speck) by protein degradation pathways, prionoid propagation of inflammation by the ASC speck, cross-seeding of protein aggregation by the ASC speck, and pro-aggregatory cleavage of proteins by caspase-1 are some of the mechanisms that exacerbate disease progression. We also review studies that provide this causal framework and highlight how the ASC speck serves as a platform for the propagation and spreading of inflammation and protein aggregation that drives AD and PD.
Collapse
Affiliation(s)
- Jonathan Hulse
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, United States
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, United States,Department of Neurology, University of New Mexico, Albuquerque, NM, United States,*Correspondence: Kiran Bhaskar,
| |
Collapse
|
46
|
Spiteri AG, Wishart CL, Pamphlett R, Locatelli G, King NJC. Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol 2022; 143:179-224. [PMID: 34853891 PMCID: PMC8742818 DOI: 10.1007/s00401-021-02384-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from, or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in disease that could be targeted therapeutically.
Collapse
|
47
|
Bigley TM, Xiong M, Ali M, Chen Y, Wang C, Serrano JR, Eteleeb A, Harari O, Yang L, Patel SJ, Cruchaga C, Yokoyama WM, Holtzman DM. Murine roseolovirus does not accelerate amyloid-β pathology and human roseoloviruses are not over-represented in Alzheimer disease brains. Mol Neurodegener 2022; 17:10. [PMID: 35033173 PMCID: PMC8760754 DOI: 10.1186/s13024-021-00514-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The role of viral infection in Alzheimer Disease (AD) pathogenesis is an area of great interest in recent years. Several studies have suggested an association between the human roseoloviruses, HHV-6 and HHV-7, and AD. Amyloid-β (Aβ) plaques are a hallmark neuropathological finding of AD and were recently proposed to have an antimicrobial function in response to infection. Identifying a causative and mechanistic role of human roseoloviruses in AD has been confounded by limitations in performing in vivo studies. Recent -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Murine roseolovirus (MRV) is a natural murine pathogen that is highly-related to the human roseoloviruses, providing an opportunity to perform well-controlled studies of the impact of roseolovirus on Aβ deposition. METHODS We utilized the 5XFAD mouse model to test whether MRV induces Aβ deposition in vivo. We also evaluated viral load and neuropathogenesis of MRV infection. To evaluate Aβ interaction with MRV, we performed electron microscopy. RNA-sequencing of a cohort of AD brains compared to control was used to investigate the association between human roseolovirus and AD. RESULTS We found that 5XFAD mice were susceptible to MRV infection and developed neuroinflammation. Moreover, we demonstrated that Aβ interacts with viral particles in vitro and, subsequent to this interaction, can disrupt infection. Despite this, neither peripheral nor brain infection with MRV increased or accelerated Aβ plaque formation. Moreover, -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Our RNA-sequencing analysis of a cohort of AD brains compared to controls did not show an association between roseolovirus infection and AD. CONCLUSION Although MRV does infect the brain and cause transient neuroinflammation, our data do not support a role for murine or human roseoloviruses in the development of Aβ plaque formation and AD.
Collapse
Affiliation(s)
- Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Monica Xiong
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Division of Biology and Biomedical Sciences (DBBS), Washington University School of Medicine, St. Louis, MO 63110 USA
- Present address: Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Muhammad Ali
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
| | - Yun Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Division of Biology and Biomedical Sciences (DBBS), Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Javier Remolina Serrano
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Abdallah Eteleeb
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Oscar Harari
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Swapneel J. Patel
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Carlos Cruchaga
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
48
|
McFarland KN, Chakrabarty P. Microglia in Alzheimer's Disease: a Key Player in the Transition Between Homeostasis and Pathogenesis. Neurotherapeutics 2022; 19:186-208. [PMID: 35286658 PMCID: PMC9130399 DOI: 10.1007/s13311-021-01179-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Immune activation accompanies the development of proteinopathy in the brains of Alzheimer's dementia patients. Evolving from the long-held viewpoint that immune activation triggers the pathological trajectory in Alzheimer's disease, there is accumulating evidence now that microglial activation is neither pro-amyloidogenic nor just a simple reactive process to the proteinopathy. Preclinical studies highlight an interesting aspect of immunity, i.e., spurring immune system activity may be beneficial under certain circumstances. Indeed, a dynamic evolving relationship between different activation states of the immune system and its neuronal neighbors is thought to regulate overall brain organ health in both healthy aging and progression of Alzheimer's dementia. A new premise evolving from genome, transcriptome, and proteome data is that there might be at least two major phases of immune activation that accompany the pathological trajectory in Alzheimer's disease. Though activation on a chronic scale will certainly lead to neurodegeneration, this emerging knowledge of a potential beneficial aspect of immune activation allows us to form holistic insights into when, where, and how much immune system activity would need to be tuned to impact the Alzheimer's neurodegenerative cascade. Even with the trove of recently emerging -omics data from patients and preclinical models, how microglial phenotypes are functionally related to the transition of a healthy aging brain towards progressive degenerative state remains unknown. A deeper understanding of the synergism between microglial functional states and brain organ health could help us discover newer interventions and therapies that enable us to address the current paucity of disease-modifying therapies in Alzheimer's disease.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
49
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
50
|
Kim HS, Kim S, Shin SJ, Park YH, Nam Y, Kim CW, Lee KW, Kim SM, Jung ID, Yang HD, Park YM, Moon M. Gram-negative bacteria and their lipopolysaccharides in Alzheimer's disease: pathologic roles and therapeutic implications. Transl Neurodegener 2021; 10:49. [PMID: 34876226 PMCID: PMC8650380 DOI: 10.1186/s40035-021-00273-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most serious age-related neurodegenerative disease and causes destructive and irreversible cognitive decline. Failures in the development of therapeutics targeting amyloid-β (Aβ) and tau, principal proteins inducing pathology in AD, suggest a paradigm shift towards the development of new therapeutic targets. The gram-negative bacteria and lipopolysaccharides (LPS) are attractive new targets for AD treatment. Surprisingly, an altered distribution of gram-negative bacteria and their LPS has been reported in AD patients. Moreover, gram-negative bacteria and their LPS have been shown to affect a variety of AD-related pathologies, such as Aβ homeostasis, tau pathology, neuroinflammation, and neurodegeneration. Moreover, therapeutic approaches targeting gram-negative bacteria or gram-negative bacterial molecules have significantly alleviated AD-related pathology and cognitive dysfunction. Despite multiple evidence showing that the gram-negative bacteria and their LPS play a crucial role in AD pathogenesis, the pathogenic mechanisms of gram-negative bacteria and their LPS have not been clarified. Here, we summarize the roles and pathomechanisms of gram-negative bacteria and LPS in AD. Furthermore, we discuss the possibility of using gram-negative bacteria and gram-negative bacterial molecules as novel therapeutic targets and new pathological characteristics for AD.
Collapse
Affiliation(s)
- Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Chae Won Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Kang Won Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sung-Min Kim
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - In Duk Jung
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - Hyun Duk Yang
- Harvard Neurology Clinic, 294 Gwanggyojungang-ro, Suji-gu, Yongin, 16943, Republic of Korea.
| | - Yeong-Min Park
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea.
- Department of Immunology, School of Medicine, Konkuk University, 268, Chungwondaero, Chungju-si, Chungcheongbuk-do, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|