1
|
Michaelsen GL, de Sousa Monteiro T, Imparato DO, da Costa JVA, Silva DR, de Souza ID, da Ribeiro-Dantas MC, Cabral-Marques O, Sinigaglia M, Dalmolin RJS. Medulloblastoma's master regulators and their association with patients' risk. Sci Rep 2025; 15:16310. [PMID: 40348787 PMCID: PMC12065810 DOI: 10.1038/s41598-025-00763-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor, accounting for approximately 20% of all childhood brain tumors. Despite recent advances, current treatments like surgery, radiation, and chemotherapy still lead to severe side effects and high morbidity. Limited knowledge exists regarding the regulatory mechanisms behind the MB transcriptional alterations in high-aggressive subgroups like Group 3 and Group 4, hindering the development of targeted therapies. Identifying key transcriptional regulators, known as master regulators (MRs), can elucidate the dysregulated pathways underlying MB progression and uncover potential treatment targets. In this study, we utilize primary MB gene expression samples to infer its regulatory network. Subsequently, we applied the Master Regulator Analysis identifying the transcription factors BHLHE41, RFX4, and NPAS3 as its main transcriptional regulators, showing tumor suppressor features. We also identified eight risk MRs highly associated with patient outcome: four regulators (MYC, REL, ZSCAN5 A, and ZFAT) with activities associated with poor prognosis, and four (PAX6, ARNT2, ZNF157, and HIVEP3) acting antagonistically, being associated with good outcome. Our results offer key insights into the molecular mechanisms driving these tumors and identify novel potential therapeutic targets, addressing the urgent need for more effective and less toxic treatments.
Collapse
Affiliation(s)
- Gustavo Lovatto Michaelsen
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, 90035-003, RS, Brazil
| | - Tayrone de Sousa Monteiro
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil
| | - Danilo Oliveira Imparato
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil
| | - João Vitor Almeida da Costa
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil
| | | | - Iara Dantas de Souza
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil
| | | | - Otávio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo Brazil, São Paulo, 05508-000, Brazil
- DO'R Institute for Research, São Paulo, 01401-002, Brazil
| | - Marialva Sinigaglia
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, 90035-003, RS, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil.
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, 59064-741, RN, Brazil.
- UFRN Central University, Campus, R. do Horto, Lagoa Nova, Natal, 59078-900, RN, Brazil.
| |
Collapse
|
2
|
Mihalas AB, Arora S, O'Connor SA, Feldman HM, Cucinotta CE, Mitchell K, Bassett J, Kim D, Jin K, Hoellerbauer P, Delegard J, Ling M, Jenkins W, Kufeld M, Corrin P, Carter L, Tsukiyama T, Aronow B, Plaisier CL, Patel AP, Paddison PJ. KAT5 regulates neurodevelopmental states associated with G0-like populations in glioblastoma. Nat Commun 2025; 16:4327. [PMID: 40346033 PMCID: PMC12064679 DOI: 10.1038/s41467-025-59503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
Quiescence cancer stem-like cells may play key roles in promoting tumor cell heterogeneity and recurrence for many tumors, including glioblastoma (GBM). Here we show that the protein acetyltransferase KAT5 is a key regulator of transcriptional, epigenetic, and proliferative heterogeneity impacting transitions into G0-like states in GBM. KAT5 activity suppresses the emergence of quiescent subpopulations with neurodevelopmental progenitor characteristics, while promoting GBM stem-like cell (GSC) self-renewal through coordinately regulating E2F- and MYC- transcriptional networks with protein translation. KAT5 inactivation significantly decreases tumor progression and invasive behavior while increasing survival after standard of care. Further, increasing MYC expression in human neural stem cells stimulates KAT5 activity and protein translation, as well as confers sensitivity to homoharringtonine, to similar levels to those found in GSCs and high-grade gliomas. These results suggest that the dynamic behavior of KAT5 plays key roles in G0 ingress/egress, adoption of quasi-neurodevelopmental states, and aggressive tumor growth in gliomas.
Collapse
Affiliation(s)
- Anca B Mihalas
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Samantha A O'Connor
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Heather M Feldman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Christine E Cucinotta
- College of Arts and Sciences, Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kelly Mitchell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - John Bassett
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | - Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jennifer Delegard
- Department of Neurosurgery, University of Washington, Seattle, WA, 98195, USA
| | - Melissa Ling
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Wesley Jenkins
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Megan Kufeld
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Philip Corrin
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lucas Carter
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Anoop P Patel
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, 27710, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27710, USA.
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Yu B, Xing Z, Tian X, Feng R. A Prognostic Risk Signature of Two Autophagy-Related Genes for Predicting Triple-Negative Breast Cancer Outcomes. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:529-544. [PMID: 39246674 PMCID: PMC11379032 DOI: 10.2147/bctt.s475007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Background Triple-negative breast cancer (TNBC) is recognized as the most aggressive molecular subtype of breast cancer. Recent studies have highlighted the complex role of autophagy in the pathogenesis of TNBC. Methods In this study, we evaluated 18,330 genes, including 1111 autophagy-related genes, (ARGs), across 579 TNBC samples from online databases. Differentially expressed ARGs in TNBC were identified using high-throughput RNA-seq data from the Cancer Genome Atlas (TCGA). Prognostic factors were examined through Cox regression and multivariate Cox analyses, with predictive efficacy assessed using receiver operating characteristic (ROC) curves. A nomogram integrating the risk signature with clinicopathological factors, such as TNM stage, was developed. Immunohistochemical analysis of clinical samples was also conducted. Results EIF4EBP1 and NPAS3 were significantly correlated with prognostic outcomes in patients with TNBC. Multivariate Cox regression analysis demonstrated that the expression levels of these two genes were accurate predictors of disease progression in TNBC samples from TCGA and the GSE31519 dataset. The efficacy of this predictive model was validated using ROC curve analysis and calibration plots, confirming its ability to accurately estimate the 1-, 2-, and 3-year survival rates for individuals with TNBC. Additionally, EIF4EBP1 and NPAS3 expression influenced drug sensitivity in TNBC cell lines, with notably lower NPAS3 expression in TNBC tissues, particularly in Stage III cases. This study is the first to report NPAS3 expression in patients with TNBC. Conclusion The autophagy-related genes EIF4EBP1 and NPAS3 may serve as independent prognostic factors for individuals with TNBC.
Collapse
Affiliation(s)
- Bing Yu
- Department of Breast Surgery, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, People's Republic of China
| | - Zhimei Xing
- State Key Laboratory of Component‑Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Xiaoxuan Tian
- State Key Laboratory of Component‑Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Rui Feng
- Department of Breast Surgery, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, People's Republic of China
| |
Collapse
|
4
|
Mendivelso González DF, Sánchez Villalobos SA, Ramos AE, Montero Ovalle WJ, Serrano López ML. Single Nucleotide Polymorphisms Associated with Prostate Cancer Progression: A Systematic Review. Cancer Invest 2024; 42:75-96. [PMID: 38055319 DOI: 10.1080/07357907.2023.2291776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND New biomarkers of progression in patients with prostate cancer (PCa) are needed to improve their classification and clinical management. This systematic review investigated the relationship between single nucleotide polymorphisms (SNPs) and PCa progression. METHODS A keyword search was performed in Pubmed, EMBASE, Scopus, Web of Science, and Cochrane for publications between 2007 and 2022. We included articles with adjusted and significant associations, a median follow-up greater than or equal to 24 months, patients taken to radical prostatectomy (RP) as a first therapeutic option, and results presented based on biochemical recurrence (BCR). RESULTS In the 27 articles selected, 73 SNPs were identified in 39 genes, organized in seven functional groups. Of these, 50 and 23 SNPs were significantly associated with a higher and lower risk of PCa progression, respectively. Likewise, four haplotypes were found to have a significant association with PCa progression. CONCLUSION This article highlights the importance of SNPs as potential markers of PCa progression and their possible functional relationship with some genes relevant to its development and progression. However, most variants were identified only in cohorts from two countries; no additional studies reproduce these findings.
Collapse
Affiliation(s)
| | | | | | | | - Martha Lucía Serrano López
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Department of Chemistry, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
5
|
Johnson ZV, Hegarty BE, Gruenhagen GW, Lancaster TJ, McGrath PT, Streelman JT. Cellular profiling of a recently-evolved social behavior in cichlid fishes. Nat Commun 2023; 14:4891. [PMID: 37580322 PMCID: PMC10425353 DOI: 10.1038/s41467-023-40331-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023] Open
Abstract
Social behaviors are diverse in nature, but it is unclear how conserved genes, brain regions, and cell populations generate this diversity. Here we investigate bower-building, a recently-evolved social behavior in cichlid fishes. We use single nucleus RNA-sequencing in 38 individuals to show signatures of recent behavior in specific neuronal populations, and building-associated rebalancing of neuronal proportions in the putative homolog of the hippocampal formation. Using comparative genomics across 27 species, we trace bower-associated genome evolution to a subpopulation of glia lining the dorsal telencephalon. We show evidence that building-associated neural activity and a departure from quiescence in this glial subpopulation together regulate hippocampal-like neuronal rebalancing. Our work links behavior-associated genomic variation to specific brain cell types and their functions, and suggests a social behavior has evolved through changes in glia.
Collapse
Affiliation(s)
- Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tucker J Lancaster
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
6
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
7
|
Liu JW, Li H, Zhang Y. Npas3 regulates stemness maintenance of radial glial cells and neuronal migration in the developing mouse cerebral cortex. Front Cell Neurosci 2022; 16:865681. [PMID: 36313621 PMCID: PMC9608153 DOI: 10.3389/fncel.2022.865681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The neuronal PAS domain 3 (NPAS3) is a member of the basic helix-loop-helix (bHLH) PAS family of transcription factors and is implicated in psychiatric and neurodevelopmental disorders. NPAS3 is robustly expressed in the cortical ventricle zone (VZ), a transient proliferative zone containing progenitor cells, mainly radial glial cells, destined to give rise to cortical excitatory neurons. However, the role of NPAS3 in corticogenesis remains largely unknown. In this study, we knocked down Npas3 expression in the neural progenitor cells residing in the cortical VZ to investigate the role of Npas3 in cerebral cortical development in mice. We demonstrated that Npas3 knockdown profoundly impaired neuronal radial migration and changed the laminar cell fate of the cells detained in the deep cortical layers. Furthermore, the downregulation of Npas3 led to the stemness maintenance of radial glial cells and increased the proliferation rate of neural progenitor cells residing in the VZ/subventricular zone (SVZ). These findings underline the function of Npas3 in the development of the cerebral cortex and may shed light on the etiology of NPAS3-related disorders.
Collapse
|
8
|
Di Cintio F, Dal Bo M, Baboci L, De Mattia E, Polano M, Toffoli G. The Molecular and Microenvironmental Landscape of Glioblastomas: Implications for the Novel Treatment Choices. Front Neurosci 2020; 14:603647. [PMID: 33324155 PMCID: PMC7724040 DOI: 10.3389/fnins.2020.603647] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary central nervous system tumor. Surgery followed by radiotherapy and chemotherapy with alkylating agents constitutes standard first-line treatment of GBM. Complete resection of the GBM tumors is generally not possible given its high invasive features. Although this combination therapy can prolong survival, the prognosis is still poor due to several factors including chemoresistance. In recent years, a comprehensive characterization of the GBM-associated molecular signature has been performed. This has allowed the possibility to introduce a more personalized therapeutic approach for GBM, in which novel targeted therapies, including those employing tyrosine kinase inhibitors (TKIs), could be employed. The GBM tumor microenvironment (TME) exerts a key role in GBM tumor progression, in particular by providing an immunosuppressive state with low numbers of tumor-infiltrating lymphocytes (TILs) and other immune effector cell types that contributes to tumor proliferation and growth. The use of immune checkpoint inhibitors (ICIs) has been successfully introduced in numerous advanced cancers as well as promising results have been shown for the use of these antibodies in untreated brain metastases from melanoma and from non-small cell lung carcinoma (NSCLC). Consequently, the use of PD-1/PD-L1 inhibitors has also been proposed in several clinical trials for the treatment of GBM. In the present review, we will outline the main GBM molecular and TME aspects providing also the grounds for novel targeted therapies and immunotherapies using ICIs for GBM.
Collapse
Affiliation(s)
- Federica Di Cintio
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Lorena Baboci
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
9
|
Kasai F, Pereira JC, Kohara A, Ferguson-Smith MA. Homologue-specific chromosome sequencing characterizes translocation junctions and permits allelic assignment. DNA Res 2018. [PMID: 29518182 PMCID: PMC6105103 DOI: 10.1093/dnares/dsy007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chromosome translocations can be detected by cytogenetic analysis, but it is hard to characterize the breakpoints at the sequence level. Chromosome sorting by flow cytometry produces flow karyotypes that enable the isolation of abnormal chromosomes and the generation of chromosome-specific DNA. In this study, a derivative chromosome t(9; 14) and its homologous normal chromosomes 9 and 14 from the Ishikawa 3-H-12 cell line were sorted to collect homologue-specific samples. Chromosome sequencing identified the breakpoint junction in the der(9) at 9p24.3 and 14q13.1 and uncovered the formation of a fusion gene, WASH1–NPAS3. Amplicon sequencing targeted for neighbouring genes at the fusion breakpoint revealed that the variant frequencies correlate with the allelic copy number. Sequencing of sorted chromosomes permits the assignment of allelic variants and can lead to the characterization of abnormal chromosomes. We show that allele-specific chromosome sequencing of homologues is a robust technique for distinguishing alleles and this provides an efficient approach for the comprehensive analysis of genomic changes.
Collapse
Affiliation(s)
- Fumio Kasai
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jorge C Pereira
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Arihiro Kohara
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Labreche K, Kinnersley B, Berzero G, Di Stefano AL, Rahimian A, Detrait I, Marie Y, Grenier-Boley B, Hoang-Xuan K, Delattre JY, Idbaih A, Houlston RS, Sanson M. Diffuse gliomas classified by 1p/19q co-deletion, TERT promoter and IDH mutation status are associated with specific genetic risk loci. Acta Neuropathol 2018; 135:743-755. [PMID: 29460007 PMCID: PMC5904227 DOI: 10.1007/s00401-018-1825-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022]
Abstract
Recent genome-wide association studies of glioma have led to the discovery of single nucleotide polymorphisms (SNPs) at 25 loci influencing risk. Gliomas are heterogeneous, hence to investigate the relationship between risk SNPs and glioma subtype we analysed 1659 tumours profiled for IDH mutation, TERT promoter mutation and 1p/19q co-deletion. These data allowed definition of five molecular subgroups of glioma: triple-positive (IDH mutated, 1p/19q co-deletion, TERT promoter mutated); TERT-IDH (IDH mutated, TERT promoter mutated, 1p/19q-wild-type); IDH-only (IDH mutated, 1p/19q wild-type, TERT promoter wild-type); triple-negative (IDH wild-type, 1p/19q wild-type, TERT promoter wild-type) and TERT-only (TERT promoter mutated, IDH wild-type, 1p/19q wild-type). Most glioma risk loci showed subtype specificity: (1) the 8q24.21 SNP for triple-positive glioma; (2) 5p15.33, 9p21.3, 17p13.1 and 20q13.33 SNPs for TERT-only glioma; (3) 1q44, 2q33.3, 3p14.1, 11q21, 11q23.3, 14q12, and 15q24.2 SNPs for IDH mutated glioma. To link risk SNPs to target candidate genes we analysed Hi-C and gene expression data, highlighting the potential role of IDH1 at 2q33.3, MYC at 8q24.21 and STMN3 at 20q13.33. Our observations provide further insight into the nature of susceptibility to glioma.
Collapse
Affiliation(s)
- Karim Labreche
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Giulia Berzero
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- University of Pavia and C. Mondino National Institute of Neurology, Pavia, Italy
| | - Anna Luisa Di Stefano
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Amithys Rahimian
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
| | - Ines Detrait
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
| | - Yannick Marie
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, 59000, Lille, France
| | - Khe Hoang-Xuan
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Delattre
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Ahmed Idbaih
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK.
| | - Marc Sanson
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, 75013, Paris, France
- Service de neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
11
|
Musolf AM, Simpson CL, de Andrade M, Mandal D, Gaba C, Yang P, Li Y, You M, Kupert EY, Anderson MW, Schwartz AG, Pinney SM, Amos CI, Bailey-Wilson JE. Parametric Linkage Analysis Identifies Five Novel Genome-Wide Significant Loci for Familial Lung Cancer. Hum Hered 2017; 82:64-74. [PMID: 28817824 DOI: 10.1159/000479028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/28/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE One of four American cancer patients dies of lung cancer. Environmental factors such as tobacco smoking are known to affect lung cancer risk. However, there is a genetic factor to lung cancer risk as well. Here, we perform parametric linkage analysis on family-based genotype data in an effort to find genetic loci linked to the disease. METHODS 197 individuals from families with a high-risk history of lung cancer were recruited and genotyped using an Illumina array. Parametric linkage analyses were performed using an affected-only phenotype model with an autosomal dominant inheritance using a disease allele frequency of 0.01. Three types of analyses were performed: single variant two-point, collapsed haplotype pattern variant two-point, and multipoint analysis. RESULTS Five novel genome-wide significant loci were identified at 18p11.23, 2p22.2, 14q13.1, 16p13, and 20q13.11. The families most informative for linkage were also determined. CONCLUSIONS The 5 novel signals are good candidate regions, containing genes that have been implicated as having somatic changes in lung cancer or other cancers (though not in germ line cells). Targeted sequencing on the significant loci is planned to determine the causal variants at these loci.
Collapse
Affiliation(s)
- Anthony M Musolf
- National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Haynes HR, White P, Hares KM, Redondo J, Kemp KC, Singleton WGB, Killick-Cole CL, Stevens JR, Garadi K, Guglani S, Wilkins A, Kurian KM. The transcription factor PPARα is overexpressed and is associated with a favourable prognosis in IDH-wildtype primary glioblastoma. Histopathology 2017; 70:1030-1043. [PMID: 27926792 DOI: 10.1111/his.13142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022]
Abstract
AIMS PPARα agonists are in current clinical use as hypolipidaemic agents and show significant antineoplastic effects in human glioblastoma models. To date however, the expression of PPARα in large-scale glioblastoma datasets has not been examined. We aimed to investigate the expression of the transcription factor PPARα in primary glioblastoma, the relationship between PPARα expression and patients' clinicopathological features and other molecular markers associated with gliomagenesis. METHODS AND RESULTS With protein immunoblotting techniques and reverse transcription quantitative real-time PCR, PPARα was found to be significantly overexpressed in glioblastoma compared with control brain tissue (P = 0.032 and P = 0.005). PPARA gene expression was found to be enriched in the classical glioblastoma subtype within The Cancer Genome Atlas (TCGA) dataset. Although not associated with overall survival when assessed by immunohistochemistry, cross-validation with the TCGA dataset and multivariate analyses identified PPARA gene expression as an independent prognostic marker for overall survival (P = 0.042). Finally, hierarchical clustering revealed novel, significant associations between high PPARA expression and a putative set of glioblastoma molecular mediators including EMX2, AQP4, and NTRK2. CONCLUSIONS PPARα is overexpressed in primary glioblastoma and high PPARA expression functions as an independent prognostic marker in the glioblastoma TCGA dataset. Further studies are required to explore genetic associations with high PPARA expression and to analyse the predictive role of PPARα expression in glioblastoma models in response to PPARα agonists.
Collapse
Affiliation(s)
- Harry R Haynes
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Paul White
- Applied Statistics Group, University of the West of England, Bristol, UK
| | - Kelly M Hares
- MS and Stem Cell Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Juliana Redondo
- MS and Stem Cell Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Kevin C Kemp
- MS and Stem Cell Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - William G B Singleton
- Functional Neurosurgery Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Clare L Killick-Cole
- Functional Neurosurgery Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | | | - Krishnakumar Garadi
- Bristol Haematology and Oncology Centre, University Hospital Bristol Trust, Bristol, UK
| | - Sam Guglani
- Gloucestershire Oncology Centre, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, UK
| | - Alastair Wilkins
- MS and Stem Cell Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Kathreena M Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| |
Collapse
|
13
|
Ratnaparkhe M, Hlevnjak M, Kolb T, Jauch A, Maass KK, Devens F, Rode A, Hovestadt V, Korshunov A, Pastorczak A, Mlynarski W, Sungalee S, Korbel J, Hoell J, Fischer U, Milde T, Kramm C, Nathrath M, Chrzanowska K, Tausch E, Takagi M, Taga T, Constantini S, Loeffen J, Meijerink J, Zielen S, Gohring G, Schlegelberger B, Maass E, Siebert R, Kunz J, Kulozik AE, Worst B, Jones DT, Pfister SM, Zapatka M, Lichter P, Ernst A. Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis. Leukemia 2017; 31:2048-2056. [PMID: 28196983 DOI: 10.1038/leu.2017.55] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/17/2017] [Accepted: 02/02/2017] [Indexed: 12/28/2022]
Abstract
Recent developments in sequencing technologies led to the discovery of a novel form of genomic instability, termed chromothripsis. This catastrophic genomic event, involved in tumorigenesis, is characterized by tens to hundreds of simultaneously acquired locally clustered rearrangements on one chromosome. We hypothesized that leukemias developing in individuals with Ataxia Telangiectasia, who are born with two mutated copies of the ATM gene, an essential guardian of genome stability, would show a higher prevalence of chromothripsis due to the associated defect in DNA double-strand break repair. Using whole-genome sequencing, fluorescence in situ hybridization and RNA sequencing, we characterized the genomic landscape of Acute Lymphoblastic Leukemia (ALL) arising in patients with Ataxia Telangiectasia. We detected a high frequency of chromothriptic events in these tumors, specifically on acrocentric chromosomes, as compared with tumors from individuals with other types of DNA repair syndromes (27 cases total, 10 with Ataxia Telangiectasia). Our data suggest that the genomic landscape of Ataxia Telangiectasia ALL is clearly distinct from that of sporadic ALL. Mechanistically, short telomeres and compromised DNA damage response in cells of Ataxia Telangiectasia patients may be linked with frequent chromothripsis. Furthermore, we show that ATM loss is associated with increased chromothripsis prevalence in additional tumor entities.
Collapse
Affiliation(s)
- M Ratnaparkhe
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Hlevnjak
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T Kolb
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Jauch
- Institute of Human Genetics, University Heidelberg, Heidelberg, Germany
| | - K K Maass
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F Devens
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Rode
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - V Hovestadt
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and Department of Neuropathology University Hospital, Heidelberg, Germany
| | - A Pastorczak
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - W Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - S Sungalee
- EMBL Heidelberg, Genome Biology, Heidelberg, Germany
| | - J Korbel
- EMBL Heidelberg, Genome Biology, Heidelberg, Germany
| | - J Hoell
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - U Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - T Milde
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | - C Kramm
- Department of Pediatric Oncology, University of Halle, Halle, Germany.,Division of Pediatric Hematology and Oncology, Goettingen, Germany
| | - M Nathrath
- Clinical Cooperation Group Osteosarcoma, Pediatric Oncology Center, Department of Pediatrics, Technical University Munich, Munich, Germany.,Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany
| | - K Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - E Tausch
- Department of Internal Medicine III, University of Ulm, Germany
| | - M Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - T Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - S Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv Medical Center, Tel-Aviv University, Tel Aviv, Israel
| | - J Loeffen
- Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - S Zielen
- Department of Paediatric Pulmonology, Allergy and Cystic Fibrosis, Children's Hospital, Goethe-University, Frankfurt, Germany
| | - G Gohring
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - B Schlegelberger
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - E Maass
- Olgahospital Stuttgart, Children's Hospital, Klinikum Stuttgart, Stuttgart, Germany
| | - R Siebert
- Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany
| | - J Kunz
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | - A E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | - B Worst
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D T Jones
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S M Pfister
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Zapatka
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Lichter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Ernst
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Krishnan NM, Dhas K, Nair J, Palve V, Bagwan J, Siddappa G, Suresh A, Kekatpure VD, Kuriakose MA, Panda B. A Minimal DNA Methylation Signature in Oral Tongue Squamous Cell Carcinoma Links Altered Methylation with Tumor Attributes. Mol Cancer Res 2016; 14:805-19. [DOI: 10.1158/1541-7786.mcr-15-0395] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/24/2016] [Indexed: 11/16/2022]
|
15
|
Jang H, Hur Y, Lee H. Identification of cancer-driver genes in focal genomic alterations from whole genome sequencing data. Sci Rep 2016; 6:25582. [PMID: 27156852 PMCID: PMC4860638 DOI: 10.1038/srep25582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
DNA copy number alterations (CNAs) are the main genomic events that occur during the initiation and development of cancer. Distinguishing driver aberrant regions from passenger regions, which might contain candidate target genes for cancer therapies, is an important issue. Several methods for identifying cancer-driver genes from multiple cancer patients have been developed for single nucleotide polymorphism (SNP) arrays. However, for NGS data, methods for the SNP array cannot be directly applied because of different characteristics of NGS such as higher resolutions of data without predefined probes and incorrectly mapped reads to reference genomes. In this study, we developed a wavelet-based method for identification of focal genomic alterations for sequencing data (WIFA-Seq). We applied WIFA-Seq to whole genome sequencing data from glioblastoma multiforme, ovarian serous cystadenocarcinoma and lung adenocarcinoma, and identified focal genomic alterations, which contain candidate cancer-related genes as well as previously known cancer-driver genes.
Collapse
Affiliation(s)
- Ho Jang
- Gwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science, Gwangju, 500-712, South Korea
| | - Youngmi Hur
- Yonsei University, Department of Mathematics, Seoul, 120-749, South Korea
| | - Hyunju Lee
- Gwangju Institute of Science and Technology, School of Electrical Engineering and Computer Science, Gwangju, 500-712, South Korea
| |
Collapse
|
16
|
Bao BY, Lin VC, Yu CC, Yin HL, Chang TY, Lu TL, Lee HZ, Pao JB, Huang CY, Huang SP. Genetic variants in ultraconserved regions associate with prostate cancer recurrence and survival. Sci Rep 2016; 6:22124. [PMID: 26902966 PMCID: PMC4763269 DOI: 10.1038/srep22124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
Ultraconserved regions (UCRs) are DNA segments of longer than 200 bp in length that are completely conserved between human, rat, and mouse genomes. Recent studies have shown that UCRs are frequently located at fragile sites involved in cancers, and their levels of transcription can be altered during human tumorigenesis. We systematically evaluated 14 common single-nucleotide polymorphisms (SNPs) within UCRs in three cohorts of prostate cancer patients, to test the hypothesis that these UCR SNPs might influence clinical outcomes. Examination using multivariate analysis adjusted for known clinicopathologic factors found association between rs8004379 and recurrence in localized disease [hazard ratio (HR) 0.61, 95% confidence interval (CI) 0.41–0.91, P = 0.015], which was confirmed in the replication set (HR 0.70, 95% CI 0.51–0.96, P = 0.027). Remarkably, a consistent association of rs8004379 with a decreased risk for prostate cancer-specific mortality was also observed in the advanced prostate cancer patient group (HR 0.48, 95% CI 0.32–0.70, P < 0.001). Additional in silico analysis suggests that rs8004379 tends to affect NPAS3 expression, which in turn was found to be correlated with patient prognosis. In conclusion, our findings suggest that SNPs within UCRs may be valuable prognostic biomarkers for assessing prostate cancer treatment response and survival.
Collapse
Affiliation(s)
- Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Hsin-Ling Yin
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Hong-Zin Lee
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jiunn-Bey Pao
- Department of Pharmacy, Linsen Chinese Medicine Branch, Taipei City Hospital, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Leiserson MDM, Wu HT, Vandin F, Raphael BJ. CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer. Genome Biol 2015; 16:160. [PMID: 26253137 PMCID: PMC4531541 DOI: 10.1186/s13059-015-0700-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer is a heterogeneous disease with different combinations of genetic alterations driving its development in different individuals. We introduce CoMEt, an algorithm to identify combinations of alterations that exhibit a pattern of mutual exclusivity across individuals, often observed for alterations in the same pathway. CoMEt includes an exact statistical test for mutual exclusivity and techniques to perform simultaneous analysis of multiple sets of mutually exclusive and subtype-specific alterations. We demonstrate that CoMEt outperforms existing approaches on simulated and real data. We apply CoMEt to five different cancer types, identifying both known cancer genes and pathways, and novel putative cancer genes.
Collapse
Affiliation(s)
- Mark D M Leiserson
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, 02912, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, Box 1910, 02912, RI, USA.
| | - Hsin-Ta Wu
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, 02912, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, Box 1910, 02912, RI, USA.
| | - Fabio Vandin
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, 02912, RI, USA.
- Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, Denmark.
| | - Benjamin J Raphael
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, 02912, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, Box 1910, 02912, RI, USA.
| |
Collapse
|
18
|
Guo H, Zhou X, Lu Y, Xie L, Chen Q, Keller ET, Liu Q, Zhou Q, Zhang J. Translational progress on tumor biomarkers. Thorac Cancer 2015; 6:665-71. [PMID: 26557902 PMCID: PMC4632916 DOI: 10.1111/1759-7714.12294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/15/2015] [Indexed: 12/30/2022] Open
Abstract
There is an urgent need to apply basic research achievements to the clinic. In particular, mechanistic studies should be developed by bench researchers, depending upon clinical demands, in order to improve the survival and quality of life of cancer patients. To date, translational medicine has been addressed in cancer biology, particularly in the identification and characterization of novel tumor biomarkers. This review focuses on the recent achievements and clinical application prospects in tumor biomarkers based on translational medicine.
Collapse
Affiliation(s)
- Hongwei Guo
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China ; Center for Translational Medicine, Guangxi Medical University Nanning, China
| | - Xiaolin Zhou
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China ; Center for Translational Medicine, Guangxi Medical University Nanning, China
| | - Yi Lu
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China ; Center for Translational Medicine, Guangxi Medical University Nanning, China
| | - Liye Xie
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China ; Center for Translational Medicine, Guangxi Medical University Nanning, China
| | - Qian Chen
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China ; Center for Translational Medicine, Guangxi Medical University Nanning, China
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan Ann Arbor, Michigan, USA
| | - Qian Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin, China
| | - Qinghua Zhou
- Lung Cancer Center, Huaxi Hospital, Sichuan University Chengdu, China
| | - Jian Zhang
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education Nanning, China ; Center for Translational Medicine, Guangxi Medical University Nanning, China ; Department of Urology and Pathology, School of Medicine, University of Michigan Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Caburet S, Anttonen M, Todeschini AL, Unkila-Kallio L, Mestivier D, Butzow R, Veitia RA. Combined comparative genomic hybridization and transcriptomic analyses of ovarian granulosa cell tumors point to novel candidate driver genes. BMC Cancer 2015; 15:251. [PMID: 25884336 PMCID: PMC4407711 DOI: 10.1186/s12885-015-1283-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/27/2015] [Indexed: 12/23/2022] Open
Abstract
Background Ovarian granulosa cell tumors (GCTs) are the most frequent sex cord-stromal tumors. Several studies have shown that a somatic mutation leading to a C134W substitution in the transcription factor FOXL2 appears in more than 95% of adult-type GCTs. Its pervasive presence suggests that FOXL2 is the main cancer driver gene. However, other mutations and genomic changes might also contribute to tumor formation and/or progression. Methods We have performed a combined comparative genomic hybridization and transcriptomic analyses of 10 adult-type GCTs to obtain a picture of the genomic landscape of this cancer type and to identify new candidate co-driver genes. Results Our results, along with a review of previous molecular studies, show the existence of highly recurrent chromosomal imbalances (especially, trisomy 14 and monosomy 22) and preferential co-occurrences (i.e. trisomy 14/monosomy 22 and trisomy 7/monosomy 16q). In-depth analyses showed the presence of recurrently broken, amplified/duplicated or deleted genes. Many of these genes, such as AKT1, RUNX1 and LIMA1, are known to be involved in cancer and related processes. Further genomic explorations suggest that they are functionally related. Conclusions Our combined analysis identifies potential candidate genes, whose alterations might contribute to adult-type GCT formation/progression together with the recurrent FOXL2 somatic mutation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandrine Caburet
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France. .,Université Paris-Diderot & Institut Jacques Monod, CNRS-UMR 7592, Bâtiment Buffon, 15 Rue Hélène Brion, Paris, Cedex 13, France.
| | - Mikko Anttonen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland. .,Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Anne-Laure Todeschini
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France.
| | - Leila Unkila-Kallio
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | - Denis Mestivier
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France.
| | - Ralf Butzow
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland. .,Department of pathology, University of Helsinki, and HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.
| | - Reiner A Veitia
- Institut Jacques Monod, Paris, France. .,Université Paris Diderot/Paris, Paris, France. .,Université Paris-Diderot & Institut Jacques Monod, CNRS-UMR 7592, Bâtiment Buffon, 15 Rue Hélène Brion, Paris, Cedex 13, France.
| |
Collapse
|
20
|
Bernier D, Macintyre G, Bartha R, Hanstock CC, McAllindon D, Cox D, Purdon S, Aitchison KJ, Rusak B, Tibbo PG. NPAS3 variants in schizophrenia: a neuroimaging study. BMC MEDICAL GENETICS 2014; 15:37. [PMID: 24674381 PMCID: PMC3986669 DOI: 10.1186/1471-2350-15-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 03/21/2014] [Indexed: 11/10/2022]
Abstract
Background This research is a one-site neuroimaging component of a two-site genetic study involving patients with schizophrenia at early and later stages of illness. Studies support a role for the neuronal Per-Arnt-Sim 3 (NPAS3) gene in processes that are essential for normal brain development. Specific NPAS3 variants have been observed at an increased frequency in schizophrenia. In humans, NPAS3 protein was detected in the hippocampus from the first trimester of gestation. In addition, NPAS3 protein levels were reduced in the dorsolateral prefrontal cortex of some patients with schizophrenia. Npas3 knockout mice display behavioural, neuroanatomical and structural changes with associated severe reductions in neural precursor cell proliferation in the hippocampal dentate gyrus. This study will evaluate the hypothesis that the severe reductions in neural precursor cell proliferation in the dentate gyrus will be present to some degree in patients carrying schizophrenia-associated NPAS3 variants and less so in other patients. Methods/Design Patients enrolled in the larger genetic study (n = 150) will be invited to participate in this neuroimaging arm. The genetic data will be used to ensure a sample size of 45 participants in each genetic subgroup of patients (with and without NPAS3 variants). In addition, we will recruit 60 healthy controls for acquisition of normative data. The following neuroimaging measures will be acquired from the medial temporal region: a) an index of the microcellular environment; b) a macro-structural volumetric measure of the hippocampus; and c) concentration levels of N-acetylaspartate, a marker of neuronal health. Discussion This study will help to establish the contribution of the NPAS3 gene and its variants to brain tissue abnormalities in schizophrenia. Given the genetic and phenotypic heterogeneity of the disorder and the large variation in outcomes, the identification of biological subgroups may in future support tailoring of treatment approaches in order to optimize recovery.
Collapse
Affiliation(s)
- Denise Bernier
- Department of Psychiatry, Dalhousie University, Halifax, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Discovery of structural alterations in solid tumor oligodendroglioma by single molecule analysis. BMC Genomics 2013; 14:505. [PMID: 23885787 PMCID: PMC3727977 DOI: 10.1186/1471-2164-14-505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022] Open
Abstract
Background Solid tumors present a panoply of genomic alterations, from single base changes to the gain or loss of entire chromosomes. Although aberrations at the two extremes of this spectrum are readily defined, comprehensive discernment of the complex and disperse mutational spectrum of cancer genomes remains a significant challenge for current genome analysis platforms. In this context, high throughput, single molecule platforms like Optical Mapping offer a unique perspective. Results Using measurements from large ensembles of individual DNA molecules, we have discovered genomic structural alterations in the solid tumor oligodendroglioma. Over a thousand structural variants were identified in each tumor sample, without any prior hypotheses, and often in genomic regions deemed intractable by other technologies. These findings were then validated by comprehensive comparisons to variants reported in external and internal databases, and by selected experimental corroborations. Alterations range in size from under 5 kb to hundreds of kilobases, and comprise insertions, deletions, inversions and compound events. Candidate mutations were scored at sub-genic resolution and unambiguously reveal structural details at aberrant loci. Conclusions The Optical Mapping system provides a rich description of the complex genomes of solid tumors, including sequence level aberrations, structural alterations and copy number variants that power generation of functional hypotheses for oligodendroglioma genetics.
Collapse
|
22
|
Bavarva JH, Tae H, Settlage RE, Garner HR. Characterizing the Genetic Basis for Nicotine Induced Cancer Development: A Transcriptome Sequencing Study. PLoS One 2013; 8:e67252. [PMID: 23825647 PMCID: PMC3688980 DOI: 10.1371/journal.pone.0067252] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/15/2013] [Indexed: 12/31/2022] Open
Abstract
Nicotine is a known risk factor for cancer development and has been shown to alter gene expression in cells and tissue upon exposure. We used Illumina® Next Generation Sequencing (NGS) technology to gain unbiased biological insight into the transcriptome of normal epithelial cells (MCF-10A) to nicotine exposure. We generated expression data from 54,699 transcripts using triplicates of control and nicotine stressed cells. As a result, we identified 138 differentially expressed transcripts, including 39 uncharacterized genes. Additionally, 173 transcripts that are primarily associated with DNA replication, recombination, and repair showed evidence for alternative splicing. We discovered the greatest nicotine stress response by HPCAL4 (up-regulated by 4.71 fold) and NPAS3 (down-regulated by -2.73 fold); both are genes that have not been previously implicated in nicotine exposure but are linked to cancer. We also discovered significant down-regulation (-2.3 fold) and alternative splicing of NEAT1 (lncRNA) that may have an important, yet undiscovered regulatory role. Gene ontology analysis revealed nicotine exposure influenced genes involved in cellular and metabolic processes. This study reveals previously unknown consequences of nicotine stress on the transcriptome of normal breast epithelial cells and provides insight into the underlying biological influence of nicotine on normal cells, marking the foundation for future studies.
Collapse
Affiliation(s)
- Jasmin H. Bavarva
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Hongseok Tae
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Robert E. Settlage
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Harold R. Garner
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
23
|
Simultaneous identification of multiple driver pathways in cancer. PLoS Comput Biol 2013; 9:e1003054. [PMID: 23717195 PMCID: PMC3662702 DOI: 10.1371/journal.pcbi.1003054] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/26/2013] [Indexed: 01/20/2023] Open
Abstract
Distinguishing the somatic mutations responsible for cancer (driver mutations) from random, passenger mutations is a key challenge in cancer genomics. Driver mutations generally target cellular signaling and regulatory pathways consisting of multiple genes. This heterogeneity complicates the identification of driver mutations by their recurrence across samples, as different combinations of mutations in driver pathways are observed in different samples. We introduce the Multi-Dendrix algorithm for the simultaneous identification of multiple driver pathways de novo in somatic mutation data from a cohort of cancer samples. The algorithm relies on two combinatorial properties of mutations in a driver pathway: high coverage and mutual exclusivity. We derive an integer linear program that finds set of mutations exhibiting these properties. We apply Multi-Dendrix to somatic mutations from glioblastoma, breast cancer, and lung cancer samples. Multi-Dendrix identifies sets of mutations in genes that overlap with known pathways – including Rb, p53, PI(3)K, and cell cycle pathways – and also novel sets of mutually exclusive mutations, including mutations in several transcription factors or other genes involved in transcriptional regulation. These sets are discovered directly from mutation data with no prior knowledge of pathways or gene interactions. We show that Multi-Dendrix outperforms other algorithms for identifying combinations of mutations and is also orders of magnitude faster on genome-scale data. Software available at: http://compbio.cs.brown.edu/software. Cancer is a disease driven largely by the accumulation of somatic mutations during the lifetime of an individual. The declining costs of genome sequencing now permit the measurement of somatic mutations in hundreds of cancer genomes. A key challenge is to distinguish driver mutations responsible for cancer from random passenger mutations. This challenge is compounded by the observation that different combinations of driver mutations are observed in different patients with the same cancer type. One reason for this heterogeneity is that driver mutations target signaling and regulatory pathways which have multiple points of failure. We introduce an algorithm, Multi-Dendrix, to find these pathways solely from patterns of mutual exclusivity between mutations across a cohort of patients. Unlike earlier approaches, we simultaneously find multiple pathways, an essential feature for analyzing cancer genomes where multiple pathways are typically perturbed. We apply our algorithm to mutation data from hundreds of glioblastoma, breast cancer, and lung adenocarcinoma patients. We identify sets of interacting genes that overlap known pathways, and gene sets containing subtype-specific mutations. These results show that multiple cancer pathways can be identified directly from patterns in mutation data, and provide an approach to analyze the ever-growing cancer mutation datasets.
Collapse
|
24
|
Zhang Y, Kent JW, Olivier M, Ali O, Cerjak D, Broeckel U, Abdou RM, Dyer TD, Comuzzie A, Curran JE, Carless MA, Rainwater DL, Göring HHH, Blangero J, Kissebah AH. A comprehensive analysis of adiponectin QTLs using SNP association, SNP cis-effects on peripheral blood gene expression and gene expression correlation identified novel metabolic syndrome (MetS) genes with potential role in carcinogenesis and systemic inflammation. BMC Med Genomics 2013; 6:14. [PMID: 23628382 PMCID: PMC3643849 DOI: 10.1186/1755-8794-6-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/23/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is an aberration associated with increased risk for cancer and inflammation. Adiponectin, an adipocyte-produced abundant protein hormone, has countering effect on the diabetogenic and atherogenic components of MetS. Plasma levels of adiponectin are negatively correlated with onset of cancer and cancer patient mortality. We previously performed microsatellite linkage analyses using adiponectin as a surrogate marker and revealed two QTLs on chr5 (5p14) and chr14 (14q13). METHODS Using individuals from 85 extended families that contributed to the linkage and who were measured for 42 clinical and biologic MetS phenotypes, we tested QTL-based SNP associations, peripheral white blood cell (PWBC) gene expression, and the effects of cis-acting SNPs on gene expression to discover genomic elements that could affect the pathophysiology and complications of MetS. RESULTS Adiponectin levels were found to be highly intercorrelated phenotypically with the majority of MetS traits. QTL-specific haplotype-tagging SNPs associated with MetS phenotypes were annotated to 14 genes whose function could influence MetS biology as well as oncogenesis or inflammation. These were mechanistically categorized into four groups: cell-cell adhesion and mobility, signal transduction, transcription and protein sorting. Four genes were highly prioritized: cadherin 18 (CDH18), myosin X (MYO10), anchor protein 6 of AMPK (AKAP6), and neuronal PAS domain protein 3 (NPAS3). PWBC expression was detectable only for the following genes with multi-organ or with multi-function properties: NPAS3, MARCH6, MYO10 and FBXL7. Strong evidence of cis-effects on the expression of MYO10 in PWBC was found with SNPs clustered near the gene's transcription start site. MYO10 expression in PWBC was marginally correlated with body composition (p = 0.065) and adipokine levels in the periphery (p = 0.064). Variants of genes AKAP6, NPAS3, MARCH6 and FBXL7 have been previously reported to be associated with insulin resistance, inflammatory markers or adiposity studies using genome-wide approaches whereas associations of CDH18 and MYO10 with MetS traits have not been reported before. CONCLUSIONS Adiponectin QTLs-based SNP association and mRNA expression identified genes that could mediate the association between MetS and cancer or inflammation.
Collapse
Affiliation(s)
- Yi Zhang
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Michael Olivier
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Omar Ali
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Diana Cerjak
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ulrich Broeckel
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Reham M Abdou
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Thomas D Dyer
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Anthony Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joanne E Curran
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - David L Rainwater
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Harald H H Göring
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ahmed H Kissebah
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
25
|
Guo H, Nairn A, dela Rosa M, Nagy T, Zhao S, Moremen K, Pierce M. Transcriptional regulation of the protocadherin β cluster during Her-2 protein-induced mammary tumorigenesis results from altered N-glycan branching. J Biol Chem 2012; 287:24941-54. [PMID: 22665489 DOI: 10.1074/jbc.m112.369355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Changes in the levels of N-acetylglucosaminyltransferase V (GnT-V) can alter the function of several types of cell surface receptors and adhesion molecules by causing altered N-linked glycan branching. Using a her-2 mammary tumor mouse model, her-2 receptor signaling was down-regulated by GnT-V knock-out, resulting in a significant delay in the onset of her-2-induced mammary tumors. To identify the genes that contributed to this GnT-V regulation of early events in tumorigenesis, microarray analysis was performed using her-2 induced mammary tumors from wild-type and GnT-V-null mice. We found that 142 genes were aberrantly expressed (>2.0-fold) with 64 genes up-regulated and 78 genes down-regulated after deletion of GnT-V. Among differentially expressed genes, the expression of a subgroup of the cadherin superfamily, the protocadherin β (Pcdhβ) cluster, was up-regulated in GnT-V-null tumors. Altered expression of the Pcdhβ cluster in GnT-V-null tumors was not due to changes in promoter methylation; instead, impaired her-2-mediated signaling pathways were implicated at least in part resulting from reduced microRNA-21 expression. Overexpression of Pcdhβ genes inhibited tumor cell growth, decreased the proportion of tumor-initiating cells, and decreased tumor formation in vivo, demonstrating that expression of the Pcdhβ gene cluster can serve as an inhibitor of the transformed phenotype. Our results suggest the up-regulation of the Pcdhβ gene cluster as a mechanism for reduced her-2-mediated tumorigenesis resulting from GnT-V deletion.
Collapse
Affiliation(s)
- Huabei Guo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|