1
|
Urushima H, Matsubara T, Qiongya G, Daikoku A, Takayama M, Kadono C, Nakai H, Ikeya Y, Yuasa H, Ikeda K. AHCC inhibited hepatic stellate cells activation by regulation of cytoglobin induction via TLR2-SAPK/JNK pathway and collagen production via TLR4-NF-κβ pathway. Am J Physiol Gastrointest Liver Physiol 2024; 327:G741-G753. [PMID: 39316687 PMCID: PMC11684891 DOI: 10.1152/ajpgi.00134.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Cirrhosis, which represents the end stage of liver fibrosis, remains a life-threatening condition without effective treatment. Therefore, prevention of the progression of liver fibrosis through lifestyle habits such as diet and exercise is crucial. The functional food AHCC, a standardized extract of cultured Lentinula edodes mycelia produced by Amino Up Co., Ltd. (Sapporo, Japan)] has been reported to be effective in improving the pathophysiology of various liver diseases. In this study, the aim was to analyze the influence of AHCC on hepatic stellate cells, which are responsible for liver fibrosis. Eight-week-old male C57BL6/j mice were induced with liver fibrosis by intraperitoneal injection of carbon tetrachloride. Simultaneously, they were orally administered 3% AHCC to investigate its impact on the progression of liver fibrosis. Using the human hepatic stellate cell (HHSteC) line, we analyzed the influence of AHCC on the expression of molecules related to hepatic stellate cell activation. The administration of AHCC resulted in reduced expression of collagen1a, α smooth muscle actin (αSMA), and heat shock protein 47 in the liver. Furthermore, the expression of cytoglobin, a marker for quiescent hepatic stellate cells, was enhanced. In vitro study, it was confirmed that AHCC inhibited αSMA by inducing cytoglobin via upregulating the stress-activated protein kinase/Jun NH2-terminal kinase (SAPK/JNK) pathway through Toll-like receptor (TLR) 2. In addition, AHCC suppressed collagen1a production by hepatic stellate cells through TLR4-NF-κβ pathway. AHCC was suggested to suppress hepatic fibrosis by inhibition of hepatic stellate cells activation. Daily intake of AHCC from mild fibrotic stages may have the potential to prevent the progression of liver fibrosis.NEW & NOTEWORTHY AHCC, a standardized extract of cultured Lentinula edodes mycelia, suppresses liver fibrosis progression by induction of cytoglobin via the Toll-like receptor 2 (TLR2)-stress-activated protein kinase/Jun NH2-terminal kinase (SAPK/JNK) pathway and the inhibition of collagen production via the TLR4-NFκβ pathway in hepatic stellate cells. Daily oral administration of AHCC from the stage of MASLD may have the potential to prevent disease progression to MASH with fibrosis.
Collapse
Affiliation(s)
- Hayato Urushima
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Laboratory Animal Facility, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Gu Qiongya
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsuko Daikoku
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Misako Takayama
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Chiho Kadono
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hikaru Nakai
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yukinobu Ikeya
- Faculty of Pharmacy, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Zhang J, Zhang W, Liu J, Liu Y, Jiang Y, Ainiwaer A, Chen H, Gu Z, Chen H, Mao S, Guo Y, Xu T, Xu Y, Wu Y, Yao X, Yan Y. SOX7 inhibits the malignant progression of bladder cancer via the DNMT3B/CYGB axis. MOLECULAR BIOMEDICINE 2024; 5:36. [PMID: 39227479 PMCID: PMC11371982 DOI: 10.1186/s43556-024-00198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Bladder cancer (BCa) stands out as a highly prevalent malignant tumor affecting the urinary system. The Sex determining region Y-box protein family is recognized for its crucial role in BCa progression. However, the effect of Sex determining region Y-box 7 (SOX7) on BCa progression has not been fully elucidated. Herein, RNA-sequencing, western blot (WB), immunohistochemistry (IHC), immunofluorescence (IF) and tissue microarray were utilized to assess SOX7 expression in vitro and in vivo. Additionally, SOX7 expression, prognosis, and SOX7 + cytoglobin (CYGB) score were analyzed using R software. In vitro and vivo experiments were performed with BCa cell lines to validate the effect of SOX7 knockdown and overexpression on the malignant progression of BCa. The results showed that SOX7 exhibits low expression in BCa. It functions in diverse capacities, inhibiting the proliferative, migratory, and invasive capabilities of BCa. In addition, the experimental database demonstrated that SOX7 binds to the promoter of DNA methyltransferase 3 beta (DNMT3B), leading to the transcriptional inhibition of DNMT3B. This subsequently results in a reduced methylation of CYGB promoter, ultimately inhibiting the tumor progression of BCa. SOX7 + CYGB scores were significantly linked to patient prognosis. In conclusion, SOX7 inhibits the malignant progression of BCa via the DNMT3B/CYGB axis. Additionally, the SOX7 + CYGB score is capable of predicting the prognostic outcomes of BCa patients. Therefore, SOX7 and CYGB may play an important role in the progression of bladder cancer, and they can be used as prognostic markers of bladder cancer patients.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ji Liu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yuchao Liu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yufeng Jiang
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Chongming Branch, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ailiyaer Ainiwaer
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Xinjiang Uygur Autonomous Region, Kashgar Prefecture Second People's Hospital, Kashgar, China
| | - Hanyang Chen
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Zhuoran Gu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Chen
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yadong Guo
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yunfei Xu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Yuan Wu
- Department of Urology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.
| | - Xudong Yao
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Yang Yan
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
De Backer J, Hoogewijs D. The cytoglobin-dependent transcriptome in melanoma indicates a protective function associated with oxidative stress, inflammation and cancer-associated pathways. Sci Rep 2024; 14:18175. [PMID: 39107431 PMCID: PMC11303788 DOI: 10.1038/s41598-024-69224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Cytoglobin (CYGB) is a member of the oxygen-binding globin superfamily. In this study we generated stable CYGB overexpressing A375 melanoma cells and performed RNA-sequencing to comprehensively explore the CYGB-dependent transcriptome. Our findings reveal that ectopic expression of CYGB dysregulated multiple cancer-associated genes, including the mTORC1 and AKT/mTOR signaling pathways, which are frequently overactivated in tumors. Moreover, several cancer-associated pathways, such as epithelial-mesenchymal transition (EMT) mediated by CSPG4, were downregulated upon CYGB overexpression. Intriguingly, ectopic expression suggested anti-inflammatory potential of CYGB, as exemplified by downregulation of key inflammasome-associated genes, including NLRP1, CASP1 and CD74, which play pivotal roles in cytokine regulation and inflammasome activation. Consistent with established globin functions, CYGB appears to be involved in redox homeostasis. Furthermore, our study indicates CYGB's association to DNA repair mechanisms and its regulation of NOX4, reinforcing its functional versatility. Additionally, multiple significantly enriched pathways in CYGB overexpressing cells were consistently dysregulated in opposite direction in CYGB depleted cells. Collectively, our RNA-sequencing based investigations illustrate the diverse functions of CYGB in melanoma cells, pointing to its putative roles in cellular protection against oxidative stress, inflammation, and cancer-associated pathways. These findings pave the way for further research into the physiological role of CYGB and its potential as a candidate therapeutic target in melanoma.
Collapse
Affiliation(s)
- Joey De Backer
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES) Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - David Hoogewijs
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
4
|
Janmeda P, Jain D, Chaudhary P, Meena M, Singh D. A systematic review on multipotent carcinogenic agent, N-nitrosodiethylamine (NDEA), its major risk assessment, and precautions. J Appl Toxicol 2024; 44:1108-1128. [PMID: 38212177 DOI: 10.1002/jat.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 01/13/2024]
Abstract
The International Agency for Research on Cancer has classified N-nitrosodiethylamine (NDEA) as a possible carcinogen and mutagenic substances, placing it in category 2A of compounds that are probably harmful to humans. It is found in nature and tobacco smoke, along with its precursors, and is also synthesized endogenously in the human body. The oral or parenteral administration of a minimal quantity of NDEA results in severe liver and kidney organ damage. The NDEA required bioactivation by CYP450 enzyme to form DNA adduct in the alkylation mechanism. Thus, this bioactivation directs oxidative stress and injury to cells due to the higher formation of reactive oxygen species and alters antioxidant system in tissues, whereas free radical scavengers guard the membranes from NDEA-directed injury in many enzymes. This might be one of the reasons in the etiology of cancer that is not limited to a certain target organ but can affect various organs and organ systems. Although there are various possible approaches for the treatment of NDEA-induced cancer, their therapeutic outcomes are still very dismal. However, several precautions were considered to be taken during handling or working with NDEA, as it considered being the best way to lower down the occurrence of NDEA-directed cancers. The present review was designed to enlighten the general guidelines for working with NDEA, possible mechanism, to alter the antioxidant line to cause malignancy in different parts of animal body along with its protective agents. Thus, revelation to constant, unpredictable stress situations even in common life may remarkably augment the toxic potential through the rise in the oxidative stress and damage of DNA.
Collapse
Affiliation(s)
- Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Devendra Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
5
|
Aisha J, Sangeeta K, Yenugu S. Effect of Spag11a gene knockout on the epididymis in mice: A histopathological and molecular analyses. Cell Biochem Funct 2024; 42:e4096. [PMID: 39020527 DOI: 10.1002/cbf.4096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The sperm-associated antigen 11a (Spag11a) gene is exclusively expressed in the caput epididymis. Our previous studies demonstrated that small interfering RNA (siRNA)-mediated ablation of this gene resulted in increased proliferation of epididymal epithelial cells. Further, active immunization-mediated ablation of SPAG11A protein increased the susceptibility of male reproductive tract tissues to diethylnitrosamine (DEN)-induced tumorigenesis. In this study, we report that the caput epididymis of Spag11a knockout mice displayed hyperplasia and inflammation, while the caput epididymis of wild-type mice exhibited normal anatomical structure. Global transcriptome analyses in the caput epididymis of knockout mice indicated differential expression of genes involved in a variety of cellular processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses suggested that the absence of Spag11a may activate microRNAs associated with cancer, chemical carcinogenesis-receptor activation, and chemical carcinogenesis-DNA adducts pathways; which may contribute to the promotion of tumorigenesis in the epididymis. The susceptibility of caput epididymis to chemically induced carcinogenesis in Spag11a knockout mice was analyzed. Histological analyses indicated that while the epididymis of wild-type mice did not show any signs of tumorigenesis, knockout mice displayed hyperplasia, anaplasia, dysplasia, neoplasia, and inflammation in the caput epididymis. Our results provide concrete evidence that deletion of Spag11a induces histopathological and molecular changes that contribute to tumorigenesis. It is possible that the expression of Spag11a gene could be one of the reasons for the rarity of epididymal cancers. The involvement of an epididymal gene in tumorigenesis is being demonstrated for the first time.
Collapse
Affiliation(s)
- Jamil Aisha
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Kumari Sangeeta
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
6
|
Porto E, Loula P, Strand S, Hankeln T. Molecular analysis of the human cytoglobin mRNA isoforms. J Inorg Biochem 2024; 251:112422. [PMID: 38016326 DOI: 10.1016/j.jinorgbio.2023.112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/26/2023] [Accepted: 10/29/2023] [Indexed: 11/30/2023]
Abstract
Multiple functions have been proposed for the ubiquitously expressed vertebrate globin cytoglobin (Cygb), including nitric oxide (NO) metabolism, lipid peroxidation/signalling, superoxide dismutase activity, reactive oxygen/nitrogen species (RONS) scavenging, regulation of blood pressure, antifibrosis, and both tumour suppressor and oncogenic effects. Since alternative splicing can expand the biological roles of a gene, we investigated whether this mechanism contributes to the functional diversity of Cygb. By mining of cDNA data and molecular analysis, we identified five alternative mRNA isoforms for the human CYGB gene (V-1 to V-5). Comprehensive RNA-seq analyses of public datasets from human tissues and cells confirmed that the canonical CYGB V-1 isoform is the primary CYGB transcript in the majority of analysed datasets. Interestingly, we revealed that isoform V-3 represented the predominant CYGB variant in hepatoblastoma (HB) cell lines and in the majority of analysed normal and HB liver tissues. CYGB V-3 mRNA is transcribed from an alternate upstream promoter and hypothetically encodes a N-terminally truncated CYGB protein, which is not recognized by some antibodies used in published studies. Little to no transcriptional evidence was found for the other CYGB isoforms. Comparative transcriptomics and flow cytometry on CYGB+/+ and gene-edited CYGB-/- HepG2 HB cells did not unveil a knockout phenotype and, thus, a potential function for CYGB V-3. Our study reveals that the CYGB gene is transcriptionally more complex than previously described as it expresses alternative mRNA isoforms of unknown function. Additional experimental data are needed to clarify the biological meaning of those alternative CYGB transcripts.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany
| | - Paraskevi Loula
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany
| | - Susanne Strand
- Department of Internal Medicine I, Molecular Hepatology, University Medical Center, Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 63, 55131 Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany.
| |
Collapse
|
7
|
Porto E, De Backer J, Thuy LTT, Kawada N, Hankeln T. Transcriptomics of a cytoglobin knockout mouse: Insights from hepatic stellate cells and brain. J Inorg Biochem 2024; 250:112405. [PMID: 37977965 DOI: 10.1016/j.jinorgbio.2023.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The vertebrate respiratory protein cytoglobin (Cygb) is thought to exert multiple cellular functions. Here we studied the phenotypic effects of a Cygb knockout (KO) in mouse on the transcriptome level. RNA sequencing (RNA-Seq) was performed for the first time on sites of major endogenous Cygb expression, i.e. quiescent and activated hepatic stellate cells (HSCs) and two brain regions, hippocampus and hypothalamus. The data recapitulated the up-regulation of Cygb during HSC activation and its expression in the brain. Differential gene expression analyses suggested a role of Cygb in the response to inflammation in HSCs and its involvement in retinoid metabolism, retinoid X receptor (RXR) activation-induced xenobiotics metabolism, and RXR activation-induced lipid metabolism and signaling in activated cells. Unexpectedly, only minor effects of the Cygb KO were detected in the transcriptional profiles in hippocampus and hypothalamus, precluding any enrichment analyses. Furthermore, the transcriptome data pointed at a previously undescribed potential of the Cygb- knockout allele to produce cis-acting effects, necessitating future verification studies.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany
| | - Joey De Backer
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp 1610, Belgium
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany.
| |
Collapse
|
8
|
Schlosser A, Helfenrath K, Wisniewsky M, Hinrichs K, Burmester T, Fabrizius A. The knockout of cytoglobin 1 in zebrafish (Danio rerio) alters lipid metabolism, iron homeostasis and oxidative stress response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119558. [PMID: 37549740 DOI: 10.1016/j.bbamcr.2023.119558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Cytoglobin (Cygb) is an evolutionary ancient heme protein with yet unclear physiological function(s). Mammalian Cygb is ubiquitously expressed in all tissues and is proposed to be involved in reactive oxygen species (ROS) detoxification, nitric oxide (NO) metabolism and lipid-based signaling processes. Loss-of-function studies in mouse associate Cygb with apoptosis, inflammation, fibrosis, cardiovascular dysfunction or oncogenesis. In zebrafish (Danio rerio), two cygb genes exist, cytoglobin 1 (cygb1) and cytoglobin 2 (cygb2). Both have different coordination states and distinct expression sites within zebrafish tissues. The biological roles of the cygb paralogs are largely uncharacterized. We used a CRISPR/Cas9 genome editing approach and generated a knockout of the penta-coordinated cygb1 for in vivo analysis. Adult male cygb1 knockouts develop phenotypic abnormalities, including weight loss. To identify the molecular mechanisms underlying the occurrence of these phenotypes and differentiate between function and effect of the knockout we compared the transcriptomes of cygb1 knockout at different ages to age-matched wild-type zebrafish. We found that immune regulatory and cell cycle regulatory transcripts (e.g. tp53) were up-regulated in the cygb1 knockout liver. Additionally, the expression of transcripts involved in lipid metabolism and transport, the antioxidative defense and iron homeostasis was affected in the cygb1 knockout. Cygb1 may function as an anti-inflammatory and cytoprotective factor in zebrafish liver, and may be involved in lipid-, iron-, and ROS-dependent signaling.
Collapse
Affiliation(s)
- Annette Schlosser
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany
| | - Kathrin Helfenrath
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany
| | - Michelle Wisniewsky
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany
| | - Kira Hinrichs
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany
| | - Thorsten Burmester
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany
| | - Andrej Fabrizius
- Institute of Cell and Systems Biology of Animals, University of Hamburg, D-20146 Hamburg, Germany.
| |
Collapse
|
9
|
Mathai C, Jourd'heuil F, Pham LGC, Gilliard K, Balnis J, Jen A, Overmyer KA, Coon JJ, Jaitovich A, Boivin B, Jourd'heuil D. A role for cytoglobin in regulating intracellular hydrogen peroxide and redox signals in the vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535146. [PMID: 37034694 PMCID: PMC10081330 DOI: 10.1101/2023.03.31.535146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The oxidant hydrogen peroxide serves as a signaling molecule that alters many aspects of cardiovascular functions. Recent studies suggest that cytoglobin - a hemoglobin expressed in the vasculature - may promote electron transfer reactions with proposed functions in hydrogen peroxide decomposition. Here, we determined the extent to which cytoglobin regulates intracellular hydrogen peroxide and established mechanisms. We found that cytoglobin decreased the hyperoxidation of peroxiredoxins and maintained the activity of peroxiredoxin 2 following challenge with exogenous hydrogen peroxide. Cytoglobin promoted a reduced intracellular environment and facilitated the reduction of the thiol-based hydrogen peroxide sensor Hyper7 after bolus addition of hydrogen peroxide. Cytoglobin also limited the inhibitory effect of hydrogen peroxide on glycolysis and reversed the oxidative inactivation of the glycolytic enzyme GAPDH. Our results indicate that cytoglobin in cells exists primarily as oxyferrous cytoglobin (CygbFe 2+ -O 2 ) with its cysteine residues in the reduced form. We found that the specific substitution of one of two cysteine residues on cytoglobin (C83A) inhibited the reductive activity of cytoglobin on Hyper7 and GAPDH. Carotid arteries from cytoglobin knockout mice were more sensitive to glycolytic inhibition by hydrogen peroxide than arteries from wildtype mice. Together, these results support a role for cytoglobin in regulating intracellular redox signals associated with hydrogen peroxide through oxidation of its cysteine residues, independent of hydrogen peroxide reaction at its heme center.
Collapse
|
10
|
Reeder BJ. Insights into the function of cytoglobin. Biochem Soc Trans 2023; 51:1907-1919. [PMID: 37721133 PMCID: PMC10657185 DOI: 10.1042/bst20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Since its discovery in 2001, the function of cytoglobin has remained elusive. Through extensive in vitro and in vivo research, a range of potential physiological and pathological mechanisms has emerged for this multifunctional member of the hemoglobin family. Currently, over 200 research publications have examined different aspects of cytoglobin structure, redox chemistry and potential roles in cell signalling pathways. This research is wide ranging, but common themes have emerged throughout the research. This review examines the current structural, biochemical and in vivo knowledge of cytoglobin published over the past two decades. Radical scavenging, nitric oxide homeostasis, lipid binding and oxidation and the role of an intramolecular disulfide bond on the redox chemistry are examined, together with aspects and roles for Cygb in cancer progression and liver fibrosis.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, U.K
| |
Collapse
|
11
|
Sharma S, Le Guillou D, Chen JY. Cellular stress in the pathogenesis of nonalcoholic steatohepatitis and liver fibrosis. Nat Rev Gastroenterol Hepatol 2023; 20:662-678. [PMID: 37679454 DOI: 10.1038/s41575-023-00832-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
The burden of chronic liver disease is rising substantially worldwide. Fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the common pathway leading to cirrhosis, and limited treatment options are available. There is increasing evidence suggesting the role of cellular stress responses contributing to fibrogenesis. This Review provides an overview of studies that analyse the role of cellular stress in different cell types involved in fibrogenesis, including hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells and macrophages.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dounia Le Guillou
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer Y Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Mathai C, Jourd'heuil F, Pham LGC, Gilliard K, Howard D, Balnis J, Jaitovich A, Chittur SV, Rilley M, Peredo-Wende R, Ammoura I, Shin SJ, Barroso M, Barra J, Shishkova E, Coon JJ, Lopez-Soler RI, Jourd'heuil D. Regulation of DNA damage and transcriptional output in the vasculature through a cytoglobin-HMGB2 axis. Redox Biol 2023; 65:102838. [PMID: 37573836 PMCID: PMC10428073 DOI: 10.1016/j.redox.2023.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
Identifying novel regulators of vascular smooth muscle cell function is necessary to further understand cardiovascular diseases. We previously identified cytoglobin, a hemoglobin homolog, with myogenic and cytoprotective roles in the vasculature. The specific mechanism of action of cytoglobin is unclear but does not seem to be related to oxygen transport or storage like hemoglobin. Herein, transcriptomic profiling of injured carotid arteries in cytoglobin global knockout mice revealed that cytoglobin deletion accelerated the loss of contractile genes and increased DNA damage. Overall, we show that cytoglobin is actively translocated into the nucleus of vascular smooth muscle cells through a redox signal driven by NOX4. We demonstrate that nuclear cytoglobin heterodimerizes with the non-histone chromatin structural protein HMGB2. Our results are consistent with a previously unknown function by which a non-erythrocytic hemoglobin inhibits DNA damage and regulates gene programs in the vasculature by modulating the genome-wide binding of HMGB2.
Collapse
Affiliation(s)
- Clinton Mathai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Frances Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Le Gia Cat Pham
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Kurrim Gilliard
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Dennis Howard
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Joseph Balnis
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA; Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
| | - Ariel Jaitovich
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA; Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
| | - Sridar V Chittur
- Center for Functional Genomics, Cancer Research Center, University at Albany, New York, 12144, USA
| | - Mark Rilley
- Division of Rheumatology, Department of Medicine, Samuel Stratton VA Medical Center, Albany, NY, 12208, USA
| | - Ruben Peredo-Wende
- Division of Rheumatology, Department of Medicine, Samuel Stratton VA Medical Center, Albany, NY, 12208, USA
| | - Ibrahim Ammoura
- Department of Pathology and Medicine, Albany Medical Center, Albany, NY, 12208, USA
| | - Sandra J Shin
- Department of Pathology and Medicine, Albany Medical Center, Albany, NY, 12208, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jonathan Barra
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI, 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53506, USA
| | - Joshua J Coon
- Department of Pathology and Medicine, Albany Medical Center, Albany, NY, 12208, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53506, USA; Morgridge Institute for Research, Madison, WI, 53515, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53506, USA
| | - Reynold I Lopez-Soler
- Section of Renal Transplantation, Edward Hines VA Jr. Hospital, Hines, IL, 60141, USA; Department of Surgery, Division of Intra-Abdominal Transplantation, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
13
|
Han Y, Akhtar J, Liu G, Li C, Wang G. Early warning and diagnosis of liver cancer based on dynamic network biomarker and deep learning. Comput Struct Biotechnol J 2023; 21:3478-3489. [PMID: 38213892 PMCID: PMC10782000 DOI: 10.1016/j.csbj.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 01/13/2024] Open
Abstract
Background Early detection of complex diseases like hepatocellular carcinoma remains challenging due to their network-driven pathology. Dynamic network biomarkers (DNB) based on monitoring changes in molecular correlations may enable earlier predictions. However, DNB analysis often overlooks disease heterogeneity. Methods We integrated DNB analysis with graph convolutional neural networks (GCN) to identify critical transitions during hepatocellular carcinoma development in a mouse model. A DNB-GCN model was constructed using transcriptomic data and gene expression levels as node features. Results DNB analysis identified a critical transition point at 7 weeks of age despite histological examinations being unable to detect cancerous changes at that time point. The DNB-GCN model achieved 100% accuracy in classifying healthy and cancerous mice, and was able to accurately predict the health status of newly introduced mice. Conclusion The integration of DNB analysis and GCN demonstrates potential for the early detection of complex diseases by capturing network structures and molecular features that conventional biomarker discovery methods overlook. The approach warrants further development and validation.
Collapse
Affiliation(s)
- Yukun Han
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen 518055, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Javed Akhtar
- Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Center for Endocrinology and Metabolic Diseases, Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen 518055, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guozhen Liu
- Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chenzhong Li
- Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guanyu Wang
- Biomedical Science and Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Center for Endocrinology and Metabolic Diseases, Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen 518055, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Mathai C, Jourd'heuil F, Pham LGC, Gilliard K, Howard D, Balnis J, Jaitovich A, Chittur SV, Rilley M, Peredo-Wende R, Ammoura I, Shin SJ, Barroso M, Barra J, Shishkova E, Coon JJ, Lopez-Soler RI, Jourd'heuil D. Nuclear cytoglobin associates with HMGB2 and regulates DNA damage and genome-wide transcriptional output in the vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540045. [PMID: 37214992 PMCID: PMC10197644 DOI: 10.1101/2023.05.10.540045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Identifying novel regulators of vascular smooth muscle cell function is necessary to further understand cardiovascular diseases. We previously identified cytoglobin, a hemoglobin homolog, with myogenic and cytoprotective roles in the vasculature. The specific mechanism of action of cytoglobin is unclear but does not seem to be related to oxygen transport or storage like hemoglobin. Herein, transcriptomic profiling of injured carotid arteries in cytoglobin global knockout mice revealed that cytoglobin deletion accelerated the loss of contractile genes and increased DNA damage. Overall, we show that cytoglobin is actively translocated into the nucleus of vascular smooth muscle cells through a redox signal driven by NOX4. We demonstrate that nuclear cytoglobin heterodimerizes with the non-histone chromatin structural protein HMGB2. Our results are consistent with a previously unknown function by which a non-erythrocytic hemoglobin inhibits DNA damage and regulates gene programs in the vasculature by modulating the genome-wide binding of HMGB2.
Collapse
|
15
|
Zhang J, Lin XT, Fang L, Xie CM. In vivo analysis of FBXO45-mediated fibrosis and liver tumorigenesis in a chemically induced mouse model of hepatocellular carcinoma. STAR Protoc 2023; 4:102124. [PMID: 36853700 PMCID: PMC9958395 DOI: 10.1016/j.xpro.2023.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
FBXO45, an E3 ubiquitin ligase highly expressed in liver tumors, is positively correlated with poor survival of hepatocellular carcinogenesis (HCC) patients, but whether FBXO45 drives HCC tumorigenesis remains largely unclear. Here, we describe a protocol that shortens the observation period for HCC tumorigenesis to assess the effects of FBXO45 in a DEN/CCl4-induced HCC mouse model. We describe steps for chemical induction of HCC in FBXO45-overexpressing mice, followed by tissue collection and pathology assessment via quantitative real-time PCR, histology, and immunohistochemistry. For complete details on the use and execution of this protocol, please refer to Lin et al. (2021).1.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
16
|
Hoang DV, Thuy LTT, Hai H, Hieu VN, Kimura K, Oikawa D, Ikura Y, Dat NQ, Hoang TH, Sato-Matsubara M, Dong MP, Hanh NV, Uchida-Kobayashi S, Tokunaga F, Kubo S, Ohtani N, Yoshizato K, Kawada N. Cytoglobin attenuates pancreatic cancer growth via scavenging reactive oxygen species. Oncogenesis 2022; 11:23. [PMID: 35504863 PMCID: PMC9065067 DOI: 10.1038/s41389-022-00389-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic cancer is a highly challenging malignancy with extremely poor prognosis. Cytoglobin (CYGB), a hemeprotein involved in liver fibrosis and cancer development, is expressed in pericytes of all organs. Here, we examined the role of CYGB in the development of pancreatic cancer. CYGB expression appeared predominately in the area surrounding adenocarcinoma and negatively correlated with tumor size in patients with pancreatic cancer. Directly injecting 7, 12-dimethylbenz[a]anthracene into the pancreatic tail in wild-type mice resulted in time-dependent induction of severe pancreatitis, fibrosis, and oxidative damage, which was rescued by Cygb overexpression in transgenic mice. Pancreatic cancer incidence was 93% in wild-type mice but only 55% in transgenic mice. Enhanced CYGB expression in human pancreatic stellate cells in vitro reduced cellular collagen synthesis, inhibited cell activation, increased expression of antioxidant-related genes, and increased CYGB secretion into the medium. Cygb-overexpressing or recombinant human CYGB (rhCYGB) -treated MIA PaCa-2 cancer cells exhibited dose-dependent cell cycle arrest at the G1 phase, diminished cell migration, and reduction in colony formation. RNA sequencing in rhCYGB-treated MIA PaCa-2 cells revealed downregulation of cell cycle and oxidative phosphorylation pathways. An increase in MIA PaCa-2 cell proliferation and reactive oxygen species production by H2O2 challenge was blocked by rhCYGB treatment or Cygb overexpression. PANC-1, OCUP-A2, and BxPC-3 cancer cells showed similar responses to rhCYGB. Known antioxidants N-acetyl cysteine and glutathione also inhibited cancer cell growth. These results demonstrate that CYGB suppresses pancreatic stellate cell activation, pancreatic fibrosis, and tumor growth, suggesting its potential therapeutic application against pancreatic cancer.
Collapse
Affiliation(s)
- Dinh Viet Hoang
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Departmet of Anesthesiology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hoang Hai
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Vu Ngoc Hieu
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kenjiro Kimura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Daisuke Oikawa
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshihiro Ikura
- Department of Pathology, Takatsuki General Hospital, Takatsuki, Japan
| | - Ninh Quoc Dat
- Department of Pediatrics, Hanoi Medical University, Hanoi, Vietnam
| | - Truong Huu Hoang
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Pain Medicine and Palliative Care, Cancer Institute, 108 Military Central Hospital, Hanoi, Vietnam
| | - Misako Sato-Matsubara
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Minh Phuong Dong
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ngo Vinh Hanh
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Sawako Uchida-Kobayashi
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shoji Kubo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Katsutoshi Yoshizato
- Donated Laboratory for Synthetic Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
| |
Collapse
|
17
|
Capacity of extracellular globins to reduce liver fibrosis via scavenging reactive oxygen species and promoting MMP-1 secretion. Redox Biol 2022; 52:102286. [PMID: 35334247 PMCID: PMC8956869 DOI: 10.1016/j.redox.2022.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 11/15/2022] Open
Abstract
Background & aims Hepatic stellate cells (HSCs) are the primary cell type in liver fibrosis, a significant global health care burden. Cytoglobin (CYGB), a globin family member expressed in HSCs, inhibits HSC activation and reduces collagen production. We studied the antifibrotic properties of globin family members hemoglobin (HB), myoglobin (MB), and neuroglobin (NGB) in comparison with CYGB. Approach & results We characterized the biological activities of globins in cultured human HSCs (HHSteCs) and their effects on carbon tetrachloride (CCl4)-induced cirrhosis in mice. All globins demonstrated greater antioxidant capacity than glutathione in cell-free systems. Cellular fractionation revealed endocytosis of extracellular MB, NGB, and CYGB, but not HB; endocytosed globins localized to intracellular membranous, cytoplasmic, and cytoskeletal fractions. MB, NGB, and CYGB, but not HB, scavenged reactive oxygen species generated spontaneously or stimulated by H2O2 or transforming growth factor β1 in HHSteCs and reduced collagen 1A1 production via suppressing COL1A1 promoter activity. Disulfide bond-mutant NGB displayed decreased heme and superoxide scavenging activity and reduced collagen inhibitory capacity. RNA sequencing of MB- and NGB-treated HHSteCs revealed downregulation of extracellular matrix–encoding and fibrosis-related genes and HSC deactivation markers. Upregulation of matrix metalloproteinase (MMP)-1 was observed following MB and NGB treatment, and MMP-1 knockdown partially reversed globin-mediated effects on secreted collagen. Importantly, administration of MB, NGB, and CYGB suppressed CCl4-induced mouse liver fibrosis. Conclusions These findings revealed unexpected roles for MB and NGB in deactivating HSCs and inhibiting liver fibrosis development, suggesting that globin therapy may represent a new strategy for combating fibrotic liver disease. Myoglobin, neuroglobin, and cytoglobin, but not hemoglobin:Internalize into human hepatic stellate cells via endocytosis pathway. Scavenge intracellular reactive oxidative species. Suppress COL1A1 promoter activity and promote matrix metaloproteinase-1 secretion. Suppress carbon tetrachloride-induced mouse liver fibrosis.
Collapse
|
18
|
Perftoran improves Visudyne-photodynamic therapy via suppressing hypoxia pathway in murine lung cancer. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Kono H, Hosomura N, Amemiya H, Kawaida H, Furuya S, Akaike H, Kawaguchi Y, Sudo M, Ichikawa D. Cytoglobin as a Prognostic Factor for Pancreatic Ductal Adenocarcinoma: A Retrospective Analysis of 75 Patients. Pancreas 2021; 50:994-999. [PMID: 34629450 DOI: 10.1097/mpa.0000000000001871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim was to evaluate the relationship between cytoglobin (Cygb) expression and both clinicopathologic factors and prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Seventy-five patients with PDAC who underwent pancreatectomy between 2009 and 2014 at our department were included. Diagnosis was based on World Health Organization standards, with staging by TNM classification of Union for International Cancer Control. Expressions of Cygb, phosphoinositide-3 kinase, phosphorylated protein kinase B, interleukin-6, and vascular endothelial growth factor were evaluated by immunohistochemical staining of resected surgical specimens and densitometrical analysis. RESULTS Elevated expression of Cygb was found mainly in carcinoma cells of PDAC. Patients with low expression of Cygb showed significantly shorter disease-free survival and disease-specific survival than those with high expression. There was also a significant negative correlation between Cygb expression and the expressions of phosphoinositide 3-kinase, phosphorylated protein kinase B, interleukin-6, and vascular endothelial growth factor. In univariate analysis, Cygb expression, clinical stage, histologic tumor grade, lymphatic invasion, and vascular invasion were prognostic factors. In multivariate analysis, Cygb expression and the clinical stage were independent prognostic factors. CONCLUSIONS Loss of Cygb may contribute to tumor recurrence and poor prognosis of PDAC by increases in angiogenic factor.
Collapse
Affiliation(s)
- Hiroshi Kono
- From the First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dat NQ, Thuy LTT, Hieu VN, Hai H, Hoang DV, Thi Thanh Hai N, Thuy TTV, Komiya T, Rombouts K, Dong MP, Hanh NV, Hoang TH, Sato‐Matsubara M, Daikoku A, Kadono C, Oikawa D, Yoshizato K, Tokunaga F, Pinzani M, Kawada N. Hexa Histidine-Tagged Recombinant Human Cytoglobin Deactivates Hepatic Stellate Cells and Inhibits Liver Fibrosis by Scavenging Reactive Oxygen Species. Hepatology 2021; 73:2527-2545. [PMID: 33576020 PMCID: PMC8251927 DOI: 10.1002/hep.31752] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/25/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Antifibrotic therapy remains an unmet medical need in human chronic liver disease. We report the antifibrotic properties of cytoglobin (CYGB), a respiratory protein expressed in hepatic stellate cells (HSCs), the main cell type involved in liver fibrosis. APPROACH AND RESULTS Cygb-deficient mice that had bile duct ligation-induced liver cholestasis or choline-deficient amino acid-defined diet-induced steatohepatitis significantly exacerbated liver damage, fibrosis, and reactive oxygen species (ROS) formation. All of these manifestations were attenuated in Cygb-overexpressing mice. We produced hexa histidine-tagged recombinant human CYGB (His-CYGB), traced its biodistribution, and assessed its function in HSCs or in mice with advanced liver cirrhosis using thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). In cultured HSCs, extracellular His-CYGB was endocytosed and accumulated in endosomes through a clathrin-mediated pathway. His-CYGB significantly impeded ROS formation spontaneously or in the presence of ROS inducers in HSCs, thus leading to the attenuation of collagen type 1 alpha 1 production and α-smooth muscle actin expression. Replacement the iron center of the heme group with cobalt nullified the effect of His-CYGB. In addition, His-CYGB induced interferon-β secretion by HSCs that partly contributed to its antifibrotic function. Momelotinib incompletely reversed the effect of His-CYGB. Intravenously injected His-CYGB markedly suppressed liver inflammation, fibrosis, and oxidative cell damage in mice administered TAA or DDC mice without adverse effects. RNA-sequencing analysis revealed the down-regulation of inflammation- and fibrosis-related genes and the up-regulation of antioxidant genes in both cell culture and liver tissues. The injected His-CYGB predominantly localized to HSCs but not to macrophages, suggesting specific targeting effects. His-CYGB exhibited no toxicity in chimeric mice with humanized livers. CONCLUSIONS His-CYGB could have antifibrotic clinical applications for human chronic liver diseases.
Collapse
Affiliation(s)
- Ninh Quoc Dat
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan,Department of PediatricsHanoi Medical UniversityHanoiVietnam
| | - Le Thi Thanh Thuy
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Vu Ngoc Hieu
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Hoang Hai
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Dinh Viet Hoang
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | | | - Tuong Thi Van Thuy
- Biological Resources Vinmec Tissue BankVinmec Healthcare SystemHanoiVietnam
| | - Tohru Komiya
- Department of BiologyFaculty of ScienceOsaka City UniversityOsakaJapan
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis GroupInstitute for Liver and Digestive HealthUniversity College LondonRoyal Free HospitalLondonUnited Kingdom
| | - Minh Phuong Dong
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Ngo Vinh Hanh
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Truong Huu Hoang
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | | | - Atsuko Daikoku
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Chiho Kadono
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Daisuke Oikawa
- Department of PathobiochemistryGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Katsutoshi Yoshizato
- Academic Advisor’s OfficePhoenixBio Co., Ltd.HiroshimaJapan,Endowed Laboratory of Synthetic BiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Fuminori Tokunaga
- Department of PathobiochemistryGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis GroupInstitute for Liver and Digestive HealthUniversity College LondonRoyal Free HospitalLondonUnited Kingdom
| | - Norifumi Kawada
- Department of HepatologyGraduate School of MedicineOsaka City UniversityOsakaJapan,Regenerative Medicine and Fibrosis GroupInstitute for Liver and Digestive HealthUniversity College LondonRoyal Free HospitalLondonUnited Kingdom
| |
Collapse
|
21
|
Ye S, Xu M, Zhu T, Chen J, Shi S, Jiang H, Zheng Q, Liao Q, Ding X, Xi Y. Cytoglobin promotes sensitivity to ferroptosis by regulating p53-YAP1 axis in colon cancer cells. J Cell Mol Med 2021; 25:3300-3311. [PMID: 33611811 PMCID: PMC8034452 DOI: 10.1111/jcmm.16400] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis is an iron‐dependent mode of non‐apoptotic cell death characterized by accumulation of lipid reactive oxygen species (ROS). As a regulator of ROS, cytoglobin (CYGB) plays an important role in oxygen homeostasis and acts as a tumour suppressor. However, the mechanism by which CYGB regulates cell death is largely unknown. Here, we show that CYGB overexpression increased ROS accumulation and disrupted mitochondrial function as determined by the oxygen consumption rate and membrane potential. Importantly, ferroptotic features with accumulated lipid ROS and malondialdehyde were observed in CYGB‐overexpressing colorectal cancer cells. Moreover, CYGB significantly increased the sensitivity of cancer cells to RSL3‐ and erastin‐induced ferroptotic cell death. Mechanically, both YAP1 and p53 were significantly increased based on the RNA sequencing. The knock‐down of YAP1 alleviated production of lipid ROS and sensitivity to ferroptosis in CYGB overexpressed cells. Furthermore, YAP1 was identified to be inhibited by p53 knock‐down. Finally, high expression level of CYGB had the close correlation with key genes YAP1 and ACSL4 in ferroptosis pathway in colon cancer based on analysis from TCGA data. Collectively, our results demonstrated a novel tumour suppressor role of CYGB through p53‐YAP1 axis in regulating ferroptosis and suggested a potential therapeutic approach for colon cancer.
Collapse
Affiliation(s)
- Shazhou Ye
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Mingjun Xu
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Tingwei Zhu
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Jiayi Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Shanping Shi
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Haizhong Jiang
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Qingfang Zheng
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| | - Qi Liao
- Department of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaoyun Ding
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Yang Xi
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
22
|
Thorne LS, Rochford G, Williams TD, Southam AD, Rodriguez-Blanco G, Dunn WB, Hodges NJ. Cytoglobin protects cancer cells from apoptosis by regulation of mitochondrial cardiolipin. Sci Rep 2021; 11:985. [PMID: 33441751 PMCID: PMC7806642 DOI: 10.1038/s41598-020-79830-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Cytoglobin is important in the progression of oral squamous cell carcinoma but the molecular and cellular basis remain to be elucidated. In the current study, we develop a new cell model to study the function of cytoglobin in oral squamous carcinoma and response to cisplatin. Transcriptomic profiling showed cytoglobin mediated changes in expression of genes related to stress response, redox metabolism, mitochondrial function, cell adhesion, and fatty acid metabolism. Cellular and biochemical studies show that cytoglobin expression results in changes to phenotype associated with cancer progression including: increased cellular proliferation, motility and cell cycle progression. Cytoglobin also protects cells from cisplatin-induced apoptosis and oxidative stress with levels of the antioxidant glutathione increased and total and mitochondrial reactive oxygen species levels reduced. The mechanism of cisplatin resistance involved inhibition of caspase 9 activation and cytoglobin protected mitochondria from oxidative stress-induced fission. To understand the mechanism behind these phenotypic changes we employed lipidomic analysis and demonstrate that levels of the redox sensitive and apoptosis regulating cardiolipin are significantly up-regulated in cells expressing cytoglobin. In conclusion, our data shows that cytoglobin expression results in important phenotypic changes that could be exploited by cancer cells in vivo to facilitate disease progression.
Collapse
Affiliation(s)
- Lorna S Thorne
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Garret Rochford
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Timothy D Williams
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew D Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Giovanny Rodriguez-Blanco
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Warwick B Dunn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nikolas J Hodges
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
23
|
A globin-family protein, Cytoglobin 1, is involved in the development of neural crest-derived tissues and organs in zebrafish. Dev Biol 2021; 472:1-17. [PMID: 33358912 DOI: 10.1016/j.ydbio.2020.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022]
Abstract
The zebrafish is an excellent model animal that is amenable to forward genetics approaches. To uncover unknown developmental regulatory mechanisms in vertebrates, we conducted chemical mutagenesis screening and identified a novel mutation, kanazutsi (kzt). This mutation is recessive, and its homozygotes are embryonic lethal. Mutant embryos suffered from a variety of morphological defects, such as head flattening, pericardial edema, circulation defects, disrupted patterns of melanophore distribution, dwarf eyes, a defective jaw, and extensive apoptosis in the head, which indicates that the main affected tissues are derived from neural crest cells (NCCs). The expression of tissue-specific markers in kzt mutants showed that the early specification of NCCs was normal, but their later differentiation was severely affected. The mutation was mapped to chromosome 3 by linkage analyses, near cytoglobin 1 (cygb1), the product of which is a globin-family respiratory protein. cygb1 expression was activated during somitogenesis in somites and cranial NCCs in wild-type embryos but was significantly downregulated in mutant embryos, despite the normal primary structure of the gene product. The kzt mutation was phenocopied by cygb1 knockdown with low-dose morpholino oligos and was partially rescued by cygb1 overexpression. Both severe knockdown and null mutation of cygb1, established by the CRISPR/Cas9 technique, resulted in far more severe defects at early stages. Thus, it is highly likely that the downregulation of cygb1 is responsible for many, if not all, of the phenotypes of the kzt mutation. These results reveal a requirement for globin family proteins in vertebrate embryos, particularly in the differentiation and subsequent development of NCCs.
Collapse
|
24
|
Ramos-Tovar E, Muriel P. Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver. Antioxidants (Basel) 2020; 9:E1279. [PMID: 33333846 PMCID: PMC7765317 DOI: 10.3390/antiox9121279] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Activated hepatic stellate cells (HSCs) and myofibroblasts are the main producers of extracellular matrix (ECM) proteins that form the fibrotic tissue that leads to hepatic fibrosis. Reactive oxygen species (ROS) can directly activate HSCs or induce inflammation or programmed cell death, especially pyroptosis, in hepatocytes, which in turn activates HSCs and fibroblasts to produce ECM proteins. Therefore, antioxidants and the nuclear factor E2-related factor-2 signaling pathway play critical roles in modulating the profibrogenic response. The master proinflammatory factors nuclear factor-κB (NF-κB) and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome may coordinate to produce and activate profibrogenic molecules such as interleukins 1β and 18, which effectively activate HSCs, to produce large amounts of fibrotic proteins. Furthermore, the NLRP3 inflammasome activates pro-caspase 1, which is upregulated by NF-κB, to produce caspase 1, which induces pyroptosis via gasdermin and the activation of HSCs. ROS play central roles in the activation of the NF-κB and NLRP3 signaling pathways via IκB (an inhibitor of NF-κB) and thioredoxin-interacting protein, respectively, thereby linking the molecular mechanisms of oxidative stress, inflammation and fibrosis. Elucidating these molecular pathways may pave the way for the development of therapeutic tools to interfere with specific targets.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Apartado Postal 14-740, Mexico City 07000, Mexico
| |
Collapse
|
25
|
Odagiri N, Matsubara T, Sato-Matsubara M, Fujii H, Enomoto M, Kawada N. Anti-fibrotic treatments for chronic liver diseases: The present and the future. Clin Mol Hepatol 2020; 27:413-424. [PMID: 33317250 PMCID: PMC8273638 DOI: 10.3350/cmh.2020.0187] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis reflects tissue scarring in the liver due to the accumulation of excessive extracellular matrix in response to chronically persistent liver injury. Hepatocyte cell death can trigger capillarization of liver sinusoidal endothelial cells, stimulation of immune cells including macrophages and Kupffer cells, and activation of hepatic stellate cells (HSCs), resulting in progression of liver fibrosis. Liver cirrhosis is the terminal state of liver fibrosis and is associated with severe complications, such as liver failure, portal hypertension, and liver cancer. Nevertheless, effective therapy for cirrhosis has not yet been established, and liver transplantation is the only radical treatment for severe cases. Studies investigating HSC activation and regulation of collagen production in the liver have made breakthroughs in recent decades that have advanced the knowledge regarding liver fibrosis pathophysiology. In this review, we summarize molecular mechanisms of liver fibrosis and discuss the development of novel anti-fibrotic therapies.
Collapse
Affiliation(s)
- Naoshi Odagiri
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Misako Sato-Matsubara
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.,Department of Endowed Laboratory of Synthetic Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hideki Fujii
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
26
|
Rahman M, Almalki WH, Afzal O, Alfawaz Altamimi AS, Kazmi I, Al-Abbasi FA, Choudhry H, Alenezi SK, Barkat MA, Beg S, Kumar V, Alhalmi A. Cationic Solid Lipid Nanoparticles of Resveratrol for Hepatocellular Carcinoma Treatment: Systematic Optimization, in vitro Characterization and Preclinical Investigation. Int J Nanomedicine 2020; 15:9283-9299. [PMID: 33262588 PMCID: PMC7695602 DOI: 10.2147/ijn.s277545] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Aim The present study focuses on the development and evaluation of the resveratrol (RV)-loaded cationic solid lipid nanoparticles (RV-c-SLNs) for the management of hepatocellular carcinoma (HCC). Materials and Methods Optimization of formulation was performed using factorial design, and further in vitro drug release, cytotoxicity, biodistribution, in vivo preclinical, and biochemical evaluation were carried out. Results The optimized formulation exhibited uniform size, homogeneous disparity, positive zeta potential, and stability over 12-week storage at 25°C/60% RH. The in vitro drug release and cytotoxicity study showed 60% drug release within the first 6 hours and comparatively higher cytotoxicity on HepG2 cell line by resveratrol-solid lipid nanoparticle (RV-SLN) as compared to the RV solution. In addition, an anticancer action and biodistribution study on a rat model of HCC showed significant reduction of tumor volume and higher accumulation in the tumor tissue from RV-c-SLN (P<0.01) over RV solution and RV-SLN. Furthermore, RV-c-SLN showed significant down-regulation in the levels of pro-inflammatory cytokines and balancing of antioxidant enzymes. Histopathological investigation showed reduced occurrence of hepatic nodules, necrosis formation, infiltration of inflammatory cells, blood vessels inflammation, and cell swelling. Conclusion Overall, the obtained results construed that RV-c-SLN with improved antitumor activity as clearly evident from in vitro, in vivo, and biochemical investigations.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sattam K Alenezi
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Nanomedicine Research Lab, Jamia Hamdard, New Delhi, India
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, Collage of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
27
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer related mortality with a 10 year survival rate of merely 22-35%. Tumorigenesis frequently occurs in patients with chronic liver disease where continued liver cell damage, compensatory proliferation and inflammation provide the basis for tumor initiation, promotion and progression. Animal models of HCC are particularly useful to better understand molecular events underlying liver tumorigenesis. To this end, chemical carcinogenesis protocols based on the injection of genotoxic compounds such as diethylnitrosamine (DEN) are widely used to model liver tumorigenesis in rodents. DEN injection into 2 week old mice is sufficient to cause liver tumorigenesis after 8-10 months. When injected into older mice, DEN has to be combined with administration of tumor promoting agents such as phenobarbital or feeding high fat diet. Such protocols allow to dissect the different steps of tumor formation (i.e., tumor initiation and promotion) experimentally and to model liver pathologies in mice which frequently lead to HCC in human patients such as non-alcoholic fatty liver disease. Here, we review several established chemical carcinogenesis protocols based on DEN injection into mice and discuss their advantages as well as potential limitations.
Collapse
Affiliation(s)
- Isabel Schulien
- Department of Medicine II, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Medicine II, Medical Center-University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
28
|
TGF-β1-driven reduction of cytoglobin leads to oxidative DNA damage in stellate cells during non-alcoholic steatohepatitis. J Hepatol 2020; 73:882-895. [PMID: 32330605 DOI: 10.1016/j.jhep.2020.03.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species. The molecular role of CYGB in human hepatic stellate cell (HSC) activation and human liver disease remains uncharacterised. The aim of this study was to reveal the mechanism by which the TGF-β1/SMAD2 pathway regulates the human CYGB promoter and the pathophysiological function of CYGB in human non-alcoholic steatohepatitis (NASH). METHODS Immunohistochemical staining was performed using human NASH biopsy specimens. Molecular and biochemical analyses were performed by western blotting, quantitative PCR, and luciferase and immunoprecipitation assays. Hydroxyl radicals (•OH) and oxidative DNA damage were measured using an •OH-detectable probe and 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA. RESULTS In culture, TGF-β1-pretreated human HSCs exhibited lower CYGB levels - together with increased NADPH oxidase 4 (NOX4) expression - and were primed for H2O2-triggered •OH production and 8-OHdG generation; overexpression of human CYGB in human HSCs reversed these effects. Electron spin resonance demonstrated the direct •OH scavenging activity of recombinant human CYGB. Mechanistically, pSMAD2 reduced CYGB transcription by recruiting the M1 repressor isoform of SP3 to the human CYGB promoter at nucleotide positions +2-+13 from the transcription start site. The same repression did not occur on the mouse Cygb promoter. TGF-β1/SMAD3 mediated αSMA and collagen expression. Consistent with observations in cultured human HSCs, CYGB expression was negligible, but 8-OHdG was abundant, in activated αSMA+pSMAD2+- and αSMA+NOX4+-positive hepatic stellate cells from patients with NASH and advanced fibrosis. CONCLUSIONS Downregulation of CYGB by the TGF-β1/pSMAD2/SP3-M1 pathway brings about •OH-dependent oxidative DNA damage in activated hepatic stellate cells from patients with NASH. LAY SUMMARY Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species and protects cells from oxidative DNA damage. Herein, we show that the cytokine TGF-β1 downregulates human CYGB expression. This leads to oxidative DNA damage in activated hepatic stellate cells. Our findings provide new insights into the relationship between CYGB expression and the pathophysiology of fibrosis in patients with non-alcoholic steatohepatitis.
Collapse
|
29
|
Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol 2020; 37:101687. [PMID: 32863222 PMCID: PMC7475203 DOI: 10.1016/j.redox.2020.101687] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate hemoglobin (Hb) and myoglobin (Mb) were among the first proteins whose structures and sequences were determined over 50 years ago. In the subsequent pregenomic period, numerous related proteins came to light in plants, invertebrates and bacteria, that shared the myoglobin fold, a signature sequence motif characteristic of a 3-on-3 α-helical sandwich. Concomitantly, eukaryote and bacterial globins with a truncated 2-on-2 α-helical fold were discovered. Genomic information over the last 20 years has dramatically expanded the list of known globins, demonstrating their existence in a limited number of archaeal genomes, a majority of bacterial genomes and an overwhelming majority of eukaryote genomes. In vertebrates, 6 additional globin types were identified, namely neuroglobin (Ngb), cytoglobin (Cygb), globin E (GbE), globin X (GbX), globin Y (GbY) and androglobin (Adgb). Furthermore, functions beyond the familiar oxygen transport and storage have been discovered within the vertebrate globin family, including NO metabolism, peroxidase activity, scavenging of free radicals, and signaling functions. The extension of the knowledge on globin functions suggests that the original roles of bacterial globins must have been enzymatic, involved in defense against NO toxicity, and perhaps also as sensors of O2, regulating taxis away or towards high O2 concentrations. In this review, we aimed to discuss the evolution and remarkable functional diversity of vertebrate globins with particular focus on the variety of non-canonical expression sites of mammalian globins and their according impressive variability of atypical functions.
Collapse
|
30
|
Giordano D, Pesce A, Vermeylen S, Abbruzzetti S, Nardini M, Marchesani F, Berghmans H, Seira C, Bruno S, Javier Luque F, di Prisco G, Ascenzi P, Dewilde S, Bolognesi M, Viappiani C, Verde C. Structural and functional properties of Antarctic fish cytoglobins-1: Cold-reactivity in multi-ligand reactions. Comput Struct Biotechnol J 2020; 18:2132-2144. [PMID: 32913582 PMCID: PMC7451756 DOI: 10.1016/j.csbj.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/10/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
While the functions of the recently discovered cytoglobin, ubiquitously expressed in vertebrate tissues, remain uncertain, Antarctic fish provide unparalleled models to study novel protein traits that may arise from cold adaptation. We report here the spectral, ligand-binding and enzymatic properties (peroxynitrite isomerization, nitrite-reductase activity) of cytoglobin-1 from two Antarctic fish, Chaenocephalus aceratus and Dissostichus mawsoni, and present the crystal structure of D. mawsoni cytoglobin-1. The Antarctic cytoglobins-1 display high O2 affinity, scarcely compatible with an O2-supply role, a slow rate constant for nitrite-reductase activity, and do not catalyze peroxynitrite isomerization. Compared with mesophilic orthologues, the cold-adapted cytoglobins favor binding of exogenous ligands to the hexa-coordinated bis-histidyl species, a trait related to their higher rate constant for distal-His/heme-Fe dissociation relative to human cytoglobin. At the light of a remarkable 3D-structure conservation, the observed differences in ligand-binding kinetics may reflect Antarctic fish cytoglobin-1 specific features in the dynamics of the heme distal region and of protein matrix cavities, suggesting adaptation to functional requirements posed by the cold environment. Taken together, the biochemical and biophysical data presented suggest that in Antarctic fish, as in humans, cytoglobin-1 unlikely plays a role in O2 transport, rather it may be involved in processes such as NO detoxification.
Collapse
Key Words
- C.aceCygb-1*, Mutant of C.aceCygb-1
- C.aceCygb-1, Cytoglobin-1 of C. aceratus
- CO, Carbon monoxide
- CYGB, Human Cygb
- Cold-adaptation
- Cygb, Cytoglobin
- Cygb-1, Cytoglobin 1
- Cygb-2, Cytoglobin 2
- Cygbh, Hexa-coordinated bis-histidyl species
- Cygbp, Penta-coordinated Cygb
- Cytoglobin
- D.mawCygb-1*, Mutant of D.mawCygb-1
- D.mawCygb-1, Cytoglobin-1 of D. mawsoni
- DTT, Dithiothreitol
- Hb, Hemoglobin
- Ligand properties
- MD, Molecular Dynamics
- Mb, Myoglobin
- NGB, Human neuroglobin
- NO dioxygenase
- NO, Nitric oxide
- RNS, Reactive Nitrogen Species
- ROS, Reactive Oxygen Species
- X-ray structure
- p50, O2 partial pressure required to achieve half saturation
- rms, Root-mean square
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111 80131 Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Alessandra Pesce
- Department of Physics, University of Genova, Via Dodecaneso 33, I-16121 Genova, Italy
| | - Stijn Vermeylen
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Francesco Marchesani
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23A, 43124, Parma, Italy
| | - Herald Berghmans
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Constantí Seira
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Science, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23A, 43124, Parma, Italy
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Science, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Av. Prat de la Riba 171, Santa Coloma de Gramenet E-08921, Spain
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111 80131 Napoli, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111 80131 Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
31
|
Thuy LTT, Hai H, Kawada N. Role of cytoglobin, a novel radical scavenger, in stellate cell activation and hepatic fibrosis. Clin Mol Hepatol 2020; 26:280-293. [PMID: 32492766 PMCID: PMC7364355 DOI: 10.3350/cmh.2020.0037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022] Open
Abstract
Cytoglobin (Cygb), a stellate cell-specific globin, has recently drawn attention due to its association with liver fibrosis. In the livers of both humans and rodents, Cygb is expressed only in stellate cells and can be utilized as a marker to distinguish stellate cells from hepatic fibroblast-derived myofibroblasts. Loss of Cygb accelerates liver fibrosis and cancer development in mouse models of chronic liver injury including diethylnitrosamine-induced hepatocellular carcinoma, bile duct ligation-induced cholestasis, thioacetamide-induced hepatic fibrosis, and choline-deficient L-amino acid-defined diet-induced non-alcoholic steatohepatitis. This review focuses on the history of research into the role of reactive oxygen species and nitrogen species in liver fibrosis and discusses the current perception of Cygb as a novel radical scavenger with an emphasis on its role in hepatic stellate cell activation and fibrosis.
Collapse
Affiliation(s)
- Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hoang Hai
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
32
|
Randi EB, Vervaet B, Tsachaki M, Porto E, Vermeylen S, Lindenmeyer MT, Thuy LTT, Cohen CD, Devuyst O, Kistler AD, Szabo C, Kawada N, Hankeln T, Odermatt A, Dewilde S, Wenger RH, Hoogewijs D. The Antioxidative Role of Cytoglobin in Podocytes: Implications for a Role in Chronic Kidney Disease. Antioxid Redox Signal 2020; 32:1155-1171. [PMID: 31910047 DOI: 10.1089/ars.2019.7868] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aims: Cytoglobin (CYGB) is a member of the mammalian globin family of respiratory proteins. Despite extensive research efforts, its physiological role remains largely unknown, but potential functions include reactive oxygen species (ROS) detoxification and signaling. Accumulating evidence suggests that ROS play a crucial role in podocyte detachment and apoptosis during diabetic kidney disease. This study aimed to explore the potential antioxidative renal role of CYGB both in vivo and in vitro. Results: Using a Cygb-deficient mouse model, we demonstrate a Cygb-dependent reduction in renal function, coinciding with a reduced number of podocytes. To specifically assess the putative antioxidative function of CYGB in podocytes, we first confirmed high endogenous CYGB expression levels in two human podocyte cell lines and subsequently generated short hairpin RNA-mediated stable CYGB knockdown podocyte models. CYGB-deficient podocytes displayed increased cell death and accumulation of ROS as assessed by 2'7'-dichlorodihydrofluorescein diacetate assays and the redox-sensitive probe roGFP2-Orp1. CYGB-deficient cells also exhibited an impaired cellular bioenergetic status. Consistently, analysis of the CYGB-dependent transcriptome identified dysregulation of multiple genes involved in redox balance, apoptosis, as well as in chronic kidney disease (CKD). Finally, genome-wide association studies and expression studies in nephropathy biopsies indicate an association of CYGB with CKD. Innovation: This study demonstrates a podocyte-related renal role of Cygb, confirms abundant CYGB expression in human podocyte cell lines, and describes for the first time an association between CYGB and CKD. Conclusion: Our results provide evidence for an antioxidative role of CYGB in podocytes.
Collapse
Affiliation(s)
- Elisa B Randi
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland
| | - Benjamin Vervaet
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Maria Tsachaki
- National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland.,Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Elena Porto
- Institute of Organismal and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Stijn Vermeylen
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Maja T Lindenmeyer
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland.,Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Clemens D Cohen
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland.,Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Olivier Devuyst
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland
| | - Andreas D Kistler
- Division of Nephrology, Kantonsspital Frauenfeld, Frauenfeld, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Thomas Hankeln
- Institute of Organismal and Molecular Evolutionary Biology, University of Mainz, Mainz, Germany
| | - Alex Odermatt
- National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland.,Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Roland H Wenger
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland
| | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.,National Centre of Competence in Research (NCCR) "Kidney.CH", Zurich, Switzerland
| |
Collapse
|
33
|
Mathai C, Jourd'heuil FL, Lopez-Soler RI, Jourd'heuil D. Emerging perspectives on cytoglobin, beyond NO dioxygenase and peroxidase. Redox Biol 2020; 32:101468. [PMID: 32087552 PMCID: PMC7033357 DOI: 10.1016/j.redox.2020.101468] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cytoglobin is an evolutionary ancient hemoglobin with poor functional annotation. Rather than constrained to penta coordination, cytoglobin's heme iron may exist either as a penta or hexacoordinated arrangement when exposed to different intracellular environments. Two cysteine residues at the surface of the protein form an intramolecular disulfide bond that regulates iron coordination, ligand binding, and peroxidase activity. Overall, biochemical results do not support a role for cytoglobin as a direct antioxidant enzyme that scavenges hydrogen peroxide because the rate of the reaction of cytoglobin with hydrogen peroxide is several orders of magnitude slower than metal and thiol-based peroxidases. Thus, alternative substrates such as fatty acids have been suggested and regulation of nitric oxide bioavailability through nitric oxide dioxygenase and nitrite reductase activities has received experimental support. Cytoglobin is broadly expressed in connective, muscle, and nervous tissues. Rational for differential cellular distribution is poorly understood but inducibility in response to hypoxia is one of the most established features of cytoglobin expression with regulation through the transcription factor hypoxia-inducible factor (HIF). Phenotypic characterization of cytoglobin deletion in the mouse have indicated broad changes that include a heightened inflammatory response and fibrosis, increase tumor burden, cardiovascular dysfunction, and hallmarks of senescence. Some of these changes might be reversed upon inhibition of nitric oxide synthase. However, subcellular and molecular interactions have been seldom characterized. In addition, specific molecular mechanisms of action are still lacking. We speculate that cytoglobin functionality will extend beyond nitric oxide handling and will have to encompass indirect regulatory antioxidant and redox sensing functions.
Collapse
Affiliation(s)
- Clinton Mathai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Frances L Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | | | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
34
|
Gomes BRB, de Sousa GLS, Ott D, Murgott J, de Sousa MV, de Souza PEN, Roth J, Veiga-Souza FH. Cytoglobin Attenuates Neuroinflammation in Lipopolysaccharide-Activated Primary Preoptic Area Cells via NF-κB Pathway Inhibition. Front Mol Neurosci 2019; 12:307. [PMID: 31920538 PMCID: PMC6920097 DOI: 10.3389/fnmol.2019.00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
Cytoglobin (Cygb) is a hexacoordinate protein, associated with the transport of oxygen, nitric oxide scavenging, tumor suppression and protection against oxidative stress and inflammation. This protein is expressed in brain areas including the preoptic area (POA) of the anterior hypothalamus, the region responsible for the regulation of body temperature. In this study, we show that Cygb is upregulated in the rat hypothalamus 2.5 h and 5 h after intravenous administration of lipopolysaccharide (LPS). We investigated the effect of treatment with Cygb in POA primary cultures stimulated with LPS for 4 h. The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were measured and the results showed that Cygb reduced the concentrations of both cytokines. We further observed a decrease in immunoreactivity of the inflammatory transcription factor nuclear factor-κB (NF-κB), but not NF-IL6 and STAT3, in the nucleus of Cygb-treated POA cells. These findings suggest that Cygb attenuates the secretion of IL-6 and TNF-α in LPS-stimulated POA primary cultures via inhibition of the NF-κB signaling pathway, indicating that this protein might play an important role in the control of neuroinflammation and fever.
Collapse
Affiliation(s)
- Bruna R B Gomes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | | | - Daniela Ott
- Veterinary Physiology, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Jolanta Murgott
- Veterinary Physiology, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Marcelo V de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Paulo E N de Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, University of Brasília, Brasília, Brazil
| | - Joachim Roth
- Veterinary Physiology, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Fabiane H Veiga-Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil.,School of Ceilandia, University of Brasília, Brasília, Brazil
| |
Collapse
|
35
|
Cytoglobin deficiency potentiates Crb1-mediated retinal degeneration in rd8 mice. Dev Biol 2019; 458:141-152. [PMID: 31634437 DOI: 10.1016/j.ydbio.2019.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study is to determine the effect of Cytoglobin (Cygb) deficiency on Crb1-related retinopathy. The Crb1 cell polarity complex is required for photoreceptor function and survival. Crb1-related retinopathies encompass a broad range of phenotypes which are not completely explained by the variability of Crb1 mutations. Genes thought to modify Crb1 function are therefore important targets of research. The biological function of Cygb involves oxygen delivery, scavenging of reactive oxygen species, and nitric oxide metabolism. However, the relationship of Cygb to diseases involving the Crb1 cell polarity complex is unknown. METHODS Cygb knockout mice homozygous for the rd8 mutation (Cygb-/-rd8/rd8) were screened for ocular abnormalities and imaged using optical coherence tomography and fundus photography. Electroretinography was performed, as was histology and immunohistochemistry. Quantitative PCR was used to determine the effect of Cygb deficiency on transcription of Crb1 related cell polarity genes. RESULTS Cygb-/-rd8/rd8 mice develop an abnormal retina with severe lamination abnormalities. The retina undergoes progressive degeneration with the ventral retina more severely affected than the dorsal retina. Cygb expression is in neurons of the retinal ganglion cell layer and inner nuclear layer. Immunohistochemical studies suggest that cell death predominates in the photoreceptors. Electroretinography amplitudes show reduced a- and b-waves, consistent with photoreceptor disease. Cygb deficient retinas had only modest transcriptional perturbations of Crb1-related cell polarity genes. Cygb-/- mice without the rd8 mutation did not exhibit obvious retinal abnormalities. CONCLUSIONS Cygb is necessary for retinal lamination, maintenance of cell polarity, and photoreceptor survival in rd8 mice. These results are consistent with Cygb as a disease modifying gene in Crb1-related retinopathy. Further studies are necessary to investigate the role of Cygb in the human retina.
Collapse
|
36
|
Wei H, Lin L, Zhang X, Feng Z, Wang Y, You Y, Wang X, Hou Y. Effect of cytoglobin overexpression on extracellular matrix component synthesis in human tenon fibroblasts. Biol Res 2019; 52:23. [PMID: 30992080 PMCID: PMC6466771 DOI: 10.1186/s40659-019-0229-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Conjunctival filtering bleb scar formation is the main reason for the failure of glaucoma filtration surgery. Cytoglobin (Cygb) has been reported to play an important role in extracellular matrix (ECM) remodeling, fibrosis and tissue damage repairing. This study aimed to investigate the role of Cygb in anti-scarring during excessive conjunctival wound healing after glaucoma filtration surgery. METHODS Cygb was overexpressed in human tenon fibroblasts (hTFs) by transfecting hTFs with lentiviral particles encoding pLenti6.2-FLAG-Cygb. Changes in the mRNA and protein levels of fibronectin, collagen I, collagen III, TGF-β1, and HIF1α were determined by RT-PCR and western blotting respectively. RESULTS After Cygb overexpression, hTFs displayed no significant changes in visual appearance and cell counts compared to controls. Whereas, Cygb overexpression significantly decreased the mRNA and protein expression levels of collagen I, collagen III and fibronectin compared with control (p < 0.01). There was also a statistically significant decrease in the mRNA and protein levels of TGF-β1 and HIF-1α in hTFs with overexpressed Cygb compared with control group (p < 0.05). CONCLUSION Our study provided evidence that overexpression of Cygb decreased the expression levels of fibronectin, collagen I, collagen III, TGF-β1 and HIF-1α in hTFs. Therefore, therapies targeting Cygb expression in hTFs may pave a new way for clinicians to solve the problem of post-glaucoma surgery scarring.
Collapse
Affiliation(s)
- Haiying Wei
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Lili Lin
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Xiaomei Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Zhuolei Feng
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Yeqing Wang
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Yan You
- Department of Dermatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaodan Wang
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Yongsheng Hou
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
37
|
Ohtani N, Kawada N. Role of the Gut-Liver Axis in Liver Inflammation, Fibrosis, and Cancer: A Special Focus on the Gut Microbiota Relationship. Hepatol Commun 2019; 3:456-470. [PMID: 30976737 PMCID: PMC6442695 DOI: 10.1002/hep4.1331] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
The gut and the liver are anatomically and physiologically connected, and this “gut–liver axis” exerts various influences on liver pathology. The gut microbiota consists of various microorganisms that normally coexist in the human gut and have a role of maintaining the homeostasis of the host. However, once homeostasis is disturbed, metabolites and components derived from the gut microbiota translocate to the liver and induce pathologic effects in the liver. In this review, we introduce and discuss the mechanisms of liver inflammation, fibrosis, and cancer that are influenced by gut microbial components and metabolites; we include recent advances in molecular‐based therapeutics and novel mechanistic findings associated with the gut–liver axis and gut microbiota.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology Osaka City University, Graduate School of Medicine Osaka Japan
| | - Norifumi Kawada
- Department of Hepatology Osaka City University, Graduate School of Medicine Osaka Japan
| |
Collapse
|
38
|
Thi Thanh Hai N, Thuy LTT, Shiota A, Kadono C, Daikoku A, Hoang DV, Dat NQ, Sato-Matsubara M, Yoshizato K, Kawada N. Selective overexpression of cytoglobin in stellate cells attenuates thioacetamide-induced liver fibrosis in mice. Sci Rep 2018; 8:17860. [PMID: 30552362 PMCID: PMC6294752 DOI: 10.1038/s41598-018-36215-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Cytoglobin (CYGB), discovered in hepatic stellate cells (HSCs), is known to possess a radical scavenger function, but its pathophysiological roles remain unclear. Here, for the first time, we generated a new transgenic (TG) mouse line in which both Cygb and mCherry reporter gene expression were under the control of the native Cygb gene promoter. We demonstrated that the expression of Cygb-mCherry was related to endogenous Cygb in adult tissues by tracing mCherry fluorescence together with DNA, mRNA, and protein analyses. Administration of a single dose (50 mg/kg) of thioacetamide (TAA) in Cygb-TG mice resulted in lower levels of alanine transaminase and oxidative stress than those in WT mice. After 10 weeks of TAA administration, Cygb-TG livers exhibited reduced neutrophil accumulation, cytokine expression and fibrosis but high levels of quiescent HSCs. Primary HSCs isolated from Cygb-TG mice (HSCCygb-TG) exhibited significantly decreased mRNA levels of α-smooth muscle actin (αSMA), collagen 1α1, and transforming growth factor β-3 after 4 days in culture relative to WT cells. HSCsCygb-TG were resistant to H2O2-induced αSMA expression. Thus, cell-specific overexpression of Cygb attenuates HSC activation and protects mice against TAA-induced liver fibrosis presumably by maintaining HSC quiescence. Cygb is a potential new target for antifibrotic approaches.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Hai
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Le Thi Thanh Thuy
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | - Chiho Kadono
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Atsuko Daikoku
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Dinh Viet Hoang
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Ninh Quoc Dat
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Misako Sato-Matsubara
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Katsutoshi Yoshizato
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- PhoenixBio Co. Ltd., Hiroshima, Japan
- Endowed Laboratory of Synthetic Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| |
Collapse
|
39
|
Feng Y, Wu M, Li S, He X, Tang J, Peng W, Zeng B, Deng C, Ren G, Xiang T. The epigenetically downregulated factor CYGB suppresses breast cancer through inhibition of glucose metabolism. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:313. [PMID: 30545372 PMCID: PMC6293581 DOI: 10.1186/s13046-018-0979-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023]
Abstract
Background Recent studies suggested the globin family member cytoglobin (CYGB) as a potential tumor suppressor; however, the mechanism by which CYGB suppresses cancer is elusive. We investigated the role and mechanism of CYGB in suppressing breast cancer. Methods CYGB expression was examined by reverse transcription PCR, quantitative reverse transcription PCR and open database analysis. Promoter methylation was examined by methylation-specific PCR. Metabolomics and proteomics were analyzed by gas chromatography-mass spectrometry and isobaric tags for relative and absolute quantitation, respectively. The effects and mechanisms of ectopic CYGB expression in breast cancer cells were assessed with molecular biological and cellular approaches in vitro and with a xenograft tumor model in nude mice. Results CYGB expression was downregulated in breast cancer tissues and cell lines, which was associated with promoter methylation. Ectopic CYGB expression suppressed proliferation, migration, invasion and induced apoptosis in breast cancer cell lines MCF7 (p53WT) and MB231 (p53mt) in vitro, and inhibited xenograft tumor growth in vivo. By proteomics and metabolomics analysis, glucose metabolism was found to be one of the main pathways suppressed by CYGB. The CYGB-expressing cells had lower ATP and compromised glycolysis. Additionally, CYGB suppressed key glucose metabolism factors including GLUT1 and HXK2 in p53-dependent and -independent manners. Restoration of GLUT1 or HXK2 expression attenuated CYGB-mediated proliferation suppression and apoptosis induction. Conclusions CYGB is a potential tumor suppressor in breast cancer that is epigenetically suppressed. The results for the first time suggest that CYGB suppresses breast cancer through inhibiting glucose metabolism, which could be exploited for breast cancer prevention and therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0979-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Shuman Li
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian He
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Beilei Zeng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
40
|
Zhang J, Pei Y, Yang W, Yang W, Chen B, Zhao X, Long S. Cytoglobin ameliorates the stemness of hepatocellular carcinoma via coupling oxidative-nitrosative stress signals. Mol Carcinog 2018; 58:334-343. [PMID: 30365183 DOI: 10.1002/mc.22931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/22/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) account for tumor self-renewal and heterogeneity. Oxidative-nitrosative stress (ONS) is an independent etiologic factor throughout tumorigenesis. Emerging evidences indicated that the interaction of ONS with CSCs contributes to tumor progression and resistance to chemoradiotherapy. Cytoglobin (Cygb) is a member of human hexacoordinate hemoglobin family and acts as a dynamic mediator of redox homeostasis. We observed that Cygb is significantly deregulated in human hepatocellular carcinoma (HCC) tissue and its decrease aggravates the growth of liver cancer stem cells (LCSCs) and increases the subpopulation of CD133(+) LCSCs. Cygb restoration inhibits HCC proliferation and LCSC growth, and decreases the subpopulation of CD133 (+) LCSCs in vitro. We found that Cygb absence promotes LCSC phenotypes and PI3 K/AKT activation, whereas Cygb restoration inhibits LCSC phenotypes and PI3 K/AKT activation. Furthermore, exogenous antioxidants can eliminate the inhibitory effect of Cygb to LCSC growth and phenotypes, as well as PI3 K/AKT activation. Collectively, this study demonstrated that cytoglobin functions as a tumor suppressor and targets CSCs at an ONS-dependent manner. Thus, Cygb restoration could be a novel and promising therapeutic strategy against HCC with aberrant ROS/RNS accumulation.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pathology, the Affiliated Hospital of Guizhou Medical University, Guiyang, PR China.,Department of Pathology, Graduate School of Medicine, Guizhou Medical University, Guiyang, PR China.,Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, PR China
| | - YuanYuan Pei
- Department of Pathology, the Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Wen Yang
- Department of Pathology, the Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - WenXiu Yang
- Department of Pathology, the Affiliated Hospital of Guizhou Medical University, Guiyang, PR China.,Department of Pathology, Graduate School of Medicine, Guizhou Medical University, Guiyang, PR China
| | - BoXin Chen
- Department of Immunology, Basic School of Medicine, Guizhou Medical University, Guiyang, PR China
| | - Xing Zhao
- Department of Immunology, Basic School of Medicine, Guizhou Medical University, Guiyang, PR China
| | - Shiqi Long
- Department of Immunology, Basic School of Medicine, Guizhou Medical University, Guiyang, PR China
| |
Collapse
|
41
|
Cytoglobin affects tumorigenesis and the expression of ulcerative colitis-associated genes under chemically induced colitis in mice. Sci Rep 2018; 8:6905. [PMID: 29720595 PMCID: PMC5931983 DOI: 10.1038/s41598-018-24728-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Cytoglobin (Cygb) is a member of the hemoglobin family and is thought to protect against cellular hypoxia and oxidative stress. These functions may be particularly important in inflammation-induced cancer, e.g., in patients with ulcerative colitis (UC). In this study, we investigated the development of inflammation and tumors in a murine model of inflammation-induced colorectal cancer using a combined treatment of azoxymethane and dextran sulfate sodium. A bioinformatics analysis of genome-wide expression data revealed increased colonic inflammation at the molecular level accompanied by enhanced macroscopic tumor development in Cygb-deficient mice. Moreover, the expression of the UC-associated gene neurexophilin and PC-esterase domain family member 4 (Nxpe4) depended on the presence of Cygb in the inflamed colonic mucosa. Compared to wild type mice, RT-qPCR confirmed a 14-fold (p = 0.0003) decrease in Nxpe4 expression in the inflamed colonic mucosa from Cygb-deficient mice. An analysis of Cygb protein expression suggested that Cygb is expressed in fibroblast-like cells surrounding the colonic crypts. Histological examinations of early induced lesions suggested that the effect of Cygb is primarily at the level of tumor promotion. In conclusion, in this model, Cygb primarily seemed to inhibit the development of established microadenomas.
Collapse
|
42
|
Pandey P, Rahman M, Bhatt PC, Beg S, Paul B, Hafeez A, Al-Abbasi FA, Nadeem MS, Baothman O, Anwar F, Kumar V. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine (Lond) 2018; 13:849-870. [DOI: 10.2217/nnm-2017-0306] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The present work describes the development of poly(lactic co-glycolic acid) (PLGA) nanoparticles (NPs) of rutin (RT) for the treatment of hepatocellular carcinoma in rats. Materials & methods: RT-loaded PLGA NPs (RT-PLGA-NPs) were prepared by double emulsion evaporation method. Further these are optimized by Box–Behnken design. PLGA NPs were evaluated for size, polydispersity index, drug-loading capacity, entrapment, gastric stability, in vitro drug release, in vivo preclinical studies and biochemical studies. Results: Preclinical evaluation of RT-PLGA-NPs for anticancer activity through oral route exhibited significant improvement in hepatic, hematologic and renal biochemical parameters. Highly superior activity was observed in regulating oxidative stress and inflammatory markers, antioxidant enzymes, cytokines and inflammatory mediators and their role on plasma membrane ATPases responsible for destruction in liver tissues. Conclusion: Histopathological evaluation indicated reduced incidence of hepatic nodules, necrosis formation, infiltration of inflammatory cells, blood vessel inflammation and cell swelling with RT-PLGA-NP treatment along with considerable downregulation in the levels of proinflammatory cytokines.
Collapse
Affiliation(s)
- Preeti Pandey
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| | - Prakash Chandra Bhatt
- Centre for Advanced Research in Pharmaceutical Sciences, Microbial & Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| | - Sarwar Beg
- Product Development Research, Jubilant Generics Limited, Noida-201301, UP, India
| | - Basudev Paul
- Product Development Research, Jubilant Generics Limited, Noida-201301, UP, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, UP, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| |
Collapse
|
43
|
Heim D, Gil-Ibanez I, Herden J, Parplys AC, Borgmann K, Schmidt-Arras D, Lohse AW, Rose-John S, Wege H. Constitutive gp130 activation rapidly accelerates the transformation of human hepatocytes via an impaired oxidative stress response. Oncotarget 2018; 7:55639-55648. [PMID: 27489351 PMCID: PMC5342442 DOI: 10.18632/oncotarget.10956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/09/2016] [Indexed: 01/29/2023] Open
Abstract
Pro-inflammatory signaling pathways, especially interleukin 6 (IL-6), and reactive oxygen species (ROS) promote carcinogenesis in the liver. In order to elucidate the underlying oncogenic mechanism, we activated the IL-6 signal transducer glycoprotein 130 (gp130) via stable expression of a constitutively active gp130 construct (L-gp130) in untransformed telomerase-immortalized human fetal hepatocytes (FH-hTERT). As known from hepatocellular adenomas, forced gp130 activation alone was not sufficient to induce malignant transformation. However, additional challenge of FH-hTERT L-gp130 clones with oxidative stress resulted in 2- to 3-fold higher ROS levels and up to 6-fold more DNA-double strand breaks (DSB). Despite increased DNA damage, ROS-challenged FH-hTERT L-gp130 clones displayed an enhanced proliferation and rapidly developed colony growth capabilities in soft agar. As driving gp130-mediated oncogenic mechanism, we detected a decreased expression of antioxidant genes, in particular glutathione peroxidase 3 and apolipoprotein E, and an absence of P21 upregulation following ROS-conferred induction of DSB. In summary, an impaired oxidative stress response in hepatocytes with gp130 gain-of-function mutations, as detected in dysplastic intrahepatic nodules and hepatocellular adenomas, is one of the central oncogenic mechanisms in chronic liver inflammation.
Collapse
Affiliation(s)
- Denise Heim
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ines Gil-Ibanez
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johannes Herden
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ann Christin Parplys
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Ansgar W Lohse
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Henning Wege
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
44
|
John R, Atri Y, Chand V, Jaiswal N, Raj K, Nag A. Cell cycle-dependent regulation of cytoglobin by Skp2. FEBS Lett 2017; 591:3507-3522. [PMID: 28948618 DOI: 10.1002/1873-3468.12864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022]
Abstract
Cytoglobin (Cygb) is a cellular haemoprotein belonging to the globin family with ambiguous biological functions. Downregulation of Cygb in many cancers is indicative of its tumour-suppressive role. This is the first report showing the cell cycle regulation of Cygb, which was found to peak at G1 and rapidly decline in S phase. Importantly, Skp2-mediated degradation of Cygb was identified as the key mechanism for controlling its oscillating levels during the cell cycle. Moreover, overexpression of Cygb stimulates hypophosphorylation of Rb causing delayed cell cycle progression. Overall, the study reveals a novel mechanism for the regulated expression of Cygb and also assigns a new role to Cygb in cell cycle control.
Collapse
Affiliation(s)
- Rince John
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Yama Atri
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Vaibhav Chand
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Neha Jaiswal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Kritika Raj
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
45
|
Jourd'heuil FL, Xu H, Reilly T, McKellar K, El Alaoui C, Steppich J, Liu YF, Zhao W, Ginnan R, Conti D, Lopez-Soler R, Asif A, Keller RK, Schwarz JJ, Thanh Thuy LT, Kawada N, Long X, Singer HA, Jourd'heuil D. The Hemoglobin Homolog Cytoglobin in Smooth Muscle Inhibits Apoptosis and Regulates Vascular Remodeling. Arterioscler Thromb Vasc Biol 2017; 37:1944-1955. [PMID: 28798140 DOI: 10.1161/atvbaha.117.309410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/26/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The role of hemoglobin and myoglobin in the cardiovascular system is well established, yet other globins in this context are poorly characterized. Here, we examined the expression and function of cytoglobin (CYGB) during vascular injury. APPROACH AND RESULTS We characterized CYGB content in intact vessels and primary vascular smooth muscle (VSM) cells and used 2 different vascular injury models to examine the functional significance of CYGB in vivo. We found that CYGB was strongly expressed in medial arterial VSM and human veins. In vitro and in vivo studies indicated that CYGB was lost after VSM cell dedifferentiation. In the rat balloon angioplasty model, site-targeted delivery of adenovirus encoding shRNA specific for CYGB prevented its reexpression and decreased neointima formation. Similarly, 4 weeks after complete ligation of the left common carotid, Cygb knockout mice displayed little to no evidence of neointimal hyperplasia in contrast to their wild-type littermates. Mechanistic studies in the rat indicated that this was primarily associated with increased medial cell loss, terminal uridine nick-end labeling staining, and caspase-3 activation, all indicative of prolonged apoptosis. In vitro, CYGB could be reexpressed after VSM stimulation with cytokines and hypoxia and loss of CYGB sensitized human and rat aortic VSM cells to apoptosis. This was reversed after antioxidant treatment or NOS2 (nitric oxide synthase 2) inhibition. CONCLUSIONS These results indicate that CYGB is expressed in vessels primarily in differentiated medial VSM cells where it regulates neointima formation and inhibits apoptosis after injury.
Collapse
Affiliation(s)
- Frances L Jourd'heuil
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Haiyan Xu
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Timothy Reilly
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Keneta McKellar
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Chaymae El Alaoui
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Julia Steppich
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Yong Feng Liu
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Wen Zhao
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Roman Ginnan
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - David Conti
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Reynold Lopez-Soler
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Arif Asif
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Rebecca K Keller
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - John J Schwarz
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Le Thi Thanh Thuy
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Norifumi Kawada
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Xiaochun Long
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - Harold A Singer
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.)
| | - David Jourd'heuil
- From the Department of Molecular and Cellular Physiology (F.L.J., H.X., T.R., K.M., C.E.A., J.S., Y.F.L., W.Z., R.G., R.K.K., J.J.S., X.L., H.A.S., D.J.) and Surgery Transplantation (D.C., R.L.-S.), Albany Medical Center, NY; Seton Hall-Hackensack Meridian School of Medicine, Jersey Shore University Medical Center, Hackensack-Meridian Health, Neptune, NJ (A.A.); and Department of Hepatology, Graduate School of Medicine, Osaka City University, Japan (L.T.T.T., N.K.).
| |
Collapse
|
46
|
Umeda T, Kimura T, Yoshida K, Takao K, Fujita Y, Matsuyama S, Sakai A, Yamashita M, Yamashita Y, Ohnishi K, Suzuki M, Takuma H, Miyakawa T, Takashima A, Morita T, Mori H, Tomiyama T. Mutation-induced loss of APP function causes GABAergic depletion in recessive familial Alzheimer's disease: analysis of Osaka mutation-knockin mice. Acta Neuropathol Commun 2017; 5:59. [PMID: 28760161 PMCID: PMC5537936 DOI: 10.1186/s40478-017-0461-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
The E693Δ (Osaka) mutation in APP is linked to familial Alzheimer’s disease. While this mutation accelerates amyloid β (Aβ) oligomerization, only patient homozygotes suffer from dementia, implying that this mutation is recessive and causes loss-of-function of amyloid precursor protein (APP). To investigate the recessive trait, we generated a new mouse model by knocking-in the Osaka mutation into endogenous mouse APP. The produced homozygous, heterozygous, and non-knockin littermates were compared for memory, neuropathology, and synaptic plasticity. Homozygotes showed memory impairment at 4 months, whereas heterozygotes did not, even at 8 months. Immunohistochemical and biochemical analyses revealed that only homozygotes displayed intraneuronal accumulation of Aβ oligomers at 8 months, followed by abnormal tau phosphorylation, synapse loss, glial activation, and neuron loss. These pathologies were not observed at younger ages, suggesting that a certain mechanism other than Aβ accumulation underlies the memory disturbance at 4 months. For the electrophysiology studies at 4 months, high-frequency stimulation evoked long-term potentiation in all mice in the presence of picrotoxin, but in the absence of picrotoxin, such potentiation was observed only in homozygotes, suggesting their GABAergic deficit. In support of this, the levels of GABA-related proteins and the number of dentate GABAergic interneurons were decreased in 4-month-old homozygotes. Since APP has been shown to play a role in dentate GABAergic synapse formation, the observed GABAergic depletion is likely associated with an impairment of the APP function presumably caused by the Osaka mutation. Oral administration of diazepam to homozygotes from 6 months improved memory at 8 months, and furthermore, prevented Aβ oligomer accumulation, indicating that GABAergic deficiency is a cause of memory impairment and also a driving force of Aβ accumulation. Our findings suggest that the Osaka mutation causes loss of APP function, leading to GABAergic depletion and memory disorder when wild-type APP is absent, providing a mechanism of the recessive heredity.
Collapse
|
47
|
Hsu SH, Wang LT, Chai CY, Wu CC, Hsi E, Chiou SS, Wang SN. Aryl hydrocarbon receptor promotes hepatocellular carcinoma tumorigenesis by targeting intestine-specific homeobox expression. Mol Carcinog 2017; 56:2167-2177. [PMID: 28398627 DOI: 10.1002/mc.22658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/22/2017] [Accepted: 04/08/2017] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor (AHR), a major chemical sensor, is thought to play a role in various biological contexts, including cell cycle regulation and tumorigenesis. However, its regulatory mechanisms remain unclear. We propose herein a novel mechanism through which AHR promotes tumorigenesis by targeting expression of the oncogene intestine-specific homeobox (ISX) in hepatocellular carcinoma (HCC). Compared to paired tumor-adjacent tissues and non-HCC tumors, HCCs exhibited an increased and hierarchical pattern of AHR expression. Patients exhibiting high AHR expression had a significantly shorter survival duration, compared to those with low and medium expression. Functionally, AHR was found to target the newly discovered proto-oncogene, ISX, resulting in the increased expression of this gene and its downstream targets, CCND1 and E2F1. Ablation of AHR or ISX in hepatoma cells suppressed cell growth, whereas overexpression promoted cell proliferation and led to enhanced tumorigenic activity in vitro and in vivo. These results provide evidence to support a critical role for the AHR/ISX axis in HCC tumorigenesis and suggest its potential utility as a new therapeutic and prognostic target for HCC.
Collapse
Affiliation(s)
- Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Faculty of Medicine, Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Cheng Wu
- Department of Business Management, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Edward Hsi
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shyh-Shin Chiou
- Faculty of Medicine, Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shen-Nien Wang
- Division of Hepatobiliary Surgery, Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
48
|
Reeder BJ. Redox and Peroxidase Activities of the Hemoglobin Superfamily: Relevance to Health and Disease. Antioxid Redox Signal 2017; 26:763-776. [PMID: 27637274 DOI: 10.1089/ars.2016.6803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Erythrocyte hemoglobin (Hb) and myocyte myoglobin, although primarily oxygen-carrying proteins, have the capacity to do redox chemistry. Such redox activity in the wider family of globins now appears to have important associations with the mechanisms of cell stress response. In turn, an understanding of such mechanisms in vivo may have a potential in the understanding of cancer therapy resistance and neurodegenerative disorders such as Alzheimer's. Recent Advances: There has been an enhanced understanding of the redox chemistry of the globin superfamily in recent years, leading to advances in development of Hb-based blood substitutes and in hypotheses relating to specific disease mechanisms. Neuroglobin (Ngb) and cytoglobin (Cygb) have been linked to cell protection mechanisms against hypoxia and oxidative stress, with implications in the onset and progression of neurodegenerative diseases for Ngb and cancer for Cygb. CRITICAL ISSUES Despite advances in the understanding of redox chemistry of globins, the physiological roles of many of these proteins still remain ambiguous at best. Confusion over potential physiological roles may relate to multifunctional roles for globins, which may be modulated by surface-exposed cysteine pairs in some globins. Such roles may be critical in deciphering the relationships of these globins in human diseases. FUTURE DIRECTIONS Further studies are required to connect the considerable knowledge on the mechanisms of globin redox chemistry in vitro with the physiological and pathological roles of globins in vivo. In doing so, new therapies for neurodegenerative disorders and cancer therapy resistance may be targeted. Antioxid. Redox Signal. 26, 763-776.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Biological Sciences, University of Essex , Essex, United Kingdom
| |
Collapse
|
49
|
Liu X, El-Mahdy MA, Boslett J, Varadharaj S, Hemann C, Abdelghany TM, Ismail RS, Little SC, Zhou D, Thuy LTT, Kawada N, Zweier JL. Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall. Nat Commun 2017; 8:14807. [PMID: 28393874 PMCID: PMC5394235 DOI: 10.1038/ncomms14807] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay, increases vascular relaxation, and lowers blood pressure and systemic vascular resistance. We further demonstrate that downregulation of Cygb prevents angiotensin-mediated hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We suggest that modulation of the expression and NOD activity of Cygb represents a strategy for the treatment of cardiovascular disease. The gaseous signalling molecule nitric oxide regulates vascular tone. Here, the authors show that nitric oxide is degraded by the enzyme cytoglobin in the vascular wall, and that mice lacking cytoglobin have reduced blood pressure and are less sensitive to angiotensin-mediated hypertension.
Collapse
Affiliation(s)
- Xiaoping Liu
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mohamed A El-Mahdy
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - James Boslett
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Saradhadevi Varadharaj
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Craig Hemann
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Tamer M Abdelghany
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Raed S Ismail
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sean C Little
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Danlei Zhou
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Asahimachi 1-4-3, Abenoku, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Asahimachi 1-4-3, Abenoku, Osaka 545-8585, Japan
| | - Jay L Zweier
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
50
|
Gum Arabic-encapsulated gold nanoparticles for a non-invasive photothermal ablation of lung tumor in mice. Biomed Pharmacother 2017; 89:1045-1054. [PMID: 28298068 DOI: 10.1016/j.biopha.2017.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In our previous work, we have extensively evaluated the physiochemical characteristics of Gum Arabic-encapsulated gold nanoparticles (GA-AuNPs; 15-18nm) and reported their effectiveness in stopping the tumor initiation via inhibiting the pre-neoplastic lesions in liver. OBJECTIVE The rationale of this study is to detect the efficiency of using GA-AuNPs in photothermal application as a non-invasive technique against lung tumor. We investigated the cytotoxicity of GA-AuNPs on A549 cells, and then studied their apoptotic, anti-inflammatory, lipid peroxidation and anti-neovascular effect in in vivo model using a chemically-induced lung cancer in mice. The histopathological changes due to GA-AuNPs were investigated. RESULTS In the presence of laser irradiation, GA-AuNPs had a considerable cytotoxicity against A549 cells. The treatment of lung tumor-bearing mice with GA-AuNPs followed by laser exposure enhanced the apoptotic pathway and this was obvious from the histopathological investigations and the elevations in cytochrome-c, death receptor 5 and the subsequent upregulation of caspase-3, we also reported a significant reduction in the levels of the inflammatory mediator TNF-α and the angiogenesis inducer VEGF. An induction of lipid peroxidation was also reported upon treatment with either GA or GA-AuNPs. CONCLUSION GA-AuNPs showed no cytotoxicity in the absence of light, however the combination of GA-AuNPs with laser induced cell death in lung tumor tissues with a reduction in the inflammation and angiogenesis together with an elevation in lipid peroxidation, suggesting the potential use of these functionalized nanoparticles as a promising photothermal non-invasive treatment modality.
Collapse
|