1
|
Arunachalam T, Abraham M, Orndahl C, Menezes S, Mukherjee S, Duic C, Prasad M, Siddig F, Bellur S, Thavikulwat AT, Bailey C, Sadda SR, Wong WT, Chew EY, Jeffrey BG, Keenan TD. Longitudinal Analysis of Mesopic Microperimetry in a Phase II Trial Evaluating Minocycline for Geographic Atrophy. OPHTHALMOLOGY SCIENCE 2025; 5:100783. [PMID: 40417242 PMCID: PMC12098133 DOI: 10.1016/j.xops.2025.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 05/27/2025]
Abstract
Purpose To analyze mesopic microperimetry data from a recent phase II trial of minocycline for geographic atrophy (GA) for possible efficacy on the change in visual function and, in the absence of efficacy, to perform longitudinal analyses as a natural history study. Design Phase II, prospective, single-arm, nonrandomized trial. After a 9-month run-in phase, participants began oral minocycline 100 mg twice daily for 3 years. Participants Individuals with GA in ≥1 eye. Methods Participants underwent mesopic microperimetry at baseline, month 3, and every 6 months thereafter, using a custom T-shaped test pattern. Rates of change in microperimetry parameters were compared between the 24-month treatment phase and 9-month run-in phase by linear spline regression. Main Outcome Measures The mean macular and responding sensitivity; the mean perilesional and extralesional sensitivity; number of absolute and relative scotomatous loci. Results Thirty study eyes from 30 participants (mean age 74.1 years) underwent microperimetry (mean follow-up 27.4 months). For 5 of the 6 microperimetry parameters, no significant difference in the rate of change between the treatment and run-in phases was observed. The difference between the 2 phases was -0.74 decibels (dB)/year (standard error [SE] 0.85; P = 0.39) for mean macular sensitivity, -0.30 dB/year (SE 0.85; P = 0.72) for mean responding sensitivity, 1.23 dB/year (SE 1.01; P = 0.22) for mean perilesional sensitivity, and -0.02 (SE 0.01; P = 0.31) for transformed mean extralesional sensitivity. The difference in incidence rate ratios between the 2 phases was 1.17 (SE 0.11; P = 0.14) for absolute scotomatous loci and 0.73 (SE 0.11; P = 0.004) for relative scotomatous loci. Conclusions The results do not appear consistent with a clinically meaningful effect of minocycline on the rate of visual function decline from GA progression. This is consistent with previous analyses of the corresponding structural data. The findings demonstrate the advantages and disadvantages of different microperimetry parameters. The optimal testing patterns and parameters represent a trade-off between greater sensitivity vs. greater risk of floor/ceiling effects, with regional averages providing a useful compromise. The results may provide insights to guide the development of microperimetry end points for clinical trials. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
| | | | | | | | - Souvick Mukherjee
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Cameron Duic
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Minali Prasad
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Fares Siddig
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Sunil Bellur
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | - SriniVas R. Sadda
- Doheny Image Reading Center, Doheny Eye Institute, Pasadena, California
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Wai T. Wong
- Tiresias Biopharma Consulting LLC, Half Moon Bay, California
| | - Emily Y. Chew
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Brett G. Jeffrey
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
2
|
Jobling AI, Greferath U, Dixon MA, Quiriconi P, Eyar B, van Koeverden AK, Mills SA, Vessey KA, Bui BV, Fletcher EL. Microglial regulation of the retinal vasculature in health and during the pathology associated with diabetes. Prog Retin Eye Res 2025; 106:101349. [PMID: 40020909 DOI: 10.1016/j.preteyeres.2025.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The high metabolic demand of retinal neurons requires a precisely regulated vascular system that can deliver rapid changes in blood flow in response to neural need. In the retina, this is achieved via the action of a coordinated group of cells that form the neurovascular unit. While cells such as pericytes, Müller cells, and astrocytes have long been linked to neurovascular coupling, more recently the resident microglial population have also been implicated. In the healthy retina, microglia make extensive contact with blood vessels, as well as neuronal synapses, and are important in vascular patterning during development. Work in the brain and retina has recently indicated that microglia can directly regulate the local vasculature. In the retina, the fractalkine-Cx3cr1 signalling axis has been shown to induce local capillary constriction within the superficial vascular plexus via a mechanism involving components of the renin-angiotensin system. Furthermore, aberrant microglial induced vasoconstriction may be at the centre of early vascular reactivity changes observed in those with diabetes. This review summarizes the recent emerging evidence that microglia play multiple roles in retinal homeostasis especially in regulating the vasculature. We highlight what is known about the role of microglia under normal circumstances, and then build on this to discuss how microglia contribute to early vascular compromise during diabetes. Further understanding of the mechanisms of microglial-vascular regulation may allow alternate treatment strategies to be devised to reduce vascular pathology in diseases such as diabetic retinopathy.
Collapse
Affiliation(s)
- Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Michael A Dixon
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Pialuisa Quiriconi
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Belinda Eyar
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Samuel A Mills
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Xiao R, Huang X, Gao S, Duan J, Zhang Y, Zhang M. Microglia in retinal diseases: From pathogenesis towards therapeutic strategies. Biochem Pharmacol 2024; 230:116550. [PMID: 39307318 DOI: 10.1016/j.bcp.2024.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Microglia, a widely dispersed cohort of immune cells in the retina, are intricately involved in a diverse range of pivotal biological processes, including inflammation, vascular development, complement activation, antigen presentation, and phagocytosis. Within the retinal milieu, microglia are crucial for the clearance of dead cells and cellular debris, release of anti-inflammatory agents, and orchestration of vascular network remodeling to maintain homeostasis. In addition, microglia are key mediators of neuroinflammation. Triggered by oxidative stress, elevated intraocular pressure, genetic anomalies, and immune dysregulation, microglia release numerous inflammatory cytokines, contributing to the pathogenesis of various retinal disorders. Recent studies on the ontogeny and broad functions of microglia in the retina have elucidated their characteristics during retinal development, homeostasis, and disease. Furthermore, therapeutic strategies that target microglia and their effector cytokines have been developed and shown positive results for some retinal diseases. Therefore, we systematically review the microglial ontogeny in the retina, elucidate their dual roles in retinal homeostasis and disease pathogenesis, and demonstrate microglia-based targeted therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Ruihan Xiao
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi Huang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sheng Gao
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianan Duan
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Zhang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meixia Zhang
- The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Ma W, Zhao L, Xu B, Fariss RN, Redmond TM, Zou J, Wong WT, Li W. Human-induced pluripotent stem cell-derived microglia integrate into mouse retina and recapitulate features of endogenous microglia. eLife 2024; 12:RP90695. [PMID: 39514271 PMCID: PMC11587526 DOI: 10.7554/elife.90695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Microglia exhibit both maladaptive and adaptive roles in the pathogenesis of neurodegenerative diseases and have emerged as a cellular target for central nervous system (CNS) disorders, including those affecting the retina. Replacing maladaptive microglia, such as those impacted by aging or over-activation, with exogenous microglia that can enable adaptive functions has been proposed as a potential therapeutic strategy for neurodegenerative diseases. To investigate microglia replacement as an approach for retinal diseases, we first employed a protocol to efficiently generate human-induced pluripotent stem cell (hiPSC)-derived microglia in quantities sufficient for in vivo transplantation. These cells demonstrated expression of microglia-enriched genes and showed typical microglial functions such as LPS-induced responses and phagocytosis. We then performed xenotransplantation of these hiPSC-derived microglia into the subretinal space of adult mice whose endogenous retinal microglia have been pharmacologically depleted. Long-term analysis post-transplantation demonstrated that transplanted hiPSC-derived microglia successfully integrated into the neuroretina as ramified cells, occupying positions previously filled by the endogenous microglia and expressed microglia homeostatic markers such as P2ry12 and Tmem119. Furthermore, these cells were found juxtaposed alongside residual endogenous murine microglia for up to 8 months in the retina, indicating their ability to establish a stable homeostatic state in vivo. Following retinal pigment epithelial cell injury, transplanted microglia demonstrated responses typical of endogenous microglia, including migration, proliferation, and phagocytosis. Our findings indicate the feasibility of microglial transplantation and integration in the retina and suggest that modulating microglia through replacement may be a therapeutic strategy for treating neurodegenerative retinal diseases.
Collapse
Affiliation(s)
- Wenxin Ma
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| | - Lian Zhao
- Genetic Engineering Core, National Eye InstituteBethesdaUnited States
| | - Biying Xu
- Immunoregulation Section, National Eye InstituteBethesdaUnited States
| | - Robert N Fariss
- Biological Imaging Core, National Eye InstituteBethesdaUnited States
| | - T Michael Redmond
- Molecular Mechanisms Section, National Eye InstituteBethesdaUnited States
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood InstituteBethesdaUnited States
| | | | - Wei Li
- Retinal Neurophysiology Section, National Eye InstituteBethesdaUnited States
| |
Collapse
|
5
|
Enayati S, Chang K, Lennikov A, Yang M, Lee C, Ashok A, Elzaridi F, Yen C, Gunes K, Xie J, Cho KS, Utheim TP, Chen DF. Optimal transcorneal electrical stimulation parameters for preserving photoreceptors in a mouse model of retinitis pigmentosa. Neural Regen Res 2024; 19:2543-2552. [PMID: 38526290 PMCID: PMC11090438 DOI: 10.4103/1673-5374.392888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 11/21/2023] [Accepted: 12/29/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00034/figure1/v/2024-03-08T184507Z/r/image-tiff Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors, leading to progressive photoreceptor loss. Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival. This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation (tcES) in mice affected by inherited retinal degeneration. Additionally, the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans. In this study, we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular, sine, and ramp waveforms. To investigate the functional effects of electrical stimulation on photoreceptors, we used human retinal explant cultures and rhodopsin knockout (Rho-/-) mice, demonstrating progressive photoreceptor degeneration with age. Human retinal explants isolated from the donors' eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro. Photoreceptor density was evaluated by rhodopsin immunolabeling. In vivo Rho-/- mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms. Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response (OMR), respectively. Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas. Oscilloscope recordings indicated effective delivery of rectangular, sine, and ramp waveforms to the retina by transcorneal electrical stimulation, of which the ramp waveform required the lowest voltage. Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes. The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro (~0.5-1.5°C). Electrical stimulation increased photoreceptor survival in human retinal explant cultures, particularly at the ramp waveform. Transcorneal electrical stimulation (rectangular + ramp) waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results. Histology and immunolabeling demonstrated increased photoreceptor survival, improved outer nuclear layer thickness, and increased bipolar cell sprouting in Rho-/- mice. These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina, improves photoreceptor survival in both human and mouse retinas, and increases visual function in Rho-/- mice. Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.
Collapse
Affiliation(s)
- Sam Enayati
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Institute of clinical medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Karen Chang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anton Lennikov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Menglu Yang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Cherin Lee
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ajay Ashok
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Farris Elzaridi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Christina Yen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kasim Gunes
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkiye
| | - Jia Xie
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tor Paaske Utheim
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Institute of clinical medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Keenan TDL, Bailey C, Abraham M, Orndahl C, Menezes S, Bellur S, Arunachalam T, Kangale-Whitney C, Srinivas S, Karamat A, Nittala M, Cunningham D, Jeffrey BG, Wiley HE, Thavikulwat AT, Sadda S, Cukras CA, Chew EY, Wong WT. Phase 2 Trial Evaluating Minocycline for Geographic Atrophy in Age-Related Macular Degeneration: A Nonrandomized Controlled Trial. JAMA Ophthalmol 2024; 142:345-355. [PMID: 38483382 PMCID: PMC10941022 DOI: 10.1001/jamaophthalmol.2024.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 03/17/2024]
Abstract
Importance Existing therapies to slow geographic atrophy (GA) enlargement in age-related macular degeneration (AMD) have relatively modest anatomic efficacy, require intravitreal administration, and increase the risk of neovascular AMD. Additional therapeutic approaches are desirable. Objective To evaluate the safety and possible anatomic efficacy of oral minocycline, a microglial inhibitor, for the treatment of GA in AMD. Design, Setting, and Participants This was a phase 2, prospective, single-arm, 45-month, nonrandomized controlled trial conducted from December 2016 to April 2023. Patients with GA from AMD in 1 or both eyes were recruited from the National Institutes of Health (Bethesda, Maryland) and Bristol Eye Hospital (Bristol, UK). Study data were analyzed from September 2022 to May 2023. Intervention After a 9-month run-in phase, participants began oral minocycline, 100 mg, twice daily for 3 years. Main Outcomes and Measures The primary outcome measure was the difference in rate of change of square root GA area on fundus autofluorescence between the 24-month treatment phase and 9-month run-in phase. Results Of the 37 participants enrolled (mean [SD] age, 74.3 [7.6] years; 21 female [57%]), 36 initiated the treatment phase. Of these participants, 21 (58%) completed at least 33 months, whereas 15 discontinued treatment (8 by request, 6 for adverse events/illness, and 1 death). Mean (SE) square root GA enlargement rate in study eyes was 0.31 (0.03) mm per year during the run-in phase and 0.28 (0.02) mm per year during the treatment phase. The primary outcome measure of mean (SE) difference in enlargement rates between the 2 phases was -0.03 (0.03) mm per year (P = .39). Similarly, secondary outcome measures of GA enlargement rate showed no differences between the 2 phases. The secondary outcome measures of mean difference in rate of change between 2 phases were 0.2 letter score per month (95% CI, -0.4 to 0.9; P = .44) for visual acuity and 0.7 μm per month (-0.4 to 1.8; P = .20) for subfoveal retinal thickness. Of the 129 treatment-emergent adverse events among 32 participants, 49 (38%) were related to minocycline (with no severe or ocular events), including elevated thyrotropin level (15 participants) and skin hyperpigmentation/discoloration (8 participants). Conclusions and Relevance In this phase 2 nonrandomized controlled trial, oral minocycline was not associated with a decrease in GA enlargement over 24 months, compared with the run-in phase. This observation was consistent across primary and secondary outcome measures. Oral minocycline at this dose is likely not associated with slower rate of enlargement of GA in AMD.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunil Bellur
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | - Denise Cunningham
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Brett G. Jeffrey
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Henry E. Wiley
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
- Now with Genentech Inc, South San Francisco, California
| | | | - SriniVas Sadda
- Doheny Eye Institute, Pasadena, California
- University of California, Los Angeles, Los Angeles
| | | | - Emily Y. Chew
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wai T. Wong
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
- Now with Janssen Research and Development LLC, Brisbane, California
| |
Collapse
|
7
|
Willms JO, Mitchell K, Shashtri M, Sundin O, Liu X, Panthagani P, Tran P, Navarro S, Sniegowski C, Shaik AA, Chaudhury T, Reid TW, Bergeson SE. Minocycline and Diacetyl Minocycline Eye Drops Reduce Ocular Neovascularization in Mice. Transl Vis Sci Technol 2023; 12:10. [PMID: 38064336 PMCID: PMC10709801 DOI: 10.1167/tvst.12.12.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/24/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose To evaluate the efficacy of minocycline and a novel, modified minocycline analogue that lacks antimicrobial action, diacetyl minocycline (DAM), on choroidal neovascularization (CNV) in mice of both sexes. Methods CNV was induced via laser injury in female and male C57BL/6J mice. Minocycline, DAM, or saline was administered via topical eye drops twice a day for 2 weeks starting the day after laser injury. CNV volume was measured using immunohistochemistry labeling and confocal microscopy. Results Minocycline reduced lesion volume by 79% (P ≤ 0.0004) in female and male mice. DAM reduced lesion volume by 73% (P ≤ 0.001) in female and male mice. There was no significant difference in lesion volume between minocycline and DAM treatment groups or between female and male mice. Conclusions Both minocycline and DAM eye drops significantly reduced laser-induced CNV lesion volume in female and male mice. While oral tetracyclines have been shown to mitigate pathologic neovascularization in both preclinical studies and clinical trials, the present data are the first to suggest that tetracycline derivatives may be effective to reduce pathologic CNV when administered via topical eye drops. However, the action is unrelated to antimicrobial action. Targeted delivery of these medications via eye drops may reduce the potential for systemic side effects. Translational Relevance Topical administration of minocycline and/or DAM via eye drops may represent a novel therapeutic strategy for disorders involving pathologic CNV.
Collapse
Affiliation(s)
- Joshua O. Willms
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kelly Mitchell
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Olof Sundin
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Xiaobo Liu
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Phat Tran
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Stephany Navarro
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Colton Sniegowski
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Abdul A. Shaik
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Tristin Chaudhury
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ted W. Reid
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Susan E. Bergeson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
8
|
Chhatwal S, Antony H, Lamei S, Kovács-Öller T, Klettner AK, Zille M. A systematic review of the cell death mechanisms in retinal pigment epithelium cells and photoreceptors after subretinal hemorrhage - Implications for treatment options. Biomed Pharmacother 2023; 167:115572. [PMID: 37742603 DOI: 10.1016/j.biopha.2023.115572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023] Open
Abstract
Humans rely on vision as their most important sense. This is accomplished by photoreceptors (PRs) in the retina that detect light but cannot function without the support and maintenance of the retinal pigment epithelium (RPE). In subretinal hemorrhage (SRH), blood accumulates between the neurosensory retina and the RPE or between the RPE and the choroid. Blood breakdown products subsequently damage PRs and the RPE and lead to poor vision and blindness. Hence, there is a high need for options to preserve the retina and visual functions. We conducted a systematic review of the literature in accordance with the PRISMA guidelines to identify the cell death mechanisms in RPE and PRs after SRH to deepen our understanding of the pathways involved. After screening 736 publications published until November 8, 2022, we identified 19 records that assessed cell death in PRs and/or RPE in experimental models of SRH. Among the different cell death mechanisms, apoptosis was the most widely investigated mechanism (11 records), followed by ferroptosis (4), whereas necroptosis, pyroptosis, and lysosome-dependent cell death were only assessed in one study each. We discuss different therapeutic options that were assessed in these studies, including the removal of the hematoma/iron chelation, cytoprotection, anti-inflammatory agents, and antioxidants. Further systematic investigations will be necessary to determine the exact cell death mechanisms after SRH with respect to different blood breakdown components, cell types, and time courses. This will form the basis for the development of novel treatment options for SRH.
Collapse
Affiliation(s)
- Sirjan Chhatwal
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Henrike Antony
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Saman Lamei
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Tamás Kovács-Öller
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Alexa Karina Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Quincke Research Center, Kiel, Germany
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria.
| |
Collapse
|
9
|
Cieri MB, Villarreal A, Gomez-Cuautle DD, Mailing I, Ramos AJ. Progression of reactive gliosis and astroglial phenotypic changes following stab wound-induced traumatic brain injury in mice. J Neurochem 2023; 167:183-203. [PMID: 37592830 DOI: 10.1111/jnc.15941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Astrocytes are the main homeostatic cells in the central nervous system (CNS) and they have an essential role in preserving neuronal physiology. After brain injury, astrocytes become reactive, and that involves a profound change in the astroglial gene expression program as well as intense cytoskeleton remodeling that has been classically shown by the up-regulation of glial fibrillary acidic protein (GFAP), a pan-reactive gene over-expressed in reactive astrocytes, independently of the type of injury. Using the stab wound rodent model of penetrating traumatic injury in the cortex, we here studied the reactive astroglial morphology and reactive microgliosis in detail at 1, 3, 7, 14, and 28 days post-injury (dpi). By combining immunohistochemistry, morphometrical parameters, and Sholl analysis, we segmented the astroglial cell population into clusters of reactive astrocytes that were localized in the core, penumbra, and distal regions of the stab wound. Specifically, highly reactive clusters with more complex morphology, increased C3, decreased aquaporin-4 (AQP4), and glutamine synthetase (GS) expression, were enriched at 7 dpi when behavioral alterations, microgliosis, and neuronal alterations in injured mice were most significant. While pro-inflammatory gain of function with peripheral lipopolysaccharide (LPS) administration immediately after a stab wound expanded these highly reactive astroglial clusters, the treatment with the NF-κB inhibitor sulfasalazine reduced the abundance of this highly reactive cluster. Increased neuronal loss and exacerbated reactive microgliosis at 7 dpi were associated with the expansion of the highly reactive astroglial cluster. We conclude that highly reactive astrocytes found in stab wound injury, but expanded in pro-inflammatory conditions, are a population of astrocytes that become engaged in pathological remodeling with a pro-inflammatory gain of function and loss of homeostatic capacity. Controlling this astroglial population may be a tempting strategy to reduce neuronal loss and neuroinflammation in the injured brain.
Collapse
Affiliation(s)
- Maria Belen Cieri
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dante Daniel Gomez-Cuautle
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ingrid Mailing
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
11
|
Innate and Autoimmunity in the Pathogenesis of Inherited Retinal Dystrophy. Cells 2020; 9:cells9030630. [PMID: 32151065 PMCID: PMC7140441 DOI: 10.3390/cells9030630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Inherited retinal dystrophies (RDs) are heterogenous in many aspects including genes involved, age of onset, rate of progression, and treatments. While RDs are caused by a plethora of different mutations, all result in the same outcome of blindness. While treatments, both gene therapy-based and drug-based, have been developed to slow or halt disease progression and prevent further blindness, only a small handful of the forms of RDs have treatments available, which are primarily for recessively inherited forms. Using immunohistochemical methods coupled with electroretinography, optical coherence tomography, and fluorescein angiography, we show that in rhodopsin mutant mice, the involvement of both the innate and the autoimmune systems could be a strong contributing factor in disease progression and pathogenesis. Herein, we show that monocytic phagocytosis and inflammatory cytokine release along with protein citrullination, a major player in forms of autoimmunity, work to enhance the progression of RD associated with a rhodopsin mutation.
Collapse
|
12
|
Guadagni V, Biagioni M, Novelli E, Aretini P, Mazzanti CM, Strettoi E. Rescuing cones and daylight vision in retinitis pigmentosa mice. FASEB J 2019; 33:10177-10192. [PMID: 31199887 PMCID: PMC6764477 DOI: 10.1096/fj.201900414r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hallmark of retinitis pigmentosa (RP) is the primary, genetic degeneration of rods followed by secondary loss of cones, caused by still elusive biologic mechanisms. We previously shown that exposure of rd10 mutant mice, modeling autosomal recessive RP, to environmental enrichment (EE), with enhanced motor, sensorial and social stimuli, results into a sensible delay of retinal degeneration and vision loss. Searching for effectors of EE-mediated retinal protection, we performed transcriptome analysis of the retina of rd10 enriched and control mice and found that gene expression at the peaks of rod and cone degeneration is characterized by a strong inflammatory/immune response, which is however measurably lower in enrichment conditions. Treating rd10 mice with dexamethasone during the period of maximum photoreceptors death lowered retinal inflammation and caused a preservation of cones and cone-mediated vision. Our findings indicate a link between retinal inflammation and bystander cone degeneration, reinforcing the notion that cone vision in RP can be preserved using anti-inflammatory approaches.—Guadagni, V., Biagioni, M., Novelli, E., Aretini, P., Mazzanti, C. M., Strettoi, E. Rescuing cones and daylight vision in retinitis pigmentosa mice.
Collapse
Affiliation(s)
- Viviana Guadagni
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Pisa, Italy
| | - Martina Biagioni
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Pisa, Italy
| | - Elena Novelli
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Pisa, Italy
| | - Paolo Aretini
- Laboratory of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Chiara Maria Mazzanti
- Laboratory of Genomics and Transcriptomics, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Enrica Strettoi
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Pisa, Italy
| |
Collapse
|
13
|
Todd L, Palazzo I, Suarez L, Liu X, Volkov L, Hoang TV, Campbell WA, Blackshaw S, Quan N, Fischer AJ. Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina. J Neuroinflammation 2019; 16:118. [PMID: 31170999 PMCID: PMC6555727 DOI: 10.1186/s12974-019-1505-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Microglia and inflammation have context-specific impacts upon neuronal survival in different models of central nervous system (CNS) disease. Herein, we investigate how inflammatory mediators, including microglia, interleukin 1 beta (IL1β), and signaling through interleukin 1 receptor type 1 (IL-1R1), influence the survival of retinal neurons in response to excitotoxic damage. Methods Excitotoxic retinal damage was induced via intraocular injections of NMDA. Microglial phenotype and neuronal survival were assessed by immunohistochemistry. Single-cell RNA sequencing was performed to obtain transcriptomic profiles. Microglia were ablated by using clodronate liposome or PLX5622. Retinas were treated with IL1β prior to NMDA damage and cell death was assessed in wild type, IL-1R1 null mice, and mice expressing IL-1R1 only in astrocytes. Results NMDA-induced damage included neuronal cell death, microglial reactivity, upregulation of pro-inflammatory cytokines, and genes associated with IL1β-signaling in different types of retinal neurons and glia. Expression of the IL1β receptor, IL-1R1, was evident in astrocytes, endothelial cells, some Müller glia, and OFF bipolar cells. Ablation of microglia with clodronate liposomes or Csf1r antagonist (PLX5622) resulted in elevated cell death and diminished neuronal survival in excitotoxin-damaged retinas. Exogenous IL1β stimulated the proliferation and reactivity of microglia in the absence of damage, reduced numbers of dying cells in damaged retinas, and increased neuronal survival following an insult. IL1β failed to provide neuroprotection in the IL-1R1-null retina, but IL1β-mediated neuroprotection was rescued when expression of IL-1R1 was restored in astrocytes. Conclusions We conclude that reactive microglia provide protection to retinal neurons, since the absence of microglia is detrimental to survival. We propose that, at least in part, the survival-influencing effects of microglia may be mediated by IL1β, IL-1R1, and interactions of microglia and other macroglia. Electronic supplementary material The online version of this article (10.1186/s12974-019-1505-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Levi Todd
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Lilianna Suarez
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Leo Volkov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, USA.,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 3020 Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210-1239, USA.
| |
Collapse
|
14
|
Ivanova E, Alam NM, Prusky GT, Sagdullaev BT. Blood-retina barrier failure and vision loss in neuron-specific degeneration. JCI Insight 2019; 5:126747. [PMID: 30888334 PMCID: PMC6538333 DOI: 10.1172/jci.insight.126747] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Changes in neuronal activity alter blood flow to match energy demand with the supply of oxygen and nutrients. This functional hyperemia is maintained by interactions between neurons, vascular cells, and glia. However, how changing neuronal activity prevalent at the onset of neurodegenerative disease affects neurovascular elements is unclear. Here, in mice with photoreceptor degeneration, a model of neuron-specific dysfunction, we combined assessment of visual function, neurovascular unit structure, and the blood-retina barrier permeability. We found that the rod loss paralleled remodeling of the neurovascular unit, comprised of photoreceptors, retinal pigment epithelium, and Muller glia. When significant visual function was still present, blood flow became disrupted and blood-retina barrier began to fail, facilitating cone loss and vision decline. Thus, in contrast to the established view, vascular deficit in neuronal degeneration is not a late consequence of neuronal dysfunction, but is present early in the course of disease. These findings further establish the importance of vascular deficit and blood retina barrier function in neuron-specific loss, and highlight it as a target for early therapeutic intervention.
Collapse
|
15
|
Ma Y, Bao J, Zhang Y, Li Z, Zhou X, Wan C, Huang L, Zhao Y, Han G, Xue T. Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae. Cell 2019; 177:243-255.e15. [PMID: 30827682 DOI: 10.1016/j.cell.2019.01.038] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/09/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022]
Abstract
Mammals cannot see light over 700 nm in wavelength. This limitation is due to the physical thermodynamic properties of the photon-detecting opsins. However, the detection of naturally invisible near-infrared (NIR) light is a desirable ability. To break this limitation, we developed ocular injectable photoreceptor-binding upconversion nanoparticles (pbUCNPs). These nanoparticles anchored on retinal photoreceptors as miniature NIR light transducers to create NIR light image vision with negligible side effects. Based on single-photoreceptor recordings, electroretinograms, cortical recordings, and visual behavioral tests, we demonstrated that mice with these nanoantennae could not only perceive NIR light, but also see NIR light patterns. Excitingly, the injected mice were also able to differentiate sophisticated NIR shape patterns. Moreover, the NIR light pattern vision was ambient-daylight compatible and existed in parallel with native daylight vision. This new method will provide unmatched opportunities for a wide variety of emerging bio-integrated nanodevice designs and applications. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yuqian Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Bao
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yuanwei Zhang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zhanjun Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiangyu Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Changlin Wan
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yang Zhao
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
16
|
Zhao ZC, Zhou Y, Tan G, Li J. Research progress about the effect and prevention of blue light on eyes. Int J Ophthalmol 2018; 11:1999-2003. [PMID: 30588436 PMCID: PMC6288536 DOI: 10.18240/ijo.2018.12.20] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
In recent years, people have become increasingly attentive to light pollution influences on their eyes. In the visible spectrum, short-wave blue light with wavelength between 415 nm and 455 nm is closely related to eye light damage. This high energy blue light passes through the cornea and lens to the retina causing diseases such as dry eye, cataract, age-related macular degeneration, even stimulating the brain, inhibiting melatonin secretion, and enhancing adrenocortical hormone production, which will destroy the hormonal balance and directly affect sleep quality. Therefore, the effect of Blu-rays on ocular is becoming an important concern for the future. We describe blue light's effects on eye tissues, summarize the research on eye injury and its physical prevention and medical treatment.
Collapse
Affiliation(s)
- Zhi-Chun Zhao
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an 710004, Shaanxi Province, China
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Ying Zhou
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Gang Tan
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Juan Li
- Department of Ophthalmology, Xi'an No.4 Hospital, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
17
|
Abstract
Microglia, the primary resident immune cell type, constitute a key population of glia in the retina. Recent evidence indicates that microglia play significant functional roles in the retina at different life stages. During development, retinal microglia regulate neuronal survival by exerting trophic influences and influencing programmed cell death. During adulthood, ramified microglia in the plexiform layers interact closely with synapses to maintain synaptic structure and function that underlie the retina's electrophysiological response to light. Under pathological conditions, retinal microglia participate in potentiating neurodegeneration in diseases such as glaucoma, retinitis pigmentosa, and age-related neurodegeneration by producing proinflammatory neurotoxic cytokines and removing living neurons via phagocytosis. Modulation of pathogenic microglial activation states and effector mechanisms has been linked to neuroprotection in animal models of retinal diseases. These findings have led to the design of early proof-of-concept clinical trials with microglial modulation as a therapeutic strategy.
Collapse
Affiliation(s)
- Sean M. Silverman
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| | - Wai T. Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| |
Collapse
|
18
|
Dannhausen K, Möhle C, Langmann T. Immunomodulation with minocycline rescues retinal degeneration in juvenile neuronal ceroid lipofuscinosis mice highly susceptible to light damage. Dis Model Mech 2018; 11:dmm.033597. [PMID: 30042155 PMCID: PMC6176999 DOI: 10.1242/dmm.033597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (jNCL) is a rare but fatal inherited lysosomal storage disorder mainly affecting children. The disease is caused by mutations in the CLN3 gene that lead to the accumulation of storage material in many tissues, prominent immune responses and neuronal degeneration. One of the first symptoms is vision loss followed by motor dysfunction and mental decline. The established Cln3Δex7/8 mouse model mimics many pathological features of the human disease except the retinal phenotype, which is very mild and occurs only very late in these mice. Here, we first carefully analyzed the retinal structure and microglia responses in these animals. While prominent autofluorescent spots were present in the fundus, only a moderate reduction of retinal thickness and no prominent microgliosis was seen in young CLN3-deficient mice. We next genetically introduced a light-sensitive RPE65 variant and established a light-damage paradigm that showed a high susceptibility of young Cln3Δex7/8 mice after exposure to 10,000 lux bright light for 30 min. Under these ‘low light’ conditions, CLN3-deficient mice showed a strong retinal degeneration, microglial activation, deposition of autofluorescent material and transcriptomic changes compared to wild-type animals. Finally, we treated the light-exposed Cln3Δex7/8 animals with the immunomodulatory compound minocycline, and thereby rescued the retinal phenotype and diminished microgliosis. Our findings indicate that exposure to specific light conditions accelerates CLN3-dependent retinal degeneration, and that immunomodulation by minocycline could be a possible treatment option to delay vision loss in jNCL patients. This article has an associated First Person interview with the first author of the paper. Summary: Here, we established a light-damage paradigm to model retinal degeneration in the juvenile neuronal ceroid lipofuscinosis mouse and showed the beneficial effects of minocycline on retinal pathology.
Collapse
Affiliation(s)
- Katharina Dannhausen
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931 Cologne, Germany
| | - Christoph Möhle
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931 Cologne, Germany .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
19
|
Suprachoroidal hemorrhage followed by swept-source optical coherence tomography: a case report. BMC Ophthalmol 2018; 18:203. [PMID: 30126397 PMCID: PMC6102832 DOI: 10.1186/s12886-018-0881-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022] Open
Abstract
Background To report a case of Suprachoroidal Hemorrhage followed by Swept-Source Optical Coherence Tomography. Case presentation A 66-year-old woman with a rhegmatogenous retinal detachment in her left eye underwent pars plana vitrectomy. During the intraocular photocoagulation for a retinal tear after fluid-air exchange, a vitreous hemorrhage and suprachoroidal hemorrhage (SCH) developed. The surgical incisions were closed after filling the vitreous cavity with silicone oil. Two weeks later, the hemolyzed hemorrhage was removed, and new silicone oil was injected. After the surgery, a low reflective region was detected near the macula in the swept-source optical coherence tomographic (SS-OCT) images. The low reflective region was caused by the residual hemorrhage. The size of the reflective region gradually decreased and was not present at 3 months. We conclude that SS-OCT can be used to follow the resolution of a suprachoroidal hemorrhage. Conclusion SS-OCT can be used to detect and follow the natural course of a suprachoroidal hemorrhage including the absorptive processes.
Collapse
|
20
|
Yang S, Xian B, Li K, Luo Z, Liu Y, Hu D, Ge J. Alpha 1-antitrypsin inhibits microglia activation and facilitates the survival of iPSC grafts in hypertension mouse model. Cell Immunol 2018; 328:49-57. [DOI: 10.1016/j.cellimm.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 01/16/2023]
|
21
|
Barben M, Schori C, Samardzija M, Grimm C. Targeting Hif1a rescues cone degeneration and prevents subretinal neovascularization in a model of chronic hypoxia. Mol Neurodegener 2018. [PMID: 29514656 PMCID: PMC5842520 DOI: 10.1186/s13024-018-0243-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Degeneration of cone photoreceptors leads to loss of vision in patients suffering from age-related macular degeneration (AMD) and other cone dystrophies. Evidence, such as choroidal ischemia and decreased choroidal blood flow, implicates reduced tissue oxygenation in AMD pathology and suggests a role of the cellular response to hypoxia in disease onset and progression. Such a chronic hypoxic situation may promote several cellular responses including stabilization of hypoxia-inducible factors (HIFs). Methods To investigate the consequence of a chronic activation of the molecular response to hypoxia in cones, von Hippel Lindau protein (VHL) was specifically ablated in cones of the all-cone R91W;Nrl-/- mouse. Retinal function and morphology was evaluated by ERG and light microscopy, while differential gene expression was tested by real-time PCR. Retinal vasculature was analyzed by immunostainings and fluorescein angiography. Two-way ANOVA with Šídák’s multiple comparison test was performed for statistical analysis. Results Cone-specific ablation of Vhl resulted in stabilization and activation of hypoxia-inducible factor 1A (HIF1A) which led to increased expression of genes associated with hypoxia and retinal stress. Our data demonstrate severe cone degeneration and pathologic vessel growth, features that are central to AMD pathology. Subretinal neovascularization was accompanied by vascular leakage and infiltration of microglia cells. Interestingly, we observed increased expression of tissue inhibitor of metalloproteinase 3 (Timp3) during the aging process, a gene associated with AMD and Bruch’s membrane integrity. Additional deletion of Hif1a protected cone cells, prevented pathological vessel growth and preserved vision. Conclusions Our data provide evidence for a HIF1A-mediated mechanism leading to pathological vessel growth and cone degeneration in response to a chronic hypoxia-like situation. Consequently, our results identify HIF1A as a potential therapeutic target to rescue hypoxia-related vision loss in patients.
Collapse
Affiliation(s)
- Maya Barben
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Christian Schori
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Christian Grimm
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
The inhibitory effect of minocycline on radiation-induced neuronal apoptosis via AMPKα1 signaling-mediated autophagy. Sci Rep 2017; 7:16373. [PMID: 29180765 PMCID: PMC5703722 DOI: 10.1038/s41598-017-16693-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Due to an increasing concern about radiation-induced cognitive deficits for brain tumor patients receiving radiation therapy, developing and evaluating countermeasures has become inevitable. Our previous study has found that minocycline, a clinical available antibiotics that can easily cross the blood brain barrier, mitigates radiation-induced long-term memory loss in rats, accompanied by decreased hippocampal neuron apoptosis. Thus, in the present study, we report an unknown mechanism underlying the neuroprotective effect of minocycline. We demonstrated that minocycline prevented primary neurons from radiation-induced apoptosis and promoted radiation-induced autophagy in vitro. Moreover, using an immortalized mouse hippocampal neuronal cell line, HT22 cells, we found that the protective effect of minocycline on irradiated HT22 cells was not related to DNA damage repair since minocycline did not facilitate DNA DSB repair in irradiated HT22 cells. Further investigation showed that minocycline significantly enhanced X-irradiation-induced AMPKα1 activation and autophagy, thus resulting in decreased apoptosis. Additionally, although the antioxidant potential of minocycline might contribute to its apoptosis-inhibitory effect, it was not involved in its enhancive effect on radiation-induced AMPKα1-mediated autophagy. Taken together, we have revealed a novel mechanism for the protective effect of minocycline on irradiated neurons, e.g. minocycline protects neurons from radiation-induced apoptosis via enhancing radiation-induced AMPKα1-mediated autophagy.
Collapse
|
23
|
Impact of minocycline on vascularization and visual function in an immature mouse model of ischemic retinopathy. Sci Rep 2017; 7:7535. [PMID: 28790417 PMCID: PMC5548869 DOI: 10.1038/s41598-017-07978-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
The role of microglia in the pathophysiology of ischemic retinal diseases has been extensively studied. Retinal microglial activation may be correlated with retinal neovascularization in oxygen-induced retinopathy (OIR), an animal model that has been widely used in retinopathy of prematurity (ROP) research. Minocycline is an antibiotic that decreases microglial activation following hyperoxic and hypoxic-ischemic phases in neonatal rodents. Here, we investigated the effects of minocycline on vascularization and visual function. In our results, we found that after the administration of minocycline, microglial reactivity was reduced in the retina, which was accompanied by an increase in the avascular area at P12, P14 and P17. Although microglial reactivity was reduced at P17, minocycline treatment did not attenuate retinal neovascularization. A changing trend in microglial number was observed, and the apoptosis and proliferation states on different days partly contributed to this change. Further study also revealed that although minocycline downregulated the levels of proinflammatory factors, visual function appeared to be significantly worsened. Collectively, we demonstrated that minocycline disturbed the physiological vascularization of the avascular area and exacerbated visual dysfunction, indicating that minocycline may not be an effective drug and may even be detrimental for the treatment of ischemic retinopathy in immature mammals.
Collapse
|
24
|
miR-183/96 plays a pivotal regulatory role in mouse photoreceptor maturation and maintenance. Proc Natl Acad Sci U S A 2017; 114:6376-6381. [PMID: 28559309 DOI: 10.1073/pnas.1618757114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are known to be essential for retinal maturation and functionality; however, the role of the most abundant miRNAs, the miR-183/96/182 cluster (miR-183 cluster), in photoreceptor cells remains unclear. Here we demonstrate that ablation of two components of the miR-183 cluster, miR-183 and miR-96, significantly affects photoreceptor maturation and maintenance in mice. Morphologically, early-onset dislocated cone nuclei, shortened outer segments and thinned outer nuclear layers are observed in the miR-183/96 double-knockout (DKO) mice. Abnormal photoreceptor responses, including abolished photopic electroretinography (ERG) responses and compromised scotopic ERG responses, reflect the functional changes in the degenerated retina. We further identify Slc6a6 as the cotarget of miR-183 and miR-96. The expression level of Slc6a6 is significantly higher in the DKO mice than in the wild-type mice. In contrast, Slc6a6 is down-regulated by adeno-associated virus-mediated overexpression of either miR-183 or miR-96 in wild-type mice. Remarkably, both silencing and overexpression of Slc6a6 in the retina are detrimental to the electrophysiological activity of the photoreceptors in response to dim light stimuli. We demonstrate that miR-183/96-mediated fine-tuning of Slc6a6 expression is indispensable for photoreceptor maturation and maintenance, thereby providing insight into the epigenetic regulation of photoreceptors in mice.
Collapse
|
25
|
Abstract
The innate immune system is activated in a number of degenerative and inflammatory retinal disorders such as age-related macular degeneration (AMD). Retinal microglia, choroidal macrophages, and recruited monocytes, collectively termed 'retinal mononuclear phagocytes', are critical determinants of ocular disease outcome. Many publications have described the presence of these cells in mouse models for retinal disease; however, only limited aspects of their behavior have been uncovered, and these have only been uncovered using a single detection method. The workflow presented here describes a comprehensive analysis strategy that allows characterization of retinal mononuclear phagocytes in vivo and in situ. We present standardized working steps for scanning laser ophthalmoscopy of microglia from MacGreen reporter mice (mice expressing the macrophage colony-stimulating factor receptor GFP transgene throughout the mononuclear phagocyte system), quantitative analysis of Iba1-stained retinal sections and flat mounts, CD11b-based retinal flow cytometry, and qRT-PCR analysis of key microglia markers. The protocol can be completed within 3 d, and we present data from retinas treated with laser-induced choroidal neovascularization (CNV), bright white-light exposure, and Fam161a-associated inherited retinal degeneration. The assays can be applied to any of the existing mouse models for retinal disorders and may be valuable for documenting immune responses in studies for immunomodulatory therapies.
Collapse
|
26
|
Wang X, Friis TE, Masci PP, Crawford RW, Liao W, Xiao Y. Alteration of blood clot structures by interleukin-1 beta in association with bone defects healing. Sci Rep 2016; 6:35645. [PMID: 27767056 PMCID: PMC5073366 DOI: 10.1038/srep35645] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
The quality of hematomas are crucial for successful early bone defect healing, as the structure of fibrin clots can significantly influence the infiltration of cells, necessary for bone regeneration, from adjacent tissues into the fibrin network. This study investigated if there were structural differences between hematomas from normal and delayed healing bone defects and whether such differences were linked to changes in the expression of IL-1β. Using a bone defect model in rats, we found that the hematomas in the delayed healing model had thinner fibers and denser clot structures. Moreover, IL-1β protein levels were significantly higher in the delayed healing hematomas. The effects of IL-1β on the structural properties of human whole blood clots were evaluated by thrombelastograph (TEG), scanning electronic microscopy (SEM), compressive study, and thrombolytic assays. S-nitrosoglutathione (GSNO) was applied to modulate de novo hematoma structure and the impact on bone healing was evaluated in the delayed healing model. We found that GSNO produced more porous hematomas with thicker fibers and resulted in significantly enhanced bone healing. This study demonstrated that IL-1β and GSNO had opposing effects on clot architecture, the structure of which plays a pivotal role in early bone healing.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Translational Research Institute, School of Medicine, The University of Queensland, Brisbane, 4102 Queensland, Australia
| | - Thor E. Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
| | - Paul P. Masci
- Translational Research Institute, School of Medicine, The University of Queensland, Brisbane, 4102 Queensland, Australia
| | - Ross W. Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
| | - Wenbo Liao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
| |
Collapse
|
27
|
Blue light-induced retinal lesions, intraretinal vascular leakage and edema formation in the all-cone mouse retina. Cell Death Dis 2015; 6:e1985. [PMID: 26583326 PMCID: PMC4670937 DOI: 10.1038/cddis.2015.333] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Abstract
Little is known about the mechanisms underlying macular degenerations, mainly for the scarcity of adequate experimental models to investigate cone cell death. Recently, we generated R91W;Nrl(-/-) double-mutant mice, which display a well-ordered all-cone retina with normal retinal vasculature and a strong photopic function that generates useful vision. Here we exposed R91W;Nrl(-/-) and wild-type (wt) mice to toxic levels of blue light and analyzed their retinas at different time points post illumination (up to 10 days). While exposure of wt mice resulted in massive pyknosis in a focal region of the outer nuclear layer (ONL), the exposure of R91W;Nrl(-/-) mice led to additional cell death detected within the inner nuclear layer. Microglia/macrophage infiltration at the site of injury was more pronounced in the all-cone retina of R91W;Nrl(-/-) than in wt mice. Similarly, vascular leakage was abundant in the inner and outer retina in R91W;Nrl(-/-) mice, whereas it was mild and restricted to the subretinal space in wt mice. This was accompanied by retinal swelling and the appearance of cystoid spaces in both inner and ONLs of R91W;Nrl(-/-) mice indicating edema in affected areas. In addition, basal expression levels of tight junction protein-1 encoding ZO1 were lower in R91W;Nrl(-/-) than in wt retinas. Collectively, our data suggest that exposure of R91W;Nrl(-/-) mice to blue light not only induces cone cell death but also disrupts the inner blood-retinal barrier. Macular edema in humans is a result of diffuse capillary leakage and microaneurysms in the macular region. Blue light exposure of the R91W;Nrl(-/-) mouse could therefore be used to study molecular events preceding edema formation in a cone-rich environment, and thus potentially help to develop treatment strategies for edema-based complications in macular degenerations.
Collapse
|
28
|
Xian B, Huang B. The immune response of stem cells in subretinal transplantation. Stem Cell Res Ther 2015; 6:161. [PMID: 26364954 PMCID: PMC4568575 DOI: 10.1186/s13287-015-0167-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stem cell transplantation is a potential curative treatment for degenerative diseases of the retina. Among cell injection sites, the subretinal space (SRS) is particularly advantageous as it is maintained as an immune privileged site by the retinal pigment epithelium (RPE) layer. Thus, the success of subretinal transplantation depends on maintenance of RPE integrity. Moreover, both embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs) have negligible immunogenicity and in fact are immunosuppressive. Indeed, many studies have demonstrated that immunosuppressive drugs are not necessary for subretinal transplantation of stem cells if the blood-retinal barrier is not breached during surgery. The immunogenicity of induced pluripotent stem cells (iPSCs) appears more complex, and requires careful study before clinical application. Despite low rates of graft rejection in animal models, survival rates for ESCs, MSCs, and iPSCs in retina are generally poor, possibly due to resident microglia activated by cell transplantation. To improve graft survival in SRS transplantation, damage to the blood-retinal barrier must be minimized using appropriate surgical techniques. In addition, agents that inhibit microglial activation may be required. Finally, immunosuppressants may be required, at least temporarily, until the blood-retinal barrier heals. We review surgical methods and drug regimens to enhance the likelihood of graft survival after SRS transplantation.
Collapse
Affiliation(s)
- Bikun Xian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong Province, China.
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong Province, China.
| |
Collapse
|
29
|
Microglial Activation Promotes Cell Survival in Organotypic Cultures of Postnatal Mouse Retinal Explants. PLoS One 2015; 10:e0135238. [PMID: 26252475 PMCID: PMC4529135 DOI: 10.1371/journal.pone.0135238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/20/2015] [Indexed: 02/03/2023] Open
Abstract
The role of microglia during neurodegeneration remains controversial. We investigated whether microglial cells have a neurotoxic or neuroprotective function in the retina. Retinal explants from 10-day-old mice were treated in vitro with minocycline to inhibit microglial activation, with LPS to increase microglial activation, or with liposomes loaded with clodronate (Lip-Clo) to deplete microglial cells. Flow cytometry was used to assess the viability of retinal cells in the explants and the TUNEL method to show the distribution of dead cells. The immunophenotypic and morphological features of microglia and their distribution were analyzed with flow cytometry and immunocytochemistry. Treatment of retinal explants with minocycline reduced microglial activation and simultaneously significantly decreased cell viability and increased the presence of TUNEL-labeled cell profiles. This treatment also prevented the migration of microglial cells towards the outer nuclear layer, where cell death was most abundant. The LPS treatment increased microglial activation but had no effect on cell viability or microglial distribution. Finally, partial microglial removal with Lip-Clo diminished the cell viability in the retinal explants, showing a similar effect to that of minocycline. Hence, cell viability is diminished in retinal explants cultured in vitro when microglial cells are removed or their activation is inhibited, indicating a neurotrophic role for microglia in this system.
Collapse
|
30
|
Li L, Eter N, Heiduschka P. The microglia in healthy and diseased retina. Exp Eye Res 2015; 136:116-30. [PMID: 25952657 DOI: 10.1016/j.exer.2015.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Abstract
The microglia are the immune cells of the central nervous system and, also the retina. They fulfil several tasks of surveillance in the healthy retina. In case of an injury or disease, microglia become activated and tries to repair the damage. However, in a lot of cases it does not work, and microglia deteriorate the situation by releasing toxic and pro-inflammatory compounds. Moreover, they further promote degenerative processes by attacking and phagocytosing damaged neurones and photoreceptors that otherwise would possibly have the chance to survive. Such deleterious action of the microglia has been observed in degeneration of retinal ganglion cells and photoreceptors, and it takes place in hereditary diseases, infections as well as in case of traumatic or light injuries. Therefore, a number of attempts has been undertaken so far to inhibit the microglia, with varying success. The task remains to study behaviour of the microglia and their interaction with other retinal cell populations in more detail with respect to released factors and expressed receptors including the time points of the corresponding events. The goal has to be to find a better balance between helpful and detrimental actions of the microglia.
Collapse
Affiliation(s)
- Lu Li
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Nicole Eter
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Peter Heiduschka
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany.
| |
Collapse
|
31
|
7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: a potential pathogenic mechanism underlying age-related macular degeneration. Sci Rep 2015; 5:9144. [PMID: 25775051 PMCID: PMC4360733 DOI: 10.1038/srep09144] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/23/2015] [Indexed: 11/26/2022] Open
Abstract
Age-related macular degeneration (AMD) has been associated with both accumulation of lipid and lipid oxidative products, as well as increased neuroinflammatory changes and microglial activation in the outer retina. However, the relationships between these factors are incompletely understood. 7-Ketocholesterol (7KCh) is a cholesterol oxidation product localized to the outer retina with prominent pro-inflammatory effects. To explore the potential relationship between 7KCh and microglial activation, we localized 7KCh and microglia to the outer retina of aged mice and investigated 7KCh effects on retinal microglia in both in vitro and in vivo systems. We found that retinal microglia demonstrated a prominent chemotropism to 7KCh and readily internalized 7KCh. Sublethal concentrations of 7KCh resulted in microglial activation and polarization to a pro-inflammatory M1 state via NLRP3 inflammasome activation. Microglia exposed to 7KCh reduced expression of neurotrophic growth factors but increased expression of angiogenic factors, transitioning to a more neurotoxic and pro-angiogenic phenotype. Finally, subretinal transplantation of 7KCh-exposed microglia promoted choroidal neovascularization (CNV) relative to control microglia in a Matrigel-CNV model. The interaction of retinal microglia with 7KCh in the aged retina may thus underlie how outer retinal lipid accumulation in intermediate AMD results in neuroinflammation that ultimately drives progression towards advanced AMD.
Collapse
|
32
|
|
33
|
Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 2014; 45:30-57. [PMID: 25476242 DOI: 10.1016/j.preteyeres.2014.11.004] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Resident microglial cells can be regarded as the immunological watchdogs of the brain and the retina. They are active sensors of their neuronal microenvironment and rapidly respond to various insults with a morphological and functional transformation into reactive phagocytes. There is strong evidence from animal models and in situ analyses of human tissue that microglial reactivity is a common hallmark of various retinal degenerative and inflammatory diseases. These include rare hereditary retinopathies such as retinitis pigmentosa and X-linked juvenile retinoschisis but also comprise more common multifactorial retinal diseases such as age-related macular degeneration, diabetic retinopathy, glaucoma, and uveitis as well as neurological disorders with ocular manifestation. In this review, we describe how microglial function is kept in balance under normal conditions by cross-talk with other retinal cells and summarize how microglia respond to different forms of retinal injury. In addition, we present the concept that microglia play a key role in local regulation of complement in the retina and specify aspects of microglial aging relevant for chronic inflammatory processes in the retina. We conclude that this resident immune cell of the retina cannot be simply regarded as bystander of disease but may instead be a potential therapeutic target to be modulated in the treatment of degenerative and inflammatory diseases of the retina.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan M Provis
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany.
| |
Collapse
|
34
|
Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. J Neurosci 2014; 34:8139-50. [PMID: 24920619 DOI: 10.1523/jneurosci.5200-13.2014] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinitis pigmentosa (RP) is a photoreceptor-degenerative disease caused by various mutations and is characterized by death of rod photoreceptor cell followed by gradual death of cone photoreceptors. The molecular mechanisms that lead to rod and cone death are not yet fully understood. Neuroinflammation contributes to the progression of many chronic neurodegenerative disorders. However, it remains to be determined how microglia contribute to photoreceptor disruption in RP. In this study, we explored the role of microglia as a contributor to photoreceptor degeneration in the rd10 mouse model of RP. First, we demonstrated that microglia activation was an early alteration in RP retinas. Inhibition of microglia activation by minocycline reduced photoreceptor apoptosis and significantly improved retinal structure and function and visual behavior in rd10 mice. Second, we identified that minocycline exerted its neuroprotective effects through both anti-inflammatory and anti-apoptotic mechanisms. Third, we found that Cx3cr1 deficiency dysregulated microglia activation and subsequently resulted in increased photoreceptor vulnerability in rd10 mice, suggesting that the Cx3cl1/Cx3cr1 signaling pathway might protect against microglia neurotoxicity. We concluded that suppression of neuroinflammatory responses could be a potential treatment strategy aimed at improving photoreceptor survival in human RP.
Collapse
|
35
|
Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci 2014; 34:3793-806. [PMID: 24599476 DOI: 10.1523/jneurosci.3153-13.2014] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic retinal inflammation in the form of activated microglia and macrophages are implicated in the etiology of neurodegenerative diseases of the retina, including age-related macular degeneration, diabetic retinopathy, and glaucoma. However, molecular biomarkers and targeted therapies for immune cell activation in these disorders are currently lacking. To address this, we investigated the involvement and role of translocator protein (TSPO), a biomarker of microglial and astrocyte gliosis in brain degeneration, in the context of retinal inflammation. Here, we find that TSPO is acutely and specifically upregulated in retinal microglia in separate mouse models of retinal inflammation and injury. Concomitantly, its endogenous ligand, diazepam-binding inhibitor (DBI), is upregulated in the macroglia of the mouse retina such as astrocytes and Müller cells. In addition, we discover that TSPO-mediated signaling in microglia via DBI-derived ligands negatively regulates features of microglial activation, including reactive oxygen species production, TNF-α expression and secretion, and microglial proliferation. The inducibility and effects of DBI-TSPO signaling in the retina reveal a mechanism of coordinated macroglia-microglia interactions, the function of which is to limit the magnitude of inflammatory responses after their initiation, facilitating a return to baseline quiescence. Our results indicate that TSPO is a promising molecular marker for imaging inflammatory cell activation in the retina and highlight DBI-TSPO signaling as a potential target for immodulatory therapies.
Collapse
|
36
|
Minocycline upregulates pro-survival genes and downregulates pro-apoptotic genes in experimental glaucoma. Graefes Arch Clin Exp Ophthalmol 2014; 252:761-72. [PMID: 24566901 DOI: 10.1007/s00417-014-2588-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/16/2014] [Accepted: 01/31/2014] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Minocycline, a second-generation tetracycline with anti-inflammatory and anti-apoptotic properties, was reported to be neuroprotective in experimental glaucoma and optic nerve transection as well as in other neurodegenerative diseases. The purpose of this study was to investigate the mechanism underlying that neuroprotective effect in murine glaucoma. METHODS Elevated intraocular pressure was induced in 159 rats by the translimbal photocoagulation laser model. Minocycline 22 mg/kg or saline was injected intraperitoneally starting 3 days before the induction of glaucoma, and continued daily until the animals were sacrificed. The effect of minocycline on gene expression was evaluated using a quantitative polymerase chain reaction (PCR) array for apoptosis. The involvement of selected pro-apoptotic, pro-survival, and inflammatory genes was further analyzed by quantitative real-time PCR at multiple time points. Immunohistochemistry was used to study the effect of minocycline on microglial activation and to localize Bcl-2 changes. RESULTS Minocycline significantly increased the anti-apoptotic gene Bcl-2 expression at day 8 and day 14 after the induction of glaucoma (p = 0.04 and p = 0.03 respectively), and decreased IL-18 expression in the retina at day 14 and day 30 (p = 0.04 and p < 0.001 respectively). PCR arrays suggested that additional genes were affected by minocycline, including Tp53bp2, TRAF4, osteoprotegerin, caspase 1 and 4, and members of the tumor necrosis factor superfamily. Additionally, minocycline decreased the amount of activated microglia in glaucomatous eyes. CONCLUSIONS These results suggest that minocycline upregulates pro-survival genes and downregulates apoptotic genes, thus shifting the balance toward the anti-apoptotic side in experimental glaucoma.
Collapse
|
37
|
Shen W, Zhu L, Lee SR, Chung SH, Gillies MC. Involvement of NT3 and P75(NTR) in photoreceptor degeneration following selective Müller cell ablation. J Neuroinflammation 2013; 10:137. [PMID: 24224958 PMCID: PMC3831588 DOI: 10.1186/1742-2094-10-137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurotrophins can regulate opposing functions that result in cell survival or apoptosis, depending on which form of the protein is secreted and which receptor and signaling pathway is activated. We have recently developed a transgenic model in which inducible and patchy Müller cell ablation leads to photoreceptor degeneration. This study aimed to examine the roles of mature neurotrophin-3 (NT3), pro-NT3 and p75 neurotrophin receptor (P75(NTR)) in photoreceptor degeneration in this model. METHODS Transgenic mice received tamoxifen to induce Müller cell ablation. Changes in the status of Müller and microglia cells as well as expression of mature NT3, pro-NT3 and P75(NTR) were examined by immunohistochemistry and Western blot analysis. Recombinant mature NT3 and an antibody neutralizing 75(NTR) were injected intravitreally 3 and 6 days after Müller cell ablation to examine their effects on photoreceptor degeneration and microglial activation. RESULTS We found that patchy loss of Müller cells was associated with activation of surviving Müller cells and microglial cells, concurrently with reduced expression of mature NT3 and upregulation of pro-NT3 and P75(NTR). Intravitreal injection of mature NT3 and a neutralizing antibody to P75NTR, either alone or in combination, attenuated photoreceptor degeneration and the beneficial effect was associated with inhibition of microglial activation. CONCLUSIONS Our data suggest that Müller cell ablation alters the balance between the protective and deleterious effects of mature NT3 and pro-NT3. Modulation of the neuroprotective action of mature NT3 and pro-apoptotic pro-NT3/P75(NTR) signaling may represent a novel pharmacological strategy for photoreceptor protection in retinal disease.
Collapse
Affiliation(s)
- Weiyong Shen
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Ling Zhu
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - So-Ra Lee
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Sook H Chung
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, the University of Sydney, 8 Macquarie Street, Sydney 2000, Australia
| |
Collapse
|
38
|
Ardeljan D, Chan CC. Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retin Eye Res 2013; 37:68-89. [PMID: 23933169 PMCID: PMC3830684 DOI: 10.1016/j.preteyeres.2013.07.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Abstract
Age-related macular degeneration (AMD) is a disease of the outer retina, characterized most significantly by atrophy of photoreceptors and retinal pigment epithelium accompanied with or without choroidal neovascularization. Development of AMD has been recognized as contingent on environmental and genetic risk factors, the strongest being advanced age. In this review, we highlight pathogenic changes that destabilize ocular homeostasis and promote AMD development. With normal aging, photoreceptors are steadily lost, Bruch's membrane thickens, the choroid thins, and hard drusen may form in the periphery. In AMD, many of these changes are exacerbated in addition to the development of disease-specific factors such as soft macular drusen. Para-inflammation, which can be thought of as an intermediate between basal and robust levels of inflammation, develops within the retina in an attempt to maintain ocular homeostasis, reflected by increased expression of the anti-inflammatory cytokine IL-10 coupled with shifts in macrophage plasticity from the pro-inflammatory M1 to the anti-inflammatory M2 polarization. In AMD, imbalances in the M1 and M2 populations together with activation of retinal microglia are observed and potentially contribute to tissue degeneration. Nonetheless, the retina persists in a state of chronic inflammation and increased expression of certain cytokines and inflammasomes is observed. Since not everyone develops AMD, the vital question to ask is how the body establishes a balance between normal age-related changes and the pathological phenotypes in AMD.
Collapse
Affiliation(s)
- Daniel Ardeljan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
39
|
Baumgartner W, Baumgartner A. Rationale for an experimental treatment of retinitis pigmentosa: 140-Month test of hypothesis with one patient. Med Hypotheses 2013; 81:720-8. [DOI: 10.1016/j.mehy.2013.07.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 03/05/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
|
40
|
Kohno H, Chen Y, Kevany BM, Pearlman E, Miyagi M, Maeda T, Palczewski K, Maeda A. Photoreceptor proteins initiate microglial activation via Toll-like receptor 4 in retinal degeneration mediated by all-trans-retinal. J Biol Chem 2013; 288:15326-41. [PMID: 23572532 DOI: 10.1074/jbc.m112.448712] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although several genetic and biochemical factors are associated with the pathogenesis of retinal degeneration, it has yet to be determined how these different impairments can cause similar degenerative phenotypes. Here, we report microglial/macrophage activation in both a Stargardt disease and age-related macular degeneration mouse model caused by delayed clearance of all-trans-retinal from the retina, and in a retinitis pigmentosa mouse model with impaired retinal pigment epithelium (RPE) phagocytosis. Mouse microglia displayed RPE cytotoxicity and increased production of inflammatory chemokines/cytokines, Ccl2, Il1b, and Tnf, after coincubation with ligands that activate innate immunity. Notably, phagocytosis of photoreceptor proteins increased the activation of microglia/macrophages and RPE cells isolated from model mice as well as wild-type mice. The mRNA levels of Tlr2 and Tlr4, which can recognize proteins as their ligands, were elevated in mice with retinal degeneration. Bone marrow-derived macrophages from Tlr4-deficient mice did not increase Ccl2 after coincubation with photoreceptor proteins. Tlr4(-/-)Abca4(-/-)Rdh8(-/-) mice displayed milder retinal degenerative phenotypes than Abca4(-/-)Rdh8(-/-) mice. Additionally, inactivation of microglia/macrophages by pharmacological approaches attenuated mouse retinal degeneration. This study demonstrates an important contribution of TLR4-mediated microglial activation by endogenous photoreceptor proteins in retinal inflammation that aggravates retinal cell death. This pathway is likely to represent an underlying common pathology in degenerative retinal disorders.
Collapse
Affiliation(s)
- Hideo Kohno
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-7286, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cukras CA, Petrou P, Chew EY, Meyerle CB, Wong WT. Oral minocycline for the treatment of diabetic macular edema (DME): results of a phase I/II clinical study. Invest Ophthalmol Vis Sci 2012; 53:3865-74. [PMID: 22589436 DOI: 10.1167/iovs.11-9413] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Inflammation contributes significantly to the pathogenesis of diabetic macular edema (DME). In particular, retinal microglia demonstrate increased activation and aggregation in areas of DME. Study authors investigated the safety and potential efficacy of oral minocycline, a drug capable of inhibiting microglial activation, in the treatment of DME. METHODS A single-center, prospective, open-label phase I/II clinical trial enrolled five participants with fovea-involving DME who received oral minocycline 100 mg twice daily for 6 months. Main outcome measurements included best-corrected visual acuity (BCVA), central retinal subfield thickness (CST), and central macular volume using spectral domain optical coherence tomography (SD-OCT) and late leakage on fluorescein angiography (FA). RESULTS Findings indicated that the study drug was well tolerated and not associated with significant safety issues. In study eyes, mean BCVA improved continuously from baseline at 1, 2, 4, and 6 months by +1.0, +4.0, +4.0, and +5.8 letters, respectively, while mean retinal thickness (CST) on OCT decreased by -2.9%, -5.7%, -13.9, and -8.1% for the same time points. At month 6, mean area of late leakage on FA decreased by -34.4% in study eyes. Mean changes in contralateral fellow eyes also demonstrated similar trends. Improvements in outcome measures were not correlated with concurrent changes in systemic factors. CONCLUSIONS In this pilot proof-of-concept study of DME, minocycline as primary treatment was associated with improved visual function, central macular edema, and vascular leakage, comparing favorably with historical controls from previous studies. Microglial inhibition with oral minocycline may be a promising therapeutic strategy targeting the inflammatory etiology of DME. (ClinicalTrials.gov number, NCT01120899.).
Collapse
Affiliation(s)
- Catherine A Cukras
- Division of Epidemiology and Clinical Applications, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
42
|
Coorey NJ, Shen W, Chung SH, Zhu L, Gillies MC. The role of glia in retinal vascular disease. Clin Exp Optom 2012; 95:266-81. [PMID: 22519424 DOI: 10.1111/j.1444-0938.2012.00741.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinal vascular diseases collectively represent a leading cause of blindness. Unsurprisingly, pathological characterisation and treatment of retinal 'vascular' diseases have primarily focused on the aetiology and consequences of vascular dysfunction. Far less research has addressed the contribution of neuronal and glial dysfunction to the disease process of retinal vascular disorders. Ample evidence now suggests that retinal vasculopathy only uncommonly occurs in isolation, usually existing in concert with neuropathy and gliopathy. Retinal glia (Müller cells, astrocytes and microglia) have been reported to exhibit morphological and functional changes in both early and advanced phases of almost every retinal vascular disease. It is anticipated that identifying the causes of glial activation and dysfunction, and their contribution to loss of vision in retinal vascular disease, will lead to a better understanding of retinal vascular diseases, which might ultimately be translated into novel clinical therapies.
Collapse
Affiliation(s)
- Nathan J Coorey
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
43
|
Hambright D, Park KY, Brooks M, McKay R, Swaroop A, Nasonkin IO. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol Vis 2012; 18:920-36. [PMID: 22539871 PMCID: PMC3335781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 04/08/2012] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To examine the potential of NIH-maintained human embryonic stem cell (hESC) lines TE03 and UC06 to differentiate into retinal progenitor cells (hESC-RPCs) using the noggin/Dkk-1/IGF-1/FGF9 protocol. An additional goal is to examine the in vivo dynamics of maturation and retinal integration of subretinal and epiretinal (vitreous space) hESC-RPC grafts without immunosuppression. METHODS hESCs were neuralized in vitro with noggin for 2 weeks and expanded to derive neuroepithelial cells (hESC-neural precursors, NPs). Wnt (Integration 1 and wingless) blocking morphogens Dickkopf-1 (Dkk-1) and Insulin-like growth factor 1 (IGF-1) were used to direct NPs to a rostral neural fate, and fibroblast growth factor 9 (FGF9)/fibroblast growth factor-basic (bFGF) were added to bias the differentiation of developing anterior neuroectoderm cells to neural retina (NR) rather than retinal pigment epithelium (RPE). Cells were dissociated and grafted into the subretinal and epiretinal space of young adult (4-6-week-old) mice (C57BL/6J x129/Sv mixed background). Remaining cells were replated for (i) immunocytochemical analysis and (ii) used for quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. Mice were sacrificed 3 weeks or 3 months after grafting, and the grafts were examined by histology and immunohistochemistry for survival of hESC-RPCs, presence of mature neuronal and retinal markers, and the dynamics of in vivo maturation and integration into the host retina. RESULTS At the time of grafting, hESC-RPCs exhibited immature neural/neuronal immunophenotypes represented by nestin and neuronal class III β-tubulin, with about half of the cells positive for cell proliferation marker Kiel University -raised antibody number 67 (Ki67), and no recoverin-positive (recoverin [+]) cells. The grafted cells expressed eye field markers paired box 6 (PAX6), retina and anterior neural fold homeobox (RAX), sine oculis homeobox homolog 6 (SIX6), LIM homeobox 2 (LHX2), early NR markers (Ceh-10 homeodomain containing homolog [CHX10], achaete-scute complex homolog 1 [MASH1], mouse atonal homolog 5 [MATH5], neurogenic differentiation 1 [NEUROD1]), and some retinal cell fate markers (brain-specific homeobox/POU domain transcription factor 3B [BRN3B], prospero homeobox 1 [PROX1], and recoverin). The cells in the subretinal grafts matured to predominantly recoverin [+] phenotype by 3 months and survived in a xenogenic environment without immunosuppression as long as the blood-retinal barrier was not breached by the transplantation procedure. The epiretinal grafts survived but did not express markers of mature retinal cells. Retinal integration into the retinal ganglion cell (RGC) layer and the inner nuclear layer (INL) was efficient from the epiretinal but not subretinal grafts. The subretinal grafts showed limited ability to structurally integrate into the host retina and only in cases when NR was damaged during grafting. Only limited synaptogenesis and no tumorigenicity was observed in grafts. CONCLUSIONS Our studies show that (i) immunosuppression is not mandatory to xenogenic graft survival in the retina, (ii) the subretinal but not the epiretinal niche can promote maturation of hESC-RPCs to photoreceptors, and (iii) the hESC-RPCs from epiretinal but not subretinal grafts can efficiently integrate into the RGC layer and INL. The latter could be of value for long-lasting neuroprotection of retina in some degenerative conditions and glaucoma. Overall, our results provide new insights into the technical aspects associated with cell-based therapy in the retina.
Collapse
Affiliation(s)
- Dustin Hambright
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Kye-Yoon Park
- Laboratory of Molecular Biology and NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Matthew Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Ron McKay
- Laboratory of Molecular Biology and NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Igor O. Nasonkin
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|