1
|
Maffia P, Mauro C, Case A, Kemper C. Canonical and non-canonical roles of complement in atherosclerosis. Nat Rev Cardiol 2024; 21:743-761. [PMID: 38600367 DOI: 10.1038/s41569-024-01016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular diseases are the leading cause of death globally, and atherosclerosis is the major contributor to the development and progression of cardiovascular diseases. Immune responses have a central role in the pathogenesis of atherosclerosis, with the complement system being an acknowledged contributor. Chronic activation of liver-derived and serum-circulating canonical complement sustains endothelial inflammation and innate immune cell activation, and deposition of complement activation fragments on inflamed endothelial cells is a hallmark of atherosclerotic plaques. However, increasing evidence indicates that liver-independent, cell-autonomous and non-canonical complement activities are underappreciated contributors to atherosclerosis. Furthermore, complement activation can also have atheroprotective properties. These specific detrimental or beneficial contributions of the complement system to the pathogenesis of atherosclerosis are dictated by the location of complement activation and engagement of its canonical versus non-canonical functions in a temporal fashion during atherosclerosis progression. In this Review, we summarize the classical and the emerging non-classical roles of the complement system in the pathogenesis of atherosclerosis and discuss potential strategies for therapeutic modulation of complement for the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild, Accra, Ghana
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ayden Case
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Rezvani R, Shadmand Foumani Moghadam MR, Cianflone K. Acylation stimulating protein/C3adesArg in the metabolic states: role of adipocyte dysfunction in obesity complications. J Physiol 2024; 602:773-790. [PMID: 38305477 DOI: 10.1113/jp285127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/27/2023] [Indexed: 02/03/2024] Open
Abstract
Adipose tissue, as an endocrine organ, secretes several adipocyte-derived hormones named 'adipokines' that are implicated in regulating energy haemostasis. Substantial evidence shows that white adipose tissue-derived adipokines mediate the link between obesity-related exogenous factors (like diet and lifestyle) and various biological events (such as pre- and postmenopausal status) that have obesity consequences (cardiometabolic disorders). One of the critical aetiological factors for obesity-related diseases is the dysfunction of adipokine pathways. Acylation-stimulating protein (ASP) is an adipokine that stimulates triglyceride synthesis and storage in adipose tissue by enhancing glucose and fatty acid uptake. ASP acts via its receptor C5L2. The primary objective of this review is to address the existing gap in the literature regarding ASP by investigating its diverse responses and receptor interactions across multiple determinants of obesity. These determinants include diet composition, metabolic disorders, organ involvement, sex and sex hormone levels. Furthermore, this article explores the broader paradigm shift from solely focusing on adipose tissue mass, which contributes to obesity, to considering the broader implications of adipose tissue function. Additionally, we raise a critical question concerning the clinical relevance of the insights gained from this review, both in terms of potential therapeutic interventions targeting ASP and in the context of preventing obesity-related conditions, highlighting the potential of the ASP-C5L2 interaction as a pharmacological target. In conclusion, these findings validate that obesity is a low-grade inflammatory status with multiorgan involvement and sex differences, demonstrating dynamic interactions between immune and metabolic response determinants.
Collapse
Affiliation(s)
- Reza Rezvani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Katherine Cianflone
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| |
Collapse
|
3
|
van Kuijk K, McCracken IR, Tillie RJHA, Asselberghs SEJ, Kheder DA, Muitjens S, Jin H, Taylor RS, Wichers Schreur R, Kuppe C, Dobie R, Ramachandran P, Gijbels MJ, Temmerman L, Kirkwoord PM, Luyten J, Li Y, Noels H, Goossens P, Wilson-Kanamori JR, Schurgers LJ, Shen YH, Mees BME, Biessen EAL, Henderson NC, Kramann R, Baker AH, Sluimer JC. Human and murine fibroblast single-cell transcriptomics reveals fibroblast clusters are differentially affected by ageing and serum cholesterol. Cardiovasc Res 2023; 119:1509-1523. [PMID: 36718802 PMCID: PMC10318398 DOI: 10.1093/cvr/cvad016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 02/01/2023] Open
Abstract
AIMS Specific fibroblast markers and in-depth heterogeneity analysis are currently lacking, hindering functional studies in cardiovascular diseases (CVDs). Here, we established cell-type markers and heterogeneity in murine and human arteries and studied the adventitial fibroblast response to CVD and its risk factors hypercholesterolaemia and ageing. METHODS AND RESULTS Murine aorta single-cell RNA-sequencing analysis of adventitial mesenchymal cells identified fibroblast-specific markers. Immunohistochemistry and flow cytometry validated platelet-derived growth factor receptor alpha (PDGFRA) and dipeptidase 1 (DPEP1) across human and murine aorta, carotid, and femoral arteries, whereas traditional markers such as the cluster of differentiation (CD)90 and vimentin also marked transgelin+ vascular smooth muscle cells. Next, pseudotime analysis showed multiple fibroblast clusters differentiating along trajectories. Three trajectories, marked by CD55 (Cd55+), Cxcl chemokine 14 (Cxcl14+), and lysyl oxidase (Lox+), were reproduced in an independent RNA-seq dataset. Gene ontology (GO) analysis showed divergent functional profiles of the three trajectories, related to vascular development, antigen presentation, and/or collagen fibril organization, respectively. Trajectory-specific genes included significantly more genes with known genome-wide associations (GWAS) to CVD than expected by chance, implying a role in CVD. Indeed, differential regulation of fibroblast clusters by CVD risk factors was shown in the adventitia of aged C57BL/6J mice, and mildly hypercholesterolaemic LDLR KO mice on chow by flow cytometry. The expansion of collagen-related CXCL14+ and LOX+ fibroblasts in aged and hypercholesterolaemic aortic adventitia, respectively, coincided with increased adventitial collagen. Immunohistochemistry, bulk, and single-cell transcriptomics of human carotid and aorta specimens emphasized translational value as CD55+, CXCL14+ and LOX+ fibroblasts were observed in healthy and atherosclerotic specimens. Also, trajectory-specific gene sets are differentially correlated with human atherosclerotic plaque traits. CONCLUSION We provide two adventitial fibroblast-specific markers, PDGFRA and DPEP1, and demonstrate fibroblast heterogeneity in health and CVD in humans and mice. Biological relevance is evident from the regulation of fibroblast clusters by age and hypercholesterolaemia in vivo, associations with human atherosclerotic plaque traits, and enrichment of genes with a GWAS for CVD.
Collapse
Affiliation(s)
- Kim van Kuijk
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ian R McCracken
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Renée J H A Tillie
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Sebastiaan E J Asselberghs
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dlzar A Kheder
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Stan Muitjens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Han Jin
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Richard S Taylor
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ruud Wichers Schreur
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Prakesh Ramachandran
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marion J Gijbels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, Amsterdam, The Netherlands
- GROW, School for Oncology and Development Biology, Maastricht University, Maastricht, The Netherlands
| | - Lieve Temmerman
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Phoebe M Kirkwoord
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Joris Luyten
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yanming Li
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, USA
| | - Heidi Noels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Pieter Goossens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - John R Wilson-Kanamori
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Leon J Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, USA
| | - Barend M E Mees
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Erik A L Biessen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Neil C Henderson
- Division of Nephrology and Clinical Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Andrew H Baker
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Judith C Sluimer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
4
|
Li X, Sun M, Qi H, Ju C, Chen Z, Gao X, Lin Z. Identification of a Chromosome 1 Substitution Line B6-Chr1BLD as a Novel Hyperlipidemia Model via Phenotyping Screening. Metabolites 2022; 12:metabo12121276. [PMID: 36557314 PMCID: PMC9781061 DOI: 10.3390/metabo12121276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperlipidemia is a chronic disease that seriously affects human health. Due to the fact that traditional animal models cannot fully mimic hyperlipidemia in humans, new animal models are urgently needed for basic drug research on hyperlipidemia. Previous studies have demonstrated that the genomic diversity of the wild mice chromosome 1 substitution lines was significantly different from that of laboratory mice, suggesting that it might be accompanied by phenotypic diversity. We first screened the blood lipid-related phenotype of chromosome 1 substitution lines. We found that the male HFD-fed B6-Chr1BLD mice showed more severe hyperlipidemia-related phenotypes in body weight, lipid metabolism and liver lesions. By RNA sequencing and whole-genome sequencing results of B6-Chr1BLD, we found that several differentially expressed single nucleotide polymorphism enriched genes were associated with lipid metabolism-related pathways. Lipid metabolism-related genes, mainly including Aida, Soat1, Scly and Ildr2, might play an initial and upstream role in the abnormal metabolic phenotype of male B6-Chr1BLD mice. Taken together, male B6-Chr1BLD mice could serve as a novel, polygenic interaction-based hyperlipidemia model. This study could provide a novel animal model for accurate clinical diagnosis and precise medicine of hyperlipidemia.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Minli Sun
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Hao Qi
- GemPharmatech Inc., 12 Xuefu Road, Jiangbei New Area, Nanjing 210061, China
- Correspondence: (H.Q.); (Z.L.)
| | - Cunxiang Ju
- GemPharmatech Inc., 12 Xuefu Road, Jiangbei New Area, Nanjing 210061, China
| | - Zhong Chen
- GemPharmatech Inc., 12 Xuefu Road, Jiangbei New Area, Nanjing 210061, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
- Correspondence: (H.Q.); (Z.L.)
| |
Collapse
|
5
|
Kiss MG, Binder CJ. The multifaceted impact of complement on atherosclerosis. Atherosclerosis 2022; 351:29-40. [DOI: 10.1016/j.atherosclerosis.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
6
|
Dutta K, Friscic J, Hoffmann MH. Targeting the tissue-complosome for curbing inflammatory disease. Semin Immunol 2022; 60:101644. [PMID: 35902311 DOI: 10.1016/j.smim.2022.101644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
Abstract
Hyperactivated local tissue is a cardinal feature of immune-mediated inflammatory diseases of various organs such as the joints, the gut, the skin, or the lungs. Tissue-resident structural and stromal cells, which get primed during repeated or long-lasting bouts of inflammation form the basis of this sensitization of the tissue. During priming, cells change their metabolism to make them fit for the heightened energy demands that occur during persistent inflammation. Epigenetic changes and, curiously, an activation of intracellularly expressed parts of the complement system drive this metabolic invigoration and enable tissue-resident cells and infiltrating immune cells to employ an arsenal of inflammatory functions, including activation of inflammasomes. Here we provide a current overview on complement activation and inflammatory transformation in tissue-occupying cells, focusing on fibroblasts during arthritis, and illustrate ways how therapeutics directed at complement C3 could potentially target the complosome to unprime cells in the tissue and induce long-lasting abatement of inflammation.
Collapse
Affiliation(s)
- Kuheli Dutta
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jasna Friscic
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Markus H Hoffmann
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
7
|
Al‐Ahmadi W, Webberley TS, Joseph A, Harris F, Chan Y, Alotibi R, Williams JO, Alahmadi A, Decker T, Hughes TR, Ramji DP. Pro-atherogenic actions of signal transducer and activator of transcription 1 serine 727 phosphorylation in LDL receptor deficient mice via modulation of plaque inflammation. FASEB J 2021; 35:e21892. [PMID: 34569651 PMCID: PMC9549671 DOI: 10.1096/fj.202100571rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
Atherosclerosis is a chronic inflammatory disorder of the vasculature regulated by cytokines. We have previously shown that extracellular signal-regulated kinase-1/2 (ERK1/2) plays an important role in serine 727 phosphorylation of signal transducer and activator of transcription-1 (STAT1) transactivation domain, which is required for maximal interferon-γ signaling, and the regulation of modified LDL uptake by macrophages in vitro. Unfortunately, the roles of ERK1/2 and STAT1 serine 727 phosphorylation in atherosclerosis are poorly understood and were investigated using ERK1 deficient mice (ERK2 knockout mice die in utero) and STAT1 knock-in mice (serine 727 replaced by alanine; STAT1 S727A). Mouse Atherosclerosis RT² Profiler PCR Array analysis showed that ERK1 deficiency and STAT1 S727A modification produced significant changes in the expression of 18 and 49 genes, respectively, in bone marrow-derived macrophages, with 17 common regulated genes that included those that play key roles in inflammation and cell migration. Indeed, ERK1 deficiency and STAT1 S727A modification attenuated chemokine-driven migration of macrophages with the former also impacting proliferation and the latter phagocytosis. In LDL receptor deficient mice fed a high fat diet, both ERK1 deficiency and STAT1 S727A modification produced significant reduction in plaque lipid content, albeit at different time points. The STAT1 S727A modification additionally caused a significant reduction in plaque content of macrophages and CD3 T cells and diet-induced cardiac hypertrophy index. In addition, there was a significant increase in plasma IL-2 levels and a trend toward increase in plasma IL-5 levels. These studies demonstrate important roles of STAT1 S727 phosphorylation in particular in the regulation of atherosclerosis-associated macrophage processes in vitro together with plaque lipid content and inflammation in vivo, and support further assessment of its therapeutical potential.
Collapse
Affiliation(s)
| | | | - Alex Joseph
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | - Ffion Harris
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | - Yee‐Hung Chan
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | - Reem Alotibi
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | | | - Alaa Alahmadi
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| | - Thomas Decker
- Department of Microbiology and ImmunologyMax F. Perutz LaboratoriesUniversity of ViennaViennaAustria
| | - Timothy R. Hughes
- Systems Immunity Research InstituteSchool of MedicineCardiff UniversityCardiffUK
| | - Dipak P. Ramji
- Cardiff School of BiosciencesCardiff UniversityCardiffUK
| |
Collapse
|
8
|
West EE, Kunz N, Kemper C. Complement and human T cell metabolism: Location, location, location. Immunol Rev 2020; 295:68-81. [PMID: 32166778 PMCID: PMC7261501 DOI: 10.1111/imr.12852] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
The complement system represents one of the evolutionary oldest arms of our immune system and is commonly recognized as a liver-derived and serum-active system critical for providing protection against invading pathogens. Recent unexpected findings, however, have defined novel and rather "uncommon" locations and activities of complement. Specifically, the discovery of an intracellularly active complement system-the complosome-and its key role in the regulation of cell metabolic pathways that underly normal human T cell responses have taught us that there is still much to be discovered about this system. Here, we summarize the current knowledge about the emerging functions of the complosome in T cell metabolism. We further place complosome activities among the non-canonical roles of other intracellular innate danger sensing systems and argue that a "location-centric" view of complement evolution could logically justify its close connection with the regulation of basic cell physiology.
Collapse
Affiliation(s)
- Erin E. West
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Natalia Kunz
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD, USA
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Martin-Ventura JL, Martinez-Lopez D, Roldan-Montero R, Gomez-Guerrero C, Blanco-Colio LM. Role of complement system in pathological remodeling of the vascular wall. Mol Immunol 2019; 114:207-215. [PMID: 31377677 DOI: 10.1016/j.molimm.2019.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022]
Abstract
Cardiovascular diseases (CVD) remain the major cause of morbidity and mortality in Europe. The clinical complications associated to arterial wall rupture involve intimal cap rupture in complicated atherosclerotic plaques and medial rupture in abdominal aortic aneurysm (AAA). The mechanisms underlying pathological vascular remodeling include lipid accumulation, cell proliferation, redox imbalance, proteolysis, leukocyte infiltration, cell death, and eventually, thrombosis. The complement system could participate in vascular remodeling by several mechanisms, from an initial protective response that aims in the clearing of cell debris to a potential deleterious role participating in leukocyte chemotaxis and cell activation and bridging innate and adaptive immunity. We have reviewed the presence and distribution of complement components, as well as the triggers of complement activation in atherosclerotic plaques and AAA, to later assess the functional consequences of complement modulation in experimental models of pathological vascular remodeling and the potential role of complement components as potential circulating biomarkers of CVD. On the whole, complement system is a key mechanism involved in vascular remodelling, which could be useful in the diagnostic/prognostic setting, as well as a potential therapeutic target, of CVD.
Collapse
Affiliation(s)
- Jose Luis Martin-Ventura
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, and CIBERCV, Spain.
| | - Diego Martinez-Lopez
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, and CIBERCV, Spain
| | - Raquel Roldan-Montero
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, and CIBERCV, Spain
| | - Carmen Gomez-Guerrero
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, and CIBERDEM, Madrid, Spain
| | - Luis Miguel Blanco-Colio
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, and CIBERCV, Spain
| |
Collapse
|
10
|
Kolev M, Kemper C. Keeping It All Going-Complement Meets Metabolism. Front Immunol 2017; 8:1. [PMID: 28149297 PMCID: PMC5241319 DOI: 10.3389/fimmu.2017.00001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023] Open
Abstract
The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity—indicating that complement’s function is likely broader than initially anticipated—the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond “classic” immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature—mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement’s emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also discuss how taking a closer look into the evolution of key complement components not only made the functional connection between complement and metabolism rather “predictable” but how it may also give clues for the discovery of additional roles for complement in basic cellular processes.
Collapse
Affiliation(s)
- Martin Kolev
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital , London , UK
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK; Laboratory of Molecular Immunology, The Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
11
|
Myhrstad MCW, Ottestad I, Günther CC, Ryeng E, Holden M, Nilsson A, Brønner KW, Kohler A, Borge GIA, Holven KB, Ulven SM. The PBMC transcriptome profile after intake of oxidized versus high-quality fish oil: an explorative study in healthy subjects. GENES AND NUTRITION 2016; 11:16. [PMID: 27551317 PMCID: PMC4968435 DOI: 10.1186/s12263-016-0530-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Marine long-chain polyunsaturated fatty acids are susceptible to oxidation, generating a range of different oxidation products with suggested negative health effects. The aim of the present study was to utilize sensitive high-throughput transcriptome analyses to investigate potential unfavorable effects of oxidized fish oil (PV: 18 meq/kg; AV: 9) compared to high-quality fish oil (PV: 4 meq/kg; AV: 3). METHODS In a double-blinded randomized controlled study for seven weeks, 35 healthy subjects were assigned to 8 g of either oxidized fish oil or high quality fish oil. The daily dose of EPA+DHA was 1.6 g. Peripheral blood mononuclear cells were isolated at baseline and after 7 weeks and transcriptome analyses were performed with the illuminaHT-12 v4 Expression BeadChip. RESULTS No gene transcripts, biological processes, pathway or network were significantly changed in the oxidized fish oil group compared to the fish oil group. Furthermore, gene sets related to oxidative stress and cardiovascular disease were not differently regulated between the groups. Within group analyses revealed a more prominent effect after intake of high quality fish oil as 11 gene transcripts were significantly (FDR < 0.1) changed from baseline versus three within the oxidized fish oil group. CONCLUSION The suggested concern linking lipid oxidation products to short-term unfavorable health effects may therefore not be evident at a molecular level in this explorative study. TRIAL REGISTRATION ClinicalTrials.gov, NCT01034423.
Collapse
Affiliation(s)
- Mari C W Myhrstad
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. Box 4, St. Olavs plass, 0130 Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway ; Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. Box 4, St. Olavs plass, 0130 Oslo, Norway
| | | | - Einar Ryeng
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | | | - Astrid Nilsson
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, Aas, N-1431 Norway
| | - Kirsti W Brønner
- TINE SA, Centre for Research and Development, P.O. Box 7, Kalbakken, 0902 Oslo, Norway
| | - Achim Kohler
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, Aas, N-1431 Norway ; Department of Mathematical Sciences and Technology (IMT), Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Grethe I A Borge
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, Aas, N-1431 Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway ; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Rikshospitalet, P.O Box 4950, Nydalen, Oslo, Norway
| | - Stine M Ulven
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. Box 4, St. Olavs plass, 0130 Oslo, Norway ; Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317 Oslo, Norway
| |
Collapse
|
12
|
Jaeger PA, Lucin KM, Britschgi M, Vardarajan B, Huang RP, Kirby ED, Abbey R, Boeve BF, Boxer AL, Farrer LA, Finch N, Graff-Radford NR, Head E, Hofree M, Huang R, Johns H, Karydas A, Knopman DS, Loboda A, Masliah E, Narasimhan R, Petersen RC, Podtelezhnikov A, Pradhan S, Rademakers R, Sun CH, Younkin SG, Miller BL, Ideker T, Wyss-Coray T. Network-driven plasma proteomics expose molecular changes in the Alzheimer's brain. Mol Neurodegener 2016; 11:31. [PMID: 27112350 PMCID: PMC4845325 DOI: 10.1186/s13024-016-0095-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/08/2016] [Indexed: 12/17/2022] Open
Abstract
Background Biological pathways that significantly contribute to sporadic Alzheimer’s disease are largely unknown and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset, further complicating analyses. As a consequence, molecular research is often restricted to late-stage post-mortem studies of brain tissue. However, the disease process is expected to trigger numerous cellular signaling pathways and modulate the local and systemic environment, and resulting changes in secreted signaling molecules carry information about otherwise inaccessible pathological processes. Results To access this information we probed relative levels of close to 600 secreted signaling proteins from patients’ blood samples using antibody microarrays and mapped disease-specific molecular networks. Using these networks as seeds we then employed independent genome and transcriptome data sets to corroborate potential pathogenic pathways. Conclusions We identified Growth-Differentiation Factor (GDF) signaling as a novel Alzheimer’s disease-relevant pathway supported by in vivo and in vitro follow-up experiments, demonstrating the existence of a highly informative link between cellular pathology and changes in circulatory signaling proteins. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0095-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp A Jaeger
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. .,Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Germany. .,Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Kurt M Lucin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Present address: Biology Department, Eastern Connecticut State University, Willimantic, CT, USA
| | - Markus Britschgi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Present address: Roche Pharma Research and Early Development, NORD DTA, Roche Innovation, Center Basel, Basel, Switzerland
| | - Badri Vardarajan
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA
| | - Ruo-Pan Huang
- RayBiotech, Guangzhou, China.,RayBiotech, Norcrosse, GA, USA
| | - Elizabeth D Kirby
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachelle Abbey
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Adam L Boxer
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA.,Departments of Neurology, Ophthalmology, Genetics and Genomics, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - NiCole Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Elizabeth Head
- Departments of Pharmacology and Nutritional Sciences and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Matan Hofree
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ruochun Huang
- RayBiotech, Guangzhou, China.,RayBiotech, Norcrosse, GA, USA
| | - Hudson Johns
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna Karydas
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Andrey Loboda
- Genetics and Pharmacogenomics, Merck Research Laboratories, West Point, PA, USA
| | - Eliezer Masliah
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ramya Narasimhan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Suraj Pradhan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Chung-Huan Sun
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Bruce L Miller
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Trey Ideker
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. .,Center for Tissue Regeneration, Repair and Restoration, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
13
|
Vlaicu SI, Tatomir A, Rus V, Mekala AP, Mircea PA, Niculescu F, Rus H. The role of complement activation in atherogenesis: the first 40 years. Immunol Res 2015; 64:1-13. [DOI: 10.1007/s12026-015-8669-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Hovland A, Jonasson L, Garred P, Yndestad A, Aukrust P, Lappegård KT, Espevik T, Mollnes TE. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis. Atherosclerosis 2015; 241:480-94. [PMID: 26086357 DOI: 10.1016/j.atherosclerosis.2015.05.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/08/2015] [Accepted: 05/29/2015] [Indexed: 02/08/2023]
Abstract
Despite recent medical advances, atherosclerosis is a global burden accounting for numerous deaths and hospital admissions. Immune-mediated inflammation is a major component of the atherosclerotic process, but earlier research focus on adaptive immunity has gradually switched towards the role of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans modified LDL-cholesterol activate complement and TLRs leading to downstream inflammation, and histopathological studies indicate that the innate immune system is present in atherosclerotic lesions. Moreover, clinical studies have demonstrated that both complement and TLRs are upregulated in atherosclerotic diseases, although interventional trials have this far been disappointing. However, based on recent research showing an intimate interplay between complement and TLRs we propose a model in which combined inhibition of both complement and TLRs may represent a potent anti-inflammatory therapeutic approach to reduce atherosclerosis.
Collapse
Affiliation(s)
- Anders Hovland
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, 8092 Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway.
| | - Lena Jonasson
- Department of Medical and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631 Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Arne Yndestad
- Research Institute of Internal Medicine and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Knut T Lappegård
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, 8092 Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway
| | - Terje Espevik
- Norwegian University of Science and Technology, Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, 7491 Trondheim, Norway
| | - Tom E Mollnes
- Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway; Norwegian University of Science and Technology, Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, 7491 Trondheim, Norway; Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, 0372 Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9019 Tromsø, Norway
| |
Collapse
|
15
|
Gupta A, Rezvani R, Lapointe M, Poursharifi P, Marceau P, Tiwari S, Tchernof A, Cianflone K. Downregulation of complement C3 and C3aR expression in subcutaneous adipose tissue in obese women. PLoS One 2014; 9:e95478. [PMID: 24743347 PMCID: PMC3990631 DOI: 10.1371/journal.pone.0095478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/27/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The central component of the complement system, C3, is associated with obesity, metabolic syndrome and cardiovascular disease however the underlying reasons are unknown. In the present study we evaluated gene expression of C3, the cleavage product C3a/C3adesArg and its cognate receptor C3aR in subcutaneous and omental adipose tissue in women. METHODS Women (n = 140, 21-69 years, BMI 19.5-79 kg/m2) were evaluated for anthropometric and blood parameters, and adipose tissue gene expression. RESULTS Subjects were separated into groups (n = 34-36) according to obesity: normal/overweight (≤30 kg/m2), obese I (≤45 kg/m2), obese II (≤51 kg/m2), and obese III (≤80 kg/m2). Overall, while omental expression remained unchanged, subcutaneous C3 and C3aR gene expression decreased with increasing adiposity (2-way ANOVA, p<0.01), with a concomitant decrease in SC/OM ratio (p<0.001). In subcutaneous adipose, both C3 and C3aR expression correlated with apoB, and apoA1 and inversely with waist circumference and blood pressure, while C3aR also correlated with glucose (p<0.05-0.0001). While omental C3aR expression did not correlate with any factor, omental C3 correlated with waist circumference, glucose and apoB (all p<0.05). Further, while plasma C3a/C3adesArg increased and adiponectin decreased with increasing BMI, both correlated (C3a negatively and adiponectin positively) with subcutaneous C3 and C3aR expression (p<0.05-0.001) or less). CONCLUSIONS The obesity-induced down-regulation of complement C3 and C3aR which is specific to subcutaneous adipose tissue, coupled to the strong correlations with multiple anthropometric, plasma and adipokine variables support a potential role for complement in immunometabolism.
Collapse
Affiliation(s)
- Abhishek Gupta
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
- Department of Physiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Reza Rezvani
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marc Lapointe
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Pegah Poursharifi
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Picard Marceau
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Sunita Tiwari
- Department of Physiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Andre Tchernof
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| | - Katherine Cianflone
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
16
|
Protective role for properdin in progression of experimental murine atherosclerosis. PLoS One 2014; 9:e92404. [PMID: 24667818 PMCID: PMC3965423 DOI: 10.1371/journal.pone.0092404] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/21/2014] [Indexed: 12/29/2022] Open
Abstract
Genetic, dietary and immune factors contribute to the pathogenesis of atherosclerosis in humans and mice. Complement activation is an integral part of the innate immune defence but also shapes cellular responses and influences directly triglyceride synthesis. Deficiency of Factor B of the alternative pathway (AP) of complement is beneficial in LDLR(-/-) mice fed a high fat diet. The serum glycoprotein properdin is a key positive regulator of the AP but has not been studied in experimental atherosclerosis. Atherosclerosis was assessed after feeding low fat (LFD) or high fat (HFD) Western type diets to newly generated LDLR(-/-) Properdin(KO) (LDLR(-/-)P(KO)) and LDLR-/-PWT mice. Lipids, lymphocytes and monocytes were similar among genotypes, genders and diets. Complement C3, but not C3adesarg, levels were enhanced in LDLR(-/-)P(KO) mice regardless of diet type or gender. Non-esterified fatty acids (NEFA) were decreased in male LDLR(-/-)P(KO) fed a HFD compared with controls. All mice showed significant atherosclerotic burden in aortae and at aortic roots but male LDLR(-/-) mice fed a LFD were affected to the greatest extent by the absence of properdin. The protective effect of properdin expression was overwhelmed in both genders of LDLR(-/-)mice when fed a HFD. We conclude that properdin plays an unexpectedly beneficial role in the development and progression of early atherosclerotic lesions.
Collapse
|
17
|
Liu F, Wu L, Wu G, Wang C, Zhang L, Tomlinson S, Qin X. Targeted mouse complement inhibitor CR2-Crry protects against the development of atherosclerosis in mice. Atherosclerosis 2014; 234:237-43. [PMID: 24685815 DOI: 10.1016/j.atherosclerosis.2014.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/09/2014] [Accepted: 03/03/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory and immune vascular disease, and clinical and experimental evidence has indicated an important role of complement activation products, including the terminal membrane attack complex (MAC), in atherogenesis. Here, we investigated whether complement inhibition represents a potential therapeutic strategy to treat/prevent atherogenesis using CR2-Crry, a recently described complement inhibitor that specifically targets to sites of C3 activation. METHODS AND RESULTS Previous studies demonstrated that loss of CD59 (a membrane inhibitor of MAC formation) accelerated atherogenesis in Apoe deficient (Apoe(-/-)) mice. Here, both CD59 sufficient and CD59 deficient mice in an Apoe deficient background (namely, mCd59 ab(+/+)/Apoe(-/-) and mCd59 ab(-/-)/Apoe(-/-)) were treated with CR2-Crry for 4 and 2 months respectively, while maintained on a high fat diet. Compared to control treatment, CR2-Crry treatment resulted in significantly fewer atherosclerotic lesions in the aorta and aortic root, and inhibited the accelerated atherogenesis seen in mCd59 ab(+/+)/Apoe(-/-) and mCd59 ab(-/-)/Apoe(-/-) mice. CR2-Crry treatment also resulted in significantly reduced C3 and MAC deposition in the vasculature of both mice, as well as a significant reduction in the number of infiltrating macrophages and T cells. CONCLUSION The data demonstrate the therapeutic potential of targeted complement inhibition.
Collapse
Affiliation(s)
- Fengming Liu
- Department of Immunology, Shandong University School of Medicine, #44 Wenhua Xi Road, Jinan, Shandong 250012, PR China; Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Lin Wu
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Department of Hematology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai 200080, PR China
| | - Gongxiong Wu
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Chun Wang
- Department of Hematology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai 200080, PR China
| | - Lining Zhang
- Department of Immunology, Shandong University School of Medicine, #44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph A. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA.
| | - Xuebin Qin
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
18
|
Stokowska A, Olsson S, Holmegaard L, Jood K, Blomstrand C, Jern C, Pekna M. Cardioembolic and small vessel disease stroke show differences in associations between systemic C3 levels and outcome. PLoS One 2013; 8:e72133. [PMID: 23977229 PMCID: PMC3748011 DOI: 10.1371/journal.pone.0072133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/05/2013] [Indexed: 01/24/2023] Open
Abstract
Background Activation of the complement system has been proposed to play a role in the pathophysiology of stroke. As the specific involvement of the complement proteins may be influenced by stroke etiology, we compared plasma C3 and C3a levels in patients with cardioembolic (CE) and small vessel disease (SVD) subtypes of ischemic stroke and control subjects and evaluated their association to outcome at three months and two years. Methodology/Principal Findings Plasma C3 and C3a levels in 79 CE and 79 SVD stroke patients, sampled within 10 days and at three months after stroke, and age- and sex-matched control subjects from The Sahlgrenska Academy Study on Ischemic Stroke were measured by ELISA. Functional outcome was assesed with modified Rankin Scale. In the CE group, plasma C3 levels were elevated only in the acute phase, whereas C3a was elevated at both time points. The follow-up phase plasma C3 levels in the upper third were associated with an increased risk of unfavorable outcome at three months (OR 7.12, CI 1.72–29.46, P = 0.007) as well as after two years (OR 8.25, CI 1.61–42.28, P = 0.011) after stroke. These associations withstand adjustment for age and sex. Conversely, three-month follow-up plasma C3a/C3 level ratios in the middle third were associated with favorable outcome after two years both in the univariate analysis (OR 0.19, CI 0.05–0.82, P = 0.026) and after adjustment for age and sex (OR 0.19, CI 0.04–0.88, P = 0.033). In the SVD group, plasma C3 and C3a levels were elevated at both time points but showed no significant associations with outcome. Conclusions Plasma C3 and C3a levels are elevated after CE and SVD stroke but show associations with outcome only in CE stroke.
Collapse
Affiliation(s)
- Anna Stokowska
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Sandra Olsson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lukas Holmegaard
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Katarina Jood
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Christian Blomstrand
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Christina Jern
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcela Pekna
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Kemper C, Köhl J. Novel roles for complement receptors in T cell regulation and beyond. Mol Immunol 2013; 56:181-90. [PMID: 23796748 DOI: 10.1016/j.molimm.2013.05.223] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/20/2013] [Indexed: 12/16/2022]
Abstract
Complement receptors are expressed on cells of the innate and the adaptive immune system. They play important roles in pathogen and danger sensing as they translate the information gathered by complement fluid phase sensors into cellular responses. Further, they control complement activation on viable and apoptotic host cells, clearance of immune complexes and mediate opsonophagocytosis. More recently, evidence has accumulated that complement receptors form a complex network with other innate receptors systems such as the Toll-like receptors, the Notch signaling system, IgG Fc receptors and C-type lectin receptors contributing to the benefit and burden of innate and adaptive immune responses in autoimmune and allergic diseases as well as in cancer and transplantation. Here, we will discuss recent developments and emerging concepts of complement receptor activation and regulation with a particular focus on the differentiation, maintenance and contraction of effector and regulatory T cells.
Collapse
Affiliation(s)
- Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK.
| | | |
Collapse
|
20
|
Complement and atherosclerosis-united to the point of no return? Clin Biochem 2012; 46:20-5. [PMID: 23010447 DOI: 10.1016/j.clinbiochem.2012.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is widely regarded as a chronic inflammatory disease that develops as a consequence of entrapment of oxidized low-density lipoprotein (LDL) in the arterial intima and its interaction with components of both innate and adaptive immunity. This article reviews the role of the complement system in the context of a different concept on atherogenesis. Arguments are forwarded in support of the contention that enzymatic and not oxidative modification of LDL is the prerequisite for transforming the lipoprotein into a moiety that is recognized by the innate immune system. In a departure from general wisdom, it is proposed that these processes are initially not pathological. To the contrary, they are physiological and meaningful because only thus can the stranded lipoprotein with its insoluble cargo, cholesterol, be removed from tissues. It is contended that histopathologically defined initial foam cell formation develops without inflammation and is reversible. Atherosclerosis as a disease evolves only when the cholesterol removal machinery is overloaded and it then represents a special type of immunopathological process primarily involving immune effectors of the innate rather than the adaptive immune system. This sets it apart from classical immunopathological reactions that are all based on dysfunctional adaptive immunity. But as with all other diseases of known origin, a defined molecular trigger, enzymatically modified-LDL (eLDL), exists whose intimal accumulation is required to initiate the pathologic process. And as with other diseases, the course of atherosclerosis will then be influenced by myriad genetic, endogenous, and environmental factors that by themselves, however, will not cause the disease. This simple concept is completely in line with general clinical experience and with the results of major clinical trials that have been conducted during the past decades.
Collapse
|
21
|
Gauvreau D, Roy C, Tom FQ, Lu H, Miegueu P, Richard D, Song WC, Stover C, Cianflone K. A new effector of lipid metabolism: Complement factor properdin. Mol Immunol 2012; 51:73-81. [DOI: 10.1016/j.molimm.2012.02.110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/01/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
|
22
|
Frauenknecht V, Schroeder V. [Complement--a phylogenetically old system as a new player in the development of atherosclerosis]. Hamostaseologie 2012; 32:276-85. [PMID: 22392002 DOI: 10.5482/ha-1191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/28/2012] [Indexed: 01/07/2023] Open
Abstract
Atherosclerotic diseases such as coronary artery disease and ischaemic stroke are caused by chronic inflammation in arterial vessel walls. The complement system is part of the innate immune system. It is involved in many processes contributing to onset and development of atherosclerotic plaques up to the final stage of acute thrombotic events. This is due to its prominent role in inflammatory processes. In addition, there is increasing evidence that interactions between complement and coagulation provide a link between inflammation and thrombosis. On the other hand, the complement system also has an atheroprotective function through the clearance of apoptotic material. The knowledge of these complex mechanisms will become increasingly important, also for clinicians, since it may lead to novel therapeutic and diagnostic options. Therapies targeting the complement system have the potential to reduce tissue damage caused by acute ischaemic events. Whether early anti-inflammatory and anti-complement therapy may be able to prevent atherosclerosis, remains a hot topic for research.
Collapse
Affiliation(s)
- V Frauenknecht
- Universitätsklinik für Hämatologie, Hämostase Forschungslabor, Universitätsspital und Universität Bern, Schweiz
| | | |
Collapse
|
23
|
There is an increased risk of atherosclerosis in hereditary angioedema. Int Immunopharmacol 2012; 12:212-6. [DOI: 10.1016/j.intimp.2011.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/20/2022]
|
24
|
Francescut L, Steiner T, Byrne S, Cianflone K, Francis S, Stover C. The role of complement in the development and manifestation of murine atherogenic inflammation: novel avenues. J Innate Immun 2011; 4:260-72. [PMID: 22116497 DOI: 10.1159/000332435] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/31/2011] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease which manifests in the arterial vascular tree. It is a major cause of cardiovascular morbidity and contributes significantly to mortality in the developed world. Triggers for this inflammatory process are elevated levels of cholesterol, bacterial infection and obesity. The immune response in atherosclerosis is essentially pro-atherogenic, leading to lipid accumulation and cellular changes within the arterial wall. Small-animal models of atherosclerosis are used to study the relevance of candidate factors (cells, genes, diets) in the development and progression of lesions. From a multidisciplinary viewpoint, there are challenges and limitations to this approach. Activation of complement determines or modifies the outcome of acute and chronic inflammation. This review dissects the role of complement in the early development as well as the progressive manifestation of murine atherosclerosis and the advances in knowledge provided by the use of specific mouse models. It gives a critical overview of existing models, analyses seemingly conflicting results obtained with complement-deficient mouse models, highlights the importance of interrelationships between pro-coagulpant activity, adipose tissue, macrophages and complement, and uncovers exciting avenues of topical research.
Collapse
Affiliation(s)
- Lorenza Francescut
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | | | | | | | | |
Collapse
|