1
|
Ju K, Liu X, Wang Q, Liu X, Li D, Tan B. Integration of Machine Learning Algorithms and Single-Cell Sequencing Analysis Reveals the Efferocytosis-Related Molecular Subtype and Prognostic Scoring Index in Colon Adenocarcinoma. J Gastroenterol Hepatol 2025. [PMID: 40296254 DOI: 10.1111/jgh.16985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality, with limited therapies for advanced stages. Efferocytosis, the clearance of apoptotic cells, modulates tumor immunity and progression. We investigated efferocytosis-related genes (ERRGs) in COAD through multiomics integration. METHODS We analyzed multiomics data from public databases to identify differentially expressed ERRGs and their molecular subtypes. An ERRG score index was developed using integrated machine learning algorithms to evaluate its predictive capacity. Single-cell sequencing and in vitro functional assays were performed to validate key findings. RESULTS Among 162 ERRGs, 22 were dysregulated in COAD. Three molecular subtypes exhibited distinct prognoses, immune profiles, and therapy responses. The ERRG score system accurately predicted clinical outcomes, with low scores correlating with improved survival and sensitivity to certain drugs. Single-cell analysis highlighted TIMP1 as a key regulator, confirmed by its knockdown suppressing tumor proliferation and migration in vitro. CONCLUSION ERRGs demonstrate prognostic and therapeutic relevance in COAD, providing insights into molecular subtyping and immunotherapy prediction. TIMP1 emerges as a potential therapeutic target, warranting further clinical validation.
Collapse
Affiliation(s)
- Kun Ju
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Wang
- Medical Records Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xichun Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dalue Li
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Tan
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Setti A, Pasha A, Makani VKK, Bhadra MP, Pawar SC. Type IV collagen derived non-collagenous domain α6 (IV) NC1 and its derivative fragments inhibit endothelial cell proliferation and attenuates in-vivo chorioallantoic membrane angiogenesis. Cytotechnology 2025; 77:47. [PMID: 39867830 PMCID: PMC11759748 DOI: 10.1007/s10616-025-00709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect. In the present study, full length α6(IV)NC1(Hexastatin) and its three subfragments α6S1(IV)NC1, α6S2(IV)NC1, and α6S3(IV)NC1 were validated for their pro-apoptotic and angio-inhibitory property. In order to construct the coding sequence of hexastatin and its three derivative partial peptide fragments were constructed with our proposed method, where the corresponding exons were amplified from the genomic DNA and then assembled together. Coding sequences were cloned and expressed using pLATE31 vector and recombinant proteins were purified with C-terminal His tag. The endogenous NC protein fragments of collagen IV were evaluated in vitro for their role in cytotoxicity on human umbilical vein endothelial cells (HUVECs). The results showed that the NC1 domain and its fragments inhibited the HUVECs cell proliferation, migration, invasion and induced apoptosis. The neovascularization inhibition was studied in in-vitro, via tube formation assay and in-vivo via the CAM Assay. The results showed that blood vessels and inter capillary network were inhibited in endothelial cells and also, in chick embryo treated with recombinant α6(IV)NC1 and its derivatives, except for α6S1(IV)NC1 and these endogenous protein inhibitors act as bio-therapeutics in inhibition of angiogenesis.
Collapse
Affiliation(s)
- Aravind Setti
- Department of Genetics, Osmania University, Hyderabad, Telangana State India
| | - Akbar Pasha
- Department of Genetics, Osmania University, Hyderabad, Telangana State India
| | | | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State India
| | - Smita C. Pawar
- Department of Genetics, Osmania University, Hyderabad, Telangana State India
| |
Collapse
|
3
|
Peeney D, Kumar S, Singh TP, Liu Y, Jensen SM, Chowdhury A, Coates-Park S, Rich J, Gurung S, Fan Y, Meerzaman D, Stetler-Stevenson WG. Timp2 loss-of-function mutation and TIMP2 treatment in a murine model of NSCLC: Modulation of immunosuppression and oncogenic signaling. Transl Oncol 2025; 53:102309. [PMID: 39904284 PMCID: PMC11846589 DOI: 10.1016/j.tranon.2025.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Mounting evidence suggests that the tissue inhibitor of metalloproteinases-2 (TIMP2) can reduce tumor burden and metastasis. However, the demonstration of such anti-tumor activity and associated mechanisms using in vivo tumor models is lacking. The effects of a Timp2 functional mutation and administration of recombinant TIMP2 were examined in both orthotopic and heterotopic murine models of lung cancer using C57Bl/6 syngeneic Lewis Lung 2-luciferase 2 cells (LL2-Luc2) cells. Mice harboring a functional mutation of TIMP2 (mT2) display markedly increased primary lung tumor growth, increased mortality, enriched vasculature, and enhanced infiltration of pro-tumorigenic, immunosuppressive myeloid cells. Treatment with recombinant TIMP2 reduced primary tumor growth in both mutant and wild-type (wt) mice. Comparison of transcriptional profiles of lung tissues from tumor-free, wt versus mT2 mice reveals only minor changes. However, lung tumor-bearing mice of both genotypes demonstrate significant genotype-dependent changes in gene expression following treatment with TIMP. In tumor-bearing wt mice, TIMP2 treatment reduced the expression of upstream oncogenic mediators, whereas treatment of mT2 mice resulted in an immunomodulatory phenotype. A heterotopic subcutaneous model generating metastatic pulmonary tumors demonstrated that daily administration of recombinant TIMP2 significantly reduces the expression of heat shock proteins, suggesting a reduction of cell-stress responses. In summary, we describe how TIMP2 exerts novel, anti-tumor effects in a murine model of lung cancer and that rTIMP2 treatment supports a normalizing effect on the tumor microenvironment. Our findings show that TIMP2 treatment demonstrates significant potential as an adjuvant in the treatment of NSCLC.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA.
| | - Sarvesh Kumar
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute for Allergy, and Infectious Disease (NIAID), Bethesda, MD 20892, USA
| | - Yueqin Liu
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Sandra M Jensen
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Ananda Chowdhury
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Joshua Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Yu Fan
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Rockville, MD 20850, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Rockville, MD 20850, USA
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
5
|
Kaur G, Roy B. Decoding Tumor Angiogenesis for Therapeutic Advancements: Mechanistic Insights. Biomedicines 2024; 12:827. [PMID: 38672182 PMCID: PMC11048662 DOI: 10.3390/biomedicines12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels within the tumor microenvironment, is considered a hallmark of cancer progression and represents a crucial target for therapeutic intervention. The tumor microenvironment is characterized by a complex interplay between proangiogenic and antiangiogenic factors, regulating the vascularization necessary for tumor growth and metastasis. The study of angiogenesis involves a spectrum of techniques, spanning from biomarker assessment to advanced imaging modalities. This comprehensive review aims to provide insights into the molecular intricacies, regulatory dynamics, and clinical implications of tumor angiogenesis. By delving into these aspects, we gain a deeper understanding of the processes driving vascularization in tumors, paving the way for the development of novel and effective antiangiogenic therapies in the fight against cancer.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
6
|
Rajakumar T, Pugalendhi P. Allyl isothiocyanate regulates oxidative stress, inflammation, cell proliferation, cell cycle arrest, apoptosis, angiogenesis, invasion and metastasis via interaction with multiple cell signaling pathways. Histochem Cell Biol 2024; 161:211-221. [PMID: 38019291 DOI: 10.1007/s00418-023-02255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
Cancer growth is a molecular mechanism initiated by genetic and epigenetic modifications that are involved in cell proliferation, differentiation, apoptosis, and senescence pathways. Chemoprevention is an important strategy for cancer treatment that leads to blocking, reversing, or impeding the multistep process of tumorigenesis, including the blockage of its vital morphogenetic milestones viz. normal, preneoplasia, neoplasia, and metastasis. Naturally occurring phytochemicals are becoming ever more popular compared to synthetic drugs for many reasons, including safety, bioavailability, efficacy, and easy availability. Allyl isothiocyanate (AITC) is a natural compound present in all plants of the Cruciferae family, such as Brussels sprouts, cauliflower, mustard, cabbage, kale, horseradish, and wasabi. In vitro and in vivo studies carried out over the decades have revealed that AITC inhibits tumorigenesis without any toxicity and undesirable side effects. The bioavailability of AITC is exceedingly high, as it was reported that nearly 90% of orally administered AITC is absorbed. AITC exhibits multiple pharmacological properties among which its anticancer activity is the most significant for cancer treatment. Its anticancer activity is exerted via selective modulation of multiple cell signaling pathways related to oxidative stress, inflammation, cell proliferation, cell cycle arrest, apoptosis, angiogenesis, invasion, and metastasis. This review highlights the current knowledge on molecular targets that are involved in the anticancer effect of AITC associated with (i) inhibition of carcinogenic activation and induction of antioxidants, (ii) suppression of pro-inflammatory and cell proliferative signals, (iii) induction of cell cycle arrest and apoptosis, and (iv) inhibition of angiogenic and invasive signals related to metastasis.
Collapse
Affiliation(s)
- Thangarasu Rajakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, 608 002, Tamilnadu, India
| | - Pachaiappan Pugalendhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, 608 002, Tamilnadu, India.
| |
Collapse
|
7
|
Peeney D, Kumar S, Singh TP, Liu Y, Jensen SM, Chowdhury A, Coates-Park S, Rich J, Gurung S, Fan Y, Meerzaman D, Stetler-Stevenson WG. Timp2 loss-of-function mutation and TIMP2 treatment in murine model of NSCLC: modulation of immunosuppression and oncogenic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573636. [PMID: 38234759 PMCID: PMC10793420 DOI: 10.1101/2023.12.29.573636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Mounting evidence suggests that the tissue inhibitor of metalloproteinases-2 (TIMP2) can reduce tumor burden and metastasis. However, the demonstration of such anti-tumor activity and associated mechanisms using in vivo tumor models is lacking. The effects of a Timp2 functional mutation and administration of recombinant TIMP2 were examined in both orthotopic and heterotopic murine models of lung cancer using C57Bl/6 syngeneic Lewis Lung 2-luciferase 2 cells (LL2-luc2) cells. Mice harboring a functional mutation of TIMP2 (mT2) display markedly increased primary lung tumor growth, increased mortality, enriched vasculature, and enhanced infiltration of pro-tumorigenic, immunosuppressive myeloid cells. Treatment with recombinant TIMP2 reduced primary tumor growth in both mutant and wild-type (wt) mice. Comparison of transcriptional profiles of lung tissues from tumor-free, wt versus mT2 mice reveals only minor changes. However, lung tumor-bearing mice of both genotypes demonstrate significant genotype-dependent changes in gene expression following treatment with TIMP. In tumor-bearing wt mice, TIMP2 treatment reduced the expression of upstream oncogenic mediators, whereas treatment of mT2 mice resulted in an immunomodulatory phenotype. A heterotopic subcutaneous model generating metastatic pulmonary tumors demonstrated that daily administration of recombinant TIMP2 significantly downregulates the expression of heat shock proteins, suggesting a reduction of cell-stress responses. In summary, we describe how TIMP2 exerts novel, anti-tumor effects in a murine model of lung cancer and that rTIMP2 treatment supports a normalizing effect on the tumor microenvironment. Our findings show that TIMP2 treatment demonstrates significant potential as an adjuvant in the treatment of NSCLC.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sarvesh Kumar
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute for Allergy, and Infectious Disease (NIAID); Bethesda, MD 20892
| | - Yueqin Liu
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sandra M. Jensen
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Ananda Chowdhury
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Joshua Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Yu Fan
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute; Rockville, MD 20850
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute; Rockville, MD 20850
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| |
Collapse
|
8
|
Wang YC, He JL, Tsai CL, Tzeng HE, Chang WS, Pan SH, Chen LH, Su CH, Lin JC, Hung CC, Bau DT, Tsai CW. The Contribution of Tissue Inhibitor of Metalloproteinase-2 Genotypes to Breast Cancer Risk in Taiwan. Life (Basel) 2023; 14:9. [PMID: 38276258 PMCID: PMC10817502 DOI: 10.3390/life14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an endogenous inhibitor of matrix metalloproteinase-2 and is highly expressed in breast cancer (BC) cases at diagnosis. However, the genetic investigations for the association of TIMP-2 genotypes with BC risk are rather limited. In this study, contribution of TIMP-2 rs8179090, rs4789936, rs2009196 and rs7342880 genotypes to BC risk was examined among Taiwan's BC population. TIMP-2 genotypic profiles were revealed among 1232 BC cases and 1232 controls about their contribution to BC using a PCR-based RFLP methodology. The TIMP-2 rs8179090 homozygous variant CC genotype was significantly higher in BC cases than controls (odds ratio (OR) = 2.76, 95% confidence interval (95%CI) = 1.78-4.28, p = 0.0001). Allelic analysis showed that C allele carriers have increased risk for BC (OR = 1.39, 95%CI = 1.20-1.62, p = 0.0001). Genotypic together with allelic analysis showed that TIMP-2 rs4789936, rs2009196 or rs7342880 were not associated with BC risk. Stratification analysis showed that TIMP-2 rs8179090 genotypes were significantly associated with BC risk among younger (≤55) aged women, not among those of an elder (>55) age. Last, rs8179090 genotypes were also associated with triple negative BC. This study sheds light into the etiology of BC in Taiwanese women. Rs8179090 may be incorporated into polygenic risk scores and risk prediction models, which could aid in stratifying individuals for targeted breast cancer screening.
Collapse
Affiliation(s)
- Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Jie-Long He
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung 413305, Taiwan
| | - Chung-Lin Tsai
- Division of Cardiac and Vascular Surgery, Cardiovascular Center, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Huey-En Tzeng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, and Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Shih-Han Pan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Li-Hsiou Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chen-Hsien Su
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Jiunn-Cherng Lin
- Division of Cardiology, Department of Internal Medicine, Taichung Veterans General Hospital, Chiayi Branch, Chiayi 60090, Taiwan
| | - Chih-Chiang Hung
- Division of Breast Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
9
|
Tang J, Kang Y, Zhou Y, Shang N, Li X, Wang H, Lan J, Wang S, Wu L, Peng Y. TIMP2 ameliorates blood-brain barrier disruption in traumatic brain injury by inhibiting Src-dependent VE-cadherin internalization. J Clin Invest 2023; 134:e164199. [PMID: 38015626 PMCID: PMC10849766 DOI: 10.1172/jci164199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
Blood-brain barrier (BBB) disruption is a serious pathological consequence of traumatic brain injury (TBI), for which there are limited therapeutic strategies. Tissue inhibitor of metalloproteinase-2 (TIMP2), a molecule with dual functions of inhibiting MMP activity and displaying cytokine-like activity through receptor binding, has been reported to inhibit VEGF-induced vascular hyperpermeability. Here, we investigate the ability of TIMP2 to ameliorate BBB disruption in TBI and the underlying molecular mechanisms. Both TIMP2 and AlaTIMP2, a TIMP2 mutant without MMP-inhibiting activity, attenuated neurological deficits and BBB leakage in TBI mice; they also inhibited junctional protein degradation and translocation to reduce paracellular permeability in human brain microvascular endothelial cells (ECs) exposed to hypoxic plus inflammatory insult. Mechanistic studies revealed that TIMP2 interacted with α3β1 integrin on ECs, inhibiting Src activation-dependent VE-cadherin phosphorylation, VE-cadherin/catenin complex destabilization, and subsequent VE-cadherin internalization. Notably, localization of VE-cadherin on the membrane was critical for TIMP2-mediated EC barrier integrity. Furthermore, TIMP2-mediated increased membrane localization of VE-cadherin enhanced the level of active Rac1, thereby inhibiting stress fiber formation. All together, our studies have identified an MMP-independent mechanism by which TIMP2 regulates EC barrier integrity after TBI. TIMP2 may be a therapeutic agent for TBI and other neurological disorders involving BBB breakdown.
Collapse
|
10
|
Stetler-Stevenson WG. The Continuing Saga of Tissue Inhibitor of Metalloproteinase 2: Emerging Roles in Tissue Homeostasis and Cancer Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1336-1352. [PMID: 37572947 PMCID: PMC10548276 DOI: 10.1016/j.ajpath.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as cytokine-like erythroid growth factors. Subsequently, TIMPs were characterized as endogenous inhibitors of matrixin proteinases. These proteinases are the primary mediators of extracellular matrix turnover in pathologic conditions, such as cancer invasion and metastasis. Thus, TIMPs were immediately recognized as important regulators of tissue homeostasis. However, TIMPs also demonstrate unique biological activities that are independent of metalloproteinase regulation. Although often overlooked, these non-protease-mediated TIMP functions demonstrate a variety of direct cellular effects of potential therapeutic value. TIMP2 is the most abundantly expressed TIMP family member, and ongoing studies show that its tumor suppressor activity extends beyond protease inhibition to include direct modulation of tumor, endothelial, and fibroblast cellular responses in the tumor microenvironment. Recent data suggest that TIMP2 can suppress both primary tumor growth and metastatic niche formation. TIMP2 directly interacts with cellular receptors and matrisome elements to modulate cell signaling pathways that result in reduced proliferation and migration of neoplastic, endothelial, and fibroblast cell populations. These effects result in enhanced cell adhesion and focal contact formation while reducing tumor and endothelial proliferation, migration, and epithelial-to-mesenchymal transitions. These findings are consistent with TIMP2 homeostatic functions beyond simple inhibition of metalloprotease activity. This review examines the ongoing evolution of TIMP2 function, future perspectives in TIMP research, and the therapeutic potential of TIMP2.
Collapse
Affiliation(s)
- William G Stetler-Stevenson
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
11
|
Rajakumar T, Pugalendhi P. Allyl isothiocyanate inhibits invasion and angiogenesis in breast cancer via EGFR-mediated JAK-1/STAT-3 signaling pathway. Amino Acids 2023; 55:981-992. [PMID: 37310534 DOI: 10.1007/s00726-023-03285-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Angiogenesis, invasion, and metastasis are the main events of cancer cells. JAK-1/STAT-3 is a key intracellular signaling transduction pathway, which controls the growth, differentiation, apoptosis, invasion, and angiogenesis of various cancer cells. The present study explored the impact of allyl isothiocyanate (AITC) on the JAK-1/STAT-3 pathway in DMBA-induced rat mammary tumorigenesis. The mammary tumor was initiated through a single dose of 25 mg DMBA/rat by a subcutaneous injection administered near the mammary gland. We observed decreased body weight and increased the total number of tumors, tumor incidence, tumor volume, well-developed tumor, and histopathological abnormalities in DMBA-induced rats that were modulated after being treated with AITC. Staining of mammary tissues showed a high accumulation of collagen in DMBA-induced rats and it was normalized by the AITC treatment. Moreover, DMBA-induced mammary tissues showed up-regulated expressions of EGFR, pJAK-1, pSTAT-3, nuclear fraction of STAT-3, VEGF, VEGFR2, HIF-1α, MMP-2, and MMP-9 and the down-regulated expressions of cytosolic fraction of STAT-3 and TIMP-2. Oral administration of AITC on DMBA-induced rats inhibits angiogenesis and invasion by modifying these angiogenic and invasive markers. The finding of the present study was further confirmed by molecular docking analysis that shows a strong binding interaction between AITC with STAT-3 and cocrystal structure of STAT-3 glide energy of -18.123 and -72.246 (kcal/mole), respectively. Overall, the results suggested that AITC inhibits activation of the JAK-1/STAT-3 pathway, which subsequently prevents angiogenesis and invasion. It was recommended that AITC might develop a beneficial effect against breast cancer.
Collapse
Affiliation(s)
- Thangarasu Rajakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - Pachaiappan Pugalendhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India.
| |
Collapse
|
12
|
Vázquez-Lorente H, Dundjerović DM, Tatić SB, Rodríguez-Menéndez S, González-Iglesias H, Gomes CM, Paunović IR, Dragutinović VV. Relationship between Trace Elements and Matrix Metalloproteinases 2 and 9 and their Tissue Inhibitors in Medullary Thyroid Carcinoma. Biol Trace Elem Res 2022; 201:3225-3232. [PMID: 36156766 PMCID: PMC10160158 DOI: 10.1007/s12011-022-03431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
Medullary Thyroid Carcinoma (MTC) constitutes around 5% of all thyroid cancers. Trace elements assessment has emerged as a useful strategy in the diagnostics of MTC combined with Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Matrix Metalloproteinases (TIMPs) analysis. The aim of this study was to compare the presence and content of trace elements (i.e., Copper (Cu), Zinc (Zn), Iron (Fe), and Manganese (Mn)) in MTC with respect to control samples and their potential relationship with markers of MTC in tissues. The study included 26 patients who had undergone thyroidectomy, due to the diagnosis of MTC and 17 patients as control. We combined tumour pathology and staging, immunohistochemical analysis of calcitonin, MMPs, and TIMPs, with analytical biochemistry using Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) to determine the levels of trace elements. No differences by MTC type for MMPs and their TIPMs, although strong TIMP-1 and TIMP-2 immunohistochemical expression of MTC were unveiled. Additionally, Zn, Fe, and Mn tended to be decreased, and Cu to be increased in samples presenting MTC with respect to controls. Moreover, Zn was the unique trace element which seemed to be correlated with MMPs and TIMPs. Trace elements such as Zn, Fe, and Mn are decreased in tissues affected by MTC. In addition, Zn may be the trace element which saves more relationship with the proportion and intensity of MMPs, being considered altogether useful biomarkers of MTC. We therefore suggest the analysis of novel and traditional markers of MTC as a novel approach in this pathology.
Collapse
Affiliation(s)
| | - Duško M Dundjerović
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Svetislav B Tatić
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sara Rodríguez-Menéndez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), Oviedo, Spain
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Cláudio M Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química E Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ivan R Paunović
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Center for Endocrine Surgery, Clinical Centre of Serbia, Belgrade, Serbia
| | - Vesna V Dragutinović
- Institute of Chemistry in Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Cayetano-Salazar L, Nava-Tapia DA, Astudillo-Justo KD, Arizmendi-Izazaga A, Sotelo-Leyva C, Herrera-Martinez M, Villegas-Comonfort S, Navarro-Tito N. Flavonoids as regulators of TIMPs expression in cancer: Consequences, opportunities, and challenges. Life Sci 2022; 308:120932. [PMID: 36067841 DOI: 10.1016/j.lfs.2022.120932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Cancer is one of the leading causes of death in patients worldwide, where invasion and metastasis are directly responsible for this statement. Although cancer therapy has progressed in recent years, current therapeutic approaches are ineffective due to toxicity and chemoresistance. Therefore, it is essential to evaluate other treatment options, and natural products are a promising alternative as they show antitumor properties in different study models. This review describes the regulation of tissue inhibitors of metalloproteinases (TIMPs) expression and the role of flavonoids as molecules with the antitumor activity that targets TIMPs therapeutically. These inhibitors regulate tissue extracellular matrix (ECM) turnover; they inhibit matrix metalloproteinases (MMPs), cell migration, invasion, and angiogenesis and induce apoptosis in tumor cells. Data obtained in cell lines and in vivo models suggest that flavonoids are chemopreventive and cytotoxic against various types of cancer through several mechanisms. Flavonoids also regulate crucial signaling pathways such as focal adhesion kinase (FAK), phosphatidylinositol-3-kinase (PI3K)-Akt, signal transducer and activator of transcription 3 (STAT3), nuclear factor κB (NFκB), and mitogen-activated protein kinase (MAPK) involved in cancer cell migration, invasion, and metastasis. All these data reposition flavonoids as excellent candidates for use in cancer therapy.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Dania A Nava-Tapia
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Kevin D Astudillo-Justo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Adán Arizmendi-Izazaga
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - César Sotelo-Leyva
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Mayra Herrera-Martinez
- Instituto de Farmacobiología, Universidad de la Cañada, Teotitlán de Flores Magón, OAX 68540, Mexico
| | - Sócrates Villegas-Comonfort
- División de Ciencias Naturales e Ingeniería, Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, CDMX 05348, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
14
|
Sager RA, Khan F, Toneatto L, Votra SD, Backe SJ, Woodford MR, Mollapour M, Bourboulia D. Targeting extracellular Hsp90: A unique frontier against cancer. Front Mol Biosci 2022; 9:982593. [PMID: 36060252 PMCID: PMC9428293 DOI: 10.3389/fmolb.2022.982593] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular chaperone Heat Shock Protein-90 (Hsp90) is known to interact with over 300 client proteins as well as regulatory factors (eg. nucleotide and proteins) that facilitate execution of its role as a chaperone and, ultimately, client protein activation. Hsp90 associates transiently with these molecular modulators during an eventful chaperone cycle, resulting in acquisition of flexible structural conformations, perfectly customized to the needs of each one of its client proteins. Due to the plethora and diverse nature of proteins it supports, the Hsp90 chaperone machinery is critical for normal cellular function particularly in response to stress. In diseases such as cancer, the Hsp90 chaperone machinery is hijacked for processes which encompass many of the hallmarks of cancer, including cell growth, survival, immune response evasion, migration, invasion, and angiogenesis. Elevated levels of extracellular Hsp90 (eHsp90) enhance tumorigenesis and the potential for metastasis. eHsp90 has been considered one of the new targets in the development of anti-cancer drugs as there are various stages of cancer progression where eHsp90 function could be targeted. Our limited understanding of the regulation of the eHsp90 chaperone machinery is a major drawback for designing successful Hsp90-targeted therapies, and more research is still warranted.
Collapse
Affiliation(s)
- Rebecca A. Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Farzana Khan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Lorenzo Toneatto
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - SarahBeth D. Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Dimitra Bourboulia,
| |
Collapse
|
15
|
Kannan S, Kannan Murugan A, Balasubramaniam S, Kannan Munirajan A, Alzahrani AS. Gliomas: Genetic alterations, mechanisms of metastasis, recurrence, drug resistance, and recent trends in molecular therapeutic options. Biochem Pharmacol 2022; 201:115090. [PMID: 35577014 DOI: 10.1016/j.bcp.2022.115090] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022]
Abstract
Glioma is the most common intracranial tumor with poor treatment outcomes and has high morbidity and mortality. Various studies on genomic analyses of glioma found a variety of deregulated genes with somatic mutations including TERT, TP53, IDH1, ATRX, TTN, etc. The genetic alterations in the key genes have been demonstrated to play a crucial role in gliomagenesis by modulating important signaling pathways that alter the fundamental intracellular functions such as DNA damage and repair, cell proliferation, metabolism, growth, wound healing, motility, etc. The SPRK1, MMP2, MMP9, AKT, mTOR, etc., genes, and noncoding RNAs (miRNAs, lncRNAs, circRNAs, etc) were shown mostly to be implicated in the metastases of glioma. Despite advances in the current treatment strategies, a low-grade glioma is a uniformly fatal disease with overall median survival of ∼5-7 years while the patients bearing high-grade tumors display poorer median survival of ∼9-10 months mainly due to aggressive metastasis and therapeutic resistance. This review discusses the spectrum of deregulated genes, molecular and cellular mechanisms of metastasis, recurrence, and its management, the plausible causes for the development of therapy resistance, current treatment options, and the recent trends in malignant gliomas. Understanding the pathogenic mechanisms and advances in molecular genetics would aid in the novel diagnosis, prognosis, and translation of pathogenesis-based treatment opportunities which could pave the way for precision medicine in glioma.
Collapse
Affiliation(s)
- Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR1 2HE UK
| | - Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh - 11211 Saudi Arabia.
| | | | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113 India
| | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh - 11211 Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh - 11211 Saudi Arabia
| |
Collapse
|
16
|
Krstic J, Deutsch A, Fuchs J, Gauster M, Gorsek Sparovec T, Hiden U, Krappinger JC, Moser G, Pansy K, Szmyra M, Gold D, Feichtinger J, Huppertz B. (Dis)similarities between the Decidual and Tumor Microenvironment. Biomedicines 2022; 10:1065. [PMID: 35625802 PMCID: PMC9138511 DOI: 10.3390/biomedicines10051065] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by an abetting microenvironment, which influences invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of the abetting microenvironments.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Alexander Deutsch
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Tina Gorsek Sparovec
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julian Christopher Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Daniela Gold
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| |
Collapse
|
17
|
TIMP1 and TIMP2 Downregulate TGFβ Induced Decidual-like Phenotype in Natural Killer Cells. Cancers (Basel) 2021; 13:cancers13194955. [PMID: 34638439 PMCID: PMC8507839 DOI: 10.3390/cancers13194955] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer patients are characterized by NK cells with altered surface markers, such as CD56 brightness, CD9, CD49a (pro-angiogenic) and PD-1, and TIM-3 (exhaustion), that favor immune escape. Transforming growth factor-beta (TGFβ) is a major tumor-derived cytokine that favors cancer growth and supports pro-angiogenic activities in NK cells by inducing pro-angiogenic molecules. TIMP-1 and TIMP-2 play a crucial role in extracellular matrix (ECM) regulation, wound healing, pregnancy and cancer, and there is increasing evidence that they are immune-modulatory. We found that recombinant TIMP-1 and -2 can partially contrast the induction of pro-tumor/pro-angiogenic decidual-like polarization of NK cells by TGFβ. Abstract Natural Killer (NK) cells have been found to be anergic, exhausted and pro-angiogenic in cancers. NK cell from healthy donors, exposed to TGFβ, acquire the CD56brightCD9+CD49a+ decidual-like-phenotype, together with decreased levels of NKG2D activation marker, increased levels of TIM-3 exhaustion marker, similar to cancer-associated NK cells. Tissue inhibitors of metalloproteases (TIMPs) exert dual roles in cancer. The role of TIMPs in modulating immune cells is a very novel concept, and the present is the first report studying their ability to contrast TGFβ action on NK cells. Here, we investigated the effects of TIMP1 and TIMP2 recombinant proteins in hindering decidual-like markers in NK cells, generated by polarizing cytolytic NK cells with TGFβ. The effects of TIMP1 or TIMP2 on NK cell surface antigens were determined by multicolor flow cytometry. We found that TIMP1 and TIMP2 were effective in interfering with TGFβ induced NK cell polarization towards a decidual-like-phenotype. TIMP1 and TIMP2 counteracted the effect of TGFβ in increasing the percentage of CD56bright, CD16−, CD9+ and CD49a+, and restoring normal levels for TIMP 1 and 2 also inhibited decrease levels of the activation marker NKG2D induced by TGFβ and decreased the TGFβ upregulated exhaustion marker TIM-3. NK cell degranulation capabilities against K562 cells were also decreased by TGFβ and not by TIMP1 or TIMP2. TIMP1 treatment could partially restore degranulation marker CD107a expression. Treatment with recombinant TIMP-1 or TIMP-2 showed a trend, although not statistically significant, to decrease CD49a+ and TIM-3+ expression and increase NKG2D in peripheral blood NK cells exposed to conditioned media from colon cancer cell lines. Our results suggest a potential role of TIMPs in controlling the tumor-associated cytokine TGFβ-induced NK cell polarization. Given the heterogeneity of released factors within the TME, it is clear that TGFβ stimulation represents a model to prove TIMP’s new properties, but it cannot be envisaged as a soloist NK cell polarizing agent. Therefore, further studies from the scientific community will help defining TIMPs immunomodulatory activities of NK cells in cancer, and their possible future diagnostic–therapeutic roles.
Collapse
|
18
|
Escalona RM, Bilandzic M, Western P, Kadife E, Kannourakis G, Findlay JK, Ahmed N. TIMP-2 regulates proliferation, invasion and STAT3-mediated cancer stem cell-dependent chemoresistance in ovarian cancer cells. BMC Cancer 2020; 20:960. [PMID: 33023532 PMCID: PMC7542139 DOI: 10.1186/s12885-020-07274-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The metzincin family of metalloproteinases and the tissue inhibitors of metalloproteinases (TIMPs) are essential proteins required for biological processes during cancer progression. This study aimed to determine the role of TIMP-2 in ovarian cancer progression and chemoresistance by reducing TIMP-2 expression in vitro in Fallopian tube secretory epithelial (FT282) and ovarian cancer (JHOS2 and OVCAR4) cell lines. METHODS FT282, JHOS2 and OVCAR4 cells were transiently transfected with either single or pooled TIMP-2 siRNAs. The expression of different genes after TIMP-2 knock down (T2-KD) or in response to chemotherapy was determined at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence. Sensitivity of the cell lines in response to chemotherapy after TIMP-2 knock down was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Ethynyl-2'-deoxyuridine (EdU) assays. Cell invasion in response to TIMP-2 knockdown was determined by xCELLigence. RESULTS Sixty to 90 % knock down of TIMP-2 expression was confirmed in FT282, OVCAR4 and JHOS2 cell lines at the mRNA and protein levels. TIMP-2 knock down did not change the mRNA expression of TIMP-1 or TIMP-3. However, a significant downregulation of MMP-2 in T2-KD cells occurred at both the protein and activation levels, compared to Control (Cont; scrambled siRNA) and Parental cells (P, transfection reagent only). In contrast, membrane bound MT1-MMP protein levels were significantly upregulated in T2-KD compared to Cont and P cells. T2-KD cells exhibited enhanced proliferation and increased sensitivity to cisplatin and paclitaxel treatments. Enhanced invasion was observed in the T2-KD-JOSH2 and OVCAR4 cells but not in T2-KD-FT282 cells. Treatment with cisplatin or paclitaxel significantly elevated the expression of TIMP-2 in Cont cells but not in T2-KD cells, consistent with significantly elevated expression of chemoresistance and CSC markers and activation of STAT3. Furthermore, a potent inhibitor of STAT3 activation, Momelotinib, suppressed chemotherapy-induced activation of P-STAT3 in OVCAR4 cells with concomitant reductions in the expression of chemoresistance genes and CSC markers. CONCLUSIONS The above results suggest that TIMP-2 may have a novel role in ovarian cancer proliferation, invasion and chemoresistance.
Collapse
Affiliation(s)
- Ruth M Escalona
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3050, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, and the Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia.,Fiona Elsey Cancer Research Institute, Ballarat, 3353, Australia
| | - Maree Bilandzic
- Centre for Cancer Research, Hudson Institute of Medical Research, and the Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia
| | - Patrick Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, and the Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Ballarat, 3353, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, 3353, Australia.,Federation University Australia, Vic, Ballarat, 3010, Australia
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3050, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, and the Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3050, Australia. .,Centre for Reproductive Health, Hudson Institute of Medical Research, and the Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3168, Australia. .,Fiona Elsey Cancer Research Institute, Ballarat, 3353, Australia. .,Federation University Australia, Vic, Ballarat, 3010, Australia.
| |
Collapse
|
19
|
Peeney D, Jensen SM, Castro NP, Kumar S, Noonan S, Handler C, Kuznetsov A, Shih J, Tran AD, Salomon DS, Stetler-Stevenson WG. TIMP-2 suppresses tumor growth and metastasis in murine model of triple-negative breast cancer. Carcinogenesis 2020; 41:313-325. [PMID: 31621840 PMCID: PMC7221506 DOI: 10.1093/carcin/bgz172] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/12/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Metastasis is the primary cause of treatment failures and mortality in most cancers. Triple-negative breast cancer (TNBC) is refractory to treatment and rapidly progresses to disseminated disease. We utilized an orthotopic mouse model that molecularly and phenotypically resembles human TNBC to study the effects of exogenous, daily tissue inhibitor of metalloproteinase-2 (TIMP-2) treatment on tumor growth and metastasis. Our results demonstrated that TIMP-2 treatment maximally suppressed primary tumor growth by ~36-50% and pulmonary metastasis by >92%. Immunostaining assays confirmed disruption of the epithelial to mesenchymal transition (EMT) and promotion of vascular integrity in primary tumor tissues. Immunostaining and RNA sequencing analysis of lung tissue lysates from tumor-bearing mice identified significant changes associated with metastatic colony formation. Specifically, TIMP-2 treatment disrupts periostin localization and critical cell-signaling pathways, including canonical Wnt signaling involved in EMT, as well as PI3K signaling, which modulates proliferative and metastatic behavior through p27 phosphorylation/localization. In conclusion, our study provides evidence in support of a role for TIMP-2 in suppression of triple-negative breast cancer growth and metastasis through modulation of the epithelial to mesenchymal transition, vascular normalization, and signaling pathways associated with metastatic outgrowth. Our findings suggest that TIMP-2, a constituent of the extracellular matrix in normal tissues, may have both direct and systemic antitumor and metastasis suppressor effects, suggesting potential utility in the clinical management of breast cancer progression.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sandra M Jensen
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nadia P Castro
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Sarvesh Kumar
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Silvia Noonan
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Chenchen Handler
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alex Kuznetsov
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Joanna Shih
- Biostatistics Branch, National Cancer Institute, Rockville, MD, USA
| | - Andy D Tran
- Confocal Core Facility, National Cancer Institute, Bethesda, MD, USA
| | - David S Salomon
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
20
|
Alharbi M, Sharma S, Guanzon D, Lai A, Zuñiga F, Shiddiky MJA, Yamauchi Y, Salas-Burgos A, He Y, Pejovic T, Winters C, Morgan T, Perrin L, Hooper JD, Salomon C. miRNa signature in small extracellular vesicles and their association with platinum resistance and cancer recurrence in ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102207. [PMID: 32334098 DOI: 10.1016/j.nano.2020.102207] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
Carboplatin, administered as a single drug or in combination with paclitaxel, is the standard chemotherapy treatment for patients with ovarian cancer (OVCA). Recent evidence suggests that miRNAs associated with small extracellular vesicles (sEVs) participate in the development of chemoresistance. We studied the effect of carboplatin in a heterogeneity population of OVCA cells and their derived sEVs to identify mechanisms associated with chemoresistance. sEVs were quantified using an engineered superparamagnetic material, gold-loaded ferric oxide nanotubes and a screen-printed electrode. miR-21-3p, miR-21-5p, and miR-891-5p are enriched in sEVs, and they contribute to carboplatin resistance in OVCA. Using a quantitative MS/MS, miR-21-5p activates glycolysis and increases the expression of ATP-binding cassette family and a detoxification enzyme. miR-21-3p and miR-891-5p increase the expression of proteins involved in DNA repair mechanisms. Interestingly, the levels of miR-891-5p within sEVs are significantly higher in patients at risk of ovarian cancer relapse. Identification of miRNAs in sEVs also provides the opportunity to track them in biological fluids to potentially determine patient response to chemotherapy.
Collapse
Affiliation(s)
- Mona Alharbi
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Shayna Sharma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Felipe Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University Nathan Campus, Queensland, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | | | - Yaowu He
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, OHSU, Portland, OR, USA
| | - Carmen Winters
- Department of Obstetrics and Gynecology, OHSU, Portland, OR, USA
| | - Terry Morgan
- Department of Obstetrics and Gynecology, OHSU, Portland, OR, USA; Department of Pathology, OHSU, Portland, OR, USA
| | - Lewis Perrin
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - John D Hooper
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile; Maternal-Fetal Medicine, Department of Obstetrics and Gynaecology, Ochsner Clinic Foundation, New Orleans, USA.
| |
Collapse
|
21
|
Peeney D, Fan Y, Nguyen T, Meerzaman D, Stetler-Stevenson WG. Matrisome-Associated Gene Expression Patterns Correlating with TIMP2 in Cancer. Sci Rep 2019; 9:20142. [PMID: 31882975 PMCID: PMC6934702 DOI: 10.1038/s41598-019-56632-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Remodeling of the extracellular matrix (ECM) to facilitate invasion and metastasis is a universal hallmark of cancer progression. However, a definitive therapeutic target remains to be identified in this tissue compartment. As major modulators of ECM structure and function, matrix metalloproteinases (MMPs) are highly expressed in cancer and have been shown to support tumor progression. MMP enzymatic activity is inhibited by the tissue inhibitor of metalloproteinase (TIMP1-4) family of proteins, suggesting that TIMPs may possess anti-tumor activity. TIMP2 is a promiscuous MMP inhibitor that is ubiquitously expressed in normal tissues. In this study, we address inconsistencies in the literature regarding the role of TIMP2 in tumor progression by analyzing co-expressed genes in tumor vs. normal tissue. Utilizing data from The Cancer Genome Atlas and Genotype-Tissue expression studies, focusing on breast and lung carcinomas, we analyzed the correlation between TIMP2 expression and the transcriptome to identify a list of genes whose expression is highly correlated with TIMP2 in tumor tissues. Bioinformatic analysis of the identified gene list highlights a core of matrix and matrix-associated genes that are of interest as potential modulators of TIMP2 function, thus ECM structure, identifying potential tumor microenvironment biomarkers and/or therapeutic targets for further study.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA.
| | - Yu Fan
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, Maryland, USA
| | - Trinh Nguyen
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, Maryland, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, Maryland, USA
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Patel M, Sachidanandan M, Adnan M. Serine arginine protein kinase 1 (SRPK1): a moonlighting protein with theranostic ability in cancer prevention. Mol Biol Rep 2018; 46:1487-1497. [PMID: 30535769 DOI: 10.1007/s11033-018-4545-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Serine/arginine protein kinase 1 (SRPK1); a versatile functional moonlighting protein involved in varied cellular activities comprised of cell cycle progression, innate immune response, chromatin reorganization, negative and positive regulation of viral genome replication, protein amino acid phosphorylation, regulation of numerous mRNA-processing pathways, germ cell development as well as inflammation due to acquaintances with many transcription factors and signaling pathways. Several diseases including cancer have been associated with dysregulation of SRPK1. The function of SRPK1 in cancer is contradictory and inexplicable because it acts as both tumor suppressor and promoter based on the type of cell and locale. Over expression of SRPK1 including its role has been recently narrated and associated with several cancers, which includes, lung, glioma, prostate and breast via dysregulated signals from the Akt/eIF4E/HIF-1/VEGF, Erk or MAPK, PI3K/AKT/mTOR, TGF-β, and Wnt/β-catenin signaling pathways. Therefore, SRPK1 has occurred as a promising and possible curative target in cancer. In recent years, few natural and synthetic SRPK1 inhibitors have been discovered. This review emphasizes and highlights the complicated connections between SRPK1 and oncogenic signaling circuits together with the possibility of aiming SRPK1 in the treatment of cancer.
Collapse
Affiliation(s)
- Mitesh Patel
- Department of Biosciences, Bapalal Vaidya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, P O Box 2440, Hail, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, Faculty of Science, University of Hail, P O Box 2440, Hail, Saudi Arabia.
| |
Collapse
|
23
|
Yamada Y, Chowdhury A, Schneider JP, Stetler-Stevenson WG. Macromolecule-Network Electrostatics Controlling Delivery of the Biotherapeutic Cell Modulator TIMP-2. Biomacromolecules 2018; 19:1285-1293. [PMID: 29505725 PMCID: PMC6329387 DOI: 10.1021/acs.biomac.8b00107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue inhibitor of metalloproteinase 2 (TIMP-2) is an endogenous 22 kDa proteinase inhibitor, demonstrating antitumorigenic, antimetastatic and antiangiogenic activities in vitro and in vivo. Recombinant TIMP-2 is currently undergoing preclinical testing in multiple, murine tumor models. Here we report the development of an inert, injectable peptide hydrogel matrix enabling encapsulation and sustained release of TIMP-2. We studied the TIMP-2 release profile from four β-hairpin peptide gels of varying net electrostatic charge. A negatively charged peptide gel (designated AcVES3) enabling encapsulation of 4 mg/mL of TIMP-2, without effects on rheological properties, facilitated the slow sustained release (0.9%/d) of TIMP-2 over 28 d. Released TIMP-2 is structurally intact and maintains the ability to inhibit MMP activity, as well as suppress lung cancer cell proliferation in vitro. These findings suggest that the AcVES3 hydrogel will be useful as an injectable vehicle for systemic delivery of TIMP-2 in vivo for ongoing preclinical development.
Collapse
Affiliation(s)
- Yuji Yamada
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21701, United States
| | - Ananda Chowdhury
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21701, United States
| | - William G. Stetler-Stevenson
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
24
|
Escalona RM, Chan E, Kannourakis G, Findlay JK, Ahmed N. The Many Facets of Metzincins and Their Endogenous Inhibitors: Perspectives on Ovarian Cancer Progression. Int J Mol Sci 2018; 19:E450. [PMID: 29393911 PMCID: PMC5855672 DOI: 10.3390/ijms19020450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Approximately sixty per cent of ovarian cancer patients die within the first five years of diagnosis due to recurrence associated with chemoresistance. The metzincin family of metalloproteinases is enzymes involved in matrix remodeling in response to normal physiological changes and diseased states. Recently, there has been a mounting awareness of these proteinases and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), as superb modulators of cellular communication and signaling regulating key biological processes in cancer progression. This review investigates the role of metzincins and their inhibitors in ovarian cancer. We propose that understanding the metzincins and TIMP biology in ovarian cancer may provide valuable insights in combating ovarian cancer progression and chemoresistance-mediated recurrence in patients.
Collapse
Affiliation(s)
- Ruth M Escalona
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
| | - Emily Chan
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
| | - Nuzhat Ahmed
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia.
- The Hudson Institute of Medical Research, Clayton, VIC 3168, Australia.
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia.
- Federation University Australia, Ballarat, VIC 3010, Australia.
| |
Collapse
|
25
|
Yu K, Wang T, Li Y, Wang C, Wang X, Zhang M, Xie Y, Li S, An Z, Ye T. Niclosamide induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in human thyroid cancer in vitro. Biomed Pharmacother 2017; 92:403-411. [DOI: 10.1016/j.biopha.2017.05.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 11/24/2022] Open
|
26
|
Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, Lakka SS, Ali AN. Matrix metalloproteinases: their functional role in lung cancer. Carcinogenesis 2017. [DOI: 10.1093/carcin/bgx063] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
27
|
Kim HI, Lee HS, Kim TH, Lee JS, Lee ST, Lee SJ. Growth-stimulatory activity of TIMP-2 is mediated through c-Src activation followed by activation of FAK, PI3-kinase/AKT, and ERK1/2 independent of MMP inhibition in lung adenocarcinoma cells. Oncotarget 2016; 6:42905-22. [PMID: 26556867 PMCID: PMC4767480 DOI: 10.18632/oncotarget.5466] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) control extracellular matrix (ECM) homeostasis by inhibiting the activity of matrix metalloproteinases (MMPs), which are associated with ECM turnover. Recent studies have revealed that TIMPs are implicated in tumorigenesis in both MMP-dependent and MMP-independent manners. We examined a mechanism by which TIMP-2 stimulated lung adenocarcinoma cell proliferation, independent of MMP inhibition. The stimulation of growth by TIMP-2 in A549 cells required c-Src kinase activation. c-Src kinase activity, induced by TIMP-2, concomitantly increased FAK, phosphoinositide 3-kinase (PI3-kinase)/AKT, and ERK1/2 activation. Selective knockdown of integrin α3β1, known as a TIMP-2 receptor, did not significantly change TIMP-2 growth promoting activity. Furthermore, we showed that high TIMP-2 expression in lung adenocarcinomas is associated with a worse prognosis from multiple cohorts, especially for stage I lung adenocarcinoma. Through integrated analysis of The Cancer Genome Atlas data, TIMP-2 expression was significantly associated with the alteration of driving genes, c-Src activation, and PI3-kinase/AKT pathway activation. Taken together, our results demonstrate that TIMP-2 stimulates lung adenocarcinoma cell proliferation through c-Src, FAK, PI3-kinase/AKT, and ERK1/2 pathway activation in an MMP-independent manner.
Collapse
Affiliation(s)
- Han Ie Kim
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| | - Hyun-Sung Lee
- Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, U.S.A
| | - Tae Hyun Kim
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| | - Ju-Seog Lee
- Department of Systems Biology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, U.S.A
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Seo-Jin Lee
- Department of Life Science & Biotechnology, Shingyeong University, Gyeonggi-do, 445-741, Republic of Korea
| |
Collapse
|
28
|
Yu Y, Ding Z, Jian H, Shen L, Zhu L, Lu S. Prognostic value of MMP9 activity level in resected stage I B lung adenocarcinoma. Cancer Med 2016; 5:2323-31. [PMID: 27456862 PMCID: PMC5055171 DOI: 10.1002/cam4.821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022] Open
Abstract
The clinical outcomes of patients with early-stage non-small cell lung cancer (NSCLC) have remained unsatisfactory after complete surgical resection. The objective of this study was to explore the prognostic value of matrix metalloproteinase 9 (MMP9) activity level in Chinese patients with stage I B lung adenocarcinoma. A sensitive and validated method was employed for determining the activity of MMP9 in human lung adenocarcinoma cells in vitro. Then, the association was examined between the level of MMP9 enzymatic activity and clinical outcomes. A total of 104 cases were stratified according to the IASLC/ATS/ERS classification scheme and activity of MMP9 was analyzed by SensoLyte® assay kit. The results showed that the MMP9 activity was the highest in solid predominant and micropapillary predominant subtypes, intermediate in acinar predominant and papillary predominant subtypes, and the lowest in lepidic predominant subtype. Multivariate analysis revealed that pathological subtype and activity of MMP9 were independent prognostic factors for disease-free survival (DFS), respectively (P = 0.005 and 0.029). Significant relationship existed between enzyme activity of MMP9 and prognosis. And the 30 months DFS of high- and low-level MMP9 activity tumors was 44.2% and 84.1% (P < 0.0001), respectively. High-level MMP9 activity is correlated with aggressive tumor behaviors and poor clinical outcomes in early-stage lung adenocarcinoma after complete resection.
Collapse
Affiliation(s)
- Yongfeng Yu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Zhengping Ding
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Hong Jian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Lan Shen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Lei Zhu
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Xuhui District, Shanghai, 200030, China.
| |
Collapse
|
29
|
Prenyl Ammonium Salts--New Carriers for Gene Delivery: A B16-F10 Mouse Melanoma Model. PLoS One 2016; 11:e0153633. [PMID: 27088717 PMCID: PMC4835110 DOI: 10.1371/journal.pone.0153633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/02/2016] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Prenyl ammonium iodides (Amino-Prenols, APs), semi-synthetic polyprenol derivatives were studied as prospective novel gene transfer agents. METHODS AP-7, -8, -11 and -15 (aminoprenols composed of 7, 8, 11 or 15 isoprene units, respectively) were examined for their capacity to form complexes with pDNA, for cytotoxicity and ability to transfect genes to cells. RESULTS All the carriers were able to complex DNA. The highest, comparable to commercial reagents, transfection efficiency was observed for AP-15. Simultaneously, AP-15 exhibited the lowest negative impact on cell viability and proliferation--considerably lower than that of commercial agents. AP-15/DOPE complexes were also efficient to introduce pDNA to cells, without much effect on cell viability. Transfection with AP-15/DOPE complexes influenced the expression of a very few among 44 tested genes involved in cellular lipid metabolism. Furthermore, complexes containing AP-15 and therapeutic plasmid, encoding the TIMP metallopeptidase inhibitor 2 (TIMP2), introduced the TIMP2 gene with high efficiency to B16-F10 melanoma cells but not to B16-F10 melanoma tumors in C57BL/6 mice, as confirmed by TIMP2 protein level determination. CONCLUSION Obtained results indicate that APs have a potential as non-viral vectors for cell transfection.
Collapse
|
30
|
Clouse RM, Linchangco GV, Kerr AM, Reid RW, Janies DA. Phylotranscriptomic analysis uncovers a wealth of tissue inhibitor of metalloproteinases variants in echinoderms. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150377. [PMID: 27017967 PMCID: PMC4807446 DOI: 10.1098/rsos.150377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) help regulate the extracellular matrix (ECM) in animals, mostly by inhibiting matrix metalloproteinases (MMPs). They are important activators of mutable collagenous tissue (MCT), which have been extensively studied in echinoderms, and the four TIMP copies in humans have been studied for their role in cancer. To understand the evolution of TIMPs, we combined 405 TIMPs from an echinoderm transcriptome dataset built from 41 specimens representing all five classes of echinoderms with variants from protostomes and chordates. We used multiple sequence alignment with various stringencies of alignment quality to cull highly divergent sequences and then conducted phylogenetic analyses using both nucleotide and amino acid sequences. Phylogenetic hypotheses consistently recovered TIMPs as diversifying in the ancestral deuterostome and these early lineages continuing to diversify in echinoderms. The four vertebrate TIMPs diversified from a single copy in the ancestral chordate, all other copies being lost. Consistent with greater MCT needs owing to body wall liquefaction, evisceration, autotomy and reproduction by fission, holothuroids had significantly more TIMPs and higher read depths per contig. Ten cysteine residues, an HPQ binding site and several other residues were conserved in at least 70% of all TIMPs. The conservation of binding sites and the placement of echinoderm TIMPs involved in MCT modification suggest that ECM regulation remains the primary function of TIMP genes, although within this role there are a large number of specialized copies.
Collapse
Affiliation(s)
- Ronald M. Clouse
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Gregorio V. Linchangco
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Alexander M. Kerr
- Marine Laboratory, University of Guam, Mangilao, GU 96913, USA
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Robert W. Reid
- Bioinformatics Services Division, North Carolina Research Campus, University of North Carolina at Charlotte, Kannapolis, NC 28081, USA
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
31
|
Tissue Inhibitor of Metalloproteinase-2 Suppresses Collagen Synthesis in Cultured Keloid Fibroblasts. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2015; 3:e520. [PMID: 26495233 PMCID: PMC4596445 DOI: 10.1097/gox.0000000000000503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/27/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Keloids are defined as a kind of dermal fibroproliferative disorder resulting from the accumulation of collagen. In the remodeling of extracellular matrix, the balance between matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) is as critical as the proper production of extracellular matrix. We investigate the role of TIMPs and MMPs in the pathogenesis of keloids and examine the therapeutic potential of TIMP-2. METHODS The expression of TIMPs and MMPs in most inflamed parts of cultured keloid fibroblasts (KFs) and peripheral normal skin fibroblasts (PNFs) in the same individuals and the reactivity of KFs to cyclic mechanical stretch were analyzed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (n = 7). To evaluate the effect of treating KFs with TIMP-2, collagen synthesis was investigated by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, and microscopic analysis was used to examine the treatment effects of TIMP-2 on ex vivo cultures of keloid tissue (n = 6). RESULTS TIMP-2 was downregulated in cultured KFs compared with PNFs in the same individuals, and the reduction in TIMP-2 was exacerbated by cyclic mechanical stretch. Administration of TIMP-2 (200 or 300 ng/mL) significantly suppressed expression of Col1A2 and Col3A1 mRNA and collagen type I protein in KFs. TIMP-2 also significantly reduced the skin dermal and collagen bundle thickness in ex vivo cultures of keloid tissue. CONCLUSION These results indicated that downregulation of TIMP-2 in KFs is a crucial event in the pathogenesis of keloids, and the TIMP-2 would be a promising candidate for the treatment of keloids.
Collapse
|
32
|
Chang Y, Wu Q, Tian T, Li L, Guo X, Feng Z, Zhou J, Zhang L, Zhou S, Feng G, Han F, Yang J, Huang F. The influence of SRPK1 on glioma apoptosis, metastasis, and angiogenesis through the PI3K/Akt signaling pathway under normoxia. Tumour Biol 2015; 36:6083-93. [PMID: 25833691 DOI: 10.1007/s13277-015-3289-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/24/2015] [Indexed: 01/15/2023] Open
Abstract
Gliomas, the most common primary brain tumors, have low survival rates and poorly defined molecular mechanisms to target for treatment. Serine/arginine SR protein kinases 1 (SRPK1) can highly and specifically phosphorylate the SR protein found in many tumors, which can influence cell proliferation and angiogenesis. However, the roles and regulatory mechanisms of SRPK1 in gliomas are not understood. The aim of this study was to determine the functions and regulation of SRPK1 in gliomas. We found that SRPK1 inhibition induces early apoptosis and significantly inhibits xenograft tumor growth. Our results indicate that SRPK1 affects Akt and eIF4E phosphorylation, Bax and Bcl-2 activation, and HIF-1 and VEGF production in glioma cells. Moreover, transfection of SRPK1 siRNA strongly reduced cell invasion and migration by regulating the expression of MMP2 and MMP9 and significantly decreased the volume of tumors and angiogenesis. We show here that a strong link exists among SRPK1, Akt, eIF4E, HIF-1, and VEGF activity that is functionally involved in apoptosis, metastasis, and angiogenesis of gliomas under normoxic conditions. Thus, SRPK1 may be a potential anticancer target to inhibit glioma progression.
Collapse
Affiliation(s)
- Yingwei Chang
- Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Laishan District, Shandong Province, 264003, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Katainen E, Kostamo K, Virkkula P, Sorsa T, Tervahartiala T, Haapaniemi A, Toskala E. Local and systemic proteolytic responses in chronic rhinosinusitis with nasal polyposis and asthma. Int Forum Allergy Rhinol 2015; 5:294-302. [PMID: 25653042 DOI: 10.1002/alr.21486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/07/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyposis (CRSwNP) and asthma coexist frequently and share similar features of inflammation and remodeling. Remodeling has become an important concept in the pathophysiology of asthma and CRSwNP. It happens early in the development of these diseases and is relatively resistant to treatments. The key enzymes responsible for remodeling are matrix metalloproteinases (MMPs). In this study we examined whether asthma and CRSwNP share similar MMP profiles. METHODS Nasal secretion and serum specimens of controls (19 subjects) and patients with asthma (12), CRSwNP (39), or both (16) were collected between December 2007 and May 2009. Groups were divided into 2 subgroups according to atopy. MMP-7, MMP-9, MMP-13, tissue inhibitors of metalloproteinases (TIMPs), TIMP-1 and TIMP-2, myeloperoxidase (MPO), and human neutrophil elastase (HNE) were measured using enzyme-linked immunosorbent assay (ELISA), and MMP-8 was determined using immunofluorometric assay. High-sensitivity C-reactive protein (hs-CRP) was measured to estimate systemic involvement. RESULTS Patients with asthma, CRSwNP, or both exhibited lower MMP-9, MMP-9/TIMP-1, MMP-9/TIMP-2, and MPO in nasal secretions (p < 0.05 in CRSwNP) and higher MMP-9, MMP-9/TIMP-1, MMP-9/TIMP-2, and HNE in serum (p < 0.05 in all groups) compared to controls, whereas no difference in MMP-7, MMP-13, TIMP-1, and TIMP-2 were detected. Atopy increased nasal MMP-9 and MPO expression. hs-CRP was higher in patients with CRSwNP and asthma compared to controls. CONCLUSION Our findings suggest shared pathomechanisms behind asthma and CRSwNP. Contrasting local vs systemic results reflect a different ability of healthy mucosa to react to exogenous stimuli, possibly indicating a protective function of MMP-9 and possibly also MMP-8 in the airways.
Collapse
Affiliation(s)
- Elina Katainen
- Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
34
|
Remillard TC, Bratslavsky G, Jensen-Taubman S, Stetler-Stevenson WG, Bourboulia D. Molecular mechanisms of tissue inhibitor of metalloproteinase 2 in the tumor microenvironment. MOLECULAR AND CELLULAR THERAPIES 2014; 2:17. [PMID: 26056585 PMCID: PMC4452049 DOI: 10.1186/2052-8426-2-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/17/2014] [Indexed: 12/15/2022]
Abstract
There has been a recent paradigm shift in the way we target cancer, drawing a greater focus on the role of the tumor microenvironment (TME) in cancer development, progression and metastasis. Within the TME, there is a crosstalk in signaling and communication between the malignant cells and the surrounding extracellular matrix. Matrix metalloproteinases (MMPs) are zinc-dependent endoproteases that have the ability to degrade the matrix surrounding a tumor and mediate tumor growth, angiogenesis and metastatic disease. Their endogenous inhibitors, the Tissue Inhibitors of Metalloproteinases (TIMPs), primarily function to prevent degradation of the ECM via inhibition of MMPs. However, recent studies demonstrate that TIMP family members also possess MMP-independent functions. One TIMP member in particular, TIMP-2, has many distinct properties and functions, that occur independent of MMP inhibition, including the inhibition of tumor growth and reduction of angiogenesis through decreased endothelial cell proliferation and migration. The MMP-independent molecular mechanisms and signaling pathways elicited by TIMP-2 in the TME are described in this review.
Collapse
Affiliation(s)
- Taylor C Remillard
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| | - Sandra Jensen-Taubman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD 20892-4605 USA
| | - William G Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD 20892-4605 USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA ; Department of Urology and Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| |
Collapse
|
35
|
Remillard TC, Bratslavsky G, Jensen-Taubman S, Stetler-Stevenson WG, Bourboulia D. Molecular mechanisms of tissue inhibitor of metalloproteinase 2 in the tumor microenvironment. MOLECULAR AND CELLULAR THERAPIES 2014; 2:17. [PMID: 26056585 PMCID: PMC4452049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/17/2014] [Indexed: 11/21/2023]
Abstract
There has been a recent paradigm shift in the way we target cancer, drawing a greater focus on the role of the tumor microenvironment (TME) in cancer development, progression and metastasis. Within the TME, there is a crosstalk in signaling and communication between the malignant cells and the surrounding extracellular matrix. Matrix metalloproteinases (MMPs) are zinc-dependent endoproteases that have the ability to degrade the matrix surrounding a tumor and mediate tumor growth, angiogenesis and metastatic disease. Their endogenous inhibitors, the Tissue Inhibitors of Metalloproteinases (TIMPs), primarily function to prevent degradation of the ECM via inhibition of MMPs. However, recent studies demonstrate that TIMP family members also possess MMP-independent functions. One TIMP member in particular, TIMP-2, has many distinct properties and functions, that occur independent of MMP inhibition, including the inhibition of tumor growth and reduction of angiogenesis through decreased endothelial cell proliferation and migration. The MMP-independent molecular mechanisms and signaling pathways elicited by TIMP-2 in the TME are described in this review.
Collapse
Affiliation(s)
- Taylor C Remillard
- />Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| | - Gennady Bratslavsky
- />Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| | - Sandra Jensen-Taubman
- />Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD 20892-4605 USA
| | - William G Stetler-Stevenson
- />Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD 20892-4605 USA
| | - Dimitra Bourboulia
- />Department of Urology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
- />Department of Urology and Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| |
Collapse
|
36
|
Han H, Bourboulia D, Jensen-Taubman S, Isaac B, Wei B, Stetler-Stevenson WG. An endogenous inhibitor of angiogenesis inversely correlates with side population phenotype and function in human lung cancer cells. Oncogene 2014; 33:1198-206. [PMID: 23474755 PMCID: PMC6322540 DOI: 10.1038/onc.2013.61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 12/12/2012] [Accepted: 01/11/2013] [Indexed: 12/13/2022]
Abstract
The side population (SP) in human lung cancer cell lines and tumors is enriched with cancer stem cells. An endogenous inhibitor of angiogenesis known as tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), characterized for its ability to inhibit matrix metalloproteinases (MMPs), has been shown by several laboratories to impede tumor progression through MMP-dependent or -independent mechanisms. We recently reported that forced expression of TIMP-2, as well as the modified form Ala+TIMP-2 (that lacks MMP inhibitory activity) significantly blocks growth of A549 human lung cancer cells in vivo. However, the mechanisms underlying TIMP-2 antitumor effects are not fully characterized. Here, we examine the hypothesis that the TIMP-2 antitumor activity may involve regulation of the SP in human lung cancer cells. Indeed, using Hoechst dye efflux assay and flow cytometry, as well as quantitative reverse transcriptase-PCR analysis, we found that endogenous TIMP-2 mRNA levels showed a significant inverse correlation with SP fraction size in six non-small cell lung cancer cell lines. In A549 cells expressing increased levels of TIMP-2, a significant decrease in SP was observed, and this decrease was associated with lowered gene expression of ABCG2, ABCB1 and AKR1C1. Functional analysis of A549 cells showed that TIMP-2 overexpression increased chemosensitivity to cytotoxic drugs. The SP isolated from TIMP-2-overexpressing A549 cells also demonstrated impaired migratory capacity compared with the SP from empty vector control. More importantly, our data provide strong evidence that these TIMP-2 functions occur independent of MMP inhibition, as A549 cells overexpressing Ala+TIMP-2 exhibited identical behavior to those overexpressing TIMP-2 alone. Our findings provide the first indication that TIMP-2 modulates SP phenotype and function, and suggests that TIMP-2 may act as an endogenous suppressor of the SP in human lung cancer cells.
Collapse
Affiliation(s)
| | | | - S Jensen-Taubman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, MD, USA
| | | | - B Wei
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, MD, USA
| | - WG Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, the National Institutes of Health, Advanced Technology Center, Bethesda, MD, USA
| |
Collapse
|
37
|
Stetler-Stevenson WG, Gavil NV. Normalization of the tumor microenvironment: evidence for tissue inhibitor of metalloproteinase-2 as a cancer therapeutic. Connect Tissue Res 2014; 55:13-9. [PMID: 24437600 PMCID: PMC6309251 DOI: 10.3109/03008207.2013.867339] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Matrix metalloproteinases (MMPs) are members of the Metzincin family of proteases responsible for degrading the extracellular matrix (ECM). In early studies, MMP degradation of the sub-epithelial basement membrane was thought to be tumor cell autonomous and contribute to the invasive behavior of malignant cells. It is now recognized that MMPs have multiple roles that can either promote or inhibit tumor progression and metastasis. The endogenous inhibitors of the MMPs are the tissue inhibitors of metalloproteinases (TIMPs). Early studies on the tumor microenvironment revealed TIMP function to be principally through the inhibition of MMPs, thereby blocking tumor cell migration and invasion. However, data from a number of laboratories are now reporting that TIMPs have direct cellular functions, independent of their MMP inhibitory activity. The TIMPs can modulate normal tissue physiology and development, as well as pathology and progression in a variety of acute and chronic disease states. In this review, we briefly describe the role of MMPs and TIMPs in ECM turnover and formation of the tumor microenvironment. Based on the evidence presented, we postulate that TIMP-2 and other soluble components of the normal ECM may provide a novel therapeutic approach to cancer treatment through "normalization" of the tumor microenvironment.
Collapse
Affiliation(s)
- William G. Stetler-Stevenson
- Senior Biomedical Research Service, National Institutes of Health, Bethesda, MD, USA
- Extracellular Matrix Pathology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Noah Veis Gavil
- Bowdoin College, Brunswick, ME, USA
- Cancer Research Summer Interns Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
38
|
Wajner SM, Capp C, Brasil BA, Meurer L, Maia AL. Reduced tissue inhibitor of metalloproteinase-2 expression is associated with advanced medullary thyroid carcinoma. Oncol Lett 2013; 7:731-737. [PMID: 24527080 PMCID: PMC3919825 DOI: 10.3892/ol.2013.1767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 12/03/2013] [Indexed: 12/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are enzymes for extracellular matrix remodeling that are involved in tumor growth, progression and metastasis. Among them, MMP-9 has been implicated in tumor angiogenesis. Tissue inhibitor of matrix metalloproteinase (TIMP)-2, a member of the family of MMP inhibitors, induces apoptosis and inhibits various stages of angiogenesis. Previous studies analyzing the expression of MMP-9 and TIMP-2 in medullary thyroid carcinoma (MTC) are scarce. The aims of the current study were to evaluate MMP-9 and TIMP-2 expression in MTC samples and correlate the results with clinical parameters. Paraffin-embedded samples from 77 MTC patients were evaluated for expression by immunohistochemistry. The clinical data in medical records were retrospectively reviewed. In total, 77 patients aged 35.6±17.1 years were enrolled. Of these patients, 36 had hereditary disease (46.8%). Immunohistochemical staining for MMP-9 and TIMP-2 was detected in 89.6 and 93.5% of the samples, respectively. The expression of MMP-9 was not found to correlate with clinical parameters, although, a trend toward a correlation between MMP-9 and distant metastasis was observed (P=0.053). By contrast, TIMP-2 staining was found to correlate with age at diagnosis (P=0.026) and negatively correlate with tumor size and tumoral stage (P=0.002 and P=0.001, respectively). Notably, the highest levels of TIMP-2 expression were observed in patients with intrathyroidal disease. The MMP-9 enzyme involved in extracellular matrix remodeling is overexpressed in MTC lesions and may contribute to tumor vascularization and growth. Reduced levels of TIMP-2 expression may be implicated in tumor progression and spread of disease.
Collapse
Affiliation(s)
- Simone Magagnin Wajner
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Clarissa Capp
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Beatriz Assis Brasil
- Department of Pathology, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Luise Meurer
- Department of Pathology, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil ; Experimental Research Center, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Ana Luiza Maia
- Thyroid Section, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| |
Collapse
|
39
|
Micro-CT imaging of tumor angiogenesis: quantitative measures describing micromorphology and vascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:431-41. [PMID: 24262753 DOI: 10.1016/j.ajpath.2013.10.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 02/08/2023]
Abstract
Angiogenesis is a hallmark of cancer, and its noninvasive visualization and quantification are key factors for facilitating translational anticancer research. Using four tumor models characterized by different degrees of aggressiveness and angiogenesis, we show that the combination of functional in vivo and anatomical ex vivo X-ray micro-computed tomography (μCT) allows highly accurate quantification of relative blood volume (rBV) and highly detailed three-dimensional analysis of the vascular network in tumors. Depending on the tumor model, rBV values determined using in vivo μCT ranged from 2.6% to 6.0%, and corresponds well with the values assessed using IHC. Using ultra-high-resolution ex vivo μCT, blood vessels as small as 3.4 μm and vessel branches up to the seventh order could be visualized, enabling a highly detailed and quantitative analysis of the three-dimensional micromorphology of tumor vessels. Microvascular parameters such as vessel size and vessel branching correlated very well with tumor aggressiveness and angiogenesis. In rapidly growing and highly angiogenic A431 tumors, the majority of vessels were small and branched only once or twice, whereas in slowly growing A549 tumors, the vessels were much larger and branched four to seven times. Thus, we consider that combining highly accurate functional with highly detailed anatomical μCT is a useful tool for facilitating high-throughput, quantitative, and translational (anti-) angiogenesis and antiangiogenesis research.
Collapse
|
40
|
Chen Y, Huang Y, Huang Y, Xia X, Zhang J, Zhou Y, Tan Y, He S, Qiang F, Li A, Re OD, Li G, Zhou J. JWA suppresses tumor angiogenesis via Sp1-activated matrix metalloproteinase-2 and its prognostic significance in human gastric cancer. Carcinogenesis 2013; 35:442-51. [PMID: 24072772 DOI: 10.1093/carcin/bgt311] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
JWA, a multifunctional microtubule-binding protein, plays an important role in regulating tumor metastasis via inhibition of matrix metalloproteinase-2 (MMP-2). Recent investigations suggest that MMP-2 is an angiogenesis-associated molecule. In this study, we provide novel evidence that JWA inhibits tumor angiogenesis in gastric cancer (GC). In two independent retrospective GC cohorts, we found that the expression of JWA was downregulated and that of MMP-2 was upregulated in GC tissues compared with the same in normal gastric mucosa. For patients treated with surgery alone, a strong and independent negative prognostic value was shown for low JWA and high MMP-2 expressions separately, which was even stronger when combined (hazard ratio = 7.75, P < 0.001, in the training cohort; hazard ratio = 2.31, P < 0.001, in the validation cohort). Moreover, we found that loss of JWA expression was strongly correlated with increased GC angiogenesis. In vitro, JWA inhibited MMP-2 at both messenger RNA and protein levels by modulating Sp1 activity. Knockdown of endogenous JWA resulted in enhanced human umbilical vein endothelial cell tube formation and MMP-2 expression. Furthermore, JWA was found to inhibit Sp1 activity via an ubiquitin-proteasome-dependent mechanism and to downregulate the expression of the proangiogenic MMP-2. Our findings imply that JWA and MMP-2 may serve as promising prognostic markers in resectable GC, with JWA as a useful biomarker of angiogenesis in GC and a potential therapeutic target by MMP-2 modulation.
Collapse
Affiliation(s)
- Yansu Chen
- Department of Molecular Cell Biology and Toxicology, Key Lab of Modern Toxicology (NJMU), Ministry of Education
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cho YR, Choi SW, Seo DW. The in vitro antitumor activity of Siegesbeckia glabrescens against ovarian cancer through suppression of receptor tyrosine kinase expression and the signaling pathways. Oncol Rep 2013; 30:221-6. [PMID: 23673404 DOI: 10.3892/or.2013.2468] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/29/2013] [Indexed: 11/06/2022] Open
Abstract
Siegesbeckia glabrescens (SG) Makino (Compositae) has been used as a traditional medicine for the treatment of a variety of diseases such as allergy, inflammation, acute hepatitis and hypertension. The primary aim of this study was to determine whether the ethanol extract of SG has antitumor activity against ovarian cancer and to identify molecular mechanisms and targets involved in the regulation of cell growth and progression. We demonstrate that SG treatment inhibits proliferation, adhesion, migration and invasion of SKOV-3 human ovarian cancer cells. The anti-proliferative effect of SG on SKOV-3 cells is accompanied by reduced expression of cyclin E and enhanced expression of the cyclin-dependent kinase inhibitor p27(Kip1), leading to inhibition of pRb phosphorylation. We also show that these antitumor activities are found to be mediated through suppression of FAK, ERK, Akt and p70(S6K)-dependent signaling pathways and downregulation of receptor tyrosine kinases such as EGFR, VEGFR-2 and FGFR-1 as well as the cell adhesion molecule N-cadherin. Taken together, our findings suggest further development and evaluation of SG for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Young-Rak Cho
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| | | | | |
Collapse
|
42
|
Chen AP, Chu W, Gu YP, Cunningham CH. Probing early tumor response to radiation therapy using hyperpolarized [1-¹³C]pyruvate in MDA-MB-231 xenografts. PLoS One 2013; 8:e56551. [PMID: 23424666 PMCID: PMC3570408 DOI: 10.1371/journal.pone.0056551] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/15/2013] [Indexed: 01/17/2023] Open
Abstract
Following radiation therapy (RT), tumor morphology may remain unchanged for days and sometimes weeks, rendering anatomical imaging methods inadequate for early detection of therapeutic response. Changes in the hyperpolarized [1-¹³C]lactate signals observed in vivo following injection of pre-polarized [1-¹³C]pyruvate has recently been shown to be a marker for tumor progression or early treatment response. In this study, the feasibility of using ¹³C metabolic imaging with [1-¹³C]pyruvate to detect early radiation treatment response in a breast cancer xenograft model was demonstrated in vivo and in vitro. Significant decreases in hyperpolarized [1-¹³C]lactate relative to [1-¹³C]pyruvate were observed in MDA-MB-231 tumors 96 hrs following a single dose of ionizing radiation. Histopathologic data from the treated tumors showed higher cellular apoptosis and senescence; and changes in the expression of membrane monocarboxylate transporters and lactate dehydrogenase B were also observed. Hyperpolarized ¹³C metabolic imaging may be a promising new tool to develop novel and adaptive therapeutic regimens for patients undergoing RT.
Collapse
|
43
|
Bourboulia D, Han H, Jensen-Taubman S, Gavil N, Isaac B, Wei B, Neckers L, Stetler-Stevenson WG. TIMP-2 modulates cancer cell transcriptional profile and enhances E-cadherin/beta-catenin complex expression in A549 lung cancer cells. Oncotarget 2013; 4:166-76. [PMID: 23371049 PMCID: PMC3702216 DOI: 10.18632/oncotarget.801] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/26/2013] [Indexed: 12/22/2022] Open
Abstract
Tissue Inhibitor of Metalloproteinase 2 (TIMP-2) plays an essential role in regulating matrix remodeling, cell growth, differentiation, angiogenesis and apoptosis in vitro and in vivo. We have recently shown that TIMP-2-mediated inhibition of tumor growth is independent of matrix metalloproteinase-mediated mechanisms, and is a consequence of modulating both the tumor cells and the tumor microenvironment. In the current study we aim to identify the molecular pathways associated with these effects. We analyzed the transcriptional profile of the human lung cancer cell line A549 upon overexpression of TIMP-2 and Ala+TIMP-2 (mutant that does not inhibit MMP activity), and we found changes in gene expression predominantly related to decreased tumor development and metastasis. Increased E-cadherin expression in response to both TIMP-2 and Ala+TIMP-2 expression was confirmed by real time quantitative RT-PCR and immunoblotting. A549 cells treated with epidermal growth factor (EGF) displayed loss of cobblestone morphology and cell-cell contact, while cells overexpressing TIMP-2 or Ala+TIMP-2 were resistant to EGF-induced morphological changes. Moreover, exogenous treatment with recombinant Ala+TIMP-2 blocked EGF induced down-regulation of E-cadherin. In vivo, immunohistochemistry of A549 xenografts expressing either TIMP-2 or Ala+TIMP-2 demonstrated increased E-cadherin protein levels. More importantly, transcriptional profile analysis of tumor tissue revealed critical pathways associated with effects on tumor-host interaction and inhibition of tumor growth. In conclusion, we show that TIMP-2 promotes an anti-tumoral transcriptional profile in vitro and in vivo, including upregulation of E-cadherin, in A549 lung cancer cells.
Collapse
Affiliation(s)
- Dimitra Bourboulia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
| | - HuiYing Han
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
| | - Sandra Jensen-Taubman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
| | - Noah Gavil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
- Bowdoin College, Brunswick, ME, USA
| | - Biju Isaac
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
- Center for Computational Science, University of Miami, Miami, FL, USA
| | - Beiyang Wei
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - William G. Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Advanced Technology Center, 8717 Grovemont Circle, Bethesda, MD, USA
| |
Collapse
|
44
|
Shuman Moss LA, Stetler-Stevenson WG. Influence of Stromal Components on Lung Cancer Carcinogenesis. ACTA ACUST UNITED AC 2013; 13. [PMID: 24205446 DOI: 10.4172/2157-2518.s13-008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The association between tumor growth and angiogenesis was first observed over 100 years ago. Since then, research has shown the dependence of tumor growth on angiogenesis and the ability of cancer cells to alter the stromal microenvironment. Technological advancements have enabled researchers to identify cell types within a tumor, identify chemokines, cytokines, and growth factors secreted by tumor cells, show the interaction between tumor cells and stroma, and investigate the function of distinct genes using knockout and transgenic mouse technology. This review provides an overview of tumor growth, emphasizing research using in vivo mouse models on vascular endothelial growth factor (VEGF), fibrinogen, fibronectin, plasminogen, and MMPs in primary tumor growth and metastasis of lung cancer in particular.
Collapse
Affiliation(s)
- Laurie A Shuman Moss
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892-1500, USA
| | | |
Collapse
|
45
|
TIMP-2 targets tumor-associated myeloid suppressor cells with effects in cancer immune dysfunction and angiogenesis. J Immunother 2012; 35:502-12. [PMID: 22735808 DOI: 10.1097/cji.0b013e3182619c8e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Angiogenesis and inflammation are important therapeutic targets in non-small cell lung cancer (NSCLC). It is well known that proteolysis mediated by matrix metalloproteinases (MMPs) promotes angiogenesis and inflammation in the tumor microenvironment. Here, the effects of the MMP inhibitor TIMP-2 on NSCLC inflammation and angiogenesis were evaluated in TIMP-2-deficient (timp2-/-) mice injected subcutaneously (SC) with Lewis lung carcinoma cells and compared with the effects on tumors in wild-type mice. TIMP-2-deficient mice demonstrated increased tumor growth, enhanced expression of angiogenic marker αvβ3 in tumor and endothelial cells, and significantly higher serum vascular endothelial growth factor-A levels. Tumor-bearing timp2-/- mice showed a significant number of inflammatory cells in their tumors, upregulation of inflammation mediators, nuclear factor-kappaB, and Annexin A1, as well as higher levels of serum interleukin (IL)-6. Phenotypic analysis revealed an increase in myeloid-derived suppressor cell (MDSC) cells (CD11b+ and Gr-1+) that coexpressed vascular-endothelial-growth factor receptor 1 (VEGF-R1) and elevated MMP activation present in tumors and spleens from timp2-/- mice. Furthermore, TIMP-2-deficient tumors upregulated expression of the immunosuppressing genes controlling MDSC growth, IL-10, IL-13, IL-11, and chemokine ligand (CCL-5/RANTES), and decreased interferon-γ and increased CD40L. Moreover, forced TIMP-2 expression in human lung adenocarcinoma A-549 resulted in a significant reduction of MDSCs recruited into tumors, as well as suppression of angiogenesis and tumor growth. The increase in MDSCs has been linked to cancer immunosuppression and angiogenesis. Therefore, this study supports TIMP-2 as a negative regulator of MDSCs with important implications for the immunotherapy and/or antiangiogenic treatment of NSCLC.
Collapse
|
46
|
Herszényi L, Hritz I, Lakatos G, Varga MZ, Tulassay Z. The behavior of matrix metalloproteinases and their inhibitors in colorectal cancer. Int J Mol Sci 2012; 13:13240-13263. [PMID: 23202950 PMCID: PMC3497324 DOI: 10.3390/ijms131013240] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinases (MMPs) play an important role in the degradation of extracellular matrix components crucial for tumor growth, invasion and metastasis. MMPs are controlled by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). We and others have demonstrated that MMPs and TIMPs are especially important in the process of tumor invasion, progression and the metastasis of colorectal cancer (CRC). It has been proposed that MMPs and TIMPs might play a part not only in tumor invasion and initiation of metastasis but also in carcinogenesis from colorectal adenomas. Several recent studies demonstrated that high preoperative serum or plasma MMP-2, MMP-9 and TIMP-1 antigen levels are strong predictive factors for poor prognosis in patients with CRC and their determination might be useful for identification of patients with higher risk for cancer recurrence. MMP-9 and TIMP-1 have significant potential tumor marker impact in CRC. Their diagnostic sensitivity is consistently higher than those of conventional biomarkers. The pharmacological targeting of CRC by the development of a new generation of selective inhibitors of MMPs, that is highly specific for certain MMPs, is a promising and challenging area for the future.
Collapse
Affiliation(s)
- László Herszényi
- Second Department of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46, H-1088, Hungary; E-Mails: (I.H.); (G.L.); (M.Z.V.); (Z.T.)
| | - István Hritz
- Second Department of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46, H-1088, Hungary; E-Mails: (I.H.); (G.L.); (M.Z.V.); (Z.T.)
- First Department of Medicine, Fejér County Szent György Hospital, Székesfehérvár, H-8000, Hungary
| | - Gábor Lakatos
- Second Department of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46, H-1088, Hungary; E-Mails: (I.H.); (G.L.); (M.Z.V.); (Z.T.)
- Department of Oncology, Szent László Hospital, Budapest, H-1097, Hungary
| | - Mária Zsófia Varga
- Second Department of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46, H-1088, Hungary; E-Mails: (I.H.); (G.L.); (M.Z.V.); (Z.T.)
| | - Zsolt Tulassay
- Second Department of Medicine, Semmelweis University, H-1088 Budapest, Szentkirályi str. 46, H-1088, Hungary; E-Mails: (I.H.); (G.L.); (M.Z.V.); (Z.T.)
| |
Collapse
|
47
|
Iwai A, Bourboulia D, Mollapour M, Jensen-Taubman S, Lee S, Donnelly AC, Yoshida S, Miyajima N, Tsutsumi S, Smith AK, Sun D, Wu X, Blagg BS, Trepel JB, Stetler-Stevenson WG, Neckers L. Combined inhibition of Wee1 and Hsp90 activates intrinsic apoptosis in cancer cells. Cell Cycle 2012; 11:3649-55. [PMID: 22935698 DOI: 10.4161/cc.21926] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an essential, evolutionarily conserved molecular chaperone. Cancer cells rely on Hsp90 to chaperone mutated and/or activated oncoproteins, and its involvement in numerous signaling pathways makes it an attractive target for drug development. Surprisingly, however, the impact of Hsp90 inhibitors on cancer cells is frequently cytostatic in nature, and efforts to enhance the antitumor activity of Hsp90 inhibitors in the clinic remain a significant challenge. In agreement with previous data obtained using Wee1 siRNA, we show that dual pharmacologic inhibition of Wee1 tyrosine kinase and Hsp90 causes cancer cells to undergo apoptosis in vitro and in vivo. Gene expression profiling revealed that induction of the intrinsic apoptotic pathway by this drug combination coincided with transcriptional downregulation of Survivin and Wee1, an outcome not seen in cells treated separately with either agent. At the translational level, expression of these two proteins, as well as activated Akt, was completely abrogated. These data support the hypothesis that Wee1 inhibition sensitizes cancer cells to Hsp90 inhibitors; they establish combined Wee1/Hsp90 inhibition as a novel therapeutic strategy; and they provide a mechanistic rationale for enhancing the pro-apoptotic activity of Hsp90 inhibitors.
Collapse
Affiliation(s)
- Aki Iwai
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu C, Zhang N. Emerging biotechnological strategies for non-viral antiangiogenic gene therapy. Angiogenesis 2012; 15:521-42. [DOI: 10.1007/s10456-012-9295-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/04/2012] [Indexed: 01/08/2023]
|
49
|
Lee MS, Jung JI, Kwon SH, Lee SM, Morita K, Her S. TIMP-2 fusion protein with human serum albumin potentiates anti-angiogenesis-mediated inhibition of tumor growth by suppressing MMP-2 expression. PLoS One 2012; 7:e35710. [PMID: 22545131 PMCID: PMC3335789 DOI: 10.1371/journal.pone.0035710] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/20/2012] [Indexed: 01/06/2023] Open
Abstract
TIMP-2 protein has been intensively studied as a promising anticancer candidate agent, but the in vivo mechanism underlying its anticancer effect has not been clearly elucidated by previous works. In this study, we investigated the mechanism underlying the anti-tumor effects of a TIMP-2 fusion protein conjugated with human serum albumin (HSA/TIMP-2). Systemic administration of HSA/TIMP-2 effectively inhibited tumor growth at a minimum effective dose of 60 mg/kg. The suppressive effect of HSA/TIMP-2 was accompanied by a marked reduction of in vivo vascularization. The anti-angiogenic activity of HSA/TIMP-2 was directly confirmed by CAM assays. In HSA/TIMP-2-treated tumor tissues, MMP-2 expression was profoundly decreased without a change in MT1-MMP expression of PECAM-1-positive cells. MMP-2 mRNA was also decreased by HSA/TIMP-2 treatment of human umbilical vein endothelial cells. Zymographic analysis showed that HSA/TIMP-2 substantially decreased extracellular pro-MMP-2 activity (94–99% reduction) and moderately decreased active MMP-2 activity (10–24% reduction), suggesting MT1-MMP-independent MMP-2 modulation. Furthermore, HSA/TIMP-2 had no effect on in vitro active MMP-2 activity and in vivo MMP-2 activity. These studies show that HSA/TIMP-2 potentiates anti-angiogenic activity by modulating MMP-2 expression, but not MMP-2 activity, to subsequently suppress tumor growth, suggesting an important role for MMP-2 expression rather than MMP-2 activity in anti-angiogenesis.
Collapse
Affiliation(s)
- Mi-Sook Lee
- Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea
| | - Jae-In Jung
- Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea
| | - Seung-Hae Kwon
- Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea
| | - Sang-Mok Lee
- BiocurePharm, Daejeon Bio Venture Town, Daejeon, Republic of Korea
| | - Kyoji Morita
- Laboratory of Neuropharmacology, Department of Nursing, Shikoku University, School of Health Sciences, Tokushima, Japan
| | - Song Her
- Division of Bio-Imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Republic of Korea
- * E-mail:
| |
Collapse
|
50
|
Knockdown of von Hippel-Lindau protein decreases lung cancer cell proliferation and colonization. FEBS Lett 2012; 586:1510-5. [PMID: 22673518 DOI: 10.1016/j.febslet.2012.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/19/2012] [Accepted: 04/07/2012] [Indexed: 12/31/2022]
Abstract
Although von Hippel-Lindau protein (pVHL) is known as a tumor suppressor in kidney and other organs, it remains unclear whether pVHL plays a role in lung cancer development. We investigated the role of pVHL in lung cancer cell proliferation, migration, and colonization using stable A549 cells with knockdown of pVHL. We found that knockdown of pVHL promotes epithelial-mesenchymal transition (EMT) in lung cancer cells. Knockdown of pVHL decreased tumor colonization in a tail-vein injection model and decreased cell proliferation, whereas overexpression of constitutive active HIF increased tumor colonization, suggesting a HIF-independent function of pVHL in lung. Knockdown of pVHL decreased phosphorylation of FAK and expression of integrin, suggesting that pVHL regulates lung cancer development via integrin/FAK signaling pathway.
Collapse
|