1
|
Arul Arasan TS, Jorgensen R, Van Antwerp C, Ng PKW, Gangur V. Advances in Mechanisms of Anaphylaxis in Wheat Allergy: Utility of Rodent Models. Foods 2025; 14:883. [PMID: 40077585 PMCID: PMC11899146 DOI: 10.3390/foods14050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Wheat is a staple and nutritious food that is consumed globally. However, it is identified as a major allergenic food because of its capacity to trigger life-threatening systemic anaphylaxis. The specific mechanisms that underlie this systemic anaphylaxis in wheat allergy are incompletely understood. As a result, several rodent models have been developed to study anaphylaxis in wheat allergies. In this paper, we have conducted a comprehensive review of wheat-induced anaphylaxis using Google Scholar and PubMed databases with relevant keywords. The following objectives were addressed: (1) to determine the complexity of wheat-induced anaphylaxis; (2) to summarize the role of genetic susceptibility in wheat anaphylaxis; (3) to identify the environmental factors involved in the development of wheat anaphylaxis; (4) to map the current status of mechanisms involved in wheat anaphylaxis; (5) to identify the approaches, strengths, and limitations of rodent models of wheat anaphylaxis; and (6) to identify challenges and opportunities in this area of science. Our findings provide a comprehensive updated critical resource for the future research agenda in wheat allergy-associated anaphylaxis, particularly using rodent models as attractive pre-clinical tools.
Collapse
Affiliation(s)
- Tamil Selvan Arul Arasan
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (T.S.A.A.); (R.J.); (C.V.A.)
| | - Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (T.S.A.A.); (R.J.); (C.V.A.)
| | - Chris Van Antwerp
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (T.S.A.A.); (R.J.); (C.V.A.)
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA;
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (T.S.A.A.); (R.J.); (C.V.A.)
| |
Collapse
|
2
|
Saunders MN, Rad LM, Williams LA, Landers JJ, Urie RR, Hocevar SE, Quiros M, Chiang M, Angadi AR, Janczak KW, Bealer EJ, Crumley K, Benson OE, Griffin KV, Ross BC, Parkos CA, Nusrat A, Miller SD, Podojil JR, O'Konek JJ, Shea LD. Allergen-Encapsulating Nanoparticles Reprogram Pathogenic Allergen-Specific Th2 Cells to Suppress Food Allergy. Adv Healthc Mater 2025; 14:e2400237. [PMID: 38691819 PMCID: PMC11527797 DOI: 10.1002/adhm.202400237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Food allergy is a prevalent, potentially deadly disease caused by inadvertent sensitization to benign food antigens. Pathogenic Th2 cells are a major driver for disease, and allergen-specific immunotherapies (AIT) aim to increase the allergen threshold required to elicit severe allergic symptoms. However, the majority of AIT approaches require lengthy treatments and convey transient disease suppression, likely due to insufficient targeting of pathogenic Th2 responses. Here, the ability of allergen-encapsulating nanoparticles to directly suppress pathogenic Th2 responses and reactivity is investigated in a mouse model of food allergy. NPs associate with pro-tolerogenic antigen presenting cells, provoking accumulation of antigen-specific, functionally suppressive regulatory T cells in the small intestine lamina propria. Two intravenous doses of allergen encapsulated in poly(lactide-co-glycolide) nanoparticles (NPs) significantly reduces oral food challenge (OFC)-induced anaphylaxis. Importantly, NP treatment alters the fates of pathogenic allergen-specific Th2 cells, reprogramming these cells toward CD25+FoxP3+ regulatory and CD73+FR4+ anergic phenotypes. NP-mediated reductions in the frequency of effector cells in the gut and mast cell degranulation following OFC are also demonstrated. These studies reveal mechanisms by which an allergen-encapsulating NP therapy and, more broadly, allergen-specific immunotherapies, can rapidly attenuate allergic responses by targeting pathogenic Th2 cells.
Collapse
Affiliation(s)
- Michael N. Saunders
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Laila M. Rad
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Laura A. Williams
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Jeffrey J. Landers
- Mary H. Weiser Food Allergy CenterUniversity of MichiganAnn ArborMI48109USA
| | - Russell R. Urie
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Sarah E. Hocevar
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborMI48109USA
| | - Miguel Quiros
- Department of PathologyUniversity of MichiganAnn ArborMI48109USA
| | - Ming‐Yi Chiang
- Department of Microbiology‐ImmunologyNorthwestern UniversityChicagoIL60611USA
| | - Amogh R. Angadi
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | | | - Elizabeth J. Bealer
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Kelly Crumley
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Olivia E. Benson
- Mary H. Weiser Food Allergy CenterUniversity of MichiganAnn ArborMI48109USA
| | - Kate V. Griffin
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Brian C. Ross
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | | | - Asma Nusrat
- Department of PathologyUniversity of MichiganAnn ArborMI48109USA
| | - Stephen D. Miller
- Department of Microbiology‐ImmunologyNorthwestern UniversityChicagoIL60611USA
- Center for Human ImmunobiologyNorthwestern UniversityChicagoIL60611USA
- Interdepartmental Immunobiology CenterFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
| | - Joseph R. Podojil
- Department of Microbiology‐ImmunologyNorthwestern UniversityChicagoIL60611USA
- Center for Human ImmunobiologyNorthwestern UniversityChicagoIL60611USA
- Cour Pharmaceuticals Development CompanyNorthbrookIL60077USA
| | - Jessica J. O'Konek
- Mary H. Weiser Food Allergy CenterUniversity of MichiganAnn ArborMI48109USA
| | - Lonnie D. Shea
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
3
|
Oishi K, Nakano N, Ota M, Inage E, Izawa K, Kaitani A, Ando T, Hara M, Ohtsuka Y, Nishiyama C, Ogawa H, Kitaura J, Okumura K, Shimizu T. MHC Class II-Expressing Mucosal Mast Cells Promote Intestinal Mast Cell Hyperplasia in a Mouse Model of Food Allergy. Allergy 2025. [PMID: 39868907 DOI: 10.1111/all.16477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/13/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND IgE-mediated food allergy is accompanied by mucosal mast cell (MMC) hyperplasia in the intestinal mucosa. Intestinal MMC numbers correlate with the severity of food allergy symptoms. However, the mechanisms by which MMCs proliferate excessively are poorly understood. Here, we clarify the role of newly identified MHC class II (MHCII)-expressing MMCs in the effector phase of IgE-mediated food allergy. METHODS Mice reconstituted with MHCII-deficient or wild-type MMCs were used to generate a mouse mode of IgE-mediated food allergy. We assessed the extent of intestinal MMC hyperplasia and the severity of hypothermia in these mice. In addition, we performed in vitro antigen presentation assay using induced MHCII-expressing MMCs generated from bone marrow cells to evaluate the effect of CD4+ T cell activation on MMC proliferation. RESULTS In food-allergic mice, we identified the appearance of MHCII-expressing MMCs in the intestinal mucosa and showed that MMC hyperplasia was suppressed in mice with MHCII-deficient MMCs compared to mice with wild-type MMCs. In vitro assays demonstrated that MHCII-expressing MMCs incorporate food antigens directly and through the high-affinity IgE receptor FcεRI-mediated endocytosis and activate antigen-specific CD4+ T cells from food-allergic mice by antigen presentation. Activated CD4+ T cells secrete IL-4 and large amounts of IL-5, which enhance production of the mast cell growth factor IL-9 by IL-33-activated MMCs. Excess IL-9 causes excessive MMC proliferation, leading to the development of MMC hyperplasia. CONCLUSION Antigen presentation to CD4+ T cells by MHCII-expressing MMCs triggers intestinal MMC hyperplasia and exacerbates IgE-mediated food allergy.
Collapse
Affiliation(s)
- Kenji Oishi
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masamu Ota
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Eisuke Inage
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Ohtsuka
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Zeise KD, Falkowski NR, Stark KG, Brown CA, Huffnagle GB. Profiling inflammatory outcomes of Candida albicans colonization and food allergy induction in the murine glandular stomach. mBio 2024; 15:e0211324. [PMID: 39347572 PMCID: PMC11559088 DOI: 10.1128/mbio.02113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
We investigated the effects of Candida albicans colonization on inflammatory responses in the murine glandular stomach, which is similar to the glandular mucosa of the human stomach. We also explored whether the presence of a food allergy could exacerbate C. albicans-induced inflammation or if C. albicans would amplify allergic inflammation in the glandular stomach. C. albicans successfully colonized the stomach of amoxicillin-pre-treated BALB/c mice and induced gastritis in the limiting ridge with minimal inflammation in the glandular stomach. There was significant upregulation of Il18, calprotectin (S100a8 and S100a9), and several antimicrobial peptides, but minimal induction of type 1, 2, or 3 responses in the glandular stomach. A robust type 2 response, inflammatory cell recruitment, and tissue remodeling occurred in the glandular stomach following oral ovalbumin challenges in sensitized mice. The type 2 response was not augmented by C. albicans colonization, but there was significant upregulation of Il1b, Il12a, Tnf, and Il17a in C. albicans-colonized food allergic mice. The presence of C. albicans did not affect the expression of genes involved in barrier integrity and signaling, many of which were upregulated during food allergy. Overall, our data indicate that C. albicans colonization induces minimal inflammation in the glandular stomach but augments antimicrobial peptide expression. Induction of a food allergy results in robust type 2 inflammation in the glandular stomach, and while C. albicans colonization does not exacerbate type 2 inflammation, it does activate a number of innate and type 3 immune responses amid the backdrop of allergic inflammation. IMPORTANCE Food allergy continues to be a growing public health concern, affecting at least 1 in 10 individuals in the United States alone. However, little is known about the involvement of the gastric mucosa in food allergy. Gastrointestinal Candida albicans colonization has been reported to promote gastrointestinal inflammation in a number of chronic diseases. Using a mouse model of food allergy to egg white protein, we demonstrate regionalization of the inflammatory response to C. albicans colonization, induction of robust type 2 (allergic) inflammation in the stomach, and augmentation of innate and type 3 responses by C. albicans colonization during food allergy.
Collapse
Affiliation(s)
- Karen D. Zeise
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelsey G. Stark
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher A. Brown
- Advanced Research Computing, Information and Technology Services, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary B. Huffnagle
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary & Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Liang Z, Zhang C, Liu X, Yang K, Xiong Z, Liang B, Mai J, Xiao X, Liu J, Yang P, Xu D, Zhou Z. Neutrophil-activating protein in Bacillus spores inhibits casein allergy via TLR2 signaling. Front Immunol 2024; 15:1428079. [PMID: 39564136 PMCID: PMC11574345 DOI: 10.3389/fimmu.2024.1428079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
Background Milk allergy commonly occurs in children, mainly caused by bovine-derived casein (CAS) protein. Neutrophil-activating protein (NAP) of Helicobacter pylori plays an immunomodulatory role with potential to suppress Th2-type immune responses. Bacillus subtilis (B. subtilis) spores are commonly used as oral vectors for drug delivery. Objective To investigate whether recombinantly expressed NAP on B. subtilis spores could be an effective treatment for CAS allergy in mouse. Methods After CAS sensitization, mice were orally administered B. subtilis spores expressing recombinant NAP for 6 weeks. Allergic symptoms and parameters were evaluated after CAS challenge oral gavage, including allergic inflammation, splenic cytokines, and serum-specific antibodies. Protein levels of Toll-like receptor 2 (TLR2) and c-JUN in the jejunum tissue were measured by western blot. Bone marrow-derived macrophages (BMDMs) were stimulated with inactivated NAP spores to measure the influence on cytokine profiles in vitro. Results NAP recombinant spore treatment significantly reduced allergic symptoms and intestinal inflammation. Interleukin-12 and interferon-gamma levels increased, whereas serum CAS-specific IgG1 and IgE levels decreased. TLR2 and c-JUN expression levels were elevated in the jejunal tissue. Inactivated NAP spores polarized BMDMs to the M1 phenotype and enhanced cytokine expression, which were inhibited by a TLR2 neutralizing antibody. Conclusion NAP offers a new strategy in the treatment of CAS allergy by inhibiting the Th2 response, while eliciting macrophages to promote Th1 immune responses.
Collapse
Affiliation(s)
- Zhuwei Liang
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
- Clinical Laboratory, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine), Guangzhou, Guangdong, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Chao Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Xiaoyu Liu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Kaiyue Yang
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
| | - Zhile Xiong
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bingshao Liang
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jialiang Mai
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Clinical Laboratory, Foshan Maternity and Child Health Hospital, Foshan, Guangdong, China
| | - Xiaojun Xiao
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jie Liu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Pingchang Yang
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Damo Xu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Zhenwen Zhou
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Han K, Xie F, Animasahun O, Nenwani M, Kitamoto S, Kim Y, Phoo MT, Xu J, Wuchu F, Omoloja K, Achreja A, Choppara S, Li Z, Gong W, Cho YS, Dobson H, Ahn J, Zhou X, Huang X, An X, Kim A, Xu Y, Wu Q, Lee SH, O'Konek JJ, Xie Y, Lei YL, Kamada N, Nagrath D, Moon JJ. Inulin-gel-based oral immunotherapy remodels the small intestinal microbiome and suppresses food allergy. NATURE MATERIALS 2024; 23:1444-1455. [PMID: 38977883 PMCID: PMC11442122 DOI: 10.1038/s41563-024-01909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/30/2024] [Indexed: 07/10/2024]
Abstract
Despite the potential of oral immunotherapy against food allergy, adverse reactions and loss of desensitization hinder its clinical uptake. Dysbiosis of the gut microbiota is implicated in the increasing prevalence of food allergy, which will need to be regulated to enable for an effective oral immunotherapy against food allergy. Here we report an inulin gel formulated with an allergen that normalizes the dysregulated ileal microbiota and metabolites in allergic mice, establishes allergen-specific oral tolerance and achieves robust oral immunotherapy efficacy with sustained unresponsiveness in food allergy models. These positive outcomes are associated with enhanced allergen uptake by antigen-sampling dendritic cells in the small intestine, suppressed pathogenic type 2 immune responses, increased interferon-γ+ and interleukin-10+ regulatory T cell populations, and restored ileal abundances of Eggerthellaceae and Enterorhabdus in allergic mice. Overall, our findings underscore the therapeutic potential of the engineered allergen gel as a suitable microbiome-modulating platform for food allergy and other allergic diseases.
Collapse
Affiliation(s)
- Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Minal Nenwani
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yeji Kim
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - May Thazin Phoo
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Fulei Wuchu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kehinde Omoloja
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Srinadh Choppara
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhaoheng Li
- Graduate Program in Biostatistics, University of Washington, Seattle, WA, USA
| | - Wang Gong
- Departments of Head and Neck Surgery and of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Young Seok Cho
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hannah Dobson
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jinsung Ahn
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xuehui Huang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Qi Wu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansang, MI, USA
| | - Yu Leo Lei
- Departments of Head and Neck Surgery and of Cancer Biology, the University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Deepak Nagrath
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Nesovic LD, Gonzalez Cruz PE, Rychener N, Wilks LR, Gill HS. Standardizing the skin tape stripping method for sensitization and using it to create a mouse model of peanut allergy. Int J Pharm 2024; 662:124479. [PMID: 39019298 DOI: 10.1016/j.ijpharm.2024.124479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Animal models for food allergies serve as crucial tools in understanding allergy mechanisms and assessing the efficacy of potential desensitization methods. The effectiveness of inducing allergies in mice through intragastric lavage sensitization varies. The intraperitoneal method can trigger systemic anaphylaxis, however it lacks anatomical relevance. Hence, a uniform and reliable allergy induction method in mice is required. Tape -stripping can mimic atopic dermatitis (AD), a precursor to lifelong peanut allergies in humans. Furthermore, skin damage triggers the upregulation of skin alarmins and the expansion of small-intestinal mast cells, both implicated in allergy development. METHODS We standardized a skin-based sensitization method in a mouse model of peanut allergy using skin tape-stripping followed by allergen application. We compared this method with intragastric sensitization. RESULTS Skin-based sensitization led to increased mast cells, goblet cells, and eosinophils in the small intestine, elevated systemic IgE levels, murine mast cell protease-1 (mMCP-1), histamine, and eosinophilic activity in peripheral blood. Moreover, it resulted in a significant hypothermic response, with nearly 30% mortality following an oral challenge one-month post-sensitization. CONCLUSION Our research offers a standardized and readily reproducible method for inducing peanut allergy in mice, which could also be adapted for other food allergens.
Collapse
Affiliation(s)
- Lazar D Nesovic
- Department of Chemical Engineering, Texas Tech University, 8th and Canton, Lubbock, TX 79409, USA
| | - Pedro E Gonzalez Cruz
- Department of Chemical Engineering, Texas Tech University, 8th and Canton, Lubbock, TX 79409, USA
| | - Natalie Rychener
- Department of Chemical Engineering, Texas Tech University, 8th and Canton, Lubbock, TX 79409, USA
| | - Logan R Wilks
- Department of Chemical Engineering, Texas Tech University, 8th and Canton, Lubbock, TX 79409, USA
| | - Harvinder S Gill
- Department of Chemical Engineering, Texas Tech University, 8th and Canton, Lubbock, TX 79409, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
8
|
Saunders MN, Rival CM, Mandal M, Cramton K, Rad LM, Janczak KW, Williams LA, Angadi AR, O’Konek JJ, Shea LD, Erickson LD. Immunotherapy with biodegradable nanoparticles encapsulating the oligosaccharide galactose-alpha-1,3-galactose enhance immune tolerance against alpha-gal sensitization in a murine model of alpha-gal syndrome. FRONTIERS IN ALLERGY 2024; 5:1437523. [PMID: 39183976 PMCID: PMC11341473 DOI: 10.3389/falgy.2024.1437523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
IgE antibodies against the mammalian oligosaccharide allergen galactose-α-1,3-galactose (αGal) can result in a severe allergic disease known as alpha-gal syndrome (AGS). This syndrome, acquired by tick bites that cause αGal sensitization, leads to allergic reactions after ingestion of non-primate mammalian meat and mammalian-derived products that contain αGal. Allergen-specific immunotherapies for this tickborne allergic syndrome are understudied, as are the immune mechanisms of allergic desensitization that induce clinical tolerance to αGal. Here, we reveal that prophylactic administration of αGal glycoprotein-containing nanoparticles to mice prior to tick protein-induced αGal IgE sensitization blunts the production of Th2 cytokines IL-4, IL-5, and IL-13 in an αGal-dependent manner. Furthermore, these effects correlated with suppressed production of αGal-specific IgE and hypersensitivity reactions, as measured by reduced basophil activation and histamine release and the systemic release of mast cell protease-1 (MCPT-1). Therapeutic administration of two doses of αGal-containing nanoparticles to mice sensitized to αGal had partial efficacy by reducing the Th2 cytokine production, αGal-specific IgE production, and MCPT-1 release without reducing basophil activation or histamine release. These data identify nanoparticles carrying encapsulated αGal glycoprotein as a potential strategy for augmenting αGal-specific immune tolerance and reveal diverse mechanisms by which αGal nanoparticles modify immune responses for established αGal-specific IgE-mediated allergic reactions.
Collapse
Affiliation(s)
- Michael N. Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Claudia M. Rival
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Mahua Mandal
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Kayla Cramton
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Laila M. Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Katarzyna W. Janczak
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Laura A. Williams
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amogh R. Angadi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jessica J. O’Konek
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Loren D. Erickson
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
9
|
Yamaki K, Matsuda A, Koyama Y. Importance of IgE-Induced Unique Plasma Leakage in the Skin for Urticaria-Like Symptoms in an Anaphylaxis-Dependent Spotted Distribution of Immune Complex in Skin (ASDIS) Mouse Model. Int Arch Allergy Immunol 2024; 185:1139-1153. [PMID: 38934152 DOI: 10.1159/000539215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Allergic diseases, such as anaphylaxis and urticaria, pose significant health concerns. The quest for improved prognostic outcomes in these diseases necessitates the exploration of novel therapeutic avenues. To address this need, we have developed a novel mouse model of anaphylaxis, denoted as anaphylaxis-dependent spotted distribution of immune complex in skin (ASDIS). ASDIS manifests as distinct dotted symptoms in the skin, detectable through in vivo imaging, resembling urticarial symptoms. In this study, we investigated the potential underlying mechanisms giving rise to these dotted symptoms, exploring the role of vascular permeability and characterizing the ASDIS model as a new urticaria model. METHODS We employed haired and hairless HR mice (BALB/c background) and hairless HR-1 mice (a commercially available hairless strain with an unidentified genetic background). ASDIS was induced by the simultaneous intravenous injection of anti-ovalbumin IgE and fluorescein isothiocyanate (FITC)-ovalbumin, along with Evans blue - a recognized vascular permeability indicator. Anaphylaxis and scratching behavior were monitored through rectal temperature decrease and optical observation, respectively. Histamine, platelet-activating factor, and compound 48/80 were injected with or without FITC-ovalbumin for comparative analysis. The effects of an α1 adrenergic receptor agonist applied to the skin were also examined. RESULTS In hairless mice, the simultaneous injection of histamine, compound 48/80, or IgE with FITC-ovalbumin induced comparable rectal temperature decreases and vascular permeability. However, only the combination of FITC-ovalbumin and IgE triggered ASDIS, specifically the dotted urticaria-like symptom. Evans blue visualization and optical observation of dotted swelling confirmed that the vascular permeability mediated the phenomenon. Hairless mice exhibited a more pronounced temperature decrease than their haired counterparts when exposed to histamine, platelet-activating factor, compound 48/80, and IgE with FITC-ovalbumin. The application of an α1 adrenergic receptor agonist to the skin attenuated the topical urticaria-like symptom. CONCLUSION Our experiments revealed four findings. The first is that ASDIS mirrors urticaria-like symptoms resulting from increased vascular permeability, akin to human urticaria. The second finding is that the development of dotted symptoms involves an IgE-induced, yet unidentified, mechanism not triggered by histamine or compound 48/80 alone. The third finding highlights the heightened susceptibility of hairless mice to ASDIS induction. The fourth finding demonstrates that the inhibition of ASDIS by the topical application of an α1 adrenergic receptor agonist hints at a potential anti-urticarial application for this vasoconstrictor. Further elucidation of these unidentified IgE-dependent mechanisms and the specific generation of dotted symptoms by IgE-immune complexes could provide novel insights into allergic response processes and therapeutic interventions for these conditions.
Collapse
Affiliation(s)
- Kouya Yamaki
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Akari Matsuda
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
10
|
O'Konek JJ. Animal Models in the Study of Food Allergens: Long-Term Maintenance of Allergic Reactivity in Mouse Models of Food Allergy. Methods Mol Biol 2024; 2717:321-335. [PMID: 37737995 DOI: 10.1007/978-1-0716-3453-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Multiple mouse models have been used to characterize mechanisms of allergic sensitization and anaphylaxis and are widely used for preclinical development of novel therapeutics. However, the majority of published works with mouse models of food allergy have very short intervals between the time of sensitization and the end of the study, and the duration of maintenance of reactivity has not been widely reported. This chapter focuses on two of the most commonly used mouse models with sensitization to peanut or ovalbumin, with the focus on the long-term durability of sensitization to allow for longer therapeutic protocols and assessment of sustained unresponsiveness.
Collapse
Affiliation(s)
- Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Zang Y, Liu S, Rao Z, Wang Y, Zhang B, Li H, Cao Y, Zhou J, Shen Z, Duan S, He D, Xu H. Retinoid X receptor gamma dictates the activation threshold of group 2 innate lymphoid cells and limits type 2 inflammation in the small intestine. Immunity 2023; 56:2542-2554.e7. [PMID: 37714152 DOI: 10.1016/j.immuni.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are crucial in promoting type 2 inflammation that contributes to both anti-parasite immunity and allergic diseases. However, the molecular checkpoints in ILC2s that determine whether to immediately launch a proinflammatory response are unknown. Here, we found that retinoid X receptor gamma (Rxrg) was highly expressed in small intestinal ILC2s and rapidly suppressed by alarmin cytokines. Genetic deletion of Rxrg did not impact ILC2 development but facilitated ILC2 responses and the tissue inflammation induced by alarmins. Mechanistically, RXRγ maintained the expression of its target genes that support intracellular cholesterol efflux, which in turn reduce ILC2 proliferation. Furthermore, RXRγ expression prevented ILC2 response to mild stimulations, including low doses of alarmin cytokine and mechanical skin injury. Together, we propose that RXRγ expression and its mediated lipid metabolic states function as a cell-intrinsic checkpoint that confers the threshold of ILC2 activation in the small intestine.
Collapse
Affiliation(s)
- Yang Zang
- School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Shaorui Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Zebing Rao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yinsheng Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Boya Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Hui Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yingjiao Cao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhuxia Shen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shengzhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Danyang He
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Neuroimmunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
12
|
Ramsey N, Kazmi W, Phelan M, Lozano-Ojalvo D, Berin MC. JAK1 inhibition with abrocitinib decreases allergen-specific basophil and T-cell activation in pediatric peanut allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100103. [PMID: 37711220 PMCID: PMC10501208 DOI: 10.1016/j.jacig.2023.100103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Background JAK1 is a signaling molecule downstream of cytokine receptors, including IL-4 receptor α. Abrocitinib is an oral JAK1 inhibitor; it is a safe and effective US Food and Drug Administration-approved treatment for adults with moderate-to-severe atopic dermatitis. Objective Our objective was to investigate the effect of abrocitinib on basophil activation and T-cell activation in patients with peanut allergy to determine the potential for use of JAK1 inhibitors as a monotherapy or an adjuvant to peanut oral immunotherapy. Methods Basophil activation in whole blood was measured by detection of CD63 expression using flow cytometry. Activation of CD4+ effector and regulatory T cells was determined by the upregulation of CD154 and CD137, respectively, on anti-CD3/CD28- or peanut-stimulated PBMCs. For the quantification of peanut-induced cytokines, PBMCs were stimulated with peanut for 5 days before harvesting supernatant. Results Abrocitinib decreased the allergen-specific activation of basophils in response to peanut. We showed suppression of effector T-cell activation when stimulated by CD3/CD28 beads in the presence of 10 ng of abrocitinib, whereas activation of regulatory T-cell populations was preserved in the presence of abrocitinib. Abrocitinib induced statistically significant dose-dependent inhibition in IL-5, IL-13, IL-10, IL-9, and TNF-α in the presence of peanut stimulation. Conclusion These results support our hypothesis that JAK1 inhibition decreases basophil activation and TH2 cytokine signaling, reducing in vitro allergic responses in subjects with peanut allergy. Abrocitinib may be an effective adjunctive immune modulator in conjunction with peanut oral immunotherapy or as a monotherapy for individuals with food allergy.
Collapse
Affiliation(s)
| | - Wajiha Kazmi
- Icahn School of Medicine at Mount Sinai, New York
| | | | | | | |
Collapse
|
13
|
Berin C. Jak out of the box: Targeting Bruton's tyrosine kinase, sialic acid-binding immunoglobulin-like lectin-8, and Janus kinase 1 in food allergy. Ann Allergy Asthma Immunol 2023; 131:23-28. [PMID: 36738782 PMCID: PMC10330066 DOI: 10.1016/j.anai.2023.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
There has been rapid growth in the field of immunoglobulin E-mediated food allergy therapeutics, with 1 US Food and Drug Administration-approved therapy in 2020 and several others in various stages of investigation. Oral immunotherapy is the approach with the longest track record of study and provides desensitization for most individuals undertaking the therapy. However, the therapy must be maintained for continued clinical protection, and adverse effects of the therapy are frequent. There is a need to improve allergen immunotherapy safety and durability and to provide a treatment that can target multiple food allergies. In this review, we discuss novel adjunct therapies that may improve safety, such as omalizumab, Bruton's tyrosine kinase inhibitors, and agonists of sialic acid-binding immunoglobulin-like lectin-8, which suppress hypersensitivity responses. We also discuss approaches that may improve magnitude or durability of the treatment response, such as dupilumab and Janus kinase 1 inhibitors.
Collapse
Affiliation(s)
- Cecilia Berin
- Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
14
|
Gouel-Chéron A, Dejoux A, Lamanna E, Bruhns P. Animal Models of IgE Anaphylaxis. BIOLOGY 2023; 12:931. [PMID: 37508362 PMCID: PMC10376466 DOI: 10.3390/biology12070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Allergies and atopy have emerged as significant public health concerns, with a progressively increasing incidence over the last two decades. Anaphylaxis is the most severe form of allergic reactions, characterized by a rapid onset and potentially fatal outcome, even in healthy individuals. Due to the unpredictable nature and potential lethality of anaphylaxis and the wide range of allergens involved, clinical studies in human patients have proven to be challenging. Diagnosis is further complicated by the lack of reliable laboratory biomarkers to confirm clinical suspicion. Thus, animal models have been developed to replicate human anaphylaxis and explore its pathophysiology. Whereas results obtained from animal models may not always be directly translatable to humans, they serve as a foundation for understanding the underlying mechanisms. Animal models are an essential tool for investigating new biomarkers that could be incorporated into the allergy workup for patients, as well as for the development of novel treatments. Two primary pathways have been described in animals and humans: classic, predominantly involving IgE and histamine, and alternative, reliant on IgG and the platelet-activating factor. This review will focus essentially on the former and aims to describe the most utilized IgE-mediated anaphylaxis animal models, including their respective advantages and limitations.
Collapse
Affiliation(s)
- Aurélie Gouel-Chéron
- Université Paris Cité, 75010 Paris, France
- Anaesthesiology and Critical Care Medicine Department, DMU Parabol, Bichat-Claude Bernard Hospital, AP-HP, 75018 Paris, France
- Institut Pasteur, Université de Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Alice Dejoux
- Institut Pasteur, Université de Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Emma Lamanna
- Institut Pasteur, Université de Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
- Neovacs SA, 92150 Suresnes, France
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| |
Collapse
|
15
|
Brandt EB, Ruff BP, Filuta AL, Chang WC, Shik D, Khurana Hershey GK. Thymic stromal lymphopoietin rather than IL-33 drives food allergy after epicutaneous sensitization to food allergen. J Allergy Clin Immunol 2023; 151:1660-1666.e4. [PMID: 36878383 PMCID: PMC10297746 DOI: 10.1016/j.jaci.2023.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND A major route of sensitization to food allergen is through an impaired skin barrier. IL-33 and thymic stromal lymphopoietin (TSLP) have both been implicated in epicutaneous sensitization and food allergy, albeit in different murine models. OBJECTIVE We assessed the respective contributions of TSLP and IL-33 to the development of atopic dermatitis (AD) and subsequent food allergy in TSLP and IL-33 receptor (ST2)-deficient mice using an AD model that does not require tape stripping. METHOD TSLP receptor (TSLPR)-/-, ST2-/-, and BALB/cJ control mice were exposed to 3 weekly epicutaneous skin patches of one of saline, ovalbumin (OVA), or a combination of OVA and Aspergillus fumigatus (ASP), followed by repeated intragastric OVA challenges and development of food allergy. RESULTS ASP and/or OVA patched, but not OVA-alone patched, BALB/cJ mice developed an AD-like skin phenotype. However, epicutaneous OVA sensitization occurred in OVA patched mice and was decreased in ST2-/- mice, resulting in lower intestinal mast cell degranulation and accumulation, as well as OVA-induced diarrhea occurrences on intragastric OVA challenges. In TSLPR-/- mice, intestinal mast cell accumulation was abrogated, and no diarrhea was observed. AD was significantly milder in OVA + ASP patched TSLPR-/- mice compared to wild type and ST2-/- mice. Accordingly, intestinal mast cell accumulation and degranulation were impaired in OVA + ASP patched TSLPR-/- mice compared to wild type and ST2-/- mice, protecting TSLPR-/- mice from developing allergic diarrhea. CONCLUSION Epicutaneous sensitization to food allergen and development of food allergy can occur without skin inflammation and is partly mediated by TSLP, suggesting that prophylactic targeting of TSLP may be useful in mitigating the development of AD and food allergy early in life in at-risk infants.
Collapse
Affiliation(s)
- Eric B Brandt
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brandy P Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alyssa L Filuta
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wan-Chi Chang
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dana Shik
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
16
|
Sharma A, Rijavec M, Tomar S, Yamani A, Ganesan V, Krempski J, Schuler CF, Bunyavanich S, Korosec P, Hogan SP. Acute systemic myeloid inflammatory and stress response in severe food allergic reactions. Clin Exp Allergy 2023; 53:536-549. [PMID: 36756745 PMCID: PMC11157667 DOI: 10.1111/cea.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Food allergic reactions can be severe and potentially life-threatening and the underlying immunological processes that contribute to the severity of reactions are poorly understood. The aim of this study is to integrate bulk RNA-sequencing of human and mouse peripheral blood mononuclear cells during food allergic reactions and in vivo mouse models of food allergy to identify dysregulated immunological processes associated with severe food allergic reactions. METHODS Bulk transcriptomics of whole blood from human and mouse following food allergic reactions combined with integrative differential expressed gene bivariate and module eigengene network analyses to identify the whole blood transcriptome associated with food allergy severity. In vivo validation immune cell and gene expression in mice following IgE-mediated reaction. RESULTS Bulk transcriptomics of whole blood from mice with different severity of food allergy identified gene ontology (GO) biological processes associated with innate and inflammatory immune responses, dysregulation of MAPK and NFkB signalling and identified 429 genes that correlated with reaction severity. Utilizing two independent human cohorts, we identified 335 genes that correlated with severity of peanut-induced food allergic reactions. Mapping mouse food allergy severity transcriptome onto the human transcriptome revealed 11 genes significantly dysregulated and correlated with severity. Analyses of whole blood from mice undergoing an IgE-mediated reaction revealed a rapid change in blood leukocytes particularly inflammatory monocytes (Ly6Chi Ly6G- ) and neutrophils that was associated with changes in CLEC4E, CD218A and GPR27 surface expression. CONCLUSIONS Collectively, IgE-mediated food allergy severity is associated with a rapid innate inflammatory response associated with acute cellular stress processes and dysregulation of peripheral blood inflammatory myeloid cell frequencies.
Collapse
Affiliation(s)
- Ankit Sharma
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sunil Tomar
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| | - Amnah Yamani
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Varsha Ganesan
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| | - James Krempski
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| | - Charles F Schuler
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
- Division of Allergy and Immunology, Michigan medicine University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; Icahn Institute for Data Science and Genome Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter Korosec
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simon P. Hogan
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| |
Collapse
|
17
|
Berin MC. Targeting type 2 immunity and the future of food allergy treatment. J Exp Med 2023; 220:213917. [PMID: 36880703 PMCID: PMC9997511 DOI: 10.1084/jem.20221104] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 03/08/2023] Open
Abstract
IgE-mediated food allergy affects 6-8% of the population in the United States. Type 2 immune responses are central to the pathogenesis of food allergy, but type 2 CD4+ T cell responses have been found to be heterogeneous in food allergy suggesting a division of labor between Tfh13 and peTH2 cells in promotion of IgE class switching, modulation of intestinal barrier function, and regulation of mast cell expansion. Oral immunotherapy for the treatment of food allergy incompletely targets subsets of type 2 immunity in a transient manner, but new therapeutics targeting different levels of type 2 immunity are in current or planned trials for food allergy. These new treatments and the basis for their use are the focus of this review.
Collapse
Affiliation(s)
- M Cecilia Berin
- Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| |
Collapse
|
18
|
Marhaeny HD, Pratama YA, Rohmah L, Kasatu SM, Miatmoko A, Khotib J. Development of gastro-food allergy model in shrimp allergen extract-induced sensitized mice promotes mast cell degranulation. J Public Health Afr 2023. [PMID: 37492545 PMCID: PMC10365647 DOI: 10.4081/jphia.2023.2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: Food allergies have become more common in the last decade. Shrimp is one of the most dominant food allergy triggers in Asian countries, including Indonesia. After ingesting allergens, B cells will produce allergen-specific Immunoglobin E (IgE). In the sensitization period, repeated allergen exposure promotes Mast Cell (MC) degranulation in intestinal tissue and releases several inflammatory mediators, thereby causing hypersensitivity reactions. Shrimp Allergen Extract (SAE) is an immunotherapy and diagnostic agent currently being developed in Indonesia. In this study, we investigated the effect of SAE administration on eliciting an MC immunological response.
Methods: Mice were divided into a non-sensitized and sensitized group. The non-sensitized group only received 1 mg of alum (i.p), whereas the sensitized group received 1 mg of alum and 100 μg of SAE on days 0, 7, and 14. Then, both groups were challenged with 400 μg SAE (p.o) on days 21, 22, and 23 following systemic allergic symptom observation.
Results: We showed that SAE was able to increase systemic allergic symptoms significantly in the sensitized mice through repeated challenge (1.33±0.21; 1.83±0.17; and 2.00±0.00), compared to non-sensitized mice (0.17±0.17). Moreover, histopathological analysis showed that the SAE administration causes an increase of MC degranulation in the ileum tissue of the sensitized mice (44.43%±0.01), compared to non-sensitized mice (35.45%±0.01)
Conclusions: This study found that SAE could induce allergic reactions in mice by influencing critical effector cells, MCs.
Collapse
|
19
|
Peach extract induces systemic and local immune responses in an experimental food allergy model. Sci Rep 2023; 13:1892. [PMID: 36732575 PMCID: PMC9894845 DOI: 10.1038/s41598-023-28933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Peach allergy is among the most frequent food allergies in the Mediterranean area, often eliciting severe anaphylactic reactions in patients. Due to the risk of severe symptoms, studies in humans are limited, leading to a lack of therapeutic options. This study aimed to develop a peach allergy mouse model as a tool to better understand the pathomechanism and to allow preclinical investigations on the development of optimized strategies for immunotherapy. CBA/J mice were sensitized intraperitoneally with peach extract or PBS, using alum as adjuvant. Afterwards, extract was administered intragastrically to involve the intestinal tract. Allergen provocation was performed via intraperitoneal injection of extract, measuring drop of body temperature as main read out of anaphylaxis. The model induced allergy-related symptoms in mice, including decrease of body temperature. Antibody levels in serum and intestinal homogenates revealed a Th2 response with increased levels of mMCPT-1, peach- and Pru p 3-specific IgE, IgG1 and IgG2a as well as increased levels of IL-4 and IL-13. FACS analysis of small intestine lamina propria revealed increased amounts of T cells, neutrophils and DCs in peach allergic mice. These data suggest the successful establishment of a peach allergy mouse model, inducing systemic as well as local gastrointestinal reactions.
Collapse
|
20
|
Steinbach EC, Smeekens JM, Roy S, Toyonaga T, Cornaby C, Perini L, Berglind A, Kulis MD, Kim EH, Ferris MT, Furey TS, Burks AW, Sheikh SZ. Intestinal epithelial cell barrier dysfunction and elevated Angiopoietin-like 4 identified in orally susceptible peanut allergy model. Clin Exp Allergy 2023; 53:210-215. [PMID: 36336910 PMCID: PMC9976618 DOI: 10.1111/cea.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Erin C. Steinbach
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Johanna M. Smeekens
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Satyaki Roy
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Takahiko Toyonaga
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Caleb Cornaby
- Department of Pathology and Lab Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Layna Perini
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ana Berglind
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Michael D. Kulis
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Edwin H. Kim
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Martin T. Ferris
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Terrence S. Furey
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A. Wesley Burks
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Oettgen HC. Mast cells in food allergy: Inducing immediate reactions and shaping long-term immunity. J Allergy Clin Immunol 2023; 151:21-25. [PMID: 36328809 DOI: 10.1016/j.jaci.2022.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Mast cells are distributed throughout the gastrointestinal tract and function as the main effector cells of IgE-mediated allergic reactions to foods. Allergen-induced cross-linking of IgE antibodies bound to high-affinity IgE receptors, FcεRI, on the surface of mast cells triggers their activation, resulting in the release of mediators of immediate hypersensitivity. These mediators rapidly induce both local gastrointestinal and systemic physiological responses including anaphylaxis. Emerging evidence has revealed that, in addition to inciting immediate reactions, mast cells are key regulators of adaptive immunity to foods. In the gastrointestinal mucosa they provide the priming cytokines that initiate and, over time, consolidate adaptive TH2 responses to ingested allergens as well as TNF and chemokines that orchestrate the recruitment of tissue-infiltrating leukocytes that drive type 2 tissue inflammation. Patients with atopic dermatitis have increased intestinal mast cell numbers and are at a greater risk for food allergy. Recent studies have uncovered a skin-gut axis in which epicutaneous allergen exposure drives intestinal mast cell expansion. The activating effects of IgE antibodies in mast cells are countered by food-specific IgG antibodies that signal via the inhibitory IgG receptor, FcγR2b, suppressing both immediate allergic reactions to foods and the type 2 immune adjuvant activity of mast cells.
Collapse
Affiliation(s)
- Hans C Oettgen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
22
|
Ganesan V, Sharma A, Tomar S, Schuler CF, Hogan SP. IL-4 receptor alpha signaling alters oral food challenge and immunotherapy outcomes in mice. J Allergy Clin Immunol 2023; 151:182-191.e6. [PMID: 35934083 PMCID: PMC11157665 DOI: 10.1016/j.jaci.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Food allergy diagnosis and management causes a number of social and emotional challenges for individuals with food allergies and their caregivers. This has led to increased interest in developing approaches to accurately predict food allergy diagnosis, severity of food allergic reactions, and treatment outcomes. However, the utility of these approaches is somewhat conflicting. OBJECTIVE We sought to develop and utilize a murine model that mimics the disease course of food allergy diagnosis and treatment in humans and to identify biomarkers that predict reactivity during food challenge (FC) and responsiveness during oral immunotherapy (OIT) and how these outcomes are modified by genetics. METHODS Skin-sensitized intestinal IL-9 transgenic (IL9Tg) and IL9Tg mice backcrossed onto the IL-4RαY709F background received a single intragastric exposure of egg antigen (ovalbumin), underwent oral FC and OIT; food allergy severity, mast cell activation, and ovalbumin-specific IgE levels were examined to determine the predictability of these outcomes in determining reactivity and treatment outcomes. RESULTS Subcutaneous sensitization and a single intragastric allergen challenge of egg antigen to BALB/c IL9Tg mice and Il4raY709F IL9Tg induced a food allergic reaction. Enhanced IL-4Rα signaling altered the symptoms induced by the first oral exposure, decreased the cumulative antigen dose, increased the severity of reaction during oral FC, and altered the frequency of adverse events and OIT outcomes. Biomarkers after first oral exposure indicated that only the severity of the initial reaction significantly correlated with cumulative dose of oral FC. CONCLUSION Collectively, these data indicate that single nucleotide polymorphisms in IL-4Rα can alter clinical symptoms of food allergic reactions, severity, and reactive dose during FC and OIT, and that severity of first reaction can predict the likelihood of reaction during FC in mice with IL-4Rα gain of function.
Collapse
Affiliation(s)
- Varsha Ganesan
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Ankit Sharma
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Sunil Tomar
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Charles F Schuler
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich; Division of Allergy and Immunology, University of Michigan, Ann Arbor, Mich
| | - Simon P Hogan
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
23
|
Schinnerling K, Penny HA, Soto JA, Melo-Gonzalez F. Immune Responses at Host Barriers and Their Importance in Systemic Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:3-24. [PMID: 37093419 DOI: 10.1007/978-3-031-26163-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Host barriers such as the skin, the lung mucosa, the intestinal mucosa and the oral cavity are crucial at preventing contact with potential threats and are populated by a diverse population of innate and adaptive immune cells. Alterations in antigen recognition driven by genetic and environmental factors can lead to autoimmune systemic diseases such rheumatoid arthritis, systemic lupus erythematosus and food allergy. Here we review how different immune cells residing at epithelial barriers, host-derived signals and environmental signals are involved in the initiation and progression of autoimmune responses in these diseases. We discuss how regulation of innate responses at these barriers and the influence of environmental factors such as the microbiota can affect the susceptibility to develop local and systemic autoimmune responses particularly in the cases of food allergy, systemic lupus erythematosus and rheumatoid arthritis. Induction of pathogenic autoreactive immune responses at host barriers in these diseases can contribute to the initiation and progression of their pathogenesis.
Collapse
Affiliation(s)
| | - Hugo A Penny
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
| | - Jorge A Soto
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
24
|
Rijavec M, Maver A, Turner PJ, Hočevar K, Košnik M, Yamani A, Hogan S, Custovic A, Peterlin B, Korošec P. Integrative transcriptomic analysis in human and mouse model of anaphylaxis identifies gene signatures associated with cell movement, migration and neuroinflammatory signalling. Front Immunol 2022; 13:1016165. [PMID: 36569939 PMCID: PMC9772259 DOI: 10.3389/fimmu.2022.1016165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Background Anaphylaxis is an acute life-threatening allergic reaction and a concern at a global level; therefore, further progress in understanding the underlying mechanisms and more effective strategies for diagnosis, prevention and management are needed. Objective We sought to identify the global architecture of blood transcriptomic features of anaphylaxis by integrating expression data from human patients and mouse model of anaphylaxis. Methods Bulk RNA-sequencings of peripheral whole blood were performed in: i) 14 emergency department (ED) patients with acute anaphylaxis, predominantly to Hymenoptera venom, ii) 11 patients with peanut allergy undergoing double-blind, placebo-controlled food challenge (DBPCFC) to peanut, iii) murine model of IgE-mediated anaphylaxis. Integrative characterisation of differential gene expression, immune cell-type-specific gene expression profiles, and functional and pathway analysis was undertaken. Results 1023 genes were commonly and significantly dysregulated during anaphylaxis in ED and DBPCFC patients; of those genes, 29 were also dysregulated in the mouse model. Cell-type-specific gene expression profiles showed a rapid downregulation of blood basophil and upregulation of neutrophil signature in ED and DBPCFC patients and the mouse model, but no consistent and/or significant differences were found for other blood cells. Functional and pathway analysis demonstrated that human and mouse blood transcriptomic signatures of anaphylaxis follow trajectories of upregulation of cell movement, migration and neuroinflammatory signalling, and downregulation of lipid activating nuclear receptors signalling. Conclusion Our study highlights the matched and extensive blood transcriptomic changes and suggests the involvement of discrete cellular components and upregulation of migration and neuroinflammatory pathways during anaphylaxis.
Collapse
Affiliation(s)
- Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - Paul J. Turner
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Keli Hočevar
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - Mitja Košnik
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amnah Yamani
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Simon P. Hogan
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Alfalasi M, Alzaabi S, Östlundh L, Al-Rifai RH, Al-Salam S, Mertes PM, Alper SL, Aburawi EH, Bellou A. Effect of Nitric Oxide Pathway Inhibition on the Evolution of Anaphylactic Shock in Animal Models: A Systematic Review. BIOLOGY 2022; 11:biology11060919. [PMID: 35741440 PMCID: PMC9228251 DOI: 10.3390/biology11060919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022]
Abstract
Simple Summary Anaphylactic shock (AS) is the most serious consequence of anaphylaxis, with life-threatening sequelae including hypovolemia, shock, and arrhythmias. The literature lacks evidence for the effectiveness of interventions other than epinephrine in the acute phase of anaphylaxis. Our objective was to assess, through a systematic review, how inhibition of nitric oxide (NO) pathways affects blood pressure, and whether such blockade improves survival in AS animal models. AS was induced in all included studies after or before drug administration that targeted blockade of the NO pathway. In all animal species studied, the induction of AS caused a reduction in arterial blood pressure. However, the results show different responses to the inhibition of nitric oxide pathways. Overall, seven of fourteen studies using inhibition of nitric oxide pathways as pre-treatment before induction of AS showed improvement of survival and/or blood pressure. Four post-treatment studies from eight also showed positive outcomes. This review did not find strong evidence to propose modulation of blockade of the NO/cGMP pathway as a definitive treatment for AS in humans. Well-designed in vivo AS animal pharmacological models are needed to explore the other pathways involved, supporting the concept of pharmacological modulation. Abstract Nitric oxide (NO) induces vasodilation in various types of shock. The effect of pharmacological modulation of the NO pathway in anaphylactic shock (AS) remains poorly understood. Our objective was to assess, through a systematic review, whether inhibition of NO pathways (INOP) was beneficial for the prevention and/or treatment of AS. A predesigned protocol for this systematic review was published in PROSPERO (CRD42019132273). A systematic literature search was conducted till March 2022 in the electronic databases PubMed, EMBASE, Scopus, Cochrane and Web of Science. Heterogeneity of the studies did not allow meta-analysis. Nine hundred ninety unique studies were identified. Of 135 studies screened in full text, 17 were included in the review. Among six inhibitors of NO pathways identified, four blocked NO synthase activity and two blocked guanylate cyclase downstream activity. Pre-treatment was used in nine studies and post-treatment in three studies. Five studies included both pre-treatment and post-treatment models. Overall, seven pre-treatment studies from fourteen showed improvement of survival and/or arterial blood pressure. Four post-treatment studies from eight showed positive outcomes. Overall, there was no strong evidence to conclude that isolated blockade of the NO/cGMP pathway is sufficient to prevent or restore anaphylactic hypotension. Further studies are needed to analyze the effect of drug combinations in the treatment of AS.
Collapse
Affiliation(s)
- Maryam Alfalasi
- College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; (M.A.); (S.A.)
| | - Sarah Alzaabi
- College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; (M.A.); (S.A.)
| | - Linda Östlundh
- National Medical Library, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates;
| | - Rami H. Al-Rifai
- Institute of Public Health, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates;
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates;
| | - Paul Michel Mertes
- Department of Anesthesia and Intensive Care, University Hospital of Strasbourg, 67091 Strasbourg, France;
- Faculty of Medicine, EA 3072, Federation of Translational Medicine, University of Strasbourg, 67091 Strasbourg, France
| | - Seth L. Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Elhadi H. Aburawi
- Department of Pediatrics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates;
| | - Abdelouahab Bellou
- Institute of Sciences in Emergency Medicine, Academy of Medical Sciences of Guangdong, Guangzhou 510060, China
- Department of Emergency Medicine, Academy of Medical Sciences of Guangdong, Guangzhou 510060, China
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
26
|
Landers JJ, Janczak KW, Shakya AK, Zarnitsyn V, Patel SR, Baker JR, Gill HS, O'Konek JJ. Targeted allergen-specific immunotherapy within the skin improves allergen delivery to induce desensitization to peanut. Immunotherapy 2022; 14:539-552. [PMID: 35196877 PMCID: PMC9043875 DOI: 10.2217/imt-2021-0206] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Aim: Epicutaneous immunotherapy (EPIT) with peanut has been demonstrated to be safe but efficacy may be limited by allergen uptake through the skin barrier. To enhance allergen uptake into the skin, the authors used peanut-coated microneedles and compared them with EPIT in a peanut allergy mouse model. Methods: Sensitized mice were treated with peanut-coated microneedles or peanut-EPIT and then challenged with peanut to determine protection. Results: Treatment with peanut-coated microneedles was safe and showed enhanced desensitization to peanut compared with peanut-EPIT administered via a similar schedule. Protection was associated with reduced Th2 immune responses and mast cell accumulation in the intestine. Conclusion: Peanut-coated microneedles have the potential to present a safe method of improving allergen delivery for cutaneous immunotherapy.
Collapse
Affiliation(s)
- Jeffrey J Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katarzyna W Janczak
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - James R Baker
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Stark KG, Falkowski NR, Brown CA, McDonald RA, Huffnagle GB. Contribution of the Microbiome, Environment, and Genetics to Mucosal Type 2 Immunity and Anaphylaxis in a Murine Food Allergy Model. FRONTIERS IN ALLERGY 2022; 3:851993. [PMID: 35769569 PMCID: PMC9234882 DOI: 10.3389/falgy.2022.851993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
There is heterogeneity inherent in the immune responses of individual mice in murine models of food allergy, including anaphylaxis, similar to the clinical heterogeneity observed in humans with food allergies to a defined food. One major driver of this heterogeneity may be differences in the microbiome between sensitized individuals. Our laboratory and others have reported that disruption of the microbiome (dysbiosis) by broad spectrum antibiotics and/or yeast colonization can alter systemic immunity and favor the development of mucosal Type 2 immunity to aeroallergens. Our objective was to use a well-characterized murine model (Balb/c mice) of food allergies (chicken egg ovalbumin, OVA) and determine if antibiotic-mediated dysbiosis (including C. albicans colonization) could enhance the manifestation of food allergies. Furthermore, we sought to identify elements of the microbiome and host response that were associated with this heterogeneity in the anaphylactic reaction between individual food allergen-sensitized mice. In our dataset, the intensity of the anaphylactic reactions was most strongly associated with a disrupted microbiome that included colonization by C. albicans, loss of a specific Lachnoclostridium species (tentatively, Lachnoclostridium YL32), development of a highly polarized Type 2 response in the intestinal mucosa and underlying tissue, and activation of mucosal mast cells. Serum levels of allergen-specific IgE were not predictive of the response and a complete absence of a microbiome did not fully recapitulate the response. Conventionalization of germ-free mice resulted in Akkermansia muciniphila outgrowth and a higher degree of heterogeneity in the allergic response. C57BL/6 mice remained resistant even under the same dysbiosis-inducing antibiotic regimens, while changes in the microbiome markedly altered the reactivity of Balb/c mice to OVA, as noted above. Strikingly, we also observed that genetically identical mice from different rooms in our vivarium develop different levels of a Type 2 response, as well as anaphylactic reactions. The intestinal microbiome in these mice also differed between rooms. Thus, our data recapitulate the heterogeneity in anaphylactic reactions, ranging from severe to none, seen in patients that have circulating levels of food allergen-reactive IgE and support the concept that alterations in the microbiome can be one factor underlying this heterogeneity.
Collapse
Affiliation(s)
- Kelsey G. Stark
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Nicole R. Falkowski
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Christopher A. Brown
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Institute for Research on Innovation and Science (IRIS), Institute for Social Research (ISR), University of Michigan, Ann Arbor, MI, United States
| | - Roderick A. McDonald
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Gary B. Huffnagle
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Gary B. Huffnagle
| |
Collapse
|
28
|
Hughes KR, Saunders MN, Landers JJ, Janczak KW, Turkistani H, Rad LM, Miller SD, Podojil JR, Shea LD, O'Konek JJ. Masked Delivery of Allergen in Nanoparticles Safely Attenuates Anaphylactic Response in Murine Models of Peanut Allergy. FRONTIERS IN ALLERGY 2022; 3:829605. [PMID: 35386645 PMCID: PMC8974743 DOI: 10.3389/falgy.2022.829605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Food allergy is a growing health concern worldwide. Current allergen-specific immunotherapy (AIT) approaches require frequent dosing over extended periods of time and may induce anaphylaxis due to allergen-effector cell interactions. A critical need remains to develop novel approaches that refine AIT for the treatment of food allergies. Previous studies show that poly(lactide-co-glycolide) (PLG) nanoscale particles (NP) effectively suppress Th1- and Th17-driven immune pathologies. However, their ability to suppress the distinct Th2-polarized immune responses driving food allergy are unknown. Herein, we describe the safety and efficacy of NPs containing encapsulated peanut allergen in desensitizing murine models of peanut allergy. Peanut extract encapsulation allowed for the safe intravenous delivery of allergen relative to non-encapsulated approaches. Application of 2–3 doses, without the need for dose escalation, was sufficient to achieve prophylactic and therapeutic efficacy, which correlated with suppression of Th2-mediated disease and reduced mast cell degranulation. Efficacy was associated with strong reductions in a broad panel of Th1, Th2, and Th17 cytokines. These results demonstrate the ability of PLG NPs to suppress allergen-specific immune responses to induce a more tolerogenic phenotype, conferring protection from intragastric allergen challenge. These promising studies represent a step forward in the development of improved immunotherapies for food allergy.
Collapse
Affiliation(s)
- Kevin R. Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Michael N. Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey J. Landers
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Katarzyna W. Janczak
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Hamza Turkistani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Laila M. Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph R. Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- COUR Pharmaceuticals Development Co, Inc., Northbrook, IL, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Lonnie D. Shea
| | - Jessica J. O'Konek
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
- *Correspondence: Jessica J. O'Konek
| |
Collapse
|
29
|
Nakano N, Kitaura J. Mucosal Mast Cells as Key Effector Cells in Food Allergies. Cells 2022; 11:cells11030329. [PMID: 35159139 PMCID: PMC8834119 DOI: 10.3390/cells11030329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Mucosal mast cells (MMCs) localized in the intestinal mucosa play a key role in the development of IgE-mediated food allergies. Recent advances have revealed that MMCs are a distinctly different population from connective tissue mast cells localized in skin and other connective tissues. MMCs are inducible and transient cells that arise from bone marrow-derived mast cell progenitors, and their numbers increase rapidly during mucosal allergic inflammation. However, the mechanism of the dramatic expansion of MMCs and their cell functions are not well understood. Here, we review recent findings on the mechanisms of MMC differentiation and expansion, and we discuss the potential for the inducers of differentiation and expansion to serve as targets for food allergy therapy. In addition, we also discuss the mechanism by which oral immunotherapy, a promising treatment for food allergy patients, induces unresponsiveness to food allergens and the roles of MMCs in this process. Research focusing on MMCs should provide useful information for understanding the underlying mechanisms of food allergies in order to further advance the treatment of food allergies.
Collapse
|
30
|
Hammond AM, Monir RL, Schoch JJ. The role of the pediatric cutaneous and gut microbiomes in childhood disease: A review. Semin Perinatol 2021; 45:151452. [PMID: 34272085 DOI: 10.1016/j.semperi.2021.151452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Infancy and early childhood are crucial periods in the development of the human microbiome and shape the trajectory of microbial colonization, immune system development, and systemic disease. We review the development of the skin and gut microbiomes, their connection to the immune system, and their relevance to common pediatric pathologies. FINDINGS Beginning after birth, and likely even in utero, colonization of the skin and the gut occur in parallel, influenced by external factors. This colonization, in turn, dictates maturation of the immune system and contributes to conditions from atopic dermatitis to sepsis. Emerging literature is identifying links between the gut and skin microbiomes. CONCLUSION The gut and skin microbiomes are associated with pediatric disease states. Immune and microbial plasticity make this unique period an ideal target for intervention. Investigating the purposeful manipulation of the pediatric microbiome may lead to novel treatment and prevention strategies.
Collapse
Affiliation(s)
| | - Reesa L Monir
- University of Florida College of Medicine, Gainesville, FL, USA; Department of Dermatology, Gainesville, FL, USA.
| | - Jennifer J Schoch
- University of Florida College of Medicine, Gainesville, FL, USA; Department of Dermatology, Gainesville, FL, USA.
| |
Collapse
|
31
|
Alberca RW, Gomes E, Moretti EH, Russo M, Steiner AA. Naturally occurring hypothermia promotes survival in severe anaphylaxis. Immunol Lett 2021; 237:27-32. [PMID: 34245741 DOI: 10.1016/j.imlet.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022]
Abstract
Although hypothermia has received substantial attention as an indicator of severity in anaphylaxis, it has been neglected from the perspective of whether it could act as a disease-modifying factor in this condition. Here, the impact of naturally occurring (spontaneous) hypothermia on anaphylaxis was evaluated in a murine model of ovalbumin (OVA)-induced allergy. Nonextreme changes in the ambient temperature (Ta) were used to modulate the magnitude of spontaneous hypothermia. At a Ta of 24°C, challenge with OVA intraperitoneally or intravenously resulted in a rapid, transient fall in body core temperature, which reached its nadir 4-6°C below baseline in 30 min. This hypothermic response was largely attenuated when the mice were kept at a Ta of 34°C. The Ta-dependent attenuation of hypothermia resulted in a survival rate of only 30%, as opposed to survival of 100% in the condition that favored the development of hypothermia. The protective effect of hypothermia did not involve changes in the rate of mast cell degranulation, as assessed by the concentration of mast cell protease-1 in bodily fluids. On the other hand, hypothermia improved oxygenation of the brain and kidneys, as indicated by higher NAD+/NADH ratios. Therefore, it is plausible to propose that naturally occurring hypothermia makes organs more resistant to the anaphylactic insult.
Collapse
Affiliation(s)
- Ricardo W Alberca
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508, Brazil
| | - Eliane Gomes
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508, Brazil
| | - Eduardo H Moretti
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508, Brazil
| | - Momtchilo Russo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508, Brazil
| | - Alexandre A Steiner
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508, Brazil.
| |
Collapse
|
32
|
Matsushita K, Li X, Nakamura Y, Dong D, Mukai K, Tsai M, Montgomery SB, Galli SJ. The role of Sp140 revealed in IgE and mast cell responses in Collaborative Cross mice. JCI Insight 2021; 6:e146572. [PMID: 34156030 PMCID: PMC8262499 DOI: 10.1172/jci.insight.146572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Mouse IgE and mast cell (MC) functions have been studied primarily using inbred strains. Here, we (a) identified effects of genetic background on mouse IgE and MC phenotypes, (b) defined the suitability of various strains for studying IgE and MC functions, and (c) began to study potentially novel genes involved in such functions. We screened 47 Collaborative Cross (CC) strains, as well as C57BL/6J and BALB/cJ mice, for strength of passive cutaneous anaphylaxis (PCA) and responses to the intestinal parasite Strongyloides venezuelensis (S.v.). CC mice exhibited a diversity in PCA strength and S.v. responses. Among strains tested, C57BL/6J and CC027 mice showed, respectively, moderate and uniquely potent MC activity. Quantitative trait locus analysis and RNA sequencing of BM-derived cultured MCs (BMCMCs) from CC027 mice suggested Sp140 as a candidate gene for MC activation. siRNA-mediated knock-down of Sp140 in BMCMCs decreased IgE-dependent histamine release and cytokine production. Our results demonstrated marked variations in IgE and MC activity in vivo, and in responses to S.v., across CC strains. C57BL/6J and CC027 represent useful models for studying MC functions. Additionally, we identified Sp140 as a gene that contributes to IgE-dependent MC activation.
Collapse
Affiliation(s)
- Kazufumi Matsushita
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Xin Li
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuki Nakamura
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Danyue Dong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
33
|
Ptaschinski C, Rasky AJ, Fonseca W, Lukacs NW. Stem Cell Factor Neutralization Protects From Severe Anaphylaxis in a Murine Model of Food Allergy. Front Immunol 2021; 12:604192. [PMID: 33786039 PMCID: PMC8005333 DOI: 10.3389/fimmu.2021.604192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/16/2021] [Indexed: 01/04/2023] Open
Abstract
Food allergy is a growing public health problem with ~15 million people affected in the United States. In allergic food disease, IgE on mast cells bind to ingested antigens leading to the activation and degranulation of mast cells. Stem cell factor (SCF) is mast cell growth and activation factor that is required for peripheral tissue mast cells. We targeted a specific isoform of SCF, the larger 248 amino acid form, that drives peripheral tissue mast cell differentiation using a specific monoclonal antibody in a model of food allergy. Ovalbumin sensitized and intragastrically challenged mice were monitored for symptoms of anaphylaxis including respiratory distress, diarrhea, and a reduction in body temperature. During the second week of challenges, allergic mice were injected with an antibody to block SCF248 or given IgG control. Mice treated with α-SCF248 had a decreased incidence of diarrhea and no reduction in body temperature suggesting a reduction in anaphylaxis compared to IgG control treated animals. Re-stimulated mesenteric lymph nodes indicated that α-SCF248 treated mice had decreased OVA-specific Th2 cytokine production compared to IgG control treated allergic animals. The reduction of food induced anaphylaxis was accompanied by a significant reduction in gut leak. The mesenteric lymph node cells were analyzed by flow cytometry and showed a decrease in the number of type 2 innate lymphoid cells in mice injected with α-SCF248. Morphometric enumeration of esterase+ mast cells demonstrated a significant reduction throughout the small intestine. Using a more chronic model of persistent food-induced anaphylaxis, short term therapeutic treatment with α-SCF248 during established disease effectively blocked food induced anaphylaxis. Together, these data suggest that therapeutically blocking SCF248 in food allergic animals can reduce the severity of food allergy by reducing mast cell mediated disease activation.
Collapse
Affiliation(s)
- Catherine Ptaschinski
- Department of Pathology, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | | | - Wendy Fonseca
- Department of Pathology, Ann Arbor, MI, United States
| | - Nicholas W Lukacs
- Department of Pathology, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
34
|
Farazuddin M, Landers JJ, Janczak KW, Lindsey HK, Finkelman FD, Baker JR, O'Konek JJ. Mucosal Nanoemulsion Allergy Vaccine Suppresses Alarmin Expression and Induces Bystander Suppression of Reactivity to Multiple Food Allergens. Front Immunol 2021; 12:599296. [PMID: 33717078 PMCID: PMC7946984 DOI: 10.3389/fimmu.2021.599296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
We have demonstrated that intranasal immunotherapy with allergens formulated in a nanoemulsion (NE) mucosal adjuvant suppresses Th2/IgE-mediated allergic responses and protects from allergen challenge in murine food allergy models. Protection conferred by this therapy is associated with strong suppression of allergen specific Th2 cellular immunity and increased Th1 cytokines. Here we extend these studies to examine the effect of NE-allergen immunization in mice sensitized to multiple foods. Mice were sensitized to both egg and peanut and then received NE vaccine formulated with either one or both of these allergens. The animals were then subjected to oral challenges with either egg or peanut to assess reactivity. Immunization with NE formulations containing both egg and peanut markedly reduced reactivity after oral allergen challenge with either allergen. Interestingly, mice that received the vaccine containing only peanut also had reduced reactivity to challenge with egg. Protection from oral allergen challenge was achieved despite the persistence of allergen-specific IgE and was associated with strong suppression of both Th2-polarized immune responses, alarmins and type 2 innate lymphoid cells (ILC2). NE-induced bystander suppression of reactivity required IFN-γ and the presence of an allergen in the NE vaccine. These results demonstrate that anaphylactic reactions to food allergens can be suppressed using allergen-specific immunotherapy without having to eliminate allergen-specific IgE and suggests that modulation of Th2 immunity towards one allergen may induce bystander effects that suppress reactivity to other allergens through the induction of IFN-γ and suppression of alarmins in the intestine. In addition, these data suggest that a NE vaccine for a single food allergen may lead to a global suppression of allergic responses to multiple foods.
Collapse
Affiliation(s)
- Mohammad Farazuddin
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey J Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Katarzyna W Janczak
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Hayley K Lindsey
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Fred D Finkelman
- Division of Allergy, Immunology and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - James R Baker
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
35
|
Induction of Hypersensitivity with Purified Beta-Lactoglobulin as a Mouse Model of Cow's Milk Allergy. Methods Mol Biol 2021; 2223:67-78. [PMID: 33226587 DOI: 10.1007/978-1-0716-1001-5_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cow's milk allergy is one of the most prevalent food allergies in both children and adults. As dairy products are common dietary ingredients and the prevalence of chronic conditions is on the rise, milk allergy is a growing public health concern. To elucidate underlying mechanisms and develop therapeutic strategies, reliable animal models are essential research tools. Sensitization to a milk protein is the principal procedure for establishing animal models of cow's milk allergy. However, the methods of sensitization vary from laboratory to laboratory, using different milk proteins with different amounts, routes, and durations of allergen exposure during sensitization of varying sex and strains of mice, likely resulting in diverse immunological and physical responses. Furthermore, the sources and potential impurities of milk protein may also produce variable responses. Thus, standardization of sensitization protocol is important, particularly when results are compared across studies. Here, we describe a method to generate a mouse model of cow's milk allergy using purified β-lactoglobulin as the milk allergen with cholera toxin as an adjuvant in a 5-week oral sensitization protocol.
Collapse
|
36
|
Yamani A, Wu D, Ahrens R, Waggoner L, Noah TK, Garcia-Hernandez V, Ptaschinski C, Parkos CA, Lukacs NW, Nusrat A, Hogan SP. Dysregulation of intestinal epithelial CFTR-dependent Cl - ion transport and paracellular barrier function drives gastrointestinal symptoms of food-induced anaphylaxis in mice. Mucosal Immunol 2021; 14:135-143. [PMID: 32576925 PMCID: PMC11197992 DOI: 10.1038/s41385-020-0306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 02/04/2023]
Abstract
Food-triggered anaphylaxis can encompass a variety of systemic and intestinal symptoms. Murine-based and clinical studies have revealed a role for histamine and H1R and H2R-pathway in the systemic response; however, the molecular processes that regulate the gastrointestinal (GI) response are not as well defined. In the present study, by utilizing an IgE-mast cell (MC)-dependent experimental model of oral antigen-induced anaphylaxis, we define the intestinal epithelial response during a food-induced anaphylactic reaction. We show that oral allergen-challenge stimulates a rapid dysregulation of intestinal epithelial transcellular and paracellular transport that was associated with the development of secretory diarrhea. Allergen-challenge induced (1) a rapid intestinal epithelial Cftr-dependent Cl- secretory response and (2) paracellular macromolecular leak that was associated with modification in epithelial intercellular junction proteins claudin-1, 2, 3 and 5, E-cadherin and desmosomal cadherins. OVA-induced Cftr-dependent Cl- secretion and junctional protein degradation was rapid occurring and was sustained for 72 h following allergen-challenge. Blockade of both the proteolytic activity and Cl- secretory response was required to alleviate intestinal symptoms of food-induced anaphylaxis. Collectively, these data suggest that the GI symptom of food-induced anaphylactic reaction, secretory diarrhea, is a consequence of CFTR-dependent Cl- secretion and proteolytic activity.
Collapse
Affiliation(s)
- Amnah Yamani
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA
| | - David Wu
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA
| | - Richard Ahrens
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA
| | - Lisa Waggoner
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA
| | - Taeko K Noah
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA
| | - Vicky Garcia-Hernandez
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Catherine Ptaschinski
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Charles A Parkos
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Nicholas W Lukacs
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Asma Nusrat
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Simon P Hogan
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA.
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
37
|
Tomar S, Ganesan V, Sharma A, Zeng C, Waggoner L, Smith A, Kim CH, Licona-Limón P, Reinhardt RL, Flavell RA, Wang YH, Hogan SP. IL-4-BATF signaling directly modulates IL-9 producing mucosal mast cell (MMC9) function in experimental food allergy. J Allergy Clin Immunol 2021; 147:280-295. [PMID: 33069715 PMCID: PMC7856198 DOI: 10.1016/j.jaci.2020.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study group has previously identified IL-9-producing mucosal mast cell (MMC9) as the primary source of IL-9 to drive intestinal mastocytosis and experimental IgE-mediated food allergy. However, the molecular mechanisms that regulate the expansion of MMC9s remain unknown. OBJECTIVES This study hypothesized that IL-4 regulates MMC9 development and MMC9-dependent experimental IgE-mediated food allergy. METHODS An epicutaneous sensitization model was used and bone marrow reconstitution experiments were performed to test the requirement of IL-4 receptor α (IL-4Rα) signaling on MMC9s in experimental IgE-mediated food allergy. Flow cytometric, bulk, and single-cell RNA-sequencing analyses on small intestine (SI) MMC9s were performed to illuminate MMC9 transcriptional signature and the effect of IL-4Rα signaling on MMC9 function. A bone marrow-derived MMC9 culture system was used to define IL-4-BATF signaling in MMC9 development. RESULTS Epicutaneous sensitization- and bone marrow reconstitution-based models of IgE-mediated food allergy revealed an IL-4 signaling-dependent cell-intrinsic effect on SI MMC9 accumulation and food allergy severity. RNA-sequencing analysis of SI-MMC9s identified 410 gene transcripts reciprocally regulated by IL-4 signaling, including Il9 and Batf. Insilico analyses identified a 3491-gene MMC9 transcriptional signature and identified 2 transcriptionally distinct SI MMC9 populations enriched for metabolic or inflammatory programs. Employing an in vitro MMC9-culture model system showed that generation of MMC9-like cells was induced by IL-4 and this was in part dependent on BATF. CONCLUSIONS IL-4Rα signaling directly modulates MMC9 function and exacerbation of experimental IgE-mediated food allergic reactions. IL-4Rα regulation of MMC9s is in part BATF-dependent and occurs via modulation of metabolic transcriptional programs.
Collapse
Affiliation(s)
- Sunil Tomar
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Varsha Ganesan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Ankit Sharma
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew Smith
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chang H Kim
- Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich
| | - Paula Licona-Limón
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Richard L Reinhardt
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colo; Department of Biomedical Research, National Jewish Health, Denver, Colo
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Howard Hughes Medical Institute, Chevy Chase, Md
| | - Yui-Hsi Wang
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Type 2 Inflammation and Fibrosis Cluster, Immunology and Inflammation Research, Sanofi, Cambridge, Mass.
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Mich; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
38
|
Mechanisms Underlying the Skin-Gut Cross Talk in the Development of IgE-Mediated Food Allergy. Nutrients 2020; 12:nu12123830. [PMID: 33333859 PMCID: PMC7765270 DOI: 10.3390/nu12123830] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Immune-globulin E (IgE)-mediated food allergy is characterized by a variety of clinical entities within the gastrointestinal tract, skin and lungs, and systemically as anaphylaxis. The default response to food antigens, which is antigen specific immune tolerance, requires exposure to the antigen and is already initiated during pregnancy. After birth, tolerance is mostly acquired in the gut after oral ingestion of dietary proteins, whilst exposure to these same proteins via the skin, especially when it is inflamed and has a disrupted barrier, can lead to allergic sensitization. The crosstalk between the skin and the gut, which is involved in the induction of food allergy, is still incompletely understood. In this review, we will focus on mechanisms underlying allergic sensitization (to food antigens) via the skin, leading to gastrointestinal inflammation, and the development of IgE-mediated food allergy. Better understanding of these processes will eventually help to develop new preventive and therapeutic strategies in children.
Collapse
|
39
|
Kanagaratham C, El Ansari YS, Sallis BF, Hollister BMA, Lewis OL, Minnicozzi SC, Oyoshi MK, Rosen R, Nurko S, Fiebiger E, Oettgen HC. Omeprazole inhibits IgE-mediated mast cell activation and allergic inflammation induced by ingested allergen in mice. J Allergy Clin Immunol 2020; 146:884-893.e5. [PMID: 32194041 PMCID: PMC7492424 DOI: 10.1016/j.jaci.2020.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with eosinophilic esophagitis have increased numbers of mucosal mast cells. Administration of the proton pump inhibitor omeprazole can reduce both esophageal mast cell and eosinophil numbers and attenuate type 2 inflammation in these subjects. OBJECTIVE Given that maintenance of an acidic environment within granules is important for mast cell homeostasis, we sought to evaluate the effects of omeprazole on mast cell functions including development, IgE:FcεRI-mediated activation, and responses to food allergen. METHODS Mast cell degranulation, cytokine secretion, and early signaling events in the FcεRI pathway, including protein kinase phosphorylation and Ca2+ flux, were measured after IgE crosslinking in murine bone marrow-derived mast cells and human cord blood-derived mast cells. The effects of omeprazole on these responses were investigated as was its impact on mast cell-dependent anaphylaxis and food allergy phenotypes in vivo. RESULTS Murine and human mast cells treated with omeprazole exhibited diminished degranulation and release of cytokines and histamine in response to allergen. In murine mast cells, phosphorylation of protein kinases, ERK and SYK, was decreased. Differentiation of mast cells from bone marrow progenitors was also inhibited. IgE-mediated passive anaphylaxis was blunted in mice treated with omeprazole as was allergen-induced mast cell expansion and mast cell activation in the intestine in a model of food allergy. CONCLUSIONS Our findings suggest that omeprazole targets pathways important for the differentiation and activation of murine mast cells and for the manifestations of food allergy and anaphylaxis.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Yasmeen S El Ansari
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; Institute of Laboratory Medicine, Philipps University Marburg, Germany
| | | | | | - Owen L Lewis
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Samantha C Minnicozzi
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michiko K Oyoshi
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Rachel Rosen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Samuel Nurko
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Edda Fiebiger
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Hans C Oettgen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
40
|
Benede S, Tordesillas L, Berin C. Demonstration of distinct pathways of mast cell-dependent inhibition of Treg generation using murine bone marrow-derived mast cells. Allergy 2020; 75:2088-2091. [PMID: 32147829 DOI: 10.1111/all.14267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara Benede
- Jaffe Food Allergy Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Leticia Tordesillas
- Jaffe Food Allergy Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Cecilia Berin
- Jaffe Food Allergy Institute Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
41
|
Abstract
Food allergens are innocuous proteins that promote tolerogenic adaptive immune responses in healthy individuals yet in other individuals induce an allergic adaptive immune response characterized by the presence of antigen-specific immunoglobulin E and type-2 immune cells. The cellular and molecular processes that determine a tolerogenic versus non-tolerogenic immune response to dietary antigens are not fully elucidated. Recently, there have been advances in the identification of roles for microbial communities and anatomical sites of dietary antigen exposure and presentation that have provided new insights into the key regulatory steps in the tolerogenic versus non-tolerogenic decision-making processes. Herein, we will review and discuss recent findings in cellular and molecular processes underlying food sensitization and tolerance, immunological processes underlying severity of food-induced anaphylaxis, and insights obtained from immunotherapy trials.
Collapse
Affiliation(s)
- Sunil Tomar
- 1. Mary H. Weiser Food Allergy Center, Department of Pathology, University of Michigan 4051-BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Simon P Hogan
- 1. Mary H. Weiser Food Allergy Center, Department of Pathology, University of Michigan 4051-BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| |
Collapse
|
42
|
Buyuktiryaki B, Santos AF. Food allergy severity predictions based on cellular in vitro tests. Expert Rev Mol Diagn 2020; 20:679-692. [PMID: 32536279 DOI: 10.1080/14737159.2020.1782192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Food allergy is increasing in prevalence and the severity of allergic reactions is unpredictable. Identifying food-allergic patients at high risk of severe reactions would allow us to offer a personalized and improved management for these patients. AREAS COVERED We review the evidence for using the levels of specific IgE, the nature of the allergen, and cellular tests to identify patients at high risk of developing severe allergic reactions to foods. EXPERT OPINION The evidence about whether the quantity of allergen-specific IgE reflects the severity of allergic reactions to foods is conflicting, with some positive and some negative studies. For some foods, specific IgE to individual components (e.g. Ara h 2 in peanut) can provide additional information. However, more important than the quantity of IgE is possibly the quality of IgE, which can be captured by individual measurements of affinity/avidity, diversity, and specific activity, but is best measured overall using the basophil and mast cell activation tests, which assess the function of IgE in its ability to induce cell activation, degranulation, and mediator release. Biomarkers look at a single aspect of the allergic response and should be interpreted in the broader clinical context for each individual patient assessed.
Collapse
Affiliation(s)
- Betul Buyuktiryaki
- Division of Pediatric Allergy, Koc University Hospital , İstanbul, Turkey.,Department of Paediatric Allergy, Evelina London, Guy's and ST Thomas' Hospital NHS Foundation Trust , London, UK
| | - Alexandra F Santos
- Department of Paediatric Allergy, Evelina London, Guy's and ST Thomas' Hospital NHS Foundation Trust , London, UK.,Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London , London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London , London, UK.,Asthma UK Centre in Allergic Mechanisms of Asthma , London, UK
| |
Collapse
|
43
|
Li X, Miyakawa T, Takano T, Nakajima-Adachi H, Tanokura M, Hachimura S. Induction of Oral Tolerance by Pepsin-Digested Gliadin Retaining T Cell Reactivity in a Mouse Model of Wheat Allergy. Int Arch Allergy Immunol 2020; 181:446-455. [PMID: 32299080 DOI: 10.1159/000506945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Wheat is known as the most widely consumed food all over the world. Although many types of wheat allergy have been recognized, their treatment still has a long way to go due to the complex pathogenesis. Oral immunotherapy (OIT) is under investigation for the treatment of wheat allergies. Previous studies have demonstrated that OIT using intact wheat allergens can induce tolerance, but is accompanied by a high risk of anaphylactic reactions. OBJECTIVES Our objective was to prepare modified wheat allergens with hypoallergenic and tolerance-inducing properties to reduce adverse effects during immunotherapy. METHODS Wheat gliadin was degraded by hydrolysis with pepsin and trypsin, and then the hydrolysate was deamidated with hydrochloric acid. The IgE-binding capacity and T cell reactivity of the degraded gliadins were evaluated in vitro. Pepsin-digested gliadin (peptic-GLI) was applied in a mouse model to investigate whether it would induce oral tolerance. RESULTS Degradation with pepsin decreased IgE-binding capacity and maintained T cell reactivity. Oral administration of peptic-GLI to mice before sensitization and challenge with gliadin could significantly suppress the production of IgE, IgG1, and type 2 T helper cytokines. Moreover, the development of anaphylactic reactions and allergic responses of the small intestine induced by gliadin challenge were inhibited by oral administration of peptic-GLI. CONCLUSIONS The findings of this study indicate that peptic-GLI with low allergenicity and potential for tolerance induction may become useful in wheat immunotherapy with less adverse effects.
Collapse
Affiliation(s)
- Xuyang Li
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takuya Miyakawa
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Tomohiro Takano
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Haruyo Nakajima-Adachi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Masaru Tanokura
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan,
| |
Collapse
|
44
|
O'Konek JJ, Landers JJ, Janczak KW, Lindsey HK, Mondrusov AM, Totten TD, Baker JR. Intranasal nanoemulsion vaccine confers long-lasting immunomodulation and sustained unresponsiveness in a murine model of milk allergy. Allergy 2020; 75:872-881. [PMID: 31557317 DOI: 10.1111/all.14064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Immunotherapy for food allergy requires prolonged treatment protocols and, in most cases, does not lead to durable modulation of the allergic immune response. We have demonstrated an intranasal (IN) nanoemulsion adjuvant that redirects allergen-specific Th2 responses toward Th1 and Th17 immunity, and protects from allergen challenge after only 2-4 monthly administrations. Here, we investigate the ability of this technology to provide long-term modulation of allergy in a murine model of cow's milk allergy. METHODS Six weeks after sensitization to bovine casein, mice received four, monthly IN immunizations with nanoemulsion formulated with casein. Protection from casein challenge was assessed at 4 and 16 weeks after the final vaccine administration. RESULTS The NE vaccine significantly blunted the physiological responses to allergen challenge, and this effect persisted for at least 16 weeks. The protection from challenge was associated with the suppression of casein-specific Th2 immunity and induced Th1 and Th17 cytokines as well as induction of IL-10. Of interest, while immunized animals showed significantly decreased Th2 cytokine responses, cow's milk-specific IgE remained elevated in the serum at levels associated with reactivity in control sensitized animals. Protection was associated with suppressed mast cell activation and markedly reduced mast cell infiltration into the small intestine. CONCLUSION The sustained unresponsiveness of at least 16 weeks after vaccination suggests that the nanoemulsion vaccine alters the allergic phenotype in a persistent manner different from traditional desensitization, and this leads to long-term suppressive effects on allergic disease without eliminating serum IgE.
Collapse
Affiliation(s)
- Jessica J. O'Konek
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - Jeffrey J. Landers
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | | | - Hayley K. Lindsey
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - Anna M. Mondrusov
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - Tiffanie D. Totten
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - James R. Baker
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| |
Collapse
|
45
|
Noah TK, Knoop KA, McDonald KG, Gustafsson JK, Waggoner L, Vanoni S, Batie M, Arora K, Naren AP, Wang YH, Lukacs NW, Munitz A, Helmrath MA, Mahe MM, Newberry RD, Hogan SP. IL-13-induced intestinal secretory epithelial cell antigen passages are required for IgE-mediated food-induced anaphylaxis. J Allergy Clin Immunol 2019; 144:1058-1073.e3. [PMID: 31175877 PMCID: PMC6779525 DOI: 10.1016/j.jaci.2019.04.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Food-induced anaphylaxis (FIA) is an IgE-dependent immune response that can affect multiple organs and lead to life-threatening complications. The processes by which food allergens cross the mucosal surface and are delivered to the subepithelial immune compartment to promote the clinical manifestations associated with food-triggered anaphylaxis are largely unexplored. OBJECTIVE We sought to define the processes involved in the translocation of food allergens across the mucosal epithelial surface to the subepithelial immune compartment in FIA. METHODS Two-photon confocal and immunofluorescence microscopy was used to visualize and trace food allergen passage in a murine model of FIA. A human colon cancer cell line, RNA silencing, and pharmacologic approaches were used to identify the molecular regulation of intestinal epithelial allergen uptake and translocation. Human intestinal organoid transplants were used to demonstrate the conservation of these molecular processes in human tissues. RESULTS Food allergens are sampled by using small intestine (SI) epithelial secretory cells (termed secretory antigen passages [SAPs]) that are localized to the SI villous and crypt region. SAPs channel food allergens to lamina propria mucosal mast cells through an IL-13-CD38-cyclic adenosine diphosphate ribose (cADPR)-dependent process. Blockade of IL-13-induced CD38/cADPR-dependent SAP antigen passaging in mice inhibited induction of clinical manifestations of FIA. IL-13-CD38-cADPR-dependent SAP sampling of food allergens was conserved in human intestinal organoids. CONCLUSION We identify that SAPs are a mechanism by which food allergens are channeled across the SI epithelium mediated by the IL-13/CD38/cADPR pathway, regulate the onset of FIA reactions, and are conserved in human intestine.
Collapse
Affiliation(s)
- Taeko K Noah
- Mary H. Weiser Food Allergy Center, Department of Pathology, University of Michigan, Ann Arbor, Mich; Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kathryn A Knoop
- Division of Gastroenterology, Washington University School of Medicine St Louis, St Louis, Mo
| | - Keely G McDonald
- Division of Gastroenterology, Washington University School of Medicine St Louis, St Louis, Mo
| | - Jenny K Gustafsson
- Division of Gastroenterology, Washington University School of Medicine St Louis, St Louis, Mo
| | - Lisa Waggoner
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Simone Vanoni
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew Batie
- Division of Clinical Engineering, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yui-Hsi Wang
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nicholas W Lukacs
- Mary H. Weiser Food Allergy Center, Department of Pathology, University of Michigan, Ann Arbor, Mich
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael A Helmrath
- Division of Pediatric Surgery, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maxime M Mahe
- Division of Pediatric Surgery, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rodney D Newberry
- Division of Gastroenterology, Washington University School of Medicine St Louis, St Louis, Mo
| | - Simon P Hogan
- Mary H. Weiser Food Allergy Center, Department of Pathology, University of Michigan, Ann Arbor, Mich; Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
46
|
Bosmans G, Appeltans I, Stakenborg N, Gomez‐Pinilla PJ, Florens MV, Aguilera‐Lizarraga J, Matteoli G, Boeckxstaens GE. Vagus nerve stimulation dampens intestinal inflammation in a murine model of experimental food allergy. Allergy 2019; 74:1748-1759. [PMID: 30897213 PMCID: PMC6790670 DOI: 10.1111/all.13790] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022]
Abstract
Background The vagus nerve has emerged as an important modulator of the intestinal immune system. Its anti‐inflammatory properties have been previously shown in innate and Th1/Th17 predominant inflammatory models. To what extent the vagus nerve is of importance in Th2 inflammatory responses like food allergy is still unclear. In this study, we therefore aimed to investigate the effect of vagotomy (VGX) and vagus nerve stimulation (VNS), on the development and severity of experimental food allergy. Methods Balb/C mice were first sensitized with ovalbumin (OVA) in the presence of alum. Prior to oral challenges with OVA, mice were subjected to VGX or VNS. Disease severity was determined by assessing severity and onset of diarrhoea, OVA‐specific antibody production, mast cell number and activity, inflammatory gene expression in duodenal tissue and lamina propria immune cells by flow cytometry analysis. Results When compared to control mice, VGX did not significantly affect the development and severity of the disease in our model of food allergy. VNS, on the other hand, resulted in a significant amelioration of the different inflammatory parameters assessed. This effect was independent of α7nAChR and is possibly mediated through the dampening of mast cells and increased phagocytosis of OVA by CX3CR1hi macrophages. Conclusions These results underscore the anti‐inflammatory properties of the vagus nerve and the potential of neuro‐immune interactions in the intestine. Further insight into the underlying mechanisms could ultimately lead to novel therapeutic approaches in the treatment of not only food allergy but also other immune‐mediated diseases.
Collapse
Affiliation(s)
- Goele Bosmans
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Iris Appeltans
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Pedro J. Gomez‐Pinilla
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Morgane V. Florens
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Javier Aguilera‐Lizarraga
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| | - Guy E. Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID) Department of Chronic Diseases, Metabolism and Ageing (CHROMETA) KU Leuven Leuven Belgium
| |
Collapse
|
47
|
Sharma S, Tomar S, Dharne M, Ganesan V, Smith A, Yang Y, Waggoner L, Wang YH, Hogan SP. Deletion of ΔdblGata motif leads to increased predisposition and severity of IgE-mediated food-induced anaphylaxis response. PLoS One 2019; 14:e0219375. [PMID: 31369572 PMCID: PMC6675080 DOI: 10.1371/journal.pone.0219375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Previous studies have revealed an important role for the transcription factor GATA-1 in mast cell maturation and degranulation. However, there have been conflicting reports with respect to the requirement of GATA-1 function in mast cell dependent inflammatory processes. Herein, we examine the requirement of GATA-1 signaling in mast cell effector function and IgE-mast cell-dependent anaphylaxis. OBJECTIVE To study the requirement of GATA-1 dependent signaling in the development and severity of IgE-mast cell-dependent anaphylaxis in mice. METHODS Wild type (Balb/c) and mutant ΔdblGata (Balb/c) mice were employed to study the role of GATA-1 signaling in in vitro IgE-mediated activation of bone marrow derived mast cells (BMMCs). Murine models of passive IgE-mediated and oral antigen-induced IgE-mediated anaphylaxis were employed in mice. Frequency of steady state mast cells in various tissues (duodenum, ear, and tongue), peritoneal cavity, and clinical symptoms (diarrhea, shock, and mast cell activation) and intestinal Type 2 immune cell analysis including CD4+ Th2 cells, type 2 innate lymphoid cells (ILC2), and IL-9 secreting mucosal mast cells (MMC9) were assessed. RESULTS In vitro analysis revealed that ΔdblGata BMMCs exhibit a reduced maturation rate, decreased expression of FcεRIα, and degranulation capacity when compared to their wildtype (WT) counterparts. These in vitro differences did not impact tissue resident mast cell numbers, total IgE, and susceptibility to or severity of IgE-mediated passive anaphylaxis. Surprisingly, ΔdblGata mice were more susceptible to IgE-mast cell-mediated oral antigen induced anaphylaxis. The increased allergic response was associated with increased Type 2 immunity (antigen-specific IgE, and CD4+ TH2 cells), MMC9 cells and small intestine (SI) mast cell load. CONCLUSION Diminished GATA-1 activity results in reduced in vitro mast cell FcεRIα expression, proliferation, and degranulation activity. However, in vivo, diminished GATA-1 activity results in normal homeostatic tissue mast cell levels and increased antigen-induced CD4+ Th2 and iMMC9 cell levels and heightened IgE-mast cell mediated reactions.
Collapse
Affiliation(s)
- Sribava Sharma
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Immunobiology graduate program, Division of Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Sunil Tomar
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Mayuri Dharne
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Varsha Ganesan
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Andrew Smith
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Yanfen Yang
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Lisa Waggoner
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Yui-Hsi Wang
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Simon P. Hogan
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
48
|
Jönsson F, de Chaisemartin L, Granger V, Gouel-Chéron A, Gillis CM, Zhu Q, Dib F, Nicaise-Roland P, Ganneau C, Hurtado-Nedelec M, Paugam-Burtz C, Necib S, Keita-Meyer H, Le Dorze M, Cholley B, Langeron O, Jacob L, Plaud B, Fischler M, Sauvan C, Guinnepain MT, Montravers P, Aubier M, Bay S, Neukirch C, Tubach F, Longrois D, Chollet-Martin S, Bruhns P. An IgG-induced neutrophil activation pathway contributes to human drug-induced anaphylaxis. Sci Transl Med 2019; 11:11/500/eaat1479. [DOI: 10.1126/scitranslmed.aat1479] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 12/21/2018] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
Anaphylaxis is a systemic acute hypersensitivity reaction that is considered to depend on allergen-specific immunoglobulin E (IgE) antibodies and histamine release by mast cells and basophils. Nevertheless, allergen-specific IgG antibodies have been proposed to contribute when the allergen is an abundant circulating large molecule, e.g., after infusions of therapeutic antibodies or dextran. Data from animal models demonstrate a pathway involving platelet-activating factor (PAF) release by monocytes/macrophages and neutrophils activated via their Fc gamma receptors (FcγRs). We hypothesized that such a pathway may also apply to small drugs and could be responsible for non–IgE-mediated anaphylaxis and influence anaphylaxis severity in humans. We prospectively conducted a multicentric study of 86 patients with suspected anaphylaxis to neuromuscular-blocking agents (NMBAs) during general anesthesia and 86 matched controls. We found that concentrations of anti-NMBA IgG and markers of FcγR activation, PAF release, and neutrophil activation correlated with anaphylaxis severity. Neutrophils underwent degranulation and NETosis early after anaphylaxis onset, and plasma-purified anti-NMBA IgG triggered neutrophil activation ex vivo in the presence of NMBA. Neutrophil activation could also be observed in patients lacking evidence of classical IgE-dependent anaphylaxis. This study supports the existence of an IgG-neutrophil pathway in human NMBA-induced anaphylaxis, which may aggravate anaphylaxis in combination with the IgE pathway or underlie anaphylaxis in the absence of specific IgE. These results reconcile clinical and experimental data on the role of antibody classes in anaphylaxis and could inform diagnostic approaches to NMBA-induced acute hypersensitivity reactions.
Collapse
|
49
|
Therapeutic potential of D prostanoid receptor 1 signal enhancement in a murine model of food allergy. J Allergy Clin Immunol 2019; 143:2290-2293.e4. [DOI: 10.1016/j.jaci.2019.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
|
50
|
Leyva-Castillo JM, Galand C, Kam C, Burton O, Gurish M, Musser MA, Goldsmith JD, Hait E, Nurko S, Brombacher F, Dong C, Finkelman FD, Lee RT, Ziegler S, Chiu I, Austen KF, Geha RS. Mechanical Skin Injury Promotes Food Anaphylaxis by Driving Intestinal Mast Cell Expansion. Immunity 2019; 50:1262-1275.e4. [PMID: 31027995 DOI: 10.1016/j.immuni.2019.03.023] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/17/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Mast cell (MC) mediator release after crosslinking of surface-bound IgE antibody by ingested antigen underlies food allergy. However, IgE antibodies are not uniformly associated with food allergy, and intestinal MC load is an important determinant. Atopic dermatitis (AD), characterized by pruritis and cutaneous sensitization to allergens, including foods, is strongly associated with food allergy. Tape stripping mouse skin, a surrogate for scratching, caused expansion and activation of small intestinal MCs, increased intestinal permeability, and promoted food anaphylaxis in sensitized mice. Tape stripping caused keratinocytes to systemically release interleukin-33 (IL-33), which synergized with intestinal tuft-cell-derived IL-25 to drive the expansion and activation of intestinal type-2 innate lymphoid cells (ILC2s). These provided IL-4, which targeted MCs to expand in the intestine. Duodenal MCs were expanded in AD. In addition to promoting cutaneous sensitization to foods, scratching may promote food anaphylaxis in AD by expanding and activating intestinal MCs.
Collapse
Affiliation(s)
| | - Claire Galand
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christy Kam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver Burton
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Gurish
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa A Musser
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Elizabeth Hait
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Samuel Nurko
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology & University of Cape Town & South Africa Medical Research Council, South Africa
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Fred D Finkelman
- Department of Internal Medicine and Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Steven Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Isaac Chiu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - K Frank Austen
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|