1
|
Sgro S, Wagner J, Fillebeen C, Pantopoulos K. Hjv -/- mice in either C57BL/6 or AKR genetic background do not develop spontaneous liver fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119747. [PMID: 38735370 DOI: 10.1016/j.bbamcr.2024.119747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/20/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Affiliation(s)
- Sabrina Sgro
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - John Wagner
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Carine Fillebeen
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Vali SW, Lindahl PA. Low-temperature Mössbauer spectroscopy of organs from 57Fe-enriched HFE (-/-) hemochromatosis mice: an iron-dependent threshold for generating hemosiderin. J Biol Inorg Chem 2023; 28:173-185. [PMID: 36512071 PMCID: PMC9981716 DOI: 10.1007/s00775-022-01975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022]
Abstract
Hereditary hemochromatosis is an iron-overload disease most often arising from a mutation in the Homeostatic Fe regulator (HFE) gene. HFE organs become overloaded with iron which causes damage. Iron-overload is commonly detected by NMR imaging, but the spectroscopic technique is insensitive to diamagnetic iron. Here, we used Mössbauer spectroscopy to examine the iron content of liver, spleen, kidney, heart, and brain of 57Fe-enriched HFE(-/-) mice of ages 3-52 wk. Overall, the iron contents of all investigated HFE organs were similar to the same healthy organ but from an older mouse. Livers and spleens were majorly overloaded, followed by kidneys. Excess iron was generally present as ferritin. Iron-sulfur clusters and low-spin FeII hemes (combined into the central quadrupole doublet) and nonheme high-spin FeII species were also observed. Spectra of young and middle-aged HFE kidneys were dominated by the central quadrupole doublet and were largely devoid of ferritin. Collecting and comparing spectra at 5 and 60 K allowed the presence of hemosiderin, a decomposition product of ferritin, to be quantified, and it also allowed the diamagnetic central doublet to be distinguished from ferritin. Hemosiderin was observed in spleens and livers from HFE mice, and in spleens from controls, but only when iron concentrations exceeded 2-3 mM. Even in those cases, hemosiderin represented only 10-20% of the iron in the sample. NMR imaging can identify iron-overload under non-invasive room-temperature conditions, but Mössbauer spectroscopy of 57Fe-enriched mice can detect all forms of iron and perhaps allow the process of iron-overloading to be probed in greater detail.
Collapse
Affiliation(s)
- Shaik Waseem Vali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Paul A Lindahl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA.
| |
Collapse
|
3
|
The (Bio)Chemistry of Non-Transferrin-Bound Iron. Molecules 2022; 27:molecules27061784. [PMID: 35335148 PMCID: PMC8951307 DOI: 10.3390/molecules27061784] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
In healthy individuals, virtually all blood plasma iron is bound by transferrin. However, in several diseases and clinical conditions, hazardous non-transferrin-bound iron (NTBI) species occur. NTBI represents a potentially toxic iron form, being a direct cause of oxidative stress in the circulating compartment and tissue iron loading. The accumulation of these species can cause cellular damage in several organs, namely, the liver, spleen, and heart. Despite its pathophysiological relevance, the chemical nature of NTBI remains elusive. This has precluded its use as a clinical biochemical marker and the development of targeted therapies. Herein, we make a critical assessment of the current knowledge of NTBI speciation. The currently accepted hypotheses suggest that NTBI is mostly iron bound to citric acid and iron bound to serum albumin, but the chemistry of this system remains fuzzy. We explore the complex chemistry of iron complexation by citric acid and its implications towards NTBI reactivity. Further, the ability of albumin to bind iron is revised and the role of protein post-translational modifications on iron binding is discussed. The characterization of the NTBI species structure may be the starting point for the development of a standardized analytical assay, the better understanding of these species’ reactivity or the identification of NTBI uptake mechanisms by different cell types, and finally, to the development of new therapies.
Collapse
|
4
|
Hawula Z, Secondes E, Wallace D, Rishi G, Subramaniam V. The effect of the flavonol rutin on serum and liver iron content in a genetic mouse model of iron overload. Biosci Rep 2021; 41:BSR20210720. [PMID: 34156073 PMCID: PMC8273376 DOI: 10.1042/bsr20210720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
The flavonol rutin has been shown to possess antioxidant and iron chelating properties in vitro and in vivo. These dual properties are beneficial as therapeutic options to reduce iron accumulation and the generation of reactive oxygen species (ROS) resultant from excess free iron. The effect of rutin on iron metabolism has been limited to studies performed in wildtype mice either injected or fed high-iron diets. The effect of rutin on iron overload caused by genetic dysregulation of iron homoeostasis has not yet been investigated. In the present study we examined the effect of rutin treatment on tissue iron loading in a genetic mouse model of iron overload, which mirrors the iron loading associated with Type 3 hereditary haemochromatosis patients who have a defect in Transferrin Receptor 2 (TFR2). Male TFR2 knockout (KO) mice were administered rutin via oral gavage for 21 continuous days. Following treatment, iron levels in serum, liver, duodenum and spleen were assessed. In addition, hepatic ferritin protein levels were determined by Western blotting, and expression of iron homoeostasis genes by quantitative real-time PCR. Rutin treatment resulted in a significant reduction in hepatic ferritin protein expression and serum transferrin saturation. In addition, trends towards decreased iron levels in the liver and serum, and increased serum unsaturated iron binding capacity were observed. This is the first study to explore the utility of rutin as a potential iron chelator and therapeutic in an animal model of genetic iron overload.
Collapse
Affiliation(s)
- Zachary J. Hawula
- Centre for Genomics, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Eriza S. Secondes
- Centre for Genomics, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Daniel F. Wallace
- Centre for Genomics, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Gautam Rishi
- Centre for Genomics, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - V. Nathan Subramaniam
- Centre for Genomics, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| |
Collapse
|
5
|
Dysregulated hepcidin response to dietary iron in male mice with reduced Gnpat expression. Biosci Rep 2020; 40:226001. [PMID: 32766721 PMCID: PMC7441371 DOI: 10.1042/bsr20201508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Exome sequencing has identified the glyceronephosphate O-acyltransferase (GNPAT) gene as a genetic modifier of iron overload in hereditary hemochromatosis (HH). Subjects with HFE (Homeostatic Iron Regulator) p.C282Y mutations and the GNPAT p.D519G variant had more iron loading compared with subjects without the GNPAT variant. In response to an oral iron challenge, women with GNPAT polymorphisms loaded more iron as compared with women without polymorphisms, reinforcing a role for GNPAT in iron homeostasis. The aim of the present study was to develop and characterize an animal model of disease to further our understanding of genetic modifiers, and in particular the role of GNPAT in iron homeostasis. We generated an Hfe/Gnpat mouse model reminiscent of the patients previously studied and studied these mice for up to 26 weeks. We also examined the effect of dietary iron loading on mice with reduced Gnpat expression. Gnpat heterozygosity in Hfe knockout mice does not play a role in systemic iron homeostasis; Gnpat+/− mice fed a high-iron diet, however, had lower hepatic hepcidin (HAMP) mRNA expression, whereas they have significantly higher serum iron levels and transferrin saturation compared with wildtype (WT) littermates on a similar diet. These results reinforce an independent role of GNPAT in systemic iron homeostasis, reproducing in an animal model, the observations in women with GNPAT polymorphisms subjected to an iron tolerance test.
Collapse
|
6
|
Piperno A, Pelucchi S, Mariani R. Inherited iron overload disorders. Transl Gastroenterol Hepatol 2020; 5:25. [PMID: 32258529 DOI: 10.21037/tgh.2019.11.15] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Hereditary iron overload includes several disorders characterized by iron accumulation in tissues, organs, or even single cells or subcellular compartments. They are determined by mutations in genes directly involved in hepcidin regulation, cellular iron uptake, management and export, iron transport and storage. Systemic forms are characterized by increased serum ferritin with or without high transferrin saturation, and with or without functional iron deficient anemia. Hemochromatosis includes five different genetic forms all characterized by high transferrin saturation and serum ferritin, but with different penetrance and expression. Mutations in HFE, HFE2, HAMP and TFR2 lead to inadequate or severely reduced hepcidin synthesis that, in turn, induces increased intestinal iron absorption and macrophage iron release leading to tissue iron overload. The severity of hepcidin down-regulation defines the severity of iron overload and clinical complications. Hemochromatosis type 4 is caused by dominant gain-of-function mutations of ferroportin preventing hepcidin-ferroportin binding and leading to hepcidin resistance. Ferroportin disease is due to loss-of-function mutation of SLC40A1 that impairs the iron export efficiency of ferroportin, causes iron retention in reticuloendothelial cell and hyperferritinemia with normal transferrin saturation. Aceruloplasminemia is caused by defective iron release from storage and lead to mild microcytic anemia, low serum iron, and iron retention in several organs including the brain, causing severe neurological manifestations. Atransferrinemia and DMT1 deficiency are characterized by iron deficient erythropoiesis, severe microcytic anemia with high transferrin saturation and parenchymal iron overload due to secondary hepcidin suppression. Diagnosis of the different forms of hereditary iron overload disorders involves a sequential strategy that combines clinical, imaging, biochemical, and genetic data. Management of iron overload relies on two main therapies: blood removal and iron chelators. Specific therapeutic options are indicated in patients with atransferrinemia, DMT1 deficiency and aceruloplasminemia.
Collapse
Affiliation(s)
- Alberto Piperno
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| | - Sara Pelucchi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaella Mariani
- Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| |
Collapse
|
7
|
Reduced Iron in Diabetic Wounds: An Oxidative Stress-Dependent Role for STEAP3 in Extracellular Matrix Deposition and Remodeling. J Invest Dermatol 2019; 139:2368-2377.e7. [DOI: 10.1016/j.jid.2019.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
|
8
|
Abstract
Most cells in the body acquire iron via receptor-mediated endocytosis of transferrin, the circulating iron transport protein. When cellular iron levels are sufficient, the uptake of transferrin decreases to limit further iron assimilation and prevent excessive iron accumulation. In iron overload conditions, such as hereditary hemochromatosis and thalassemia major, unregulated iron entry into the plasma overwhelms the carrying capacity of transferrin, resulting in non-transferrin-bound iron (NTBI), a redox-active, potentially toxic form of iron. Plasma NTBI is rapidly cleared from the circulation primarily by the liver and other organs (e.g., pancreas, heart, and pituitary) where it contributes significantly to tissue iron overload and related pathology. While NTBI is usually not detectable in the plasma of healthy individuals, it does appear to be a normal constituent of brain interstitial fluid and therefore likely serves as an important source of iron for most cell types in the CNS. A growing body of literature indicates that NTBI uptake is mediated by non-transferrin-bound iron transporters such as ZIP14, L-type and T-type calcium channels, DMT1, ZIP8, and TRPC6. This review provides an overview of NTBI uptake by various tissues and cells and summarizes the evidence for and against the roles of individual transporters in this process.
Collapse
Affiliation(s)
- Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Parmar JH, Mendes P. A computational model to understand mouse iron physiology and disease. PLoS Comput Biol 2019; 15:e1006680. [PMID: 30608934 PMCID: PMC6334977 DOI: 10.1371/journal.pcbi.1006680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/16/2019] [Accepted: 11/29/2018] [Indexed: 12/16/2022] Open
Abstract
It is well known that iron is an essential element for life but is toxic when in excess or in certain forms. Accordingly there are many diseases that result directly from either lack or excess of iron. Yet many molecular and physiological aspects of iron regulation have only been discovered recently and others are still elusive. There is still no good quantitative and dynamic description of iron absorption, distribution, storage and mobilization that agrees with the wide array of phenotypes presented in several iron-related diseases. The present work addresses this issue by developing a mathematical model of iron distribution in mice calibrated with ferrokinetic data and subsequently validated against data from mouse models of iron disorders, such as hemochromatosis, β-thalassemia, atransferrinemia and anemia of inflammation. To adequately fit the ferrokinetic data required inclusion of the following mechanisms: a) transferrin-mediated iron delivery to tissues, b) induction of hepcidin by transferrin-bound iron, c) ferroportin-dependent iron export regulated by hepcidin, d) erythropoietin regulation of erythropoiesis, and e) liver uptake of NTBI. The utility of the model to simulate disease interventions was demonstrated by using it to investigate the outcome of different schedules of transferrin treatment in β-thalassemia. Iron is an essential nutrient in almost all life forms. In humans and animals iron is used for respiration and for transporting oxygen inside red blood cells. But in excess iron can be toxic and therefore the body regulates its distribution and absortion through the action of hormones, which is not yet completely understood. Here we created a computational model of the regulation of iron distribution in the body of a mouse based on experimental data. The model can accurately simulate many iron diseases such as anemia, hemochromatosis, and thalassemia. This computational model is helpful to understand the basis of these diseases and plan therapies to address them.
Collapse
Affiliation(s)
- Jignesh H. Parmar
- Center for Quantitative Medicine and Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Pedro Mendes
- Center for Quantitative Medicine and Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
10
|
Phenotypic analysis of hemochromatosis subtypes reveals variations in severity of iron overload and clinical disease. Blood 2018; 132:101-110. [PMID: 29743178 DOI: 10.1182/blood-2018-02-830562] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
The clinical progression of HFE-related hereditary hemochromatosis (HH) and its phenotypic variability has been well studied. Less is known about the natural history of non-HFE HH caused by mutations in the HJV, HAMP, or TFR2 genes. The purpose of this study was to compare the phenotypic and clinical presentations of hepcidin-deficient forms of HH. A literature review of all published cases of genetically confirmed HJV, HAMP, and TFR2 HH was performed. Phenotypic and clinical data from a total of 156 patients with non-HFE HH was extracted from 53 publications and compared with data from 984 patients with HFE-p.C282Y homozygous HH from the QIMR Berghofer Hemochromatosis Database. Analyses confirmed that non-HFE forms of HH have an earlier age of onset and a more severe clinical course than HFE HH. HJV and HAMP HH are phenotypically and clinically very similar and have the most severe presentation, with cardiomyopathy and hypogonadism being particularly prevalent findings. TFR2 HH is more intermediate in its age of onset and severity. All clinical outcomes analyzed were more prevalent in the juvenile forms of HH, with the exception of arthritis and arthropathy, which were more commonly seen in HFE HH. This is the first comprehensive analysis comparing the different phenotypic and clinical aspects of the genetic forms of HH, and the results will be valuable for the differential diagnosis and management of these conditions. Importantly, our analyses indicate that factors other than iron overload may be contributing to joint pathology in patients with HFE HH.
Collapse
|
11
|
Pelucchi S, Mariani R, Ravasi G, Pelloni I, Marano M, Tremolizzo L, Alessio M, Piperno A. Phenotypic heterogeneity in seven Italian cases of aceruloplasminemia. Parkinsonism Relat Disord 2018; 51:36-42. [PMID: 29503155 DOI: 10.1016/j.parkreldis.2018.02.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Aceruloplasminemia is an ultra-rare hereditary disorder characterized by iron-restricted microcytic anemia and tissue iron overload associated with diabetes, retinal and progressive neurological degeneration. We describe genotypes and phenotypes at diagnosis, and disease evolution of seven Italian patients. METHODS Anagraphical, biochemical, genetic, clinical and instrumental data were collected at diagnosis and during a long-term follow-up. Mutations, ferroxidase activity and Western Blot analysis of ceruloplasmin were performed according to standard protocols. RESULTS Three mutations were already described (p.Phe217Ser, deletions of exon 11 and 12), p.Ile991Thr is a very rare variant, p.Cys338Ser and IVS6+1G > A were novel mutations. In silico analyses suggested they were highly likely or likely to be damaging. At diagnosis, 100% had microcytosis, 86% had mild-moderate anemia, low serum iron and high serum ferritin. Four (57%) had type 1 diabetes or glucose intolerance, 3/7 had neurological manifestations, and only one had early diabetic retinopathy. All but one underwent iron chelation therapy requiring temporary discontinuation because of anemia worsening. At the end of follow-up, three patients aggravated and 2 developed neurological symptoms; only two patients were free of neurological manifestations and showed mild or absent brain iron. CONCLUSION Aceruloplasminemia phenotypes ranged from classical characterized by progressive neurologic derangement to milder in which signs of systemic iron overload prevailed over brain iron accumulation. Within this large heterogeneity, microcytosis with or without anemia, low serum iron and high serum ferritin were the early hallmarks of the disease. Therapeutic approaches other than iron chelation should be explored to reduce morbidity and improve life expectancy.
Collapse
Affiliation(s)
- Sara Pelucchi
- Laboratory of Iron Metabolism, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaella Mariani
- Centre for Disorders of Iron Metabolism, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Giulia Ravasi
- Laboratory of Iron Metabolism, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Irene Pelloni
- Centre for Disorders of Iron Metabolism, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Massimo Marano
- Neurology, Campus Bio-Medico of Rome University, Rome, Italy
| | - Lucio Tremolizzo
- Laboratory of Neurobiology, School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy; Neurology, ASST-Monza, Ospedale San Gerardo, Monza, Italy
| | - Massimo Alessio
- Division of Genetics and Cell Biology, IRCCS-Ospedale San Raffaele, Milano, Italy
| | - Alberto Piperno
- Laboratory of Iron Metabolism, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Centre for Disorders of Iron Metabolism, ASST-Monza, Ospedale San Gerardo, Monza, Italy.
| |
Collapse
|
12
|
Zhabyeyev P, Das SK, Basu R, Shen M, Patel VB, Kassiri Z, Oudit GY. TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease. Am J Physiol Heart Circ Physiol 2018; 314:H978-H990. [PMID: 29373036 DOI: 10.1152/ajpheart.00597.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3-/-) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3-/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3-/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3-/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3-/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key protective role against iron-mediated pathology.
Collapse
Affiliation(s)
- Pavel Zhabyeyev
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Subhash K Das
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Mengcheng Shen
- Department of Physiology, University of Alberta , Edmonton, Alberta , Canada
| | - Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Zamaneh Kassiri
- Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada.,Department of Physiology, University of Alberta , Edmonton, Alberta , Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada.,Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
13
|
Brissot P, Cavey T, Ropert M, Gaboriau F, Loréal O. Hemochromatosis: a model of metal-related human toxicosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2007-2013. [PMID: 27628916 DOI: 10.1007/s11356-016-7576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Many environmental agents, such as excessive alcohol intake, xenobiotics, and virus, are able to damage the human body, targeting especially the liver. Metal excess may also assault the liver. Thus, chronic iron overload may cause, especially when associated with cofactors, diffuse organ damage that is a source of significant morbidity and mortality. Iron excess can be either of acquired (mostly transfusional) or of genetic origin. Hemochromatosis is the archetype of genetic iron overload diseases and represents a serious health problem. A better understanding of iron metabolism has deeply modified the hemochromatosis field which today benefits from much more efficient diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Pierre Brissot
- Hepatology, Faculty of Medicine, University of Rennes1, 2, avenue Pr. Léon BERNARD, 35043, Rennes, France.
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France.
- Inserm-UMR 991, University of Rennes1, Rennes, France.
| | - Thibault Cavey
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France
- Inserm-UMR 991, University of Rennes1, Rennes, France
| | - Martine Ropert
- Department of Biochemistry, Pontchaillou University Hospital, Rennes, France
- Inserm-UMR 991, University of Rennes1, Rennes, France
| | | | | |
Collapse
|
14
|
McLachlan S, Page KE, Lee SM, Loguinov A, Valore E, Hui ST, Jung G, Zhou J, Lusis AJ, Fuqua B, Ganz T, Nemeth E, Vulpe CD. Hamp1 mRNA and plasma hepcidin levels are influenced by sex and strain but do not predict tissue iron levels in inbred mice. Am J Physiol Gastrointest Liver Physiol 2017; 313:G511-G523. [PMID: 28798083 PMCID: PMC5792216 DOI: 10.1152/ajpgi.00307.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 01/31/2023]
Abstract
Iron homeostasis is tightly regulated, and the peptide hormone hepcidin is considered to be a principal regulator of iron metabolism. Previous studies in a limited number of mouse strains found equivocal sex- and strain-dependent differences in mRNA and serum levels of hepcidin and reported conflicting data on the relationship between hepcidin (Hamp1) mRNA levels and iron status. Our aim was to clarify the relationships between strain, sex, and hepcidin expression by examining multiple tissues and the effects of different dietary conditions in multiple inbred strains. Two studies were done: first, Hamp1 mRNA, liver iron, and plasma diferric transferrin levels were measured in 14 inbred strains on a control diet; and second, Hamp1 mRNA and plasma hepcidin levels in both sexes and iron levels in the heart, kidneys, liver, pancreas, and spleen in males were measured in nine inbred/recombinant inbred strains raised on an iron-sufficient or high-iron diet. Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). However, liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice fed iron-sufficient or high-iron diets, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least in males. We also measured plasma erythroferrone, performed RNA-sequencing analysis of liver samples from six inbred strains fed the iron-sufficient, low-iron, or high-iron diets, and explored differences in gene expression between the strains with the highest and lowest hepcidin levels.NEW & NOTEWORTHY Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). Liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least in males.
Collapse
Affiliation(s)
- Stela McLachlan
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom;
| | - Kathryn E. Page
- 2Department of Nutritional Science & Toxicology, University of California, Berkeley, California;
| | - Seung-Min Lee
- 3Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea;
| | - Alex Loguinov
- 5Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Erika Valore
- 4Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Simon T. Hui
- 4Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Grace Jung
- 4Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Jie Zhou
- 5Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Aldons J. Lusis
- 4Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Brie Fuqua
- 4Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Tomas Ganz
- 4Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Elizabeta Nemeth
- 4Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; and
| | - Chris D. Vulpe
- 2Department of Nutritional Science & Toxicology, University of California, Berkeley, California; ,5Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
15
|
Wofford JD, Chakrabarti M, Lindahl PA. Mössbauer Spectra of Mouse Hearts Reveal Age-dependent Changes in Mitochondrial and Ferritin Iron Levels. J Biol Chem 2017; 292:5546-5554. [PMID: 28202542 DOI: 10.1074/jbc.m117.777201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/14/2017] [Indexed: 01/12/2023] Open
Abstract
Cardiac function requires continuous high levels of energy, and so iron, a critical player in mitochondrial respiration, is an important component of the heart. Hearts from 57Fe-enriched mice were evaluated by Mössbauer spectroscopy. Spectra consisted of a sextet and two quadrupole doublets. One doublet was due to residual blood, whereas the other was due to [Fe4S4]2+ clusters and low-spin FeII hemes, most of which were associated with mitochondrial respiration. The sextet was due to ferritin; there was no evidence of hemosiderin, a ferritin decomposition product. Iron from ferritin was nearly absent in young hearts, but increased steadily with age. EPR spectra exhibited signals similar to those of brain, liver, and human cells. No age-dependent EPR trends were apparent. Hearts from HFE-/- mice with hemochromatosis contained slightly more iron overall than controls, including more ferritin and less mitochondrial iron; these differences typify slightly older hearts, perhaps reflecting the burden due to this disease. HFE-/- livers were overloaded with ferritin but had low mitochondrial iron levels. IRP2-/- hearts contained less ferritin than controls but normal levels of mitochondrial iron. Hearts of young mice born to an iron-deficient mother contained normal levels of mitochondrial iron and no ferritin; the heart from the mother contained low ferritin and normal levels of mitochondrial iron. High-spin FeII ions were nearly undetectable in heart samples; these were evident in brains, livers, and human cells. Previous Mössbauer spectra of unenriched diseased human hearts lacked mitochondrial and blood doublets and included hemosiderin features. This suggests degradation of iron-containing species during sample preparation.
Collapse
Affiliation(s)
| | | | - Paul A Lindahl
- From the Departments of Chemistry and .,Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
16
|
Lunova M, Schwarz P, Nuraldeen R, Levada K, Kuscuoglu D, Stützle M, Vujić Spasić M, Haybaeck J, Ruchala P, Jirsa M, Deschemin JC, Vaulont S, Trautwein C, Strnad P. Hepcidin knockout mice spontaneously develop chronic pancreatitis owing to cytoplasmic iron overload in acinar cells. J Pathol 2016; 241:104-114. [PMID: 27741349 DOI: 10.1002/path.4822] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
Iron is both an essential and a potentially toxic element, and its systemic homeostasis is controlled by the iron hormone hepcidin. Hepcidin binds to the cellular iron exporter ferroportin, causes its degradation, and thereby diminishes iron uptake from the intestine and the release of iron from macrophages. Given that hepcidin-resistant ferroportin mutant mice show exocrine pancreas dysfunction, we analysed pancreata of aging hepcidin knockout (KO) mice. Hepcidin and Hfe KO mice were compared with wild-type (WT) mice kept on standard or iron-rich diets. Twelve-month-old hepcidin KO mice were subjected to daily minihepcidin PR73 treatment for 1 week. Six-month-old hepcidin KO mice showed cytoplasmic acinar iron overload and mild pancreatitis, together with elevated expression of the iron uptake mediators DMT1 and Zip14. Acinar atrophy, massive macrophage infiltration, fatty changes and pancreas fibrosis were noted in 1-year-old hepcidin KO mice. As an underlying mechanism, 6-month-old hepcidin KO mice showed increased pancreatic oxidative stress, with elevated DNA damage, apoptosis and activated nuclear factor-κB (NF-κB) signalling. Neither iron overload nor pancreatic damage was observed in WT mice fed iron-rich diet or in Hfe KO mice. Minihepcidin application to hepcidin KO mice led to an improvement in general health status and to iron redistribution from acinar cells to macrophages. It also resulted in decreased NF-κB activation and reduced DNA damage. In conclusion, loss of hepcidin signalling in mice leads to iron overload-induced chronic pancreatitis that is not seen in situations with less severe iron accumulation. The observed tissue injury can be reversed by hepcidin supplementation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mariia Lunova
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany.,Institute of Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Peggy Schwarz
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Renwar Nuraldeen
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Kateryna Levada
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Deniz Kuscuoglu
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Michael Stützle
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Maja Vujić Spasić
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | | | - Piotr Ruchala
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Milan Jirsa
- Institute of Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | | | | | - Christian Trautwein
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany.,Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
17
|
Jenkitkasemwong S, Wang CY, Coffey R, Zhang W, Chan A, Biel T, Kim JS, Hojyo S, Fukada T, Knutson MD. SLC39A14 Is Required for the Development of Hepatocellular Iron Overload in Murine Models of Hereditary Hemochromatosis. Cell Metab 2015; 22:138-50. [PMID: 26028554 PMCID: PMC4497937 DOI: 10.1016/j.cmet.2015.05.002] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/04/2015] [Accepted: 04/24/2015] [Indexed: 01/07/2023]
Abstract
Nearly all forms of hereditary hemochromatosis are characterized by pathological iron accumulation in the liver, pancreas, and heart. These tissues preferentially load iron because they take up non-transferrin-bound iron (NTBI), which appears in the plasma during iron overload. Yet, how tissues take up NTBI is largely unknown. We report that ablation of Slc39a14, the gene coding for solute carrier SLC39A14 (also called ZIP14), in mice markedly reduced the uptake of plasma NTBI by the liver and pancreas. To test the role of SLC39A14 in tissue iron loading, we crossed Slc39a14(-/-) mice with Hfe(-/-) and Hfe2(-/-) mice, animal models of type 1 and type 2 (juvenile) hemochromatosis, respectively. Slc39a14 deficiency in hemochromatotic mice greatly diminished iron loading of the liver and prevented iron deposition in hepatocytes and pancreatic acinar cells. The data suggest that inhibition of SLC39A14 may mitigate hepatic and pancreatic iron loading and associated pathologies in iron overload disorders.
Collapse
Affiliation(s)
- Supak Jenkitkasemwong
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Chia-Yu Wang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Richard Coffey
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Wei Zhang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Alan Chan
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Thomas Biel
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Shintaro Hojyo
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Deutsches Rheuma-Forschungszentrum Berlin, Osteoimmunology, Charitéplatz, 10117 Berlin, Germany
| | - Toshiyuki Fukada
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa 142-8666, Japan; Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8055, Japan
| | - Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
18
|
Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:230182. [PMID: 25878762 PMCID: PMC4387903 DOI: 10.1155/2015/230182] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 02/08/2023]
Abstract
The high incidence of cardiomyopathy in patients with hemosiderosis, particularly in transfusional iron overload, strongly indicates that iron accumulation in the heart plays a major role in the process leading to heart failure. In this context, iron-mediated generation of noxious reactive oxygen species is believed to be the most important pathogenetic mechanism determining cardiomyocyte damage, the initiating event of a pathologic progression involving apoptosis, fibrosis, and ultimately cardiac dysfunction. However, recent findings suggest that additional mechanisms involving subcellular organelles and inflammatory mediators are important factors in the development of this disease. Moreover, excess iron can amplify the cardiotoxic effect of other agents or events. Finally, subcellular misdistribution of iron within cardiomyocytes may represent an additional pathway leading to cardiac injury. Recent advances in imaging techniques and chelators development remarkably improved cardiac iron overload detection and treatment, respectively. However, increased understanding of the pathogenic mechanisms of iron overload cardiomyopathy is needed to pave the way for the development of improved therapeutic strategies.
Collapse
|
19
|
Metabolic alterations, HFE gene mutations and atherogenic lipoprotein modifications in patients with primary iron overload. Clin Sci (Lond) 2015; 128:609-18. [DOI: 10.1042/cs20140300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
HFE gene mutations contributed to a decrease of insulin secretion, an atherogenic LDL subfraction distribution and altered LDL and HDL particles in patients with iron overload. It remains to be determined whether these alterations contribute to cardiovascular risk.
Collapse
|
20
|
Abu Rajab M, Guerin L, Lee P, Brown KE. Iron overload secondary to cirrhosis: a mimic of hereditary haemochromatosis? Histopathology 2014; 65:561-9. [PMID: 24635122 DOI: 10.1111/his.12417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
Abstract
AIMS Hepatic iron deposition unrelated to hereditary haemochromatosis is common in cirrhosis. The aim of this study was to determine whether hepatic haemosiderosis secondary to cirrhosis is associated with iron deposition in extrahepatic organs. METHODS AND RESULTS Records of consecutive adult patients with cirrhosis who underwent autopsy were reviewed. Storage iron was assessed by histochemical staining of sections of liver, heart, pancreas and spleen. HFE genotyping was performed on subjects with significant liver, cardiac and/or pancreatic iron. The 104 individuals were predominantly male (63%), with a mean age of 55 years. About half (46%) had stainable hepatocyte iron, 2+ or less in most cases. In six subjects, there was heavy iron deposition (4+) in hepatocytes and biliary epithelium. All six of these cases had pancreatic iron and five also had cardiac iron. None of these subjects had an explanatory HFE genotype. CONCLUSIONS In this series, heavy hepatocyte iron deposition secondary to cirrhosis was commonly associated with pancreatic and cardiac iron. Although this phenomenon appears to be relatively uncommon, the resulting pattern of iron deposition is similar to haemochromatosis. Patients with marked hepatic haemosiderosis secondary to cirrhosis may be at risk of developing extrahepatic complications of iron overload.
Collapse
Affiliation(s)
- Murad Abu Rajab
- Division of Gastroenterology-Hepatology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | | | | | | |
Collapse
|
21
|
McDonald CJ, Wallace DF, Ostini L, Subramaniam VN. Parenteral vs. oral iron: influence on hepcidin signaling pathways through analysis of Hfe/Tfr2-null mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G132-9. [PMID: 24284962 DOI: 10.1152/ajpgi.00256.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Treatment for iron deficiency anemia can involve iron supplementation via dietary or parenteral routes that result in different cellular iron distributions. The effect of the administered iron on the iron regulatory system and hepcidin in the liver has not been well studied. Hepcidin, the liver-expressed central iron-regulatory peptide, is itself regulated through the bone morphogenetic protein (BMP)/SMAD signaling pathway. Specifically, Bmp6 expression is upregulated in response to iron and induces hepcidin through phosphorylation of Smad1/5/8. The hemochromatosis-associated proteins Hfe and transferrin receptor 2 (Tfr2) are known upstream regulators of hepcidin, although their precise roles are still unclear. To investigate the mechanisms of this regulation and the roles of the Hfe and Tfr2, we subjected wild-type, Hfe(-/-), Tfr2(-/-), and Hfe(-/-)/Tfr2(-/-) mice to iron loading via dietary or parenteral routes. Systematic analysis demonstrated that Tfr2 is required for effective upregulation of Bmp6 in response to hepatocyte iron, but not nonparenchymal iron. Hfe is not required for Bmp6 upregulation, regardless of iron localization, but rather, is required for efficient downstream transmission of the regulatory signal. Our results demonstrate that Hfe and Tfr2 play separate roles in the regulatory responses to iron compartmentalized in different cell types and further elucidates the regulatory mechanisms controlling iron homeostasis.
Collapse
Affiliation(s)
- Cameron J McDonald
- Membrane Transport Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd., Herston, Brisbane, QLD 4006, Australia.
| | | | | | | |
Collapse
|
22
|
Pelham C, Jimenez T, Rodova M, Rudolph A, Chipps E, Islam MR. Regulation of HFE expression by poly(ADP-ribose) polymerase-1 (PARP1) through an inverted repeat DNA sequence in the distal promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1257-1265. [PMID: 24184271 DOI: 10.1016/j.bbagrm.2013.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/28/2013] [Accepted: 10/22/2013] [Indexed: 02/08/2023]
Abstract
Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron overload among Caucasians of northern European descent. Over 85% of all cases with HH are due to mutations in the hemochromatosis protein (HFE) involved in iron metabolism. Although the importance in iron homeostasis is well recognized, the mechanism of sensing and regulating iron absorption by HFE, especially in the absence of iron response element in its gene, is not fully understood. In this report, we have identified an inverted repeat sequence (ATGGTcttACCTA) within 1700bp (-1675/+35) of the HFE promoter capable to form cruciform structure that binds PARP1 and strongly represses HFE promoter. Knockdown of PARP1 increases HFE mRNA and protein. Similarly, hemin or FeCl3 treatments resulted in increase in HFE expression by reducing nuclear PARP1 pool via its apoptosis induced cleavage, leading to upregulation of the iron regulatory hormone hepcidin mRNA. Thus, PARP1 binding to the inverted repeat sequence on the HFE promoter may serve as a novel iron sensing mechanism as increased iron level can trigger PARP1 cleavage and relief of HFE transcriptional repression.
Collapse
Affiliation(s)
- Christopher Pelham
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Tamara Jimenez
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Marianna Rodova
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Angela Rudolph
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - Elizabeth Chipps
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| | - M Rafiq Islam
- Biochemistry Laboratory, Northwest Missouri State University, Maryville, MO 64468
| |
Collapse
|