1
|
Kim SY, Park S, Kim S, Ko J. CD133-containing microvesicles promote cancer progression by inducing M2-like tumor-associated macrophage polarization in the tumor microenvironment of colorectal cancer. Carcinogenesis 2024; 45:300-310. [PMID: 38085813 DOI: 10.1093/carcin/bgad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 05/20/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are among the most abundant cell types in the tumor microenvironment (TME). The immunosuppressive TME formed by TAMs is an essential prerequisite for cancer progression. Tumor-derived microvesicles (MVs), a subtype of extracellular vesicle shed directly from the plasma membrane, are important regulators of intercellular communication and TME modulation during tumorigenesis. However, the exact mechanism by which tumor-derived MVs induce the generation of the immunosuppressive TME and polarization of TAMs remains unclear. Here, we investigated the role of CD133-containing MVs derived from colorectal cancer (CRC) cells in macrophage polarization and cancer progression. CD133-containing MVs from CRC cells were incorporated into macrophages, and M0 macrophages were morphologically transformed into M2-like TAMs. CD133-containing MVs were found to increase the mRNA expression of M2 macrophage markers. Additionally, cytokine array analysis revealed that M2-like TAMs induced by CD133-containing MVs increased the secretion of interleukin 6, which activated the STAT3 pathway in CRC cells. Furthermore, the conditioned medium of M2-like TAMs promoted cell motility, epithelial-mesenchymal transition, and cell proliferation. However, MVs from CD133-knockdown cells had little effect on TAM polarization and CRC progression. These results demonstrate that CD133-containing MVs induce M2-like TAM polarization and contribute to cancer progression by mediating crosstalk between tumor cells and TAMs in the TME of CRC.
Collapse
Affiliation(s)
- Sang Yun Kim
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Sungyeon Park
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Suhyun Kim
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| |
Collapse
|
2
|
Wang YC, He JL, Tsai CL, Tzeng HE, Chang WS, Pan SH, Chen LH, Su CH, Lin JC, Hung CC, Bau DT, Tsai CW. The Contribution of Tissue Inhibitor of Metalloproteinase-2 Genotypes to Breast Cancer Risk in Taiwan. Life (Basel) 2023; 14:9. [PMID: 38276258 PMCID: PMC10817502 DOI: 10.3390/life14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an endogenous inhibitor of matrix metalloproteinase-2 and is highly expressed in breast cancer (BC) cases at diagnosis. However, the genetic investigations for the association of TIMP-2 genotypes with BC risk are rather limited. In this study, contribution of TIMP-2 rs8179090, rs4789936, rs2009196 and rs7342880 genotypes to BC risk was examined among Taiwan's BC population. TIMP-2 genotypic profiles were revealed among 1232 BC cases and 1232 controls about their contribution to BC using a PCR-based RFLP methodology. The TIMP-2 rs8179090 homozygous variant CC genotype was significantly higher in BC cases than controls (odds ratio (OR) = 2.76, 95% confidence interval (95%CI) = 1.78-4.28, p = 0.0001). Allelic analysis showed that C allele carriers have increased risk for BC (OR = 1.39, 95%CI = 1.20-1.62, p = 0.0001). Genotypic together with allelic analysis showed that TIMP-2 rs4789936, rs2009196 or rs7342880 were not associated with BC risk. Stratification analysis showed that TIMP-2 rs8179090 genotypes were significantly associated with BC risk among younger (≤55) aged women, not among those of an elder (>55) age. Last, rs8179090 genotypes were also associated with triple negative BC. This study sheds light into the etiology of BC in Taiwanese women. Rs8179090 may be incorporated into polygenic risk scores and risk prediction models, which could aid in stratifying individuals for targeted breast cancer screening.
Collapse
Affiliation(s)
- Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Jie-Long He
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung 413305, Taiwan
| | - Chung-Lin Tsai
- Division of Cardiac and Vascular Surgery, Cardiovascular Center, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Huey-En Tzeng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, and Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Shih-Han Pan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Li-Hsiou Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chen-Hsien Su
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Jiunn-Cherng Lin
- Division of Cardiology, Department of Internal Medicine, Taichung Veterans General Hospital, Chiayi Branch, Chiayi 60090, Taiwan
| | - Chih-Chiang Hung
- Division of Breast Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
3
|
Iwasaki M, Zhao H, Hu C, Saito J, Wu L, Sherwin A, Ishikawa M, Sakamoto A, Buggy D, Ma D. The differential cancer growth associated with anaesthetics in a cancer xenograft model of mice: mechanisms and implications of postoperative cancer recurrence. Cell Biol Toxicol 2023; 39:1561-1575. [PMID: 35953652 PMCID: PMC10425502 DOI: 10.1007/s10565-022-09747-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022]
Abstract
Anaesthetics may modify colorectal cancer cell biology which potentially affects long-term survival. This study aims to compare propofol and sevoflurane regarding with the direct anaesthetic effects on cancer malignancy and the indirect effects on host immunity in a cancer xenograft mode of mice. Cultured colon cancer cell (Caco-2) was injected subcutaneously to nude mice (day 1). Mice were exposed to either 1.5% sevoflurane for 1.5 h or propofol (20 μg g-1; ip injection) with or without 4 μg g-1 lipopolysaccharide (LPS; ip) from days 15 to 17, compared with those without anaesthetic exposure as controls. The clinical endpoints including tumour volumes over 70 mm3 were closely monitored up to day 28. Tumour samples from the other cohorts were collected on day 18 for PCR array, qRT-PCR, western blotting and immunofluorescent assessment. Propofol treatment reduced tumour size (mean ± SD; 23.0 ± 6.2mm3) when compared to sevoflurane (36.0 ± 0.3mm3) (p = 0.008) or control (23.6 ± 4.7mm3). Propofol decreased hypoxia inducible factor 1α (HIF1α), interleukin 1β (IL1β), and hepatocyte growth factor (HGF) gene expressions and increased tissue inhibitor of metalloproteinases 2 (TIMP-2) gene and protein expression in comparison to sevoflurane in the tumour tissue. LPS suppressed tumour growth in any conditions whilst increased TIMP-2 and anti-cancer neutrophil marker expressions and decreased macrophage marker expressions compared to those in the LPS-untreated groups. Our data indicated that sevoflurane increased cancer development when compared with propofol in vivo under non-surgical condition. Anaesthetics tested in this study did not alter the effects of LPS as an immune modulator in changing immunocyte phenotype and suppressing cancer development.
Collapse
Affiliation(s)
- Masae Iwasaki
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Cong Hu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Junichi Saito
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| | - Aislinn Sherwin
- Anaesthesiology and Perioperative Medicine, Mater University Hospital, University College Dublin, Dublin, Ireland
| | - Masashi Ishikawa
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Atsuhiro Sakamoto
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Donal Buggy
- Anaesthesiology and Perioperative Medicine, Mater University Hospital, University College Dublin, Dublin, Ireland
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, 369 Fulham Rd, Chelsea, London, SW10 9NH UK
| |
Collapse
|
4
|
Modulating the Siah2-PHD3-HIF1α axis and/or autophagy potentially retard colon cancer proliferation possibly, due to the damping of colon cancer stem cells. Biomed Pharmacother 2022; 154:113562. [PMID: 35994813 DOI: 10.1016/j.biopha.2022.113562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hypoxic microenvironment of colon cancer is associated with HIF-1α upregulation. HIF-1α response elements are responsible for autophagy induction that promotes tumor proliferation. Moreover, HIF-1α induces tumor cell proliferation via maintaining cancer stem cells (CSCs) survival. Siah2 is E3 ubiquitin ligase that indirectly stabilizes HIF-1α. We hypothesized that dual inhibition of Siah2 as well as autophagy could be a promising approach that may inhibit CSCs growth. AIM OF THE WORK This study investigated the possible effect of vitamin K3 as a Siah2 inhibitor and hydroxychloroquine as an autophagy inhibitor in colon cancer management. The effect (if any) of these agents on CSCs growth will be also manipulated. METHODS Colon cancer was induced by dimethylhydrazine. MDA and GSH were selected as oxidative stress markers, Expression of HIF-1α, Caspase-3, VEGF, MMP-9, EpCAM, SCF, and CA19.9 were assayed using immunoassay. The Western blot technique was used to assess LC3Ⅰ, CD44, and CD133 whereas RT-PCR was used to investigate PHD3 and CD44 in colon tissues. Additionally, Ki-67 and Siah2 were detected immunohistochemically. RESULTS vitamin K3 and hydroxychloroquine either alone or in combination downregulated the expression of Siah2 and HIF-1α through upregulating PHD3 in colon tissues. This combination significantly downregulated MDA, Ki-67, VEGF, and MMP-9 expression and upregulated the expression of GSH and caspase-3. LC3Ⅰ was also upregulated. Interestingly, these therapeutic options were correlated with down-regulation of the cancer stem cell marker such as CD44 and EpCAM. CONCLUSION Our results suggested that suppression of both Siah2-PHD3-HIF-1α axis and autophagy retard colon cancer proliferation and dampened CSCs.
Collapse
|
5
|
Kim H, Shin Y, Kim DH. Mechanobiological Implications of Cancer Progression in Space. Front Cell Dev Biol 2021; 9:740009. [PMID: 34957091 PMCID: PMC8692837 DOI: 10.3389/fcell.2021.740009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
The human body is normally adapted to maintain homeostasis in a terrestrial environment. The novel conditions of a space environment introduce challenges that changes the cellular response to its surroundings. Such an alteration causes physical changes in the extracellular microenvironment, inducing the secretion of cytokines such as interleukin-6 (IL-6) and tumor growth factor-β (TGF-β) from cancer cells to enhance cancer malignancy. Cancer is one of the most prominent cell types to be affected by mechanical cues via active interaction with the tumor microenvironment. However, the mechanism by which cancer cells mechanotransduce in the space environment, as well as the influence of this process on human health, have not been fully elucidated. Due to the growing interest in space biology, this article reviews cancer cell responses to the representative conditions altered in space: microgravity, decompression, and irradiation. Interestingly, cytokine and gene expression that assist in tumor survival, invasive phenotypic transformation, and cancer cell proliferation are upregulated when exposed to both simulated and actual space conditions. The necessity of further research on space mechanobiology such as simulating more complex in vivo experiments or finding other mechanical cues that may be encountered during spaceflight are emphasized.
Collapse
Affiliation(s)
- Hyondeog Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Yun Shin
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
6
|
Klebowski B, Stec M, Depciuch J, Gałuszka A, Pajor-Swierzy A, Baran J, Parlinska-Wojtan M. Gold-Decorated Platinum and Palladium Nanoparticles as Modern Nanocomplexes to Improve the Effectiveness of Simulated Anticancer Proton Therapy. Pharmaceutics 2021; 13:pharmaceutics13101726. [PMID: 34684019 PMCID: PMC8539939 DOI: 10.3390/pharmaceutics13101726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Noble metal nanoparticles, such as gold (Au NPs), platinum (Pt NPs), or palladium (Pd NPs), due to their highly developed surface, stability, and radiosensitizing properties, can be applied to support proton therapy (PT) of cancer. In this paper, we investigated the potential of bimetallic, c.a. 30 nm PtAu and PdAu nanocomplexes, synthesized by the green chemistry method and not used previously as radiosensitizers, to enhance the effect of colorectal cancer PT in vitro. The obtained nanomaterials were characterized by scanning transmission electron microscopy (STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), UV-Vis spectroscopy, and zeta potential measurements. The effect of PtAu and PdAu NPs in PT was investigated on colon cancer cell lines (SW480, SW620, and HCT116), as well as normal colon epithelium cell line (FHC). These cells were cultured with both types of NPs and then irradiated by proton beam with a total dose of 15 Gy. The results of the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) test showed that the NPs-assisted PT resulted in a better anticancer effect than PT used alone; however, there was no significant difference in the radiosensitizing properties between tested nanocomplexes. The MTS results were further verified by defining the cell death as apoptosis (Annexin V binding assay). Furthermore, the data showed that such a treatment was more selective for cancer cells, as normal cell viability was only slightly affected.
Collapse
Affiliation(s)
- Bartosz Klebowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (J.D.); (M.P.-W.)
- Correspondence:
| | - Malgorzata Stec
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (M.S.); (A.G.); (J.B.)
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (J.D.); (M.P.-W.)
| | - Adrianna Gałuszka
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (M.S.); (A.G.); (J.B.)
| | - Anna Pajor-Swierzy
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, 20-239 Krakow, Poland;
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (M.S.); (A.G.); (J.B.)
| | | |
Collapse
|
7
|
Grigoletto A, Martinez G, Gabbia D, Tedeschini T, Scaffidi M, Martin SD, Pasut G. Folic Acid-Targeted Paclitaxel-Polymer Conjugates Exert Selective Cytotoxicity and Modulate Invasiveness of Colon Cancer Cells. Pharmaceutics 2021; 13:929. [PMID: 34201494 PMCID: PMC8309175 DOI: 10.3390/pharmaceutics13070929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
Although selective tumor delivery of anticancer drugs has been sought by exploiting either passive targeting or by ligand-mediated targeting, a selective anticancer therapy remains an unmet medical need. Despite the advances which have been achieved by nanomedicines, nanosystems such as polymer-drug conjugates still miss the goal of clinical efficacy. In this study, we demonstrated that polymer-drug conjugates require a thoroughly chemical design and the right targeting agent/polymer ratio to be selective and effective towards cancer cells. In particular, two PEG conjugates carrying paclitaxel and targeted with different folic acid (FA)/PEG ratios (one or three) were investigated. The cytotoxicity study in positive (HT-29) and negative (HCT-15) FA receptor (FR)-cell lines demonstrated that the conjugates with one or three FAs were 4- or 28-fold more active in HT-29 cells, respectively. The higher activity of the 3-FA conjugate was confirmed by its strong impact on cell cycle arrest. Furthermore, FA targeting had a clear effect on migration and invasiveness of HT-29 cells, which were significantly reduced by both conjugates. Interestingly, the 3-FA conjugate showed also an improved pharmacokinetic profile in mice. The results of this study indicate that thorough investigations are needed to optimize and tune drug delivery and achieve the desired selectivity and activity towards cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara De Martin
- Pharmaceutical and Pharmacological Sciences Department, University of Padua, Via F. Marzolo 5, 35131 Padova, Italy; (A.G.); (G.M.); (D.G.); (T.T.); (M.S.)
| | - Gianfranco Pasut
- Pharmaceutical and Pharmacological Sciences Department, University of Padua, Via F. Marzolo 5, 35131 Padova, Italy; (A.G.); (G.M.); (D.G.); (T.T.); (M.S.)
| |
Collapse
|
8
|
Martín MJ, Azcona P, Lassalle V, Gentili C. Doxorubicin delivery by magnetic nanotheranostics enhances the cell death in chemoresistant colorectal cancer-derived cells. Eur J Pharm Sci 2020; 158:105681. [PMID: 33347979 DOI: 10.1016/j.ejps.2020.105681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a major cause of cancer death with a high probability of treatment failure. Doxorubicin (DOXO) is an efficient antitumor drug; however, most CRC cells show resistance to its effects. Magnetic nanoparticles (MNPs) are potential cancer management tools that can serve as diagnostic agents and also can optimize and personalize treatments. This work aims to evaluate the aptitude of magnetic nanotheranostics composed of magnetite (Fe3O4) nanoparticles coated with folic acid intended to the sustained release of DOXO. The administration of DOXO by means of these MNPs resulted in the enhancement of cell death respect to the free drug administration. Chromatin compaction and cytoplasmic protrusions were observed. Mitochondrial transmembrane potential disruption and increased PARP protein cleavage confirmed apoptosis. The nanosystem was also tested as a vectoring tool by exposing it to the stimuli of a static magnetic field in vitro. CRC-related magnetic nanotechnology still remains in pre-clinical trials. In this context, this contribution expands the knowledge of the behavior of MNPs in contact with in vitro models and proposes the nanodevices studied here as potential theranostic agents for the monitoring of the progress of CRC and the evolution of its treatment.
Collapse
Affiliation(s)
- María Julia Martín
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, 8000, Bahía Blanca, Argentina.; INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Pamela Azcona
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Claudia Gentili
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, 8000, Bahía Blanca, Argentina..
| |
Collapse
|
9
|
Wang H, Gong P, Li J, Fu Y, Zhou Z, Liu L. Role of CD133 in human embryonic stem cell proliferation and teratoma formation. Stem Cell Res Ther 2020; 11:208. [PMID: 32460847 PMCID: PMC7251672 DOI: 10.1186/s13287-020-01729-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023] Open
Abstract
Background Pluripotent stem cells (PSCs), including human embryonic stem cells (hESCs), hold great potential for regenerative medicine and cell therapy. One of the major hurdles hindering the clinical development of PSC-based therapy is the potential risk of tumorigenesis. CD133 (Prominin 1, PROM1) is a transmembrane protein whose mRNA and glycosylated forms are highly expressed in many human cancer cell types. CD133 also serves as a cancer stem cell (CSC) marker associated with cancer progression and patient outcome. Interestingly, CD133 is highly expressed in hESCs as well as in human preimplantation embryos, but its function in hESCs has remained largely unknown. Methods CD133 knockout hESC WA26 cell line was generated with CRISPR/Cas9. CD133 knockout and wide type hESC lines were subjected to pluripotency, proliferation, telomere biology, and teratoma tests; the related global changes and underlying mechanisms were further systemically analyzed by RNA-seq. Results CD133 deficiency did not affect hESC pluripotency or in vivo differentiation into three germ layers but significantly decreased cell proliferation. RNA-seq revealed that CD133 deficiency dysregulated the p53, PI3K-Akt, AMPK, and Wnt signaling pathways. Alterations in these pathways have been implicated in tumor proliferation and apoptotic escape. Conclusions Our data imply that CD133 could be an additional target and used as a selective marker to sort and eliminate undifferentiated cells in reducing potential teratoma formation risk of hESCs in regenerative medicine.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Peng Gong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yudong Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
10
|
SH3RF3 promotes breast cancer stem-like properties via JNK activation and PTX3 upregulation. Nat Commun 2020; 11:2487. [PMID: 32427938 PMCID: PMC7237486 DOI: 10.1038/s41467-020-16051-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer stem-like cells (CSCs) are the tumorigenic cell subpopulation and contribute to cancer recurrence and metastasis. However, the understanding of CSC regulatory mechanisms remains incomplete. By transcriptomic analysis, we identify a scaffold protein SH3RF3 (also named POSH2) that is upregulated in CSCs of breast cancer clinical tumors and cancer cell lines, and enhances the CSC properties of breast cancer cells. Mechanically, SH3RF3 interacts with the c-Jun N-terminal kinase (JNK) in a JNK-interacting protein (JIP)-dependent manner, leading to enhanced phosphorylation of JNK and activation of the JNK-JUN pathway. Further the JNK-JUN signaling expands CSC subpopulation by transcriptionally activating the expression of Pentraxin 3 (PTX3). The functional role of SH3RF3 in CSCs is validated with patient-derived organoid culture, and supported by clinical cohort analyses. In conclusion, our work elucidates the role and molecular mechanism of SH3RF3 in CSCs of breast cancer, and might provide opportunities for CSC-targeting therapy.
Collapse
|
11
|
Simbulan-Rosenthal CM, Dougherty R, Vakili S, Ferraro AM, Kuo LW, Alobaidi R, Aljehane L, Gaur A, Sykora P, Glasgow E, Agarwal S, Rosenthal DS. CRISPR-Cas9 Knockdown and Induced Expression of CD133 Reveal Essential Roles in Melanoma Invasion and Metastasis. Cancers (Basel) 2019; 11:cancers11101490. [PMID: 31623313 PMCID: PMC6827046 DOI: 10.3390/cancers11101490] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
CD133, known as prominin1, is a penta-span transmembrane glycoprotein presumably a cancer stem cell marker for carcinomas, glioblastomas, and melanomas. We showed that CD133(+) ‘melanoma-initiating cells’ are associated with chemoresistance, contributing to poor patient outcome. The current study investigates the role(s) of CD133 in invasion and metastasis. Magnetic-activated cell sorting of a melanoma cell line (BAKP) followed by transwell invasion assays revealed that CD133(+) cells are significantly more invasive than CD133(−) cells. Conditional reprogramming of BAKP CD133(+) cells maintained stable CD133 overexpression (BAK-R), and induced cancer stem cell markers, melanosphere formation, and chemoresistance to kinase inhibitors. BAK-R cells showed upregulated CD133 expression, and consequently were more invasive and metastatic than BAK-P cells in transwell and zebrafish assays. CD133 knockdown by siRNA or CRISPR-Cas9 (BAK-R-T3) in BAK-R cells reduced invasion and levels of matrix metalloproteinases MMP2/MMP9. BAK-R-SC cells, but not BAK-R-T3, were metastatic in zebrafish. While CD133 knockdown by siRNA or CRISPR-Cas9 in BAK-P cells attenuated invasion and diminished MMP2/MMP9 levels, doxycycline-induced CD133 expression in BAK-P cells enhanced invasion and MMP2/MMP9 concentrations. CD133 may therefore play an essential role in invasion and metastasis via upregulation of MMP2/MMP9, leading to tumor progression, and represents an attractive target for intervention in melanoma.
Collapse
Affiliation(s)
- Cynthia M Simbulan-Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Ryan Dougherty
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Sahar Vakili
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Alexandra M Ferraro
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Li-Wei Kuo
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Ryyan Alobaidi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Leala Aljehane
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Anirudh Gaur
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | | | - Eric Glasgow
- Department of Oncology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Seema Agarwal
- Department of Pathology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Dean S Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| |
Collapse
|
12
|
Arun RP, Sivanesan D, Patra B, Varadaraj S, Verma RS. Simulated microgravity increases polyploid giant cancer cells and nuclear localization of YAP. Sci Rep 2019; 9:10684. [PMID: 31337825 PMCID: PMC6650394 DOI: 10.1038/s41598-019-47116-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Physical cues are vital in determining cellular fate in cancer. In vitro 3D culture do not replicate forces present in vivo. These forces including tumor interstitial fluid pressure and matrix stiffness behave as switches in differentiation and metastasis, which are intricate features of cancer stem cells (CSCs). Gravity determines the effect of these physical factors on cell fate and functions as evident from microgravity experiments on space and ground simulations. Here, we described the role of simulation of microgravity (SMG) using rotary cell culture system (RCCS) in increasing stemness in human colorectal cancer cell HCT116. We observed distinct features of cancer stem cells including CD133/CD44 dual positive cells and migration in SMG which was not altered by autophagy induction or inhibition. 3D and SMG increased autophagy, but the flux was staggered under SMG. Increased unique giant cancer cells housing complete nuclear localization of YAP were observed in SMG. This study highlights the role of microgravity in regulating stemness in CSC and importance of physical factors in determining the same.
Collapse
Affiliation(s)
- Raj Pranap Arun
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Divya Sivanesan
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Bamadeb Patra
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Sudha Varadaraj
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 TN, India.
| |
Collapse
|
13
|
Abstract
Cancer-initiating cells (CIC) are the driving force in tumor progression. There is strong evidence that CIC fulfill this task via exosomes (TEX), which modulate and reprogram stroma, nontransformed cells, and non-CIC. Characterization of CIC, besides others, builds on expression of CIC markers, many of which are known as metastasis-associated molecules. We here discuss that the linkage between CIC/CIC-TEX and metastasis-associated molecules is not fortuitously, but relies on the contribution of these markers to TEX biogenesis including loading and TEX target interactions. In addition, CIC markers contribute to TEX binding- and uptake-promoted activation of signaling cascades, transcription initiation, and translational control. Our point of view will be outlined for pancreas and colon CIC highly expressing CD44v6, Tspan8, EPCAM, claudin7, and LGR5, which distinctly but coordinately contribute to tumor progression. Despite overwhelming progress in unraveling the metastatic cascade and the multiple tasks taken over by CIC-TEX, there remains a considerable gap in linking CIC biomarkers, TEX, and TEX-initiated target modulation with metastasis. We will try to outline possible bridges, which could allow depicting pathways for new and expectedly powerful therapeutic interference with tumor progression.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany.
| |
Collapse
|
14
|
Farid RM, Sammour SAE, Shehab ElDin ZA, Salman MI, Omran TI. Expression of CD133 and CD24 and their different phenotypes in urinary bladder carcinoma. Cancer Manag Res 2019; 11:4677-4690. [PMID: 31213893 PMCID: PMC6536712 DOI: 10.2147/cmar.s198348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: Several lines of evidence suggest the contribution of cancer stem cells (CSCs) to the tumorigenicity of bladder cancer. Although CD133 and CD24 CSC biomarkers are associated with survival disadvantages in some cancers, the biological attributes of a specific tumor alters the expression of these markers and any associated phenotypic characteristics. Aim: To analyze CD133 and CD24 expression and their different phenotypes in urinary bladder carcinoma. Material and methods: Expression of CD133 and CD24 and their divergent phenotypes were analyzed in patients with urinary bladder carcinoma (n=60) and correlated with clinicopathological parameters. Results: CD133+ and CD24+ tumor cells were more frequent in high grade, less differentiated carcinomas (18/22, and 15/17, p=0.022 and 0.01, respectively), muscle invasive tumors (20/22, p=0.017 and 17/17, p=0.001, respectively), and tumors with advanced stage (p=0.001 and 0.007, respectively). The expression of CD24 slightly correlated with lymphovascular invasion (p=0.04), whereas CD133 was associated with distant metastasis. The CD133+ CD24+ phenotype exhibited more aggressive tumorigenic behavior than other phenotypes. Conclusion: CD133+ and CD24+ cells correlated with determinants of aggressive behavior and may be involved in tumor progression and distant metastasis. The CD133+ subpopulation is likely to have a more potent tumorigenic capacity. Although divergent, the strong correlation between the two populations may support phenotypic plasticity among them. Compared to the CD133+ CD24− and CD133− CD24+ phenotypes, the CD133+ CD24+ phenotype is the most aggressive. These putative biomarkers can potentially aid in the selection of high-risk patients for more aggressive targeted therapy.
Collapse
Affiliation(s)
- Rola M Farid
- Department of Pathology, Ain Shams University, Cairo, Egypt
| | | | | | | | | |
Collapse
|
15
|
Strong association of tissue inhibitor of metalloproteinase (TIMP)-2 and -3 promoter single nucleotide polymorphisms with risk of colorectal cancer in ethnic Kashmiri population - a case control study. Biosci Rep 2019; 39:BSR20190478. [PMID: 30988064 PMCID: PMC6509169 DOI: 10.1042/bsr20190478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The tissue inhibitors of metalloproteinases (TIMPs) including TIMP2 and TIMP3 are the key physiological inhibitors of matrix metalloproteinases (MMPs) and along with MMPs, TIMPs play a vital role in the coordinated proteolytic breakdown and remodeling of the extracellular matrix (ECM) and the basement membrane that represent the barriers to any malignant tumor invasion and progression. These enzymes are vital for tumor invasion and metastasis and also play a critical role in several other stages of tumor development and progression. The studies on the association of various polymorphisms in human TIMP2 and TIMP3 genes including TIMP2-418G/C and TIMP3-1296T/C single nucleotide polymorphisms (SNPs) and CRC risk are limited, mixed, and inconclusive.Materials and methods: The aim of the present study was to analyze the association of TIMP2-418G/C and TIMP3-1296T/C promoter SNPs with colorectal cancer (CRC) susceptibility and development risk and also to evaluate the modifying effects of possible TIMP2-418G/C and TIMP3-1296T/C SNPs' genotypes on different risk factors of CRC or the reciprocal effect in ethnic population of Kashmir, India through a case-control setup. The genotype frequencies of TIMP2-418G/C and TIMP3-1296T/C promoter SNPs were compared between 142 CRC patients and 184 individually matched healthy controls by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The associations between the TIMP2-418G/C and TIMP3-1296T/C SNPs and CRC risk were examined through conditional logistic regression models adjusted for multiple possible confounding (third) variables. The possible effect measure modification of the association between the relevant SNP genotypes and CRC risk by various CRC risk factors including age, gender, and smoking status was also analyzed. Further, the associations between these SNPs and various clinico-pathological parameters, demographic variables, and environmental factors within the case group subjects with regard to CRC risk were also evaluated.Results: The overall association between the TIMP2-418G/C and TIMP3-1296T/C SNPs and the modulation of CRC risk was found to be highly significant (P=0.019 and P=0.000 for TIMP2 and TIMP3 SNPs, respectively). The heterozygous genotype (GC) of TIMP2-418G/C was significantly associated with an increased risk of colorectal cancer [OR, 1.87 (95%CI, 1.07-3.27); P=0.027] whereas the heterozygous genotype (TC) of TIMP3-1296T/C SNP was significantly associated with a decreased risk of colorectal cancer [OR, 0.53 (95%CI, 0.32-0.86); P=0.011]. The variant genotype (CC) of TIMP3-1296T/C SNP was also significantly associated with a decreased risk of colorectal cancer [OR, 0.18 (95%CI, 0.05-0.65); P=0.009].Conclusion: The present study demonstrates that there is a strong and highly significant association between the TIMP2-418G/C and TIMP3-1296T/C promoter SNPs and the risk of developing CRC in ethnic Kashmiri population. However, in order to substantiate our findings, the present study needs to be replicated with bigger sample size and should involve other ethnically defined populations with high CRC risk.
Collapse
|
16
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Ast V, Kordaß T, Oswald M, Kolte A, Eisel D, Osen W, Eichmüller SB, Berndt A, König R. MiR-192, miR-200c and miR-17 are fibroblast-mediated inhibitors of colorectal cancer invasion. Oncotarget 2018; 9:35559-35580. [PMID: 30473751 PMCID: PMC6238973 DOI: 10.18632/oncotarget.26263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer remains a leading cause of cancer-related death worldwide. A previous transcriptomics based study characterized molecular subgroups of which the stromal subgroup was associated with the worst clinical outcome. Micro-RNAs (miRNAs) are well-known regulators of gene expression and can follow a non-linear repression mechanism. We set up a model combining piecewise linear and linear regression and applied this combined regression model to a comprehensive colon adenocarcinoma dataset. We identified miRNAs involved in regulating characteristic gene sets, particularly extracellular matrix remodeling in the stromal subgroup. Comparison of expression data from separated (epithelial) cancer cells and stroma cells or fibroblasts associate these regulatory interactions with infiltrating stromal or tumor-associated fibroblasts. MiR-200c, miR-17 and miR-192 were identified as the most promising candidates regulating genes crucial for extracellular matrix remodeling. We validated our computational findings by in vitro assays. Enforced expression of either miR-200c, miR-17 or miR-192 in untransformed human colon fibroblasts down-regulated 85% of all predicted target genes. Expressing these miRNAs singly or in combination in human colon fibroblasts co-cultured with colon cancer cells considerably reduced cancer cell invasion validating these miRNAs as cancer cell infiltration suppressors in tumor associated fibroblasts.
Collapse
Affiliation(s)
- Volker Ast
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| | - Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marcus Oswald
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| | - Amol Kolte
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| | - David Eisel
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Stefan B. Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Alexander Berndt
- Institute of Forensic Medicine, Section Pathology, Jena University Hospital, 07747 Jena, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute Jena, 07745 Jena, Germany
| |
Collapse
|
18
|
Zhuang YW, Wu CE, Zhou JY, Zhao ZM, Liu CL, Shen JY, Cai H, Liu SL. Solasodine reverses stemness and epithelial-mesenchymal transition in human colorectal cancer. Biochem Biophys Res Commun 2018; 505:485-491. [PMID: 30268504 DOI: 10.1016/j.bbrc.2018.09.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Adverse side effects of conventional chemotherapy, acquired resistance and fatal tumor metastasis of human colorectal cancer (CRC) are propelling the exploration for novel selective anticarcinogens. Solasodine is a main active component isolated from Solanum incanum L that exhibited a potent stemness and invasion inhibitory effect on human colorectal cancer HCT116 cells. Colony Spheroid formation assay showed that solasodine dose-dependently prohibited HCT116 cell stemness. CD133, CD44, Nanog, Oct-4 and Sox-2 were inhibited by solasodine to reverse stemness and similar mechanism was stimulated in vivo. Transwell and scratch wound assays revealed that solasodine impeded HCT116 cell invasion and migration potential strengthened by TGF-β1. Moreover, solasodine attenuated TGF-β1-induced EMT and decreased MMPs while in vivo study showed the same trend. The results of this study implied that solasodine may be a novel therapeutic drug for CRC treatment.
Collapse
Affiliation(s)
- Yu-Wen Zhuang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Cun-En Wu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Jin-Yong Zhou
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Zhi-Ming Zhao
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Chun-Li Liu
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jun-Yi Shen
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hui Cai
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Shen-Lin Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of TCM, Nanjing, China.
| |
Collapse
|
19
|
Feng H, Liu Y, Bian X, Zhou F, Liu Y. ALDH1A3 affects colon cancer in vitro proliferation and invasion depending on CXCR4 status. Br J Cancer 2017; 118:224-232. [PMID: 29235568 PMCID: PMC5785736 DOI: 10.1038/bjc.2017.363] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Background: Aldehyde dehydrogenase (ALDH) has been widely used as a marker of cancer stem cells (CSCs). However, the ALDH family includes 19 members, and the most relevant isoforms and their biological functions in cancer biology are still controversial. Methods: We examined ALDH enzyme activity and the mRNA expression of 19 ALDH members in 58 human cell lines. The biological effect and mechanism of knocking down ALDH1A3 with siRNA and shRNA in cell lines were explored. Finally, the relationship between ALDH1A3 and CXCR4 was analysed in a large panel of cell lines. Results: ALDH1A3 is the key isoform that contributed to Aldefluor positivity in cell lines. Knocking down ALDH1A3 in different cancer cells conferred opposite phenotypes due to differential effects on CXCR4 expression. There was a significant negative correlation between ALDH1A3 and CXCR4 in 58 human cell lines. Conclusions: ALDH1A3 was the main contributor to Aldefluor positivity in human cell lines, and its contrasting effects might arise from differences in CXCR4 expression.
Collapse
Affiliation(s)
- Hailiang Feng
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, #5 Dong Dan San Tiao, Beijing 100005, China.,Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, #5 Dong Dan San Tiao, Beijing 100005, China
| | - Yanyan Liu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, #5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaocui Bian
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, #5 Dong Dan San Tiao, Beijing 100005, China.,Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, #5 Dong Dan San Tiao, Beijing 100005, China
| | - Fangying Zhou
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, #5 Dong Dan San Tiao, Beijing 100005, China.,Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, #5 Dong Dan San Tiao, Beijing 100005, China
| | - Yuqin Liu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, #5 Dong Dan San Tiao, Beijing 100005, China.,Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, #5 Dong Dan San Tiao, Beijing 100005, China
| |
Collapse
|
20
|
Sato-Dahlman M, Miura Y, Huang JL, Hajeri P, Jacobsen K, Davydova J, Yamamoto M. CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget 2017. [PMID: 29100290 DOI: 10.18632/oncotarget.18340.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oncolytic Adenoviruses (OAds) are one of the most promising anti-cancer agents that can induce cancer specific cell death. Recently, we generated infectivity-selective OAd, and the resultant OAd tumor-specific binding shows strong efficacy and mitigates toxicity. In this study, we applied this strategy based on adenovirus library screening system for generation of CD133-targeted OAd, and examined their oncolytic activity against colorectal cancer (CRC) in vitro and in vivo. CD133 (Prominin-1) is an important cell surface marker of cancer stem (like) cells (CSCs) in various cancers, including CRC. Elimination of CSCs has a high likelihood to improve CRC treatment because CSCs population in the tumor contributes to recurrence, metastases, chemotherapy resistance, and poor survival. The OAd with CD133-targeting motif (AdML-TYML) selectively infected CD133+ cultured cells and lysed them efficiently. Treatment with AdML-TYML prior to tumor inoculation inhibited the establishment of tumor of CD133+ CRC cell lines in nude mice. AdML-TYML also showed strong antitumor effect after intratumoral injections in already established CD133+ CRC subcutaneous xenografts. Our results indicate that CD133-targeted OAd selectively infected CD133+ CRC, and exhibited anti-tumorigenicity and therapeutic effect in established tumors. This novel infectivity selective virus could be a potent tool for the prevention of metastases and relapses in CRC.
Collapse
Affiliation(s)
| | - Yoshiaki Miura
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jing Li Huang
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
21
|
Sato-Dahlman M, Miura Y, Huang JL, Hajeri P, Jacobsen K, Davydova J, Yamamoto M. CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget 2017; 8:76044-76056. [PMID: 29100290 PMCID: PMC5652684 DOI: 10.18632/oncotarget.18340] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Oncolytic Adenoviruses (OAds) are one of the most promising anti-cancer agents that can induce cancer specific cell death. Recently, we generated infectivity-selective OAd, and the resultant OAd tumor-specific binding shows strong efficacy and mitigates toxicity. In this study, we applied this strategy based on adenovirus library screening system for generation of CD133-targeted OAd, and examined their oncolytic activity against colorectal cancer (CRC) in vitro and in vivo. CD133 (Prominin-1) is an important cell surface marker of cancer stem (like) cells (CSCs) in various cancers, including CRC. Elimination of CSCs has a high likelihood to improve CRC treatment because CSCs population in the tumor contributes to recurrence, metastases, chemotherapy resistance, and poor survival. The OAd with CD133-targeting motif (AdML-TYML) selectively infected CD133+ cultured cells and lysed them efficiently. Treatment with AdML-TYML prior to tumor inoculation inhibited the establishment of tumor of CD133+ CRC cell lines in nude mice. AdML-TYML also showed strong antitumor effect after intratumoral injections in already established CD133+ CRC subcutaneous xenografts. Our results indicate that CD133-targeted OAd selectively infected CD133+ CRC, and exhibited anti-tumorigenicity and therapeutic effect in established tumors. This novel infectivity selective virus could be a potent tool for the prevention of metastases and relapses in CRC.
Collapse
Affiliation(s)
| | - Yoshiaki Miura
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jing Li Huang
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Zhou JY, Chen M, Ma L, Wang X, Chen YG, Liu SL. Role of CD44(high)/CD133(high) HCT-116 cells in the tumorigenesis of colon cancer. Oncotarget 2016; 7:7657-66. [PMID: 26840024 PMCID: PMC4884945 DOI: 10.18632/oncotarget.7084] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022] Open
Abstract
This study aimed to explore cell surface biomarkers related to cancer stem cells (CSCs) and their role in the tumorigenesis of colon cancer. Various colon cancer cell lines were screened for CD133 and CD44 expression. CD44high/CD133high and CD44low/CD133low cells were separately isolated by Fluorescence-Activated Cell Sorting (FACS). The cell proliferation, colony formation, cell cycle characteristics, and tumorigenic properties in CD44high/CD133high and CD44low/CD133low cells were investigated through in vitro experiments and in vivo tumor xenograft models. The expression profiles of stem cell-related genes were examined by RT-PCR. With HCT-116 cells, flow cytometry analysis revealed that CD44high/CD133high cells had higher proliferation potency than CD44low/CD133low cells. Compared to CD44low/CD133low cells, CD44high/CD133high cells had more stem cell-related genes, and displayed increased tumorigenic ability. In summary, CD44high/CD133high cells isolated from HCT-116 cells harbor CSC properties that may be related to the tumor growth of colon cancer. These results suggest that CD44 and CD133 could be strong markers of colorectal cancer stem cells.
Collapse
Affiliation(s)
- Jin-Yong Zhou
- Central Laboratory, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Min Chen
- Department of Internal Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Long Ma
- Department of Urology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xiaoxiao Wang
- Department of Medical Science Research, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Shen-Lin Liu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Ning ST, Lee SY, Wei MF, Peng CL, Lin SYF, Tsai MH, Lee PC, Shih YH, Lin CY, Luo TY, Shieh MJ. Targeting Colorectal Cancer Stem-Like Cells with Anti-CD133 Antibody-Conjugated SN-38 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17793-804. [PMID: 27348241 DOI: 10.1021/acsami.6b04403] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cancer stem-like cells play a key role in tumor development, and these cells are relevant to the failure of conventional chemotherapy. To achieve favorable therapy for colorectal cancer, PEG-PCL-based nanoparticles, which possess good biological compatibility, were fabricated as nanocarriers for the topoisomerase inhibitor, SN-38. For cancer stem cell therapy, CD133 (prominin-1) is a theoretical cancer stem-like cell (CSLC) marker for colorectal cancer and is a proposed therapeutic target. Cells with CD133 overexpression have demonstrated enhanced tumor-initiating ability and tumor relapse probability. To resolve the problem of chemotherapy failure, SN-38-loaded nanoparticles were conjugated with anti-CD133 antibody to target CD133-positive (CD133(+)) cells. In this study, anti-CD133 antibody-conjugated SN-38-loaded nanoparticles (CD133Ab-NPs-SN-38) efficiently bound to HCT116 cells, which overexpress CD133 glycoprotein. The cytotoxic effect of CD133Ab-NPs-SN-38 was greater than that of nontargeted nanoparticles (NPs-SN-38) in HCT116 cells. Furthermore, CD133Ab-NPs-SN-38 could target CD133(+) cells and inhibit colony formation compared with NPs-SN-38. In vivo studies in an HCT116 xenograft model revealed that CD133Ab-NPs-SN-38 suppressed tumor growth and retarded recurrence. A reduction in CD133 expression in HCT116 cells treated with CD133Ab-NPs-SN-38 was also observed in immunohistochemistry results. Therefore, this CD133-targeting nanoparticle delivery system could eliminate CD133-positive cells and is a potential cancer stem cell targeted therapy.
Collapse
Affiliation(s)
- Sin-Tzu Ning
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Shin-Yu Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ming-Feng Wei
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Susan Yun-Fan Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ming-Hsien Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Pei-Chi Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ying-Hsia Shih
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Chun-Yen Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Tsai-Yueh Luo
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine , Taipei 100, Taiwan
| |
Collapse
|
24
|
Nomura A, Banerjee S, Chugh R, Dudeja V, Yamamoto M, Vickers SM, Saluja AK. CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget 2016; 6:8313-22. [PMID: 25829252 PMCID: PMC4480754 DOI: 10.18632/oncotarget.3228] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 12/31/2022] Open
Abstract
CD133 has been implicated as a cancer stem cell (CSC) surface marker in several malignancies including pancreatic cancer. However, the functional role of this surface glycoprotein in the cancer stem cell remains elusive. In this study, we determined that CD133 overexpression induced “stemness” properties in MIA-PaCa2 cells along with increased tumorigenicity, tumor progression, and metastasis in vivo. Additionally, CD133 expression induced epithelial-mesenchymal transition (EMT) and increased in vitro invasion. EMT induction and increased invasiveness were mediated by NF-κB activation, as inhibition of NF-κB mitigated these effects. This study showed that CD133 expression contributes to pancreatic cancer “stemness,” tumorigenicity, EMT induction, invasion, and metastasis.
Collapse
Affiliation(s)
- Alice Nomura
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Sulagna Banerjee
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Rohit Chugh
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Vikas Dudeja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Masato Yamamoto
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Selwyn M Vickers
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Ashok K Saluja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
25
|
Signorelli P, Fabiani C, Brizzolari A, Paroni R, Casas J, Fabriàs G, Rossi D, Ghidoni R, Caretti A. Natural Grape Extracts Regulate Colon Cancer Cells Malignancy. Nutr Cancer 2015; 67:494-503. [DOI: 10.1080/01635581.2015.1004591] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Paola Signorelli
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| | - Carlotta Fabiani
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| | - Andrea Brizzolari
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Catalan Institute of Advanced Chemistry, Barcelona, Spain
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Catalan Institute of Advanced Chemistry, Barcelona, Spain
| | - Dario Rossi
- Immobiliare Ca’ Novella srl, Alessandria, Italy
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| | - Anna Caretti
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| |
Collapse
|
26
|
Differential characteristics of CD133(+) and CD133 (-) Jurkat cells. In Vitro Cell Dev Biol Anim 2015; 51:556-61. [PMID: 25630537 DOI: 10.1007/s11626-015-9869-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/06/2015] [Indexed: 01/21/2023]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is a hematological disease including malignancy of T cell precursors. There are some T-ALL patients that are drug-resistant. A major cause of treatment failure in cancers can be associated with the existence of cancer stem cells. The identification of these cell populations helps us to clarify resistance mechanisms and rely on special markers for recognizing cancer stem cells. CD133 is one of the markers that is used for the identification of cancer stem cells. In this study, we evaluated CD133(+) and CD133(-) characteristic cells in Jurkat cells by assay proliferation, invasion, and apoptosis. CD133(+) and CD133(-) Jurkat cells were separated and immediately analyzed for proliferation, invasion, and doxorubicin-induced apoptosis. Proliferation, invasion, and resistance to chemotherapy of CD133(+) Jurkat cells were significantly more than CD133(-) Jurkat cells. Also, our results showed that CD133(+) Jurkat cells expressed ABCG2 gene more than CD133(-) Jurkat cells. In conclusion, CD133 marker could be introduced as a specific marker of cancer stem cells in Jurkat cell line.
Collapse
|
27
|
Said AH, Raufman JP, Xie G. The role of matrix metalloproteinases in colorectal cancer. Cancers (Basel) 2014; 6:366-75. [PMID: 24518611 PMCID: PMC3980606 DOI: 10.3390/cancers6010366] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 12/15/2022] Open
Abstract
In the United States, colorectal cancer (CRC) is the third leading cause of cancer mortality, with limited treatment options for those with advanced disease. Matrix metalloproteinases (MMPs) are important for maintaining extracellular homeostasis but also play a prominent role in cancer cell invasion and dissemination. Expression levels of MMP-1, -2, -7, -9 and -13 correlate with worse outcomes; MMP-12 expression appears to be protective. Hence, MMPs are attractive therapeutic targets. Previous clinical trials using broad-spectrum MMP inhibitors were disappointing because of off-target toxicity and lack of efficacy. Now, the availability of safer, more selective inhibitors has renewed interest in therapeutic targeting of MMPs.
Collapse
Affiliation(s)
- Anan H Said
- Division of Gastroenterology and Hepatology, Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Guofeng Xie
- Division of Gastroenterology and Hepatology, Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
28
|
McLaughlin SL, Ice RJ, Rajulapati A, Kozyulina PY, Livengood RH, Kozyreva VK, Loskutov YV, Culp MV, Weed SA, Ivanov AV, Pugacheva EN. NEDD9 depletion leads to MMP14 inactivation by TIMP2 and prevents invasion and metastasis. Mol Cancer Res 2013; 12:69-81. [PMID: 24202705 DOI: 10.1158/1541-7786.mcr-13-0300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The scaffolding protein NEDD9 is an established prometastatic marker in several cancers. Nevertheless, the molecular mechanisms of NEDD9-driven metastasis in cancers remain ill-defined. Here, using a comprehensive breast cancer tissue microarray, it was shown that increased levels of NEDD9 protein significantly correlated with the transition from carcinoma in situ to invasive carcinoma. Similarly, it was shown that NEDD9 overexpression is a hallmark of highly invasive breast cancer cells. Moreover, NEDD9 expression is crucial for the protease-dependent mesenchymal invasion of cancer cells at the primary site but not at the metastatic site. Depletion of NEDD9 is sufficient to suppress invasion of tumor cells in vitro and in vivo, leading to decreased circulating tumor cells and lung metastases in xenograft models. Mechanistically, NEDD9 localized to invasive pseudopods and was required for local matrix degradation. Depletion of NEDD9 impaired invasion of cancer cells through inactivation of membrane-bound matrix metalloproteinase MMP14 by excess TIMP2 on the cell surface. Inactivation of MMP14 is accompanied by reduced collagenolytic activity of soluble metalloproteinases MMP2 and MMP9. Reexpression of NEDD9 is sufficient to restore the activity of MMP14 and the invasive properties of breast cancer cells in vitro and in vivo. Collectively, these findings uncover critical steps in NEDD9-dependent invasion of breast cancer cells. IMPLICATIONS This study provides a mechanistic basis for potential therapeutic interventions to prevent metastasis.
Collapse
Affiliation(s)
- Sarah L McLaughlin
- Department of Biochemistry and Mary Babb Randolph Cancer Center, PO Box 9142, 1 Medical Center Drive, West Virginia University School of Medicine, Morgantown, WV 26506.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pearce-McCall D, Newman JP. Expectation of success following noncontingent punishment in introverts and extraverts. J Pers Soc Psychol 1986; 2:17. [PMID: 23815814 PMCID: PMC3701589 DOI: 10.1186/2162-3619-2-17] [Citation(s) in RCA: 228] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/25/2013] [Indexed: 12/14/2022]
Abstract
Recent findings indicate that extraverts are more likely than introverts to continue responding in the face of punishment and frustrating nonreward (Newman & Kosson, 1984; Tiggemann, Winefield, & Brebner, 1982). The current study investigates whether extraverts' expectations for success are, similarly, resistant to interruption and alteration. To test this hypothesis, 50 introverted and 50 extraverted male undergraduates were exposed to pretreatment with either a 50% level of noncontingent reward or a 50% level of noncontingent punishment. As predicted, there were significant Group X Pretreatment interactions on all dependent measures. In comparison to those introverts who received the punishment pretreatment, extraverts exposed to the same pretreatment placed larger wagers on their ability to succeed, and reported higher levels of perceived control. In addition, relative to their estimates for the pretreatment task, extraverts exposed to noncontingent punishment increased their expectation for success, whereas introverts exposed to noncontingent punishment decreased their performance expectations. No differences were observed between the two groups following pretreatment with noncontingent reward. The results suggest that extraverts are characterized by a distinctive reaction to punishment involving response facilitation as opposed to response inhibition.
Collapse
|