1
|
Huot JR, Jamnick NA, Pin F, Livingston PD, Callaway CS, Bonetto A. GL261 glioblastoma induces delayed body weight gain and stunted skeletal muscle growth in young mice. Am J Physiol Regul Integr Comp Physiol 2025; 328:R628-R641. [PMID: 40247678 DOI: 10.1152/ajpregu.00035.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
The survival rate for children and adolescents has increased to over 85%. However, there is limited understanding of the impact of pediatric cancers on muscle development and physiology. Given that brain tumors alone account for 26% of all pediatric cancers, this study aimed to investigate the skeletal muscle consequences of tumor growth in young mice. C2C12 myotubes were cocultured with GL261 murine glioblastoma cells to assess myotube size. GL261 cells were then injected subcutaneously into 4-wk-old male C57BL/6J mice. Animals were euthanized 28 days post-GL261 implantation. Muscle function was tested in vivo and ex vivo. Muscle protein synthesis was estimated via the SUnSET method, and gene/protein expression levels were assessed via Western blotting and qPCR. In vitro, the C2C12 cultures exposed to GL261 exhibited myotube atrophy, consistent with a disrupted anabolic/catabolic balance. In vivo, carcass, heart, and fat mass were significantly reduced in the tumor-bearing mice. Skeletal muscle growth was impeded in the GL261 hosts, along with a smaller muscle cross-sectional area (CSA). Both in vivo muscle torque and the ex vivo Extensor Digitorum Longus (EDL) muscle force were unchanged. At molecular level, the tumor hosts displayed reduced estimations of muscle protein synthesis and increased muscle protein ubiquitination, in disagreement with decreased muscle ubiquitin ligase mRNA expression. Overall, we showed that GL261 tumors impact the growth of pediatric mice by stunting skeletal muscle development, decreasing muscle mass, reducing muscle fiber size, diminishing muscle protein synthesis, and altering protein catabolism signaling.NEW & NOTEWORTHY This study shows that pediatric brain tumors stunt muscle development in young mice. GL261 glioblastoma cells caused myotube atrophy, reduced carcass, heart, and fat mass, and impeded skeletal muscle growth. Tumor-bearing mice had decreased muscle protein synthesis and increased protein ubiquitination. This is the first demonstration that GL261 tumors reduce muscle mass and fiber size, impair muscle function and innervation, and alter muscle protein turnover.
Collapse
Affiliation(s)
- Joshua R Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States
| | - Nicholas A Jamnick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Patrick D Livingston
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Chandler S Callaway
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Nutrition Obesity Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
2
|
Libramento ZP, Tichy L, Parry TL. Muscle wasting in cancer cachexia: Mechanisms and the role of exercise. Exp Physiol 2025. [PMID: 40159295 DOI: 10.1113/ep092544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Cancer cachexia (CC) is a multifactorial disease marked by a severe and progressive loss of lean muscle mass and characterized further by inflammation and a negative energy/protein balance, ultimately leading to muscle atrophy and loss of muscle tissue. As a result, patients experiencing cachexia have reduced muscle function and thus less independence and a lower quality of life. CC progresses through stages of increasing severity: pre-cachexia, cachexia and refractory cachexia. Two proposed underlying mechanisms that drive cancer-induced muscle wasting are the autophagy-lysosome and ubiquitin-proteasome systems. An increase in autophagic flux and proteolytic activity leads to atrophy of both cardiac and skeletal muscle, ultimately mediated by tumour or immune-secreted inflammatory cytokines. These pathways occur at a basal level to maintain cellular homeostasis; therefore, it is the overactivation of the pathways that leads to muscle atrophy. Recent evidence demonstrates the ability of aerobic and resistance training to restore these pathways to their basal levels. The mechanism is not yet understood, and more research is needed to determine exactly how exercise influences each pathway. However, exercise has great promise as a therapeutic strategy for CC because of the evidence for it preserving muscle mass and function, and attenuating protein degradative pathways. The extent to which exercise affects the ubiquitin-proteasome and autophagy-lysosome systems is determined by the frequency, intensity and duration of the exercise protocol. As such, an ideal exercise prescription is lacking for individuals with CC.
Collapse
Affiliation(s)
- Zoe P Libramento
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, North Carolina, USA
| | - Louisa Tichy
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, North Carolina, USA
| | - Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
3
|
Matthews I, Mehra P, Suárez-Calvet X, Piñol-Jurado P, Cox D, Justian V, Carrasco-Rozas A, Laidler Z, Bowey A, Rushton P, López-Fernández S, Díaz-Manera J, Fernández-Simón E. Strategy for drug repurposing in fibroadipogenic replacement during muscle wasting: application to duchenne muscular dystrophy. Front Cell Dev Biol 2025; 13:1505697. [PMID: 40206397 PMCID: PMC11979640 DOI: 10.3389/fcell.2025.1505697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Background Understanding the cell functionality during disease progression or drugs' mechanism are major challenges for precision medicine. Predictive models describing biological phenotypes can be challenging to obtain, particularly in scenarios where sample availability is limited, such as in the case of rare diseases. Here we propose a new method that reproduces the fibroadipogenic expansion that occurs in muscle wasting. Methods We used immortalized fibroadipogenic progenitor cells (FAPs) and differentiated them into fibroblasts or adipocytes. The method successfully identified FAPs cell differentiation fate using accurate measurements of changes in specific proteins, which ultimately constitute a valid cellular in vitro platform for drug screening. Results were confirmed using primary FAPs differentiation as well as comparison with omics data from proteomics and genomic studies. Results Our method allowed us to screen 508 different drugs from 2 compounds libraries. Out of these 508, we identified 4 compounds that reduced fibrogenesis and adipogenesis of ≥30% of fibrogenesis and adipogenesis using immortalized cells. After selecting the optimal dose of each compound, the inhibitory effect on FAP differentiation was confirmed by using primary FAPs from healthy subjects (n = 3) and DMD patients (n = 3). The final 4 selected hits reduced fibrogenic differentiation in healthy and DMD samples. The inhibition of adipogenesis was more evident in DMD samples than healthy samples. After creating an inhibitory map of the tested drugs, we validated the signalling pathways more involved in FAPs differentiation analysing data from proteomic and genomic studies. Conclusion We present a map of molecular targets of approved drugs that helps in predicting which therapeutic option may affect FAP differentiation. This method allows to study the potential effect of signalling circuits on FAP differentiation after drug treatment providing insights into molecular mechanism of action of muscle degeneration. The accuracy of the method is demonstrated by comparing the signal pathway activity obtained after drug treatment with proteomic and genomic data from patient-derived cells.
Collapse
Affiliation(s)
- Izzy Matthews
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Priyanka Mehra
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Xavier Suárez-Calvet
- Department of Neuromuscular Diseases Laboratory, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patricia Piñol-Jurado
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dan Cox
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vellia Justian
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Carrasco-Rozas
- Department of Neuromuscular Diseases Laboratory, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Zoe Laidler
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew Bowey
- Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Paul Rushton
- Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Susana López-Fernández
- Plastic Surgery Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Esther Fernández-Simón
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Samadi M, Daryanoosh F, Mojtahedi Z, Samsamy Pour A, Nobari H, Zarifkar AH, Khoramipour K. Resistance Training and Resveratrol Supplementation Improve Cancer Cachexia and Tumor Volume in Muscle Tissue of Male Mice Bearing Colon Cancer CT26 Cell Tumors. Cell Biochem Biophys 2025; 83:619-631. [PMID: 39412707 DOI: 10.1007/s12013-024-01491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 03/03/2025]
Abstract
Losing muscle functions due to reducing muscle mass and quality is one of the main features of cancer cachexia that impairs patients' quality of life and decrease their survival. This study aimed to investigate the synergistic effects of resistance training and resveratrol supplementation on cachexia induced by CT26 tumors in male mice. Forty-eight mice were divided into eight groups randomly: healthy sedentary vehicle (HSV), healthy exercise vehicle (HEV), healthy sedentary resveratrol (HSR), healthy exercise resveratrol (HER), CT-26 tumor-bearing sedentary vehicle (TSV), CT-26 tumor-bearing exercise vehicle (TEV), CT-26 tumor-bearing sedentary resveratrol (TSR) and CT-26 tumor-bearing exercise resveratrol (TER). Training groups performed ladder climbing with weights tied to their tails, for six weeks. Resveratrol-treated groups received 50 mg/kg daily by gavage. The results showed muscle weight, and mTORC1 phosphorylation decreased in TSV compared to the HSV group. mTORC1 phosphorylation was increased in TER compared to TSV, TEV, and TSR. In addition, AMPK phosphorylation was more elevated in HER compared to HSV, HEV, and HSR. LC3BII/I ratio was higher in TSV than HSV group. Tumor volume was increased in all groups, with the lowest increase in TER group. In tumor tissue, mTORC1 phosphorylation was decreased in TER than in TSV, TEV, and TSR groups; AMPK phosphorylation and LC3BII/I ratio were increased in TSV than in TEV, TSR, and TER groups. In conclusion, the synergistic effect of resistance training and resveratrol supplementation is the most effective in reducing tumor volume. These advantages were mostly in line with molecular findings.
Collapse
Affiliation(s)
- Mahdi Samadi
- Department of Sports Sciences, Shiraz University, Shiraz, Iran
| | | | - Zahra Mojtahedi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hadi Nobari
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Amir Hossein Zarifkar
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran.
| | - Kayvan Khoramipour
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, 47012, Spain.
| |
Collapse
|
5
|
Huot JR, Jamnick NA, Pin F, Livingston PD, Callaway CS, Bonetto A. GL261 glioblastoma induces delayed body weight gain and stunted skeletal muscle growth in young mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.635159. [PMID: 39990490 PMCID: PMC11844426 DOI: 10.1101/2025.02.10.635159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Introduction The survival rate for children and adolescents has increased to over 85%. However, there is limited understanding of the impact of pediatric cancers on muscle development and physiology. Given that brain tumors alone account for 26% of all pediatric cancers, this study aimed to investigate the skeletal muscle consequences of tumor growth in young mice. Methods C2C12 myotubes were co-cultured with GL261 murine glioblastoma cells to assess myotube size. GL261 cells were then injected subcutaneously into 4-week-old male C57BL/6J mice. Animals were euthanized 28 days post-GL261 implantation. Muscle function was tested in vivo and ex vivo . Muscle protein synthesis was measured via the SUnSET method, and gene/protein expression levels were assessed via Western blotting and qPCR. Results In vitro , the C2C12 cultures exposed to GL261 exhibited myotube atrophy, consistent with a disrupted anabolic/catabolic balance. In vivo , carcass, heart, and fat mass were significantly reduced in the tumor-bearing mice. Skeletal muscle growth was impeded in the GL261 hosts, along with smaller muscle CSA. Both in vivo muscle torque and the ex vivo EDL muscle force were unchanged. At molecular level, the tumor hosts displayed reduced muscle protein synthesis and increased muscle protein ubiquitination, in disagreement with decreased muscle ubiquitin ligase mRNA expression. Conclusions Overall, we showed that GL261 tumors impact the growth of pediatric mice by stunting skeletal muscle development, decreasing muscle mass, reducing muscle fiber size, diminishing muscle protein synthesis, and altering protein catabolism signaling.
Collapse
|
6
|
Fornelli C, Beltrà M, Zorzano A, Costelli P, Sebastian D, Penna F. BNIP3 Downregulation Ameliorates Muscle Atrophy in Cancer Cachexia. Cancers (Basel) 2024; 16:4133. [PMID: 39766033 PMCID: PMC11674865 DOI: 10.3390/cancers16244133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND AND AIMS Cancer cachexia is a complex syndrome affecting most cancer patients and is directly responsible for about 20% of cancer-related deaths. Previous studies showed muscle proteolysis hyper-activation and mitophagy induction in tumor-bearing animals. While basal mitophagy is required for maintaining muscle mass and quality, excessive mitophagy promotes uncontrolled protein degradation, muscle loss and impaired function. BNIP3, a key mitophagy-related protein, is significantly increased in the muscles of both mice and human cancer hosts. This study aimed to define the potential of mitigating mitophagy via BNIP3 downregulation in preserving mitochondrial integrity, counteracting skeletal muscle loss in experimental cancer cachexia. METHODS Two in vivo gene delivery methods were performed to knock down muscle BNIP3: electroporation of a BNIP3-specific shRNA expression vector or adenovirus injection. RESULTS The electroporation effectively reduced muscle BNIP3 in healthy mice but was ineffective in C26 tumor-bearing mice. In contrast, adenovirus-mediated BNIP3 knockdown successfully decreased BNIP3 levels also in tumor hosts. Although BNIP3 knockdown did not impact overall on body or muscle mass, it improved muscle fiber size in C26-bearing miceh2, suggesting partial prevention of muscle atrophy. Mitochondrial respiratory chain complexes (OxPhos) and TOM20 protein levels were consistently rescued, indicating improvements in mitochondrial mass, while H2O2 levels were unchanged among the groups, suggesting that BNIP3 downregulation does not impair the endogenous control of oxidative balance. CONCLUSIONS These findings suggest that a fine balance between mitochondrial disposal and biogenesis is fundamental for preserving muscle homeostasis and highlight a potential role for BNIP3 modulation against cancer-induced muscle wasting.
Collapse
Affiliation(s)
- Claudia Fornelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Turin, Italy; (C.F.); (P.C.)
| | - Marc Beltrà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (M.B.); (A.Z.)
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (M.B.); (A.Z.)
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Turin, Italy; (C.F.); (P.C.)
| | - David Sebastian
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10043 Turin, Italy; (C.F.); (P.C.)
| |
Collapse
|
7
|
Berriel Diaz M, Rohm M, Herzig S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab 2024; 6:2222-2245. [PMID: 39578650 DOI: 10.1038/s42255-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024]
Abstract
Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or 'wasting' of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer. Here, we describe the metabolic changes contributing to body wasting in cachexia and explain how the entangled action of both tumour-derived and host-amplified processes induces these metabolic changes. We discuss energy homeostasis and possible ways that the presence of a tumour interferes with or hijacks physiological energy conservation pathways. In that context, we highlight the role played by metabolic cross-talk mechanisms in cachexia pathogenesis. Lastly, we elaborate on the challenges and opportunities in the treatment of this devastating paraneoplastic phenomenon that arise from the complex and multifaceted metabolic cross-talk mechanisms and provide a status on current and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Mauricio Berriel Diaz
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Department of Inner Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Chair Molecular Metabolic Control, Technical University of Munich, Munich, Germany.
| |
Collapse
|
8
|
Goh KY, Lee WX, Choy SM, Priyadarshini GK, Chua K, Tan QH, Low SY, Chin HS, Wong CS, Huang SY, Fu NY, Nishiyama J, Harmston N, Tang HW. FOXO-regulated DEAF1 controls muscle regeneration through autophagy. Autophagy 2024; 20:2632-2654. [PMID: 38963021 PMCID: PMC11587838 DOI: 10.1080/15548627.2024.2374693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
The commonality between various muscle diseases is the loss of muscle mass, function, and regeneration, which severely restricts mobility and impairs the quality of life. With muscle stem cells (MuSCs) playing a key role in facilitating muscle repair, targeting regulators of muscle regeneration has been shown to be a promising therapeutic approach to repair muscles. However, the underlying molecular mechanisms driving muscle regeneration are complex and poorly understood. Here, we identified a new regulator of muscle regeneration, Deaf1 (Deformed epidermal autoregulatory factor-1) - a transcriptional factor downstream of foxo signaling. We showed that Deaf1 is transcriptionally repressed by FOXOs and that DEAF1 targets to Pik3c3 and Atg16l1 promoter regions and suppresses their expression. Deaf1 depletion therefore induces macroautophagy/autophagy, which in turn blocks MuSC survival and differentiation. In contrast, Deaf1 overexpression inactivates autophagy in MuSCs, leading to increased protein aggregation and cell death. The fact that Deaf1 depletion and its overexpression both lead to defects in muscle regeneration highlights the importance of fine tuning DEAF1-regulated autophagy during muscle regeneration. We further showed that Deaf1 expression is altered in aging and cachectic MuSCs. Manipulation of Deaf1 expression can attenuate muscle atrophy and restore muscle regeneration in aged mice or mice with cachectic cancers. Together, our findings unveil an evolutionarily conserved role for DEAF1 in muscle regeneration, providing insights into the development of new therapeutic strategies against muscle atrophy.Abbreviations: DEAF1: Deformed epidermal autoregulatory factor-1; FOXO: Forkhead box O; MuSC: Muscle Stem Cell; PAX7: Paired box 7; PIK3C3: Phosphatidylinositol 3-kinase catalytic subunit type 3.
Collapse
Affiliation(s)
- Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Kenon Chua
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, Singapore
- Programme in Musculoskeletal Sciences Academic Clinical Program, SingHealth/Duke-NUS, Singapore, Singapore
| | - Qian Hui Tan
- Division of Science, Yale-NUS College, Singapore, Singapore
| | - Shin Yi Low
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Hui San Chin
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Seng Wong
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei City, Taiwan
| | - Nai Yang Fu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jun Nishiyama
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Science, Yale-NUS College, Singapore, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
10
|
Mandic M, Paunovic V, Vucicevic L, Kosic M, Mijatovic S, Trajkovic V, Harhaji-Trajkovic L. No energy, no autophagy-Mechanisms and therapeutic implications of autophagic response energy requirements. J Cell Physiol 2024; 239:e31366. [PMID: 38958520 DOI: 10.1002/jcp.31366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Autophagy is a lysosome-mediated self-degradation process of central importance for cellular quality control. It also provides macromolecule building blocks and substrates for energy metabolism during nutrient or energy deficiency, which are the main stimuli for autophagy induction. However, like most biological processes, autophagy itself requires ATP, and there is an energy threshold for its initiation and execution. We here present the first comprehensive review of this often-overlooked aspect of autophagy research. The studies in which ATP deficiency suppressed autophagy in vitro and in vivo were classified according to the energy pathway involved (oxidative phosphorylation or glycolysis). A mechanistic insight was provided by pinpointing the critical ATP-consuming autophagic events, including transcription/translation/interaction of autophagy-related molecules, autophagosome formation/elongation, autophagosome fusion with the lysosome, and lysosome acidification. The significance of energy-dependent fine-tuning of autophagic response for preserving the cell homeostasis, and potential implications for the therapy of cancer, autoimmunity, metabolic disorders, and neurodegeneration are discussed.
Collapse
Affiliation(s)
- Milos Mandic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Vucicevic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Srdjan Mijatovic
- Clinic for Emergency Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Delfinis LJ, Khajehzadehshoushtar S, Flewwelling LD, Andrews NJ, Garibotti MC, Gandhi S, Brahmbhatt AN, Morris BA, Garlisi B, Lauks S, Aitken C, Tsitkanou S, Simpson JA, Greene NP, Cheng AJ, Petrik J, Perry CGR. Mitochondrial-targeted plastoquinone therapy ameliorates early onset muscle weakness that precedes ovarian cancer cachexia in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619751. [PMID: 39484418 PMCID: PMC11526977 DOI: 10.1101/2024.10.22.619751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cancer cachexia, and the related loss of muscle and strength, worsens quality of life and lowers overall survival. Recently, a novel 'pre-atrophy' muscle weakness was identified during early-stage cancer. While mitochondrial stress responses are associated with early-stage pre-atrophy weakness, a causal relationship has not been established. Using a robust mouse model of metastatic epithelial ovarian cancer (EOC)-induced cachexia, we found the well-established mitochondrial-targeted plastoquinone SkQ1 partially prevents pre-atrophy weakness in the diaphragm. Furthermore, SkQ1 improved force production during atrophy without preventing atrophy itself in the tibialis anterior and diaphragm. EOC reduced flexor digitorum brevis (FDB) force production and myoplasmic free calcium ([Ca 2+ ] i ) during contraction in single muscle fibers, both of which were prevented by SkQ1. Remarkably, changes in mitochondrial reactive oxygen species and pyruvate metabolism were heterogeneous across time and between muscle types which highlights a considerable complexity in the relationships between mitochondria and muscle remodeling throughout EOC. These discoveries identify that muscle weakness can occur independent of atrophy throughout EOC in a manner that is linked to improved calcium handling. The findings also demonstrate that mitochondrial-targeted therapies exert a robust effect in preserving muscle force during the early pre-atrophy period and in late-stage EOC once cachexia has become severe.
Collapse
|
12
|
Ogilvie LM, Delfinis LJ, Coyle-Asbil B, Vudatha V, Alshamali R, Garlisi B, Pereira M, Matuszewska K, Garibotti MC, Gandhi S, Brunt KR, Wood GA, Trevino JG, Perry CGR, Petrik J, Simpson JA. Cardiac Atrophy, Dysfunction, and Metabolic Impairments: A Cancer-Induced Cardiomyopathy Phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1823-1843. [PMID: 39032600 DOI: 10.1016/j.ajpath.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024]
Abstract
Muscle atrophy and weakness are prevalent features of cancer. Although extensive research has characterized skeletal muscle wasting in cancer cachexia, limited studies have investigated how cardiac structure and function are affected by therapy-naive cancer. Herein, orthotopic, syngeneic models of epithelial ovarian cancer and pancreatic ductal adenocarcinoma, and a patient-derived pancreatic xenograft model, were used to define the impact of malignancy on cardiac structure, function, and metabolism. Tumor-bearing mice developed cardiac atrophy and intrinsic systolic and diastolic dysfunction, with arterial hypotension and exercise intolerance. In hearts of ovarian tumor-bearing mice, fatty acid-supported mitochondrial respiration decreased, and carbohydrate-supported respiration increased-showcasing a substrate shift in cardiac metabolism that is characteristic of heart failure. Epithelial ovarian cancer decreased cytoskeletal and cardioprotective gene expression, which was paralleled by down-regulation of transcription factors that regulate cardiomyocyte size and function. Patient-derived pancreatic xenograft tumor-bearing mice show altered myosin heavy chain isoform expression-also a molecular phenotype of heart failure. Markers of autophagy and ubiquitin-proteasome system were upregulated by cancer, providing evidence of catabolic signaling that promotes cardiac wasting. Together, two cancer types were used to cross-validate evidence of the structural, functional, and metabolic cancer-induced cardiomyopathy, thus providing translational evidence that could impact future medical management strategies for improved cancer recovery in patients.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Luca J Delfinis
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Razan Alshamali
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bianca Garlisi
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Madison C Garibotti
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Shivam Gandhi
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada; IMPART Investigator Team, Saint John, New Brunswick, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Jose G Trevino
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Christopher G R Perry
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; IMPART Investigator Team, Saint John, New Brunswick, Canada.
| |
Collapse
|
13
|
Geppert J, Rohm M. Cancer cachexia: biomarkers and the influence of age. Mol Oncol 2024; 18:2070-2086. [PMID: 38414161 PMCID: PMC11467804 DOI: 10.1002/1878-0261.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/01/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Cancer cachexia (Ccx) is a complex metabolic condition characterized by pronounced muscle and fat wasting, systemic inflammation, weakness and fatigue. Up to 30% of cancer patients succumb directly to Ccx, yet therapies that effectively address this perturbed metabolic state are rare. In recent decades, several characteristics of Ccx have been established in mice and humans, of which we here highlight adipose tissue dysfunction, muscle wasting and systemic inflammation, as they are directly linked to biomarker discovery. To counteract cachexia pathogenesis as early as possible and mitigate its detrimental impact on anti-cancer treatments, identification and validation of clinically endorsed biomarkers assume paramount importance. Ageing was recently shown to affect both the validity of Ccx biomarkers and Ccx development, but the underlying mechanisms are still unknown. Thus, unravelling the intricate interplay between ageing and Ccx can help to counteract Ccx pathogenesis and tailor diagnostic and treatment strategies to individual needs.
Collapse
Affiliation(s)
- Julia Geppert
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Maria Rohm
- Institute for Diabetes and CancerHelmholtz MunichNeuherbergGermany
- Joint Heidelberg‐IDC Translational Diabetes Program, Inner Medicine 1Heidelberg University HospitalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
14
|
Wang R, Kato F, Watson RY, Beedle AM, Call JA, Tsunoda Y, Noda T, Tsuchiya T, Kashima M, Hattori A, Ito T. The RNA-binding protein Msi2 regulates autophagy during myogenic differentiation. Life Sci Alliance 2024; 7:e202302016. [PMID: 38373797 PMCID: PMC10876439 DOI: 10.26508/lsa.202302016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
Skeletal muscle development is a highly ordered process orchestrated transcriptionally by the myogenic regulatory factors. However, the downstream molecular mechanisms of myogenic regulatory factor functions in myogenesis are not fully understood. Here, we identified the RNA-binding protein Musashi2 (Msi2) as a myogenin target gene and a post-transcriptional regulator of myoblast differentiation. Msi2 knockdown in murine myoblasts blocked differentiation without affecting the expression of MyoD or myogenin. Msi2 overexpression was also sufficient to promote myoblast differentiation and myocyte fusion. Msi2 loss attenuated autophagosome formation via down-regulation of the autophagic protein MAPL1LC3/ATG8 (LC3) at the early phase of myoblast differentiation. Moreover, forced activation of autophagy effectively suppressed the differentiation defects incurred by Msi2 loss. Consistent with its functions in myoblasts in vitro, mice deficient for Msi2 exhibited smaller limb skeletal muscles, poorer exercise performance, and muscle fiber-type switching in vivo. Collectively, our study demonstrates that Msi2 is a novel regulator of mammalian myogenesis and establishes a new functional link between muscular development and autophagy regulation.
Collapse
Affiliation(s)
- Ruochong Wang
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Futaba Kato
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Rio Yasui Watson
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA
- Department of Pharmaceutical Sciences, SUNY Binghamton University, New York, NY, USA
| | - Jarrod A Call
- Department of Physiology & Pharmacology, The University of Georgia, Athens, GA, USA
| | - Yugo Tsunoda
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Noda
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takaho Tsuchiya
- Bioinformatics Laboratory, Institute of Medicine, and Center for Artificial Intelligence Research, University of Tsukuba, Tsukuba, Japan
| | - Makoto Kashima
- College of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan
- Department of Molecular Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Ayuna Hattori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Takahiro Ito
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
15
|
Yu X, Ren P, Yang R, Yue H, Tang Q, Xue C. Astaxanthin Ameliorates Skeletal Muscle Atrophy in Mice With Cancer Cachexia. Nutr Cancer 2024; 76:529-542. [PMID: 38567899 DOI: 10.1080/01635581.2024.2335584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 06/06/2024]
Abstract
Astaxanthin (AST) is a natural marine carotenoid with a variety of biological activities. This study aimed to demonstrate the possible mechanisms by which AST improves skeletal muscle atrophy in cancer cachexia. In this study, the effects of different doses of AST (30 mg/kg b.w., 60 mg/kg b.w. and 120 mg/kg b.w.) on skeletal muscle functions were explored in mice with cancer cachexia. The results showed that AST (30, 60 and 120 mg/kg b.w.) could effectively protect cachexia mice from body weight and skeletal muscle loss. AST dose-dependently ameliorated the decrease in myofibres cross-sectional area and increased the expression of myosin heavy chain (MHC). AST treatment decreased both the serum and muscle level of IL-6 but not TNF-α in C26 tumor-bearing cachexia mice. Moreover, AST alleviated skeletal muscle atrophy by decreasing the expression of two muscle-specific E3 ligases MAFBx and MuRF-1. AST improved mitochondrial function by downregulating the levels of muscle Fis1, LC3B and Bax, upregulating the levels of muscle Mfn2 and Bcl-2. In conclusion, our study show that AST might be expected to be a nutritional supplement for cancer cachexia patients.
Collapse
Affiliation(s)
- Xinyue Yu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Ruzhen Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Han Yue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Wang M, Wu X, Jiao Y, Yin W, Zhang L. Life-Long Aerobic Exercise is a Non-Pharmacological Approach for Inducing Autophagy and Delaying Muscle Atrophy in the Aging Population. Aging Dis 2024:AD.2024.0318. [PMID: 38607740 DOI: 10.14336/ad.2024.0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous bodily processes deteriorate with age, chief among them being the loss of muscle mass and function. The condition referred to as aging myasthenia gravis impairs older persons' quality of life and is linked to a higher risk of several chronic illnesses. An increasing number of studies conducted in the last several years has demonstrated that moderate exercise can halt this process. Specifically, by promoting autophagy, aerobic exercise helps to postpone the onset of senile myasthenia gravis. In this work, we will explore how aerobic exercise modulates autophagy to prevent muscle aging and examine the most recent findings in this area of study. We discovered that exercise-induced autophagy can effectively balance protein degradation and relieve skeletal muscle atrophy by looking through pertinent literature. Aerobic exercise has a direct impact on autophagy, but it can also delay the onset of senile myasthenia gravis by enhancing blood flow, lowering inflammation, and boosting muscle oxidative capacity. In order to postpone the onset of senile myasthenia gravis, research on the mechanism of action of aerobic exercise in inducing autophagy will be discussed in detail in this study.
Collapse
Affiliation(s)
- Mingwei Wang
- School of Physical Education, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Xiangzhi Wu
- School of Physical Education, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuyao Jiao
- School of Physical Education, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wenli Yin
- JSNU SPBPU Institute of Engineering Sino-Russian Institute of Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Lili Zhang
- JSNU SPBPU Institute of Engineering Sino-Russian Institute of Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
17
|
Directo D, Lee SR. Cancer Cachexia: Underlying Mechanisms and Potential Therapeutic Interventions. Metabolites 2023; 13:1024. [PMID: 37755304 PMCID: PMC10538050 DOI: 10.3390/metabo13091024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer cachexia, a multifactorial metabolic syndrome developed during malignant tumor growth, is characterized by an accelerated loss of body weight accompanied by the depletion of skeletal muscle mass. This debilitating condition is associated with muscle degradation, impaired immune function, reduced functional capacity, compromised quality of life, and diminished survival in cancer patients. Despite the lack of the known capability of fully reversing or ameliorating this condition, ongoing research is shedding light on promising preclinical approaches that target the disrupted mechanisms in the pathophysiology of cancer cachexia. This comprehensive review delves into critical aspects of cancer cachexia, including its underlying pathophysiological mechanisms, preclinical models for studying the progression of cancer cachexia, methods for clinical assessment, relevant biomarkers, and potential therapeutic strategies. These discussions collectively aim to contribute to the evolving foundation for effective, multifaceted counteractive strategies against this challenging condition.
Collapse
Affiliation(s)
| | - Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
18
|
F AR, Quadrilatero J. Emerging role of mitophagy in myoblast differentiation and skeletal muscle remodeling. Semin Cell Dev Biol 2023; 143:54-65. [PMID: 34924331 DOI: 10.1016/j.semcdb.2021.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
Mitochondrial turnover in the form of mitophagy is emerging as a central process in maintaining cellular function. The degradation of damaged mitochondria through mitophagy is particularly important in cells/tissues that exhibit high energy demands. Skeletal muscle is one such tissue that requires precise turnover of mitochondria in several conditions in order to optimize energy production and prevent bioenergetic crisis. For instance, the formation of skeletal muscle (i.e., myogenesis) is accompanied by robust turnover of low-functioning mitochondria to eventually allow the formation of high-functioning mitochondria. In mature skeletal muscle, alterations in mitophagy-related signaling occur during exercise, aging, and various disease states. Nonetheless, several questions regarding the direct role of mitophagy in various skeletal muscle conditions remain unknown. Furthermore, given the heterogenous nature of skeletal muscle with respect to various cellular and molecular properties, and the plasticity in these properties in various conditions, the involvement and characterization of mitophagy requires more careful consideration in this tissue. Therefore, this review will highlight the known mechanisms of mitophagy in skeletal muscle, and discuss their involvement during myogenesis and various skeletal muscle conditions. This review also provides important considerations for the accurate measurement of mitophagy and interpretation of data in skeletal muscle.
Collapse
Affiliation(s)
- Ahmad Rahman F
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Joe Quadrilatero
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
19
|
Cortez NE, Pathak S, Rodriguez Lanzi C, Hong BV, Crone R, Sule R, Wang F, Chen S, Gomes AV, Baar K, Mackenzie GG. A Ketogenic Diet in Combination with Gemcitabine Mitigates Pancreatic Cancer-Associated Cachexia in Male and Female KPC Mice. Int J Mol Sci 2023; 24:10753. [PMID: 37445930 PMCID: PMC10341838 DOI: 10.3390/ijms241310753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a critical contributor to pancreatic ductal adenocarcinoma (PDAC) mortality. Thus, there is an urgent need for new strategies to mitigate PDAC-associated cachexia; and the exploration of dietary interventions is a critical component. We previously observed that a ketogenic diet (KD) combined with gemcitabine enhances overall survival in the autochthonous LSL-KrasG12D/+; LSL-Trp53 R172H/+; Pdx1-Cre (KPC) mouse model. In this study, we investigated the effect and cellular mechanisms of a KD in combination with gemcitabine on the maintenance of skeletal muscle mass in KPC mice. For this purpose, male and female pancreatic tumor-bearing KPC mice were allocated to a control diet (CD), a KD, a CD + gemcitabine (CG), or a KD + gemcitabine (KG) group. We observed that a KD or a KG-mitigated muscle strength declined over time and presented higher gastrocnemius weights compared CD-fed mice. Mechanistically, we observed sex-dependent effects of KG treatment, including the inhibition of autophagy, and increased phosphorylation levels of eIF2α in KG-treated KPC mice when compared to CG-treated mice. Our data suggest that a KG results in preservation of skeletal muscle mass. Additional research is warranted to explore whether this diet-treatment combination can be clinically effective in combating CAC in PDAC patients.
Collapse
Affiliation(s)
- Natalia E. Cortez
- Department of Nutrition, University of California, One Shields Ave., Davis, CA 95616, USA; (N.E.C.); (C.R.L.); (B.V.H.)
| | - Suraj Pathak
- Department of Physiology and Membrane Biology, One Shields Ave., Davis, CA 95616, USA; (S.P.); (R.C.); (R.S.); (A.V.G.); (K.B.)
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Cecilia Rodriguez Lanzi
- Department of Nutrition, University of California, One Shields Ave., Davis, CA 95616, USA; (N.E.C.); (C.R.L.); (B.V.H.)
| | - Brian V. Hong
- Department of Nutrition, University of California, One Shields Ave., Davis, CA 95616, USA; (N.E.C.); (C.R.L.); (B.V.H.)
| | - Ryman Crone
- Department of Physiology and Membrane Biology, One Shields Ave., Davis, CA 95616, USA; (S.P.); (R.C.); (R.S.); (A.V.G.); (K.B.)
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Rasheed Sule
- Department of Physiology and Membrane Biology, One Shields Ave., Davis, CA 95616, USA; (S.P.); (R.C.); (R.S.); (A.V.G.); (K.B.)
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Fangyi Wang
- Department of Animal Science, University of California, One Shields Ave., Davis, CA 95616, USA;
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, University of California, One Shields Ave., Davis, CA 95616, USA;
- University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Aldrin V. Gomes
- Department of Physiology and Membrane Biology, One Shields Ave., Davis, CA 95616, USA; (S.P.); (R.C.); (R.S.); (A.V.G.); (K.B.)
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Keith Baar
- Department of Physiology and Membrane Biology, One Shields Ave., Davis, CA 95616, USA; (S.P.); (R.C.); (R.S.); (A.V.G.); (K.B.)
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Gerardo G. Mackenzie
- Department of Nutrition, University of California, One Shields Ave., Davis, CA 95616, USA; (N.E.C.); (C.R.L.); (B.V.H.)
- University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| |
Collapse
|
20
|
Martin A, Gallot YS, Freyssenet D. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass: data analysis from preclinical and clinical studies. J Cachexia Sarcopenia Muscle 2023; 14:1150-1167. [PMID: 36864755 PMCID: PMC10235899 DOI: 10.1002/jcsm.13073] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/15/2022] [Accepted: 08/14/2022] [Indexed: 03/04/2023] Open
Abstract
Cancer cachexia is a systemic hypoanabolic and catabolic syndrome that diminishes the quality of life of cancer patients, decreases the efficiency of therapeutic strategies and ultimately contributes to decrease their lifespan. The depletion of skeletal muscle compartment, which represents the primary site of protein loss during cancer cachexia, is of very poor prognostic in cancer patients. In this review, we provide an extensive and comparative analysis of the molecular mechanisms involved in the regulation of skeletal muscle mass in human cachectic cancer patients and in animal models of cancer cachexia. We summarize data from preclinical and clinical studies investigating how the protein turnover is regulated in cachectic skeletal muscle and question to what extent the transcriptional and translational capacities, as well as the proteolytic capacity (ubiquitin-proteasome system, autophagy-lysosome system and calpains) of skeletal muscle are involved in the cachectic syndrome in human and animals. We also wonder how regulatory mechanisms such as insulin/IGF1-AKT-mTOR pathway, endoplasmic reticulum stress and unfolded protein response, oxidative stress, inflammation (cytokines and downstream IL1ß/TNFα-NF-κB and IL6-JAK-STAT3 pathways), TGF-ß signalling pathways (myostatin/activin A-SMAD2/3 and BMP-SMAD1/5/8 pathways), as well as glucocorticoid signalling, modulate skeletal muscle proteostasis in cachectic cancer patients and animals. Finally, a brief description of the effects of various therapeutic strategies in preclinical models is also provided. Differences in the molecular and biochemical responses of skeletal muscle to cancer cachexia between human and animals (protein turnover rates, regulation of ubiquitin-proteasome system and myostatin/activin A-SMAD2/3 signalling pathways) are highlighted and discussed. Identifying the various and intertwined mechanisms that are deregulated during cancer cachexia and understanding why they are decontrolled will provide therapeutic targets for the treatment of skeletal muscle wasting in cancer patients.
Collapse
Affiliation(s)
- Agnès Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Univ LyonUniversité Jean Monnet Saint‐EtienneSaint‐Priest‐en‐JarezFrance
| | - Yann S. Gallot
- LBEPS, Univ Evry, IRBA, Université Paris SaclayEvryFrance
| | - Damien Freyssenet
- Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Univ LyonUniversité Jean Monnet Saint‐EtienneSaint‐Priest‐en‐JarezFrance
| |
Collapse
|
21
|
Miyazaki M, Sawada A, Sawamura D, Yoshida S. Decreased insulin-like growth factor-1 expression in response to mechanical loading is associated with skeletal muscle anabolic resistance in cancer cachexia. Growth Horm IGF Res 2023; 69-70:101536. [PMID: 37229943 DOI: 10.1016/j.ghir.2023.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Cachexia is a systemic metabolic syndrome characterized by loss of body weight and skeletal muscle mass during chronic wasting diseases, such as cancer. Skeletal muscle in cancer cachexia is less responsive to anabolic factors including mechanical loading; however, the precise molecular mechanism is largely unknown. In this study, we examined the underlying mechanism of anabolic resistance in skeletal muscle in a cancer cachexia model. METHODS CD2F1 mice (male, 8 weeks old) were subcutaneously transplanted (1 × 106 cells per mouse) with a mouse colon cancer-derived cell line (C26) as a model of cancer cachexia. Mechanical overload of the plantaris muscle by synergist tenotomy was performed during the 2nd week and the plantaris muscle was sampled at the 4th week following C26 transplantation. RESULTS The hypertrophic response of skeletal muscle (increased skeletal muscle weight/protein synthesis efficiency and activation of mechanistic target of rapamycin complex 1 signaling) associated with mechanical overload was significantly suppressed during cancer cachexia. Screening of gene expression profile and pathway analysis using microarray revealed that blunted muscle protein synthesis was associated with cancer cachexia and was likely induced by downregulation of insulin-like growth factor-1 (IGF-1) and impaired activation of IGF-1-dependent signaling. CONCLUSIONS These observations indicate that cancer cachexia induces resistance to muscle protein synthesis, which may be a factor for inhibiting the anabolic adaptation of skeletal muscle to physical exercise in cancer patients.
Collapse
Affiliation(s)
- Mitsunori Miyazaki
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan.
| | - Atsushi Sawada
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Japan
| | - Susumu Yoshida
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan
| |
Collapse
|
22
|
Huang K, Chiang Y, Huang T, Chen H, Lin P, Ali M, Hsia S. Capsaicin alleviates cisplatin-induced muscle loss and atrophy in vitro and in vivo. J Cachexia Sarcopenia Muscle 2023; 14:182-197. [PMID: 36401337 PMCID: PMC9891949 DOI: 10.1002/jcsm.13120] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Cisplatin (CP) is a widely used chemotherapeutic drug with subsequent adverse effects on different organs and tissues including skeletal muscle loss and atrophy as the most common clinical symptoms. The molecular mechanism of cisplatin-induced muscle atrophy is not clearly understood. However, recent significant advances indicate that it is related to an imbalance in both the protein status and apoptosis. Capsaicin (CAP) is one of the major ingredients in chilli peppers. It is a valuable pharmacological agent with several therapeutic applications in controlling pain and inflammation with particular therapeutic potential in muscle atrophy. However, the mechanisms underlying its protective effects against cisplatin-induced muscle loss and atrophy remain largely unknown. This study aims to investigate capsaicin's beneficial effects on cisplatin-induced muscle loss and atrophy in vitro and in vivo. METHODS The anti-muscle-atrophic effect of capsaicin on cisplatin-induced muscle loss was investigated using in vivo and in vitro studies. By using the pretreatment model, pretreated capsaicin for 24 h and treated with cisplatin for 48 h, we utilized a C2 C12 myotube formation model where cell viability analysis, immunofluorescence, and protein expression were measured to investigate the effect of capsaicin in hampering cisplatin-induced muscle atrophy. C57BL/6 mice were administered capsaicin (10, 40 mg/kg BW) as a pretreatment for 5 weeks and cisplatin (3 mg/kg BW) for seven consecutively days to assess muscle atrophy in an animal model for protein and oxidative stress examination, and the grip strength was tested to evaluate the muscle strength. RESULTS Our study results indicated that cisplatin caused lower cell viability and showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in the myotube diameter, repression of Akt, and mTOR protein expression. However, pretreatment with capsaicin could ameliorate cisplatin-induced muscle atrophy by up-regulating the protein synthesis in skeletal muscle as well as down-regulating the markers of protein degradation. Additionally, capsaicin was able to downregulate the protein expression of apoptosis-related markers, activated TRPV1 and autophagy progress modulation and the recovery of lysosome function. In vivo, capsaicin could relieve oxidative stress and cytokine secretion while modulating autophagy-related lysosome fusion, improving grip strength, and alleviating cisplatin-induced body weight loss and gastrocnemius atrophy. CONCLUSIONS These findings suggest that capsaicin can restore cisplatin-induced imbalance between protein synthesis and protein degradation pathways and it may have protective effects against cisplatin-induced muscle atrophy.
Collapse
Affiliation(s)
- Ko‐Chieh Huang
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
| | - Yi‐Fen Chiang
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
| | - Tsui‐Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
| | - Hsin‐Yuan Chen
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
| | - Po‐Han Lin
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
- Cancer Progression Research CenterNational Yang‐Ming Chiao Tung UniversityTaipeiTaiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of PharmacyAin Shams UniversityCairoEgypt
| | - Shih‐Min Hsia
- School of Nutrition and Health Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of NutritionTaipei Medical UniversityTaipeiTaiwan
- School of Food and Safety, College of NutritionTaipei Medical UniversityTaipeiTaiwan
- Nutrition Research CenterTaipei Medical University HospitalTaipeiTaiwan
- TMU Research Center for Digestive MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
23
|
Paez HG, Pitzer CR, Alway SE. Age-Related Dysfunction in Proteostasis and Cellular Quality Control in the Development of Sarcopenia. Cells 2023; 12:cells12020249. [PMID: 36672183 PMCID: PMC9856405 DOI: 10.3390/cells12020249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is a debilitating skeletal muscle disease that accelerates in the last decades of life and is characterized by marked deficits in muscle strength, mass, quality, and metabolic health. The multifactorial causes of sarcopenia have proven difficult to treat and involve a complex interplay between environmental factors and intrinsic age-associated changes. It is generally accepted that sarcopenia results in a progressive loss of skeletal muscle function that exceeds the loss of mass, indicating that while loss of muscle mass is important, loss of muscle quality is the primary defect with advanced age. Furthermore, preclinical models have suggested that aged skeletal muscle exhibits defects in cellular quality control such as the degradation of damaged mitochondria. Recent evidence suggests that a dysregulation of proteostasis, an important regulator of cellular quality control, is a significant contributor to the aging-associated declines in muscle quality, function, and mass. Although skeletal muscle mammalian target of rapamycin complex 1 (mTORC1) plays a critical role in cellular control, including skeletal muscle hypertrophy, paradoxically, sustained activation of mTORC1 recapitulates several characteristics of sarcopenia. Pharmaceutical inhibition of mTORC1 as well as caloric restriction significantly improves muscle quality in aged animals, however, the mechanisms controlling cellular proteostasis are not fully known. This information is important for developing effective therapeutic strategies that mitigate or prevent sarcopenia and associated disability. This review identifies recent and historical understanding of the molecular mechanisms of proteostasis driving age-associated muscle loss and suggests potential therapeutic interventions to slow or prevent sarcopenia.
Collapse
Affiliation(s)
- Hector G. Paez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher R. Pitzer
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stephen E. Alway
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Tennessee Institute of Regenerative Medicine, Memphis, TN 38163, USA
- Correspondence:
| |
Collapse
|
24
|
Han X, Goh KY, Lee WX, Choy SM, Tang HW. The Importance of mTORC1-Autophagy Axis for Skeletal Muscle Diseases. Int J Mol Sci 2022; 24:297. [PMID: 36613741 PMCID: PMC9820406 DOI: 10.3390/ijms24010297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) complex 1, mTORC1, integrates nutrient and growth factor signals with cellular responses and plays critical roles in regulating cell growth, proliferation, and lifespan. mTORC1 signaling has been reported as a central regulator of autophagy by modulating almost all aspects of the autophagic process, including initiation, expansion, and termination. An increasing number of studies suggest that mTORC1 and autophagy are critical for the physiological function of skeletal muscle and are involved in diverse muscle diseases. Here, we review recent insights into the essential roles of mTORC1 and autophagy in skeletal muscles and their implications in human muscle diseases. Multiple inhibitors targeting mTORC1 or autophagy have already been clinically approved, while others are under development. These chemical modulators that target the mTORC1/autophagy pathways represent promising potentials to cure muscle diseases.
Collapse
Affiliation(s)
- Xujun Han
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
25
|
Di Girolamo D, Tajbakhsh S. Pathological features of tissues and cell populations during cancer cachexia. CELL REGENERATION 2022; 11:15. [PMID: 35441960 PMCID: PMC9021355 DOI: 10.1186/s13619-022-00108-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Cancers remain among the most devastating diseases in the human population in spite of considerable advances in limiting their impact on lifespan and healthspan. The multifactorial nature of cancers, as well as the number of tissues and organs that are affected, have exposed a considerable diversity in mechanistic features that are reflected in the wide array of therapeutic strategies that have been adopted. Cachexia is manifested in a number of diseases ranging from cancers to diabetes and ageing. In the context of cancers, a majority of patients experience cachexia and succumb to death due to the indirect effects of tumorigenesis that drain the energy reserves of different organs. Considerable information is available on the pathophysiological features of cancer cachexia, however limited knowledge has been acquired on the resident stem cell populations, and their function in the context of these diseases. Here we review current knowledge on cancer cachexia and focus on how tissues and their resident stem and progenitor cell populations are individually affected.
Collapse
|
26
|
Parry TL, Tichy L, Brantley JT. Cardioprotective effects of preconditioning exercise in the female tumor bearing mouse. Front Cell Dev Biol 2022; 10:950479. [DOI: 10.3389/fcell.2022.950479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer cachexia, a metabolic wasting syndrome, affects up to 80% of cancer patients and leads to the death in up to 20% of cancer patients. While research is growing in the field, there are still no clear diagnostic criteria and cancer cachexia remains an untreated condition. Aerobic exercise has been shown to positively impact cachexia by slowing its development and attenuating muscle loss. The most effective timing, duration, and intensity of exercise as a preventative and protective measure against cancer cachexia remains questionable. Therefore, the purpose of this study was to examine the effects of preconditioning exercise as a protective measure for tumor-mediated muscle wasting. Female LC3 Tg+ and wildtype mice were randomly separated into four groups, sedentary non-tumor bearing (SED + NT), sedentary tumor bearing (SED + T), treadmill exercise non-tumor bearing (TM + NT), and treadmill exercise tumor bearing (TM + T). Mice underwent an 8-week treadmill exercise training protocol (TM) or remained sedentary (SED). Next, mice were implanted with tumor cells (T group; 5 × 105 Lewis Lung Carcinoma cells in flank) or remained non-tumor (NT) for 4 weeks. Tumor bearing resulted in a significant decline in cardiac function. SED + T showed a significant decrease in fractional shortening (p < 0.05) when compared to the other groups. This coincided with an increase in beclin-1 and MyD88 protein expression and decrease in p-FOXO1 (inactivated) protein expression in SED + T mice. Interestingly, preconditioning exercise (exercise prior to tumor bearing) appeared to preserve cardiac function (TM + T not significantly different than SED + NT). Exercise-mediated cardioprotection also coincided with abolished beclin-1 and MyD88 signaling that was not significantly elevated in TM + T mice. Additionally, TM resulted in a 22-fold decrease in estimated tumor volume (p < 0.05) and a 45% decrease in tumor mass (p < 0.05) compared to SED tumors. The data indicate potential cardioprotective effects of preconditioning exercise on preserving cardiac structure and function, as well as regulating autophagic (beclin-1), inflammatory (TGF-β and MyD88), and atrophy (p-FOXO1) pathways during tumor bearing. Preconditioning exercise may be an effective and accessible treatment intervention for early-stage cancer survivors. This data is crucial in identifying the significance of exercise and the timing of exercise as a protective measure against the detrimental effects of cancer cachexia.
Collapse
|
27
|
Ragni M, Fornelli C, Nisoli E, Penna F. Amino Acids in Cancer and Cachexia: An Integrated View. Cancers (Basel) 2022; 14:5691. [PMID: 36428783 PMCID: PMC9688864 DOI: 10.3390/cancers14225691] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Rapid tumor growth requires elevated biosynthetic activity, supported by metabolic rewiring occurring both intrinsically in cancer cells and extrinsically in the cancer host. The Warburg effect is one such example, burning glucose to produce a continuous flux of biomass substrates in cancer cells at the cost of energy wasting metabolic cycles in the host to maintain stable glycemia. Amino acid (AA) metabolism is profoundly altered in cancer cells, which use AAs for energy production and for supporting cell proliferation. The peculiarities in cancer AA metabolism allow the identification of specific vulnerabilities as targets of anti-cancer treatments. In the current review, specific approaches targeting AAs in terms of either deprivation or supplementation are discussed. Although based on opposed strategies, both show, in vitro and in vivo, positive effects. Any AA-targeted intervention will inevitably impact the cancer host, who frequently already has cachexia. Cancer cachexia is a wasting syndrome, also due to malnutrition, that compromises the effectiveness of anti-cancer drugs and eventually causes the patient's death. AA deprivation may exacerbate malnutrition and cachexia, while AA supplementation may improve the nutritional status, counteract cachexia, and predispose the patient to a more effective anti-cancer treatment. Here is provided an attempt to describe the AA-based therapeutic approaches that integrate currently distant points of view on cancer-centered and host-centered research, providing a glimpse of several potential investigations that approach cachexia as a unique cancer disease.
Collapse
Affiliation(s)
- Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Claudia Fornelli
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| |
Collapse
|
28
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F, Zhou H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022; 15:135. [PMID: 36115986 PMCID: PMC9482317 DOI: 10.1186/s13045-022-01349-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 12/30/2022] Open
Abstract
AbstractTransforming growth factor-β (TGF-β) signaling has a paradoxical role in cancer progression, and it acts as a tumor suppressor in the early stages but a tumor promoter in the late stages of cancer. Once cancer cells are generated, TGF-β signaling is responsible for the orchestration of the immunosuppressive tumor microenvironment (TME) and supports cancer growth, invasion, metastasis, recurrence, and therapy resistance. These progressive behaviors are driven by an “engine” of the metabolic reprogramming in cancer. Recent studies have revealed that TGF-β signaling regulates cancer metabolic reprogramming and is a metabolic driver in the tumor metabolic microenvironment (TMME). Intriguingly, TGF-β ligands act as an “endocrine” cytokine and influence host metabolism. Therefore, having insight into the role of TGF-β signaling in the TMME is instrumental for acknowledging its wide range of effects and designing new cancer treatment strategies. Herein, we try to illustrate the concise definition of TMME based on the published literature. Then, we review the metabolic reprogramming in the TMME and elaborate on the contribution of TGF-β to metabolic rewiring at the cellular (intracellular), tissular (intercellular), and organismal (cancer-host) levels. Furthermore, we propose three potential applications of targeting TGF-β-dependent mechanism reprogramming, paving the way for TGF-β-related antitumor therapy from the perspective of metabolism.
Collapse
|
29
|
Establishment of a system evaluating the contractile force of electrically stimulated myotubes from wrinkles formed on elastic substrate. Sci Rep 2022; 12:13818. [PMID: 35970858 PMCID: PMC9378739 DOI: 10.1038/s41598-022-17548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Muscle weakness is detrimental not only to quality of life but also life expectancy. However, effective drugs have still not been developed to improve and prevent muscle weakness associated with aging or diseases. One reason for the delay in drug discovery is that no suitable in vitro screening system has been established to test whether drugs improve muscle strength. Here, we used a specific deformable silicone gel substrate to effectively and sensitively evaluate the contractile force generated by myotubes from wrinkles formed on the substrate. Using this system, it was found that the contractile force generated by an atrophic phenotype of myotubes induced by dexamethasone or cancer cell-conditioned medium treatment significantly decreased while that generated by hypertrophic myotubes induced by insulin-like growth factor-1 significantly increased. Notably, it was found that changes in the index related to contractile force can detect atrophic or hypertrophic phenotypes more sensitively than changes in myotube diameter or myosin heavy chain expression, both commonly used to evaluate myotube function. These results suggest that our proposed system will be an effective tool for assessing the contractile force-related state of myotubes, which are available for the development of drugs to prevent and/or treat muscle weakness.
Collapse
|
30
|
Hein TR, Peterson L, Bartikoski BJ, Portes J, Espírito Santo RC, Xavier RM. The effect of disease-modifying anti-rheumatic drugs on skeletal muscle mass in rheumatoid arthritis patients: a systematic review with meta-analysis. Arthritis Res Ther 2022; 24:171. [PMID: 35854372 PMCID: PMC9295282 DOI: 10.1186/s13075-022-02858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disease, characterized by chronic and systemic inflammation. Besides, it is known that RA patients may present several comorbidities, such as sarcopenia, a condition where patients present both muscle mass and muscle quality impairment. RA treatment is mostly pharmacological and consists in controlling systemic inflammation and disease activity. Despite that, the effect of pharmacological treatment on sarcopenia is not well characterized. OBJECTIVE To summarize the effects of disease-modifying anti-rheumatic drugs (DMARDs) on skeletal muscle tissue in rheumatoid arthritis (RA) patients. METHODS A systematic review of randomized clinical trials and observational studies was conducted using MEDLINE, Embase, Cochrane Library, and Web of Science. We selected studies with rheumatoid arthritis patients treated with disease-modifying anti-rheumatic drugs (DMARDs) that analyzed muscle mass parameters such as lean mass and appendicular lean mass. Methodological quality was assessed using the Newcastle-Ottawa Quality Assessment Scale. Standardized mean difference (SMD) and 95% confidence intervals (CI) were set. A meta-analysis of observational studies was performed using the R software, and we considered significant statistics when p < 0.05. RESULTS Nine studies were included in this systematic review. In the meta-analysis, DMARD treatment had no positive difference (p = 0.60) in lean mass. In the same way, in the appendicular lean mass parameter, our results showed that DMARDs did not have changes between baseline and post-treatment analysis (p = 0.93). CONCLUSION There is no evidence of a significant effect of DMARD therapy, either synthetic or biological, on muscle mass. However, this association should be investigated with more studies.
Collapse
Affiliation(s)
- Thales R Hein
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
| | - Leonardo Peterson
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Barbara J Bartikoski
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Juliana Portes
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Rafaela C Espírito Santo
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Ricardo M Xavier
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| |
Collapse
|
31
|
Beaudry AG, Law ML. Leucine Supplementation in Cancer Cachexia: Mechanisms and a Review of the Pre-Clinical Literature. Nutrients 2022; 14:nu14142824. [PMID: 35889781 PMCID: PMC9323748 DOI: 10.3390/nu14142824] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer cachexia (CC) is a complex syndrome of bodily wasting and progressive functional decline. Unlike starvation, cachexia cannot be reversed by increased energy intake alone. Nonetheless, targeted nutritional support is a necessary component in multimodal syndrome management. Due to the highly catabolic nature of cancer cachexia, amino acid supplementation has been proposed. Interestingly, leucine has been found to increase protein synthesis and decrease protein degradation via mTORC1 pathway activation. Multiple pre-clinical studies have explored the impact of leucine supplementation in cachectic tumor-bearing hosts. Here, we provide an overview of leucine’s proposed modes of action to preserve lean mass in cachexia and review the current pre-clinical literature related to leucine supplementation during CC. Current research indicates that a leucine-rich diet may attenuate CC symptomology; however, these works are difficult to compare due to methodological differences. There is need for further pre-clinical work exploring leucine’s potential ability to modulate protein turnover and immune response during CC, as well as the impact of additive leucine on tumor growth.
Collapse
Affiliation(s)
- Anna G. Beaudry
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA
- Correspondence:
| | - Michelle L. Law
- Department of Human Sciences and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA;
| |
Collapse
|
32
|
Testa MTDJ, Cella PS, Marinello PC, Frajacomo FTT, Padilha CDS, Perandini PC, Moura FA, Duarte JA, Cecchini R, Guarnier FA, Deminice R. Resistance Training Attenuates Activation of STAT3 and Muscle Atrophy in Tumor-Bearing Mice. Front Oncol 2022; 12:880787. [PMID: 35847939 PMCID: PMC9283857 DOI: 10.3389/fonc.2022.880787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Although the role of signal transducers and activators of transcription (STAT3) in cachexia due to the association of circulating IL-6 and muscle wasting has been extensively demonstrated, the effect of resistance training on STAT3 in mediating muscle atrophy in tumor-bearing mice is unknown. The aim of this study is to investigate the effects of resistance exercise training on inflammatory cytokines and oxidative-mediated STAT3 activation and muscle loss prevention in tumor-bearing mice. Methods Male Swiss mice were inoculated with Ehrlich tumor cells and exposed or not exposed to resistance exercise protocol of ladder climbing. Skeletal muscle STAT3 protein content was measured, compared between groups, and tested for possible association with plasma interleukins and local oxidative stress markers. Components of the ubiquitin-proteasome and autophagy pathways were assessed by real-time PCR or immunoblotting. Results Resistance training prevented STAT3 excessive activation in skeletal muscle mediated by the overabundance of plasma IL-6 and muscle oxidative stress. These mechanisms contributed to preventing the increased key genes and proteins of ubiquitin-proteasome and autophagy pathways in tumor-bearing mice, such as Atrogin-1, LC3B-II, and Beclin-1. Beyond preventing muscle atrophy, RT also prevented strength loss and impaired locomotor capacity, hallmarks of sarcopenia. Conclusion Our results suggest that STAT3 inhibition is central in resistance exercise protective effects against cancer-induced muscle atrophy and strength loss.
Collapse
Affiliation(s)
| | - Paola Sanches Cella
- Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Poliana Camila Marinello
- Department of Physical Education, State University of Londrina, Londrina, Brazil
- Department of General Pathology, State University of Londrina, Londrina, Brazil
| | | | - Camila de Souza Padilha
- Department of Physical Education, State University of Londrina, Londrina, Brazil
- Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, Brazil
| | | | - Felipe Arruda Moura
- Department of Physical Education, State University of Londrina, Londrina, Brazil
| | | | - Rubens Cecchini
- Department of General Pathology, State University of Londrina, Londrina, Brazil
| | | | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, Brazil
- *Correspondence: Rafael Deminice, ; orcid.org/0000-0002-9246-1079
| |
Collapse
|
33
|
Pin F, Huot JR, Bonetto A. The Mitochondria-Targeting Agent MitoQ Improves Muscle Atrophy, Weakness and Oxidative Metabolism in C26 Tumor-Bearing Mice. Front Cell Dev Biol 2022; 10:861622. [PMID: 35392166 PMCID: PMC8980422 DOI: 10.3389/fcell.2022.861622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia is a debilitating syndrome characterized by skeletal muscle wasting, weakness and fatigue. Several pathogenetic mechanisms can contribute to these muscle derangements. Mitochondrial alterations, altered metabolism and increased oxidative stress are known to promote muscle weakness and muscle catabolism. To the extent of improving cachexia, several drugs have been tested to stimulate mitochondrial function and normalize the redox balance. The aim of this study was to test the potential beneficial anti-cachectic effects of Mitoquinone Q (MitoQ), one of the most widely-used mitochondria-targeting antioxidant. Here we show that MitoQ administration (25 mg/kg in drinking water, daily) in vivo was able to improve body weight loss in Colon-26 (C26) bearers, without affecting tumor size. Consistently, the C26 hosts displayed ameliorated skeletal muscle and strength upon treatment with MitoQ. In line with improved skeletal muscle mass, the treatment with MitoQ was able to partially correct the expression of the E3 ubiquitin ligases Atrogin-1 and Murf1. Contrarily, the anabolic signaling was not improved by the treatment, as showed by unchanged AKT, mTOR and 4EBP1 phosphorylation. Assessment of gene expression showed altered levels of markers of mitochondrial biogenesis and homeostasis in the tumor hosts, although only Mitofusin-2 levels were significantly affected by the treatment. Interestingly, the levels of Pdk4 and CytB, genes involved in the regulation of mitochondrial function and metabolism, were also partially increased by MitoQ, in line with the modulation of hexokinase (HK), pyruvate dehydrogenase (PDH) and succinate dehydrogenase (SDH) enzymatic activities. The improvement of the oxidative metabolism was associated with reduced myosteatosis (i.e., intramuscular fat infiltration) in the C26 bearers receiving MitoQ, despite unchanged muscle LDL receptor expression, therefore suggesting that MitoQ could boost β-oxidation in the muscle tissue and promote a glycolytic-to-oxidative shift in muscle metabolism and fiber composition. Overall, our data identify MitoQ as an effective treatment to improve skeletal muscle mass and function in tumor hosts and further support studies aimed at testing the anti-cachectic properties of mitochondria-targeting antioxidants also in combination with routinely administered chemotherapy agents.
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Andrea Bonetto,
| |
Collapse
|
34
|
Abstract
Cachexia, a wasting syndrome that is often associated with cancer, is one of the primary causes of death in cancer patients. Cancer cachexia occurs largely due to systemic metabolic alterations stimulated by tumors. Despite the prevalence of cachexia, our understanding of how tumors interact with host tissues and how they affect metabolism is limited. Among the challenges of studying tumor-host tissue crosstalk are the complexity of cancer itself and our insufficient knowledge of the factors that tumors release into the blood. Drosophila is emerging as a powerful model in which to identify tumor-derived factors that influence systemic metabolism and tissue wasting. Strikingly, studies that are characterizing factors derived from different fly tumor cachexia models are identifying both common and distinct cachectic molecules, suggesting that cachexia is more than one disease and that fly models can help identify these differences. Here, we review what has been learned from studies of tumor-induced organ wasting in Drosophila and discuss the open questions.
Collapse
Affiliation(s)
- Ying Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Saavedra
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
35
|
Nutrients against Glucocorticoid-Induced Muscle Atrophy. Foods 2022; 11:foods11050687. [PMID: 35267320 PMCID: PMC8909279 DOI: 10.3390/foods11050687] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022] Open
Abstract
Glucocorticoid excess is a critical factor contributing to muscle atrophy. Both endogenous and exogenous glucocorticoids negatively affect the preservation of muscle mass and function. To date, the most effective intervention to prevent muscle atrophy is to apply a mechanical load in the form of resistance exercise. However, glucocorticoid-induced skeletal muscle atrophy easily causes fatigue in daily physical activities, such as climbing stairs and walking at a brisk pace, and reduces body movements to cause a decreased ability to perform physical activity. Therefore, providing adequate nutrients in these circumstances is a key factor in limiting muscle wasting and improving muscle mass recovery. The present review will provide an up-to-date review of the effects of various nutrients, including amino acids such as branched-chain amino acids (BCAAs) and β–hydroxy β–methylbutyrate (HMB), fatty acids such as omega-3, and vitamins and their derivates on the prevention and improvement of glucocorticoid-induced muscle atrophy.
Collapse
|
36
|
Cai Z, Liu D, Yang Y, Xie W, He M, Yu D, Wu Y, Wang X, Xiao W, Li Y. The role and therapeutic potential of stem cells in skeletal muscle in sarcopenia. Stem Cell Res Ther 2022; 13:28. [PMID: 35073997 PMCID: PMC8785537 DOI: 10.1186/s13287-022-02706-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 01/23/2023] Open
Abstract
Sarcopenia is a common age-related skeletal muscle disorder featuring the loss of muscle mass and function. In regard to tissue repair in the human body, scientists always consider the use of stem cells. In skeletal muscle, satellite cells (SCs) are adult stem cells that maintain tissue homeostasis and repair damaged regions after injury to preserve skeletal muscle integrity. Muscle-derived stem cells (MDSCs) and SCs are the two most commonly studied stem cell populations from skeletal muscle. To date, considerable progress has been achieved in understanding the complex associations between stem cells in muscle and the occurrence and treatment of sarcopenia. In this review, we first give brief introductions to sarcopenia, SCs and MDSCs. Then, we attempt to untangle the differences and connections between these two types of stem cells and further elaborate on the interactions between sarcopenia and stem cells. Finally, our perspectives on the possible application of stem cells for the treatment of sarcopenia in future are presented. Several studies emerging in recent years have shown that changes in the number and function of stem cells can trigger sarcopenia, which in turn leads to adverse influences on stem cells because of the altered internal environment in muscle. A better understanding of the role of stem cells in muscle, especially SCs and MDSCs, in sarcopenia will facilitate the realization of novel therapy approaches based on stem cells to combat sarcopenia.
Collapse
Affiliation(s)
- Zijun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuntao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dengjie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan, 430056, China
| | - Xiuhua Wang
- Xiang Ya Nursing School, Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
37
|
A Blueprint for Cancer-Related Inflammation and Host Innate Immunity. Cells 2021; 10:cells10113211. [PMID: 34831432 PMCID: PMC8623541 DOI: 10.3390/cells10113211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Both in situ and allograft models of cancer in juvenile and adult Drosophila melanogaster fruit flies offer a powerful means for unravelling cancer gene networks and cancer-host interactions. They can also be used as tools for cost-effective drug discovery and repurposing. Moreover, in situ modeling of emerging tumors makes it possible to address cancer initiating events-a black box in cancer research, tackle the innate antitumor immune responses to incipient preneoplastic cells and recurrent growing tumors, and decipher the initiation and evolution of inflammation. These studies in Drosophila melanogaster can serve as a blueprint for studies in more complex organisms and help in the design of mechanism-based therapies for the individualized treatment of cancer diseases in humans. This review focuses on new discoveries in Drosophila related to the diverse innate immune responses to cancer-related inflammation and the systemic effects that are so detrimental to the host.
Collapse
|
38
|
Hain BA, Xu H, VanCleave AM, Gordon BS, Kimball SR, Waning DL. REDD1 deletion attenuates cancer cachexia in mice. J Appl Physiol (1985) 2021; 131:1718-1730. [PMID: 34672766 PMCID: PMC10392697 DOI: 10.1152/japplphysiol.00536.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cancer cachexia is a wasting disorder associated with advanced cancer that contributes to mortality. Cachexia is characterized by involuntary loss of body weight and muscle weakness that affects physical function. Regulated in DNA damage and development 1 (REDD1) is a stress-response protein that is transcriptionally upregulated in muscle during wasting conditions and inhibits mechanistic target of rapamycin complex 1 (mTORC1). C2C12 myotubes treated with Lewis lung carcinoma (LLC)-conditioned media increased REDD1 mRNA expression and decreased myotube diameter. To investigate the role of REDD1 in cancer cachexia, we inoculated 12-week old male wild-type or global REDD1 knockout (REDD1 KO) mice with LLC cells and euthanized 28-days later. Wild-type mice had increased skeletal muscle REDD1 expression, and REDD1 deletion prevented loss of body weight and lean tissue mass, but not fat mass. We found that REDD1 deletion attenuated loss of individual muscle weights and loss of myofiber cross sectional area. We measured markers of the Akt/mTORC1 pathway and found that, unlike wild-type mice, phosphorylation of both Akt and 4E-BP1 was maintained in the muscle of REDD1 KO mice after LLC inoculation, suggesting that loss of REDD1 is beneficial in maintaining mTORC1 activity in mice with cancer cachexia. We measured Foxo3a phosphorylation as a marker of the ubiquitin proteasome pathway and autophagy and found that REDD1 deletion prevented dephosphorylation of Foxo3a in muscles from cachectic mice. Our data provides evidence that REDD1 plays an important role in cancer cachexia through the regulation of both protein synthesis and protein degradation pathways.
Collapse
Affiliation(s)
- Brian A Hain
- The Penn State College of Medicine, Dept. of Cellular and Molecular Physiology, Hershey, PA, United States.,Penn State Cancer Institute, Hershey, PA, United States
| | - Haifang Xu
- The Penn State College of Medicine, Dept. of Cellular and Molecular Physiology, Hershey, PA, United States
| | - Ashley M VanCleave
- The Penn State College of Medicine, Dept. of Cellular and Molecular Physiology, Hershey, PA, United States
| | - Bradley S Gordon
- Florida State University, Dept. of Nutrition and Integrative Physiology, Tallahassee, FL, United States
| | - Scot R Kimball
- The Penn State College of Medicine, Dept. of Cellular and Molecular Physiology, Hershey, PA, United States
| | - David L Waning
- The Penn State College of Medicine, Dept. of Cellular and Molecular Physiology, Hershey, PA, United States.,Penn State Cancer Institute, Hershey, PA, United States
| |
Collapse
|
39
|
Franco-Romero A, Sandri M. Role of autophagy in muscle disease. Mol Aspects Med 2021; 82:101041. [PMID: 34625292 DOI: 10.1016/j.mam.2021.101041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
Beside inherited muscle diseases many catabolic conditions such as insulin resistance, malnutrition, cancer growth, aging, infections, chronic inflammatory status, inactivity, obesity are characterized by loss of muscle mass, strength and function. The decrease of muscle quality and quantity increases morbidity, mortality and has a major impact on the quality of life. One of the pathogenetic mechanisms of muscle wasting is the dysregulation of the main protein and organelles quality control system of the cell: the autophagy-lysosome. This review will focus on the role of the autophagy-lysosome system in the different conditions of muscle loss. We will also dissect the signalling pathways that are involved in excessive or defective autophagy regulation. Finally, the state of the art of autophagy modulators that have been used in preclinical or clinical studies to ameliorate muscle mass will be also described.
Collapse
Affiliation(s)
- Anais Franco-Romero
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy; Myology Center, University of Padova, via G. Colombo 3, 35100, Padova, Italy; Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
40
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
41
|
Liu H, Zang P, Lee I(I, Anderson B, Christiani A, Strait‐Bodey L, Breckheimer BA, Storie M, Tewnion A, Krumm K, Li T, Irwin B, Garcia JM. Growth hormone secretagogue receptor-1a mediates ghrelin's effects on attenuating tumour-induced loss of muscle strength but not muscle mass. J Cachexia Sarcopenia Muscle 2021; 12:1280-1295. [PMID: 34264027 PMCID: PMC8517358 DOI: 10.1002/jcsm.12743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ghrelin may ameliorate cancer cachexia (CC) by preventing anorexia, muscle, and fat loss. However, the mechanisms mediating these effects are not fully understood. This study characterizes the pathways involved in muscle mass and strength loss in the Lewis lung carcinoma (LLC)-induced cachexia model, and the effects of ghrelin in mice with or without its only known receptor: the growth hormone secretagogue receptor-1a ((GHSR-1a), Ghsr+/+ and Ghsr-/- ). METHODS Five to 7-month-old male C57BL/6J Ghsr+/+ and Ghsr-/- mice were inoculated with 1 × 106 heat-killed (HK) or live LLC cells (tumour implantation, TI). When tumours were palpable (7 days after TI), tumour-bearing mice were injected with vehicle (T + V) or ghrelin twice/day for 14 days (T + G, 0.8 mg/kg), while HK-treated mice were given vehicle (HK + V). Body weight and grip strength were evaluated before TI and at termination (21 days after TI). Hindlimb muscles were collected for analysis. RESULTS Less pronounced body weight (BW) loss (87.70 ± 0.98% vs. 83.92 ± 1.23%, percentage of baseline BW in tumour-bearing Ghsr+/+ vs. Ghsr-/- , P = 0.008), and lower upregulation of ubiquitin-proteasome system (UPS, MuRF1/Trim63, 5.71 ± 1.53-fold vs. 9.22 ± 1.94-fold-change from Ghsr+/+ HK + V in tumour-bearing Ghsr+/+ vs. Ghsr-/- , P = 0.036) and autophagy markers (Becn1, Atg5, Atg7, tumour-bearing Ghsr+/+ < Ghsr-/- , all P < 0.02) were found in T + V Ghsr+/+ vs. Ghsr-/- mice. Ghrelin attenuated LLC-induced UPS marker upregulation in both genotypes, [Trim63 was decreased from 5.71 ± 1.53-fold to 1.96 ± 0.47-fold in Ghsr+/+ (T + V vs. T + G: P = 0.032) and 9.22 ± 1.94-fold to 4.72 ± 1.06-fold in Ghsr-/- (T + V vs. T + G: P = 0.008)]. Only in Ghsr+/+ mice ghrelin ameliorated LLC-induced grip strength loss [improved from 89.24 ± 3.48% to 97.80 ± 2.31% of baseline (T + V vs. T + G: P = 0.042)], mitophagy markers [Bnip3 was decreased from 2.28 ± 0.56 to 1.38 ± 0.14-fold (T + V vs. T + G: P ≤ 0.05)], and impaired mitochondrial respiration [State 3u improved from 698.23 ± 73.96 to 934.37 ± 95.21 pmol/min (T + V vs. T + G: P ≤ 0.05)], whereas these markers were not improved by ghrelin Ghsr-/- . Compared with Ghsr+/+ , Ghsr-/- tumour-bearing mice also showed decreased response to ghrelin in BW [T + G-treated Ghsr+/+ vs. Ghsr -/- : 91.75 ± 1.05% vs. 86.18 ± 1.13% of baseline BW, P < 0.001)], gastrocnemius (T + G-treated Ghsr+/+ vs. Ghsr-/- : 96.9 ± 2.08% vs. 88.15 ± 1.78% of Ghsr+/+ HK + V, P < 0.001) and quadriceps muscle mass (T + G-treated Ghsr+/+ vs. Ghsr-/- : 96.12 ± 2.31% vs. 88.36 ± 1.94% of Ghsr+/+ HK + V, P = 0.01), and gastrocnemius type IIA (T + G-treated Ghsr+/+ vs. Ghsr-/- : 1250.49 ± 31.72 vs. 1017.62 ± 70.99 μm2 , P = 0.027) and IIB fibre cross-sectional area (T + G-treated Ghsr+/+ vs. Ghsr-/- : 2496.48 ± 116.88 vs. 2183.04 ± 103.43 μm2 , P = 0.024). CONCLUSIONS Growth hormone secretagogue receptor-1a mediates ghrelin's effects on attenuating LLC-induced weakness but not muscle mass loss by modulating the autophagy-lysosome pathway, mitophagy, and mitochondrial respiration.
Collapse
Affiliation(s)
- Haiming Liu
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| | - Pu Zang
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
- Department of EndocrinologyNanjing Jinling HospitalNanjingChina
| | - Ian (In‐gi) Lee
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| | - Barbara Anderson
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| | - Anthony Christiani
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| | - Lena Strait‐Bodey
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| | - Beatrice A. Breckheimer
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| | - Mackenzie Storie
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| | - Alison Tewnion
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| | - Kora Krumm
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| | - Theresa Li
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| | - Brynn Irwin
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| | - Jose M. Garcia
- Geriatric Research, Education and Clinical CenterVeterans Affairs Puget Sound Health Care SystemSeattleWAUSA
- Gerontology and Geriatric MedicineUniversity of Washington Department of MedicineSeattleWAUSA
| |
Collapse
|
42
|
Baba MR, Buch SA. Revisiting Cancer Cachexia: Pathogenesis, Diagnosis, and Current Treatment Approaches. Asia Pac J Oncol Nurs 2021; 8:508-518. [PMID: 34527780 PMCID: PMC8420916 DOI: 10.4103/apjon.apjon-2126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
The objective of this article is to group together various management strategies and to highlight the recent treatment modifications that attempt to target the multimodal etiological factors involved in cancer cachexia. The contemporary role of nursing fraternity in psychosocial and nutritional assessment of cancer patients is briefly discussed. Cachexia is a syndrome of metabolic disturbance, characterized by the inflammation and loss of muscle with or without loss of adipose tissue. In cancer cachexia, a multifaceted condition, patients suffer from loss of body weight that leads to a negative impact on the quality of life and survival of the patients. The main cancers associated with cachexia are that of pancreas, stomach, lung, esophagus, liver, and that of bowel. The changes include increased proteolysis, lipolysis, insulin resistance, high energy expenditure, and reduced intake of food, all leading to impaired response to different treatments. There is no standardized treatment for cancer cachexia that can stabilize or reverse this complex metabolic disorder at present. The mainstay of cancer cachexia therapy remains to be sufficient nutritional supplements with on-going efforts to explore the drugs that target heightened catabolic processes and complex inflammation. There is a need to develop a multimodal treatment approach combining pharmacology, exercise program, and nutritional support to target anorexia and the severe metabolic changes encountered in cancer cachexia.
Collapse
Affiliation(s)
- Mudasir Rashid Baba
- Department of Paediatric Rehabilitation, Yenepoya Physiotherapy College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sajad Ahmad Buch
- Department of Oral Medicine and Radiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
43
|
Sudhir G, Jayabalan V, Sellayee S, Gadde S, Kailash K. Is there an interdependence between paraspinal muscle mass and lumbar disc degeneration? A MRI based study at 2520 levels in 504 patients. J Clin Orthop Trauma 2021; 22:101576. [PMID: 34532219 PMCID: PMC8429962 DOI: 10.1016/j.jcot.2021.101576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Low back pain is one of the most common cause for outpatient visits. Though few studies have shown the vital role of paraspinal muscles in lumbar spine pathology, literature is scarce regarding the influence of the paraspinal muscles in disc degeneration. We aimed to analyse the correlation between paraspinal muscles and disc degeneration. METHODS This is a Level III Prospective Cohort Study done in MRI of lumbosacral spine in 504 patients at 2520 levels from L1-2 to L5-S1. The parameters assessed were age, Pfirrmann grade for disc degeneration and paraspinal muscle (Multifidus and Erector Spinae) mass assessed by the gross cross sectional area of the muscle.The values and their correlation was analyzed using SPSS software. RESULTS The study included a total of 504 patients (231 males and 273 females) with a mean age of 52.00 ± 15.00 (22-80) years. The mean GCSA in cm2 of the paraspinal muscles at L1-L2, L2-L3,L3-L4,L4-L5,L5-S1 were 16.177 ± 2.72, 17.275 ± 2.16, 16.900 ± 3.07, 16.800 ± 2.63, 13.426 ± 2.42 respectively. We found that the age of the patient is directly proportional to the disc degeneration and inversely proportional to GCSA of paraspinal muscle. There was a significant negative correlation between disc degeneration and paraspinal muscle mass. CONCLUSION We found that the paraspinal muscle mass reduces and Pfirrman's Grade increases as age advances. Also patients with disc degeneration tend to have wasting of paraspinal muscles and vice versa. Hence, strengthening the paraspinal muscles should be emphasised to prevent back pain and to stall the degeneration cascade.
Collapse
Affiliation(s)
| | - Vignesh Jayabalan
- Corresponding author. Department of Spine Surgery, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
44
|
Mestre R, García N, Patiño T, Guix M, Fuentes J, Valerio-Santiago M, Almiñana N, Sánchez S. 3D-bioengineered model of human skeletal muscle tissue with phenotypic features of aging for drug testing purposes. Biofabrication 2021; 13. [PMID: 34284359 DOI: 10.1088/1758-5090/ac165b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/20/2021] [Indexed: 01/20/2023]
Abstract
Three-dimensional engineering of skeletal muscle is becoming increasingly relevant for tissue engineering, disease modeling and bio-hybrid robotics, where flexible, versatile and multidisciplinary approaches for the evaluation of tissue differentiation, functionality and force measurement are required. This works presents a 3D-printed platform of bioengineered human skeletal muscle which can efficiently model the three-dimensional structure of native tissue, while providing information about force generation and contraction profiles. Proper differentiation and maturation of myocytes is demonstrated by the expression of key myo-proteins using immunocytochemistry and analyzed by confocal microscopy, and the functionality assessed via electrical stimulation and analysis of contraction kinetics. To validate the flexibility of this platform for complex tissue modeling, the bioengineered muscle is treated with tumor necrosis factorαto mimic the conditions of aging, which is supported by morphological and functional changes. Moreover, as a proof of concept, the effects of Argireline® Amplified peptide, a cosmetic ingredient that causes muscle relaxation, are evaluated in both healthy and aged tissue models. Therefore, the results demonstrate that this 3D-bioengineered human muscle platform could be used to assess morphological and functional changes in the aging process of muscular tissue with potential applications in biomedicine, cosmetics and bio-hybrid robotics.
Collapse
Affiliation(s)
- Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Nerea García
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain.,Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Guix
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Judith Fuentes
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Mauricio Valerio-Santiago
- Lubrizol Life Science Beauty. LipotecTM Active Ingredients, Isaac Peral 17 (Pol. Industrial Camí Ral), 08850 Gavà, Barcelona, Spain
| | - Núria Almiñana
- Lubrizol Life Science Beauty. LipotecTM Active Ingredients, Isaac Peral 17 (Pol. Industrial Camí Ral), 08850 Gavà, Barcelona, Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
45
|
Sartori R, Hagg A, Zampieri S, Armani A, Winbanks CE, Viana LR, Haidar M, Watt KI, Qian H, Pezzini C, Zanganeh P, Turner BJ, Larsson A, Zanchettin G, Pierobon ES, Moletta L, Valmasoni M, Ponzoni A, Attar S, Da Dalt G, Sperti C, Kustermann M, Thomson RE, Larsson L, Loveland KL, Costelli P, Megighian A, Merigliano S, Penna F, Gregorevic P, Sandri M. Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Sci Transl Med 2021; 13:eaay9592. [PMID: 34349036 DOI: 10.1126/scitranslmed.aay9592] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/18/2021] [Indexed: 02/05/2023]
Abstract
Most patients with advanced solid cancers exhibit features of cachexia, a debilitating syndrome characterized by progressive loss of skeletal muscle mass and strength. Because the underlying mechanisms of this multifactorial syndrome are incompletely defined, effective therapeutics have yet to be developed. Here, we show that diminished bone morphogenetic protein (BMP) signaling is observed early in the onset of skeletal muscle wasting associated with cancer cachexia in mouse models and in patients with cancer. Cancer-mediated factors including Activin A and IL-6 trigger the expression of the BMP inhibitor Noggin in muscle, which blocks the actions of BMPs on muscle fibers and motor nerves, subsequently causing disruption of the neuromuscular junction (NMJ), denervation, and muscle wasting. Increasing BMP signaling in the muscles of tumor-bearing mice by gene delivery or pharmacological means can prevent muscle wasting and preserve measures of NMJ function. The data identify perturbed BMP signaling and denervation of muscle fibers as important pathogenic mechanisms of muscle wasting associated with tumor growth. Collectively, these findings present interventions that promote BMP-mediated signaling as an attractive strategy to counteract the loss of functional musculature in patients with cancer.
Collapse
Affiliation(s)
- Roberta Sartori
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Adam Hagg
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
- Myology Center, University of Padova, 35122 Padua, Italy
| | - Andrea Armani
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Laís R Viana
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Structural and Functional Biology, Biology Institute, University of Campinas, Campinas, São Paulo 13083-97, Brazil
| | - Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Kevin I Watt
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hongwei Qian
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Camilla Pezzini
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Pardis Zanganeh
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Anna Larsson
- Theme Cancer, Karolinska University Hospital, Solna 171 76, Sweden
| | - Gianpietro Zanchettin
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Elisa S Pierobon
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Lucia Moletta
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Michele Valmasoni
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Alberto Ponzoni
- Department of Radiology, Padova General Hospital, 35121 Padova, Italy
| | - Shady Attar
- Department of Medicine, University Hospital of Padova, 35121 Padova, Italy
| | - Gianfranco Da Dalt
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Monika Kustermann
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rachel E Thomson
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kate L Loveland
- Centre for Reproductive Health. Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, and Anatomy and Developmental Biology, Monash University, VIC 3800, Australia
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Stefano Merigliano
- Department of Surgery, Oncology and Gastroenterology, 3rd Surgical Clinic, University of Padova, 35128 Padua, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Paul Gregorevic
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
- Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy.
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Myology Center, University of Padova, 35122 Padua, Italy
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
46
|
The Role of Autophagy Modulated by Exercise in Cancer Cachexia. Life (Basel) 2021; 11:life11080781. [PMID: 34440525 PMCID: PMC8402221 DOI: 10.3390/life11080781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia is a syndrome experienced by many patients with cancer. Exercise can act as an autophagy modulator, and thus holds the potential to be used to treat cancer cachexia. Autophagy imbalance plays an important role in cancer cachexia, and is correlated to skeletal and cardiac muscle atrophy and energy-wasting in the liver. The molecular mechanism of autophagy modulation in different types of exercise has not yet been clearly defined. This review aims to elaborate on the role of exercise in modulating autophagy in cancer cachexia. We evaluated nine studies in the literature and found a potential correlation between the type of exercise and autophagy modulation. Combined exercise or aerobic exercise alone seems more beneficial than resistance exercise alone in cancer cachexia. Looking ahead, determining the physiological role of autophagy modulated by exercise will support the development of a new medical approach for treating cancer cachexia. In addition, the harmonization of the exercise type, intensity, and duration might play a key role in optimizing the autophagy levels to preserve muscle function and regulate energy utilization in the liver.
Collapse
|
47
|
Halle JL, Counts-Franch BR, Prince RM, Carson JA. The Effect of Mechanical Stretch on Myotube Growth Suppression by Colon-26 Tumor-Derived Factors. Front Cell Dev Biol 2021; 9:690452. [PMID: 34395422 PMCID: PMC8363303 DOI: 10.3389/fcell.2021.690452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Preclinical models and in vitro experiments have provided valuable insight into the regulation of cancer-induced muscle wasting. Colon-26 (C26) tumor cells induce cachexia in mice, and conditioned media (CM) from these cells promotes myotube atrophy and catabolic signaling. While mechanical stimuli can prevent some effects of tumor-derived factors on myotubes, the impact of mechanical signaling on tumor-derived factor regulation of myosin heavy chain (MyHC) expression is not well understood. Therefore, we examined the effects of stretch-induced mechanical signaling on C2C12 myotube growth and MyHC expression after C26 CM exposure. C26 CM was administered to myotubes on day 5 of differentiation for 48 h. During the last 4 or 24 h of C26 CM exposure, 5% static uniaxial stretch was administered. C26 CM suppressed myotube growth and MyHC protein and mRNA expression. Stretch for 24 h increased myotube size and prevented the C26 CM suppression of MyHC-Fast protein expression. Stretch did not change suppressed MyHC mRNA expression. Stretch for 24 h reduced Atrogin-1/MAFbx, MuRF-1, and LC3B II/I ratio and increased integrin β1D protein expression and the myogenin-to-MyoD protein ratio. Stretch in the last 4 h of CM increased ERK1/2 phosphorylation but did not alter the CM induction of STAT3 or p38 phosphorylation. These results provide evidence that in myotubes pre-incubated with CM, the induction of mechanical signaling can still provide a growth stimulus and preserve MyHC-Fast protein expression independent of changes in mRNA expression.
Collapse
Affiliation(s)
| | | | | | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
48
|
Khezri R, Holland P, Schoborg TA, Abramovich I, Takáts S, Dillard C, Jain A, O'Farrell F, Schultz SW, Hagopian WM, Quintana EM, Ng R, Katheder NS, Rahman MM, Teles Reis JG, Brech A, Jasper H, Rusan NM, Jahren AH, Gottlieb E, Rusten TE. Host autophagy mediates organ wasting and nutrient mobilization for tumor growth. EMBO J 2021; 40:e107336. [PMID: 34309071 PMCID: PMC8441431 DOI: 10.15252/embj.2020107336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022] Open
Abstract
During tumor growth—when nutrient and anabolic demands are high—autophagy supports tumor metabolism and growth through lysosomal organelle turnover and nutrient recycling. Ras‐driven tumors additionally invoke non‐autonomous autophagy in the microenvironment to support tumor growth, in part through transfer of amino acids. Here we uncover a third critical role of autophagy in mediating systemic organ wasting and nutrient mobilization for tumor growth using a well‐characterized malignant tumor model in Drosophila melanogaster. Micro‐computed X‐ray tomography and metabolic profiling reveal that RasV12; scrib−/− tumors grow 10‐fold in volume, while systemic organ wasting unfolds with progressive muscle atrophy, loss of body mass, ‐motility, ‐feeding, and eventually death. Tissue wasting is found to be mediated by autophagy and results in host mobilization of amino acids and sugars into circulation. Natural abundance Carbon 13 tracing demonstrates that tumor biomass is increasingly derived from host tissues as a nutrient source as wasting progresses. We conclude that host autophagy mediates organ wasting and nutrient mobilization that is utilized for tumor growth.
Collapse
Affiliation(s)
- Rojyar Khezri
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Petter Holland
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Todd Andrew Schoborg
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ifat Abramovich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Bat Galim, Haifa, Israel
| | - Szabolcs Takáts
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Caroline Dillard
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ashish Jain
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fergal O'Farrell
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sebastian Wolfgang Schultz
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - William M Hagopian
- Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | - Eduardo Martin Quintana
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Rachel Ng
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nadja Sandra Katheder
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Immunology Discovery, Genentech, Inc., South San Francisco, CA, USA
| | - Mohammed Mahidur Rahman
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - José Gerardo Teles Reis
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Heinrich Jasper
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anne Hope Jahren
- Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Bat Galim, Haifa, Israel
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
49
|
Fix DK, Counts BR, Smuder AJ, Sarzynski MA, Koh H, Carson JA. Wheel running improves fasting-induced AMPK signaling in skeletal muscle from tumor-bearing mice. Physiol Rep 2021; 9:e14924. [PMID: 34270178 PMCID: PMC8284248 DOI: 10.14814/phy2.14924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Disruptions to muscle protein turnover and metabolic regulation contribute to muscle wasting during the progression of cancer cachexia. The initiation of cachexia is also associated with decreased physical activity. While chronic muscle AMPK activation occurs during cachexia progression in ApcMin/+ (MIN) mice, a preclinical cachexia model, the understanding of muscle AMPK's role during cachexia initiation is incomplete. Therefore, we examined if voluntary wheel exercise could improve skeletal muscle AMPK signaling in pre-cachectic MIN mice. Next, we examined muscle AMPK's role in aberrant catabolic signaling in response to a 12-h fast in mice initiating cachexia. Male C57BL/6 (B6: N = 26) and MIN (N = 29) mice were subjected to ad libitum feeding, 12-h fast, or 4 wks. of wheel access and then a 12-h fast during the initiation of cachexia. Male tamoxifen-inducible skeletal muscle AMPKα1 α2 (KO) knockout mice crossed with ApcMin/+ and floxed controls were examined (WT: N = 8, KO: N = 8, MIN: N = 10, MIN KO: N = 6). Male mice underwent a 12-h fast and the gastrocnemius muscle was analyzed. MIN gastrocnemius mass was reduced compared to B6 mice. A 12-h fast induced MIN muscle AMPKT172 , FOXOS413 , and ULK-1S555 phosphorylation compared to B6. Wheel running attenuated these inductions. A 12-h fast induced MIN muscle MuRF-1 protein expression compared to B6 and was suppressed by wheel running. Additionally, fasting induced muscle autophagy signaling and disrupted mitochondrial quality protein expression in the MIN, which was prevented in the MIN KO. We provide evidence that increased skeletal muscle AMPK sensitivity to a 12-h fast is an adverse event in pre-cachectic MIN mice, and exercise can improve this regulation.
Collapse
Affiliation(s)
- Dennis K. Fix
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| | - Brittany R. Counts
- Integrative Muscle Biology LaboratoryDivision of Rehabilitation SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
| | - Ashley J. Smuder
- Department of Applied Physiology & KinesiologyCollege of Health & Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Mark A. Sarzynski
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| | - Ho‐Jin Koh
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| | - James A. Carson
- Integrative Muscle Biology LaboratoryDivision of Rehabilitation SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
50
|
Lee J, Ng KGL, Dombek KM, Eom DS, Kwon YV. Tumors overcome the action of the wasting factor ImpL2 by locally elevating Wnt/Wingless. Proc Natl Acad Sci U S A 2021; 118:e2020120118. [PMID: 34078667 PMCID: PMC8201939 DOI: 10.1073/pnas.2020120118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tumors often secrete wasting factors associated with atrophy and the degeneration of host tissues. If tumors were to be affected by the wasting factors, mechanisms allowing tumors to evade the adverse effects of the wasting factors must exist, and impairing such mechanisms may attenuate tumors. We use Drosophila midgut tumor models to show that tumors up-regulate Wingless (Wg) to oppose the growth-impeding effects caused by the wasting factor, ImpL2 (insulin-like growth factor binding protein [IGFBP]-related protein). Growth of Yorkie (Yki)-induced tumors is dependent on Wg while either elimination of ImpL2 or elevation of insulin/insulin-like growth factor signaling in tumors revokes this dependency. Notably, Wg augmentation could be a general mechanism for supporting the growth of tumors with elevated ImpL2 and exploited to attenuate muscle degeneration during wasting. Our study elucidates the mechanism by which tumors negate the action of ImpL2 to uphold their growth during cachexia-like wasting and implies that targeting the Wnt/Wg pathway might be an efficient treatment strategy for cancers with elevated IGFBPs.
Collapse
Affiliation(s)
- Jiae Lee
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195
| | - Katelyn G-L Ng
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195
| | - Kenneth M Dombek
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195
| | - Dae Seok Eom
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697
| | - Young V Kwon
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195;
| |
Collapse
|