1
|
Soni N, Kaur P, Gurjar V, Bhargava A, Tiwari R, Chouksey A, Srivastava RK, Mishra PK. Unveiling the Interconnected Dynamics of Mitochondrial Dysfunction Associated With Age-Related Cardiovascular Risk: A Cross-Sectional Pilot Study. Cureus 2025; 17:e82961. [PMID: 40416162 PMCID: PMC12103716 DOI: 10.7759/cureus.82961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/27/2025] Open
Abstract
Aging, influenced by complex epigenetic mechanisms, significantly contributes to the progression of cardiovascular diseases (CVDs). This cross-sectional pilot study investigated mitochondrial-associated epigenetic stress responses in two age groups: Group I (18-38, n = 154), representing younger adults generally at lower risk for CVD, and Group II (39-65, n = 105), representing middle-aged and older adults with increased biological susceptibility. The age grouping was based on established physiological and cardiovascular risk transitions typically observed around age 40. To assess age-related molecular variations, we examined key mitochondrial and metabolic parameters, including mitochondrial DNA (mtDNA) damage repair capacity, mtDNA copy number (mtDNAcn), methylation status, mitochondrial dynamics (fusion/fission), telomere length, expression of respiratory complex genes, levels of pro-inflammatory cytokines, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentrations. Our results indicated that the older group exhibited higher mtDNA methylation (r² = 0.5205, p < 0.0001), increased mtDNAcn, and elevated NT-proBNP levels, which also showed a weak positive correlation with mtDNA methylation (r² = 0.3218, p < 0.0001). Additionally, a strong negative correlation was observed between telomerase reverse transcriptase (TERT) expression and age (r² = 0.6070, p < 0.0001), suggesting a decline in telomeric maintenance with advancing age. Group II also showed altered inflammatory and telomeric profiles and a notable reduction in the expression of mitochondrial respiratory complex genes (ND6, COXI, ATPase 6 and 8), alongside increased expression of genes involved in mitochondrial stress response pathways. We employed four machine learning models - Logistic Regression, Decision Tree, Random Forest, and Support Vector Machine (SVM) - for CVD risk prediction, using selected mitochondrial and metabolic features. All models demonstrated high classification accuracy, ranging from 0.920 to 1.0, with the Random Forest model achieving the highest accuracy of 0.984. These preliminary findings highlight distinct age-related molecular signatures and illustrate the potential of combining biomarkers with machine-learning approaches to improve cardiovascular risk prediction and therapeutic targeting in aging populations.
Collapse
Affiliation(s)
- Nikita Soni
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Prasan Kaur
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Vikas Gurjar
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Arpit Bhargava
- Faculty of Science, Ram Krishna Dharmarth Foundation (RKDF) University, Bhopal, IND
| | - Rajnarayan Tiwari
- Epidemiology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Apoorva Chouksey
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| | - Rupesh K Srivastava
- Biotechnology, All India Institute of Medical Sciences, New Delhi, New Delhi, IND
| | - Pradyumna K Mishra
- Environmental Biotechnology, Genetics, and Molecular Biology, Indian Council of Medical Research (ICMR) - National Institute for Research in Environmental Health, Bhopal, IND
| |
Collapse
|
2
|
Baile MG, Jones J, Sahr N, Shankar G. Nomlabofusp, a Fusion Protein of Human Frataxin and a Cell Penetrant Peptide, Delivers Mature and Functional Frataxin into Mitochondria. AAPS J 2025; 27:68. [PMID: 40140196 DOI: 10.1208/s12248-025-01054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Friedreich's ataxia is a rare, progressive, genetic disorder, the root cause of which is a significant deficiency in the mitochondrial protein frataxin. Frataxin is ubiquitously expressed, but its deficiency results in a variety of debilitating symptoms, with disease severity, rate of progression and age of onset inversely correlating with tissue frataxin levels. Nomlabofusp is a novel cell penetrant peptide based recombinant fusion protein designed to enter cells and deliver human FXN into the mitochondria. Using immunofluorescence staining and western blot we show that frataxin delivered by nomlabofusp is detected in the mitochondria of H9c2 and SH-SY5Y cells. Also in these cells, and in C2C12 and HEK293 cells, we demonstrate the presence of mature frataxin after nomlabofusp exposure. Finally, using buccal swab tissue samples taken from study subjects in a Phase 1 clinical trial who received nomlabofusp, we show increases in mature frataxin levels along with marked changes in gene expression post-administration suggesting intracellular pharmacodynamic activity. Together, these results demonstrate that nomlabofusp enters the cell and localizes to the mitochondria, releasing mature frataxin that appears to be biologically active and support the use of nomlabofusp as a potential treatment for patients with Friedreich's ataxia.
Collapse
Affiliation(s)
- Matthew G Baile
- Discovery Laboratory, Larimar Therapeutics Inc., King of Prussia, PA, USA
| | - John Jones
- Discovery Laboratory, Larimar Therapeutics Inc., King of Prussia, PA, USA
| | - Natasha Sahr
- Statistics & Quantitative Sciences, Larimar Therapeutics Inc., Bala Cynwyd, PA, USA
| | - Gopi Shankar
- Corporate Office, Larimar Therapeutics Inc., 3 Bala Plaza, Suite 506, Bala Cynwyd, PA, 19004, USA.
| |
Collapse
|
3
|
Figueroa F, Salinas L, Thai PN, Montgomery CB, Chiamvimonvat N, Cortopassi G, Dedkova EN. Poincaré plot analysis of electrocardiogram uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich's ataxia. Heart Rhythm 2025:S1547-5271(25)00001-3. [PMID: 39788175 DOI: 10.1016/j.hrthm.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Friedreich's ataxia (FA) is a rare inherited neuromuscular disorder whereby most patients die of lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in patients with FA are poorly understood. OBJECTIVE This study aimed to examine cardiac electrical signal propagation in a mouse model of FA with severe cardiomyopathy and to evaluate effects of omaveloxolone (OMAV), the first Food and Drug Administration-approved therapy. METHODS Cardiac-specific MCK-Cre frataxin knockout (FXN-cKO) mice were used to mimic FA cardiomyopathy. In vivo surface electrocardiogram (ECG) recordings, Western blotting, quantitative real-time polymerase chain reaction analysis, and histochemistry were performed. RESULTS Characteristics like long QT syndrome, interatrial block, and ST-segment abnormalities in patients with FA were identified in FXN-cKO mice. FXN-cKO mice exhibited sexual dimorphism in electrical signal propagation and cardiac structural integrity. Untreated FA males showed increased ventricular propagation intervals, whereas females exhibited delayed atrial propagation. OMAV showed no significant therapeutic effect on average ECG time intervals but improved chamber-specific waveforms when aggregated frequency distributions were analyzed. The J wave was absent in FXN-cKO male mice but reappeared with OMAV treatment. Poincaré plots revealed disparate idiopathic arrhythmias with multi-clustering events in individual mice with high incidence in FXN-cKO males. OMAV treatment reduced multi-clustering events to a single cluster; however, autonomic nervous system dysfunction still remained. CONCLUSION Our study revealed significant electrical propagation disturbances and sexual dimorphism in FXN-cKO mice with severe cardiomyopathy. Poincaré plots identified irregularities in heart rhythm and autonomic nervous system dysfunction. OMAV improved heart function by stabilizing early repolarization and reducing disparate arrhythmias. This work stresses sex-specific ECG interpretations and alternative mathematical approaches for drug testing in FA models.
Collapse
Affiliation(s)
- Francisco Figueroa
- Department of Molecular Biosciences, University of California, Davis, California
| | - Lili Salinas
- Department of Molecular Biosciences, University of California, Davis, California
| | - Phung N Thai
- Department of Internal Medicine, Cardiovascular Medicine, University of California, Davis, California
| | - Claire B Montgomery
- Department of Molecular Biosciences, University of California, Davis, California
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Cardiovascular Medicine, University of California, Davis, California; Department of Veterans Affairs, Northern California Health Care System, Mather, California
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, California
| | - Elena N Dedkova
- Department of Molecular Biosciences, University of California, Davis, California; Department of Basic Sciences, California Northstate University, Elk Grove, California.
| |
Collapse
|
4
|
Dong YN, Mercado-Ayón E, Coulman J, Flatley L, Ngaba LV, Adeshina MW, Lynch DR. The Regulation of the Disease-Causing Gene FXN. Cells 2024; 13:1040. [PMID: 38920668 PMCID: PMC11202134 DOI: 10.3390/cells13121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.
Collapse
Affiliation(s)
- Yi Na Dong
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jennifer Coulman
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Liam Flatley
- The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Vanessa Ngaba
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miniat W. Adeshina
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Dong YN, Ngaba LV, An J, Adeshina MW, Warren N, Wong J, Lynch DR. A peptide derived from TID1S rescues frataxin deficiency and mitochondrial defects in FRDA cellular models. Front Pharmacol 2024; 15:1352311. [PMID: 38495102 PMCID: PMC10940384 DOI: 10.3389/fphar.2024.1352311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Friedreich's ataxia (FRDA), the most common recessive inherited ataxia, results from homozygous guanine-adenine-adenine (GAA) repeat expansions in intron 1 of the FXN gene, which leads to the deficiency of frataxin, a mitochondrial protein essential for iron-sulphur cluster synthesis. The study of frataxin protein regulation might yield new approaches for FRDA treatment. Here, we report tumorous imaginal disc 1 (TID1), a mitochondrial J-protein cochaperone, as a binding partner of frataxin that negatively controls frataxin protein levels. TID1 interacts with frataxin both in vivo in mouse cortex and in vitro in cortical neurons. Acute and subacute depletion of frataxin using RNA interference markedly increases TID1 protein levels in multiple cell types. In addition, TID1 overexpression significantly increases frataxin precursor but decreases intermediate and mature frataxin levels in HEK293 cells. In primary cultured human skin fibroblasts, overexpression of TID1S results in decreased levels of mature frataxin and increased fragmentation of mitochondria. This effect is mediated by the last 6 amino acids of TID1S as a peptide made from this sequence rescues frataxin deficiency and mitochondrial defects in FRDA patient-derived cells. Our findings show that TID1 negatively modulates frataxin levels, and thereby suggests a novel therapeutic target for treating FRDA.
Collapse
Affiliation(s)
- Yi Na Dong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lucie Vanessa Ngaba
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jacob An
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Miniat W. Adeshina
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nathan Warren
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Johnathan Wong
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - David R. Lynch
- Department of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Sayles NM, Napierala JS, Anrather J, Diedhiou N, Li J, Napierala M, Puccio H, Manfredi G. Comparative multi-omic analyses of cardiac mitochondrial stress in three mouse models of frataxin deficiency. Dis Model Mech 2023; 16:dmm050114. [PMID: 37691621 PMCID: PMC10581388 DOI: 10.1242/dmm.050114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Cardiomyopathy is often fatal in Friedreich ataxia (FA). However, FA hearts maintain adequate function until advanced disease stages, suggesting initial adaptation to the loss of frataxin (FXN). Conditional cardiac knockout mouse models of FXN show transcriptional and metabolic profiles of the mitochondrial integrated stress response (ISRmt), which could play an adaptive role. However, the ISRmt has not been investigated in models with disease-relevant, partial decrease in FXN. We characterized the heart transcriptomes and metabolomes of three mouse models with varying degrees of FXN depletion: YG8-800, KIKO-700 and FXNG127V. Few metabolites were changed in YG8-800 mice, which did not provide a signature of cardiomyopathy or ISRmt; several metabolites were altered in FXNG127V and KIKO-700 hearts. Transcriptional changes were found in all models, but differentially expressed genes consistent with cardiomyopathy and ISRmt were only identified in FXNG127V hearts. However, these changes were surprisingly mild even at advanced age (18 months), despite a severe decrease in FXN levels to 1% of those of wild type. These findings indicate that the mouse heart has low reliance on FXN, highlighting the difficulty in modeling genetically relevant FA cardiomyopathy.
Collapse
Affiliation(s)
- Nicole M. Sayles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
- Neuroscience Graduate Program, Will Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY 10065, USA
| | - Jill S. Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Nadège Diedhiou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/Université de Strasbourg UMR7104, Inserm U1258, B. P. 163, 67404 Illkirch, France
| | - Jixue Li
- Department of Neurology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/Université de Strasbourg UMR7104, Inserm U1258, B. P. 163, 67404 Illkirch, France
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| |
Collapse
|
7
|
Walter S, Mertens C, Muckenthaler MU, Ott C. Cardiac iron metabolism during aging - Role of inflammation and proteolysis. Mech Ageing Dev 2023; 215:111869. [PMID: 37678569 DOI: 10.1016/j.mad.2023.111869] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Iron is the most abundant trace element in the human body. Since iron can switch between its 2-valent and 3-valent form it is essential in various physiological processes such as energy production, proliferation or DNA synthesis. Especially high metabolic organs such as the heart rely on iron-associated iron-sulfur and heme proteins. However, due to switches in iron oxidation state, iron overload exhibits high toxicity through formation of reactive oxygen species, underlining the importance of balanced iron levels. Growing evidence demonstrates disturbance of this balance during aging. While age-associated cardiovascular diseases are often related to iron deficiency, in physiological aging cardiac iron accumulates. To understand these changes, we focused on inflammation and proteolysis, two hallmarks of aging, and their role in iron metabolism. Via the IL-6-hepcidin axis, inflammation and iron status are strongly connected often resulting in anemia accompanied by infiltration of macrophages. This tight connection between anemia and inflammation highlights the importance of the macrophage iron metabolism during inflammation. Age-related decrease in proteolytic activity additionally affects iron balance due to impaired degradation of iron metabolism proteins. Therefore, this review accentuates alterations in iron metabolism during aging with regards to inflammation and proteolysis to draw attention to their implications and associations.
Collapse
Affiliation(s)
- Sophia Walter
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Christina Mertens
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany
| | - Martina U Muckenthaler
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Ast T, Wang H, Marutani E, Nagashima F, Malhotra R, Ichinose F, Mootha VK. Continuous, but not intermittent, regimens of hypoxia prevent and reverse ataxia in a murine model of Friedreich's ataxia. Hum Mol Genet 2023; 32:2600-2610. [PMID: 37260376 PMCID: PMC10407700 DOI: 10.1093/hmg/ddad091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Friedreich's ataxia (FA) is a devastating, multi-systemic neurodegenerative disease affecting thousands of people worldwide. We previously reported that oxygen is a key environmental variable that can modify FA pathogenesis. In particular, we showed that chronic, continuous normobaric hypoxia (11% FIO2) prevents ataxia and neurological disease in a murine model of FA, although it did not improve cardiovascular pathology or lifespan. Here, we report the pre-clinical evaluation of seven 'hypoxia-inspired' regimens in the shFxn mouse model of FA, with the long-term goal of designing a safe, practical and effective regimen for clinical translation. We report three chief results. First, a daily, intermittent hypoxia regimen (16 h 11% O2/8 h 21% O2) conferred no benefit and was in fact harmful, resulting in elevated cardiac stress and accelerated mortality. The detrimental effect of this regimen is likely owing to transient tissue hyperoxia that results when daily exposure to 21% O2 combines with chronic polycythemia, as we could blunt this toxicity by pharmacologically inhibiting polycythemia. Second, we report that more mild regimens of chronic hypoxia (17% O2) confer a modest benefit by delaying the onset of ataxia. Third, excitingly, we show that initiating chronic, continuous 11% O2 breathing once advanced neurological disease has already started can rapidly reverse ataxia. Our studies showcase both the promise and limitations of candidate hypoxia-inspired regimens for FA and underscore the need for additional pre-clinical optimization before future translation into humans.
Collapse
Affiliation(s)
- Tslil Ast
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Wang
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eizo Marutani
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fumiaki Nagashima
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rajeev Malhotra
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Cotticelli MG, Xia S, Truitt R, Doliba NM, Rozo AV, Tobias JW, Lee T, Chen J, Napierala JS, Napierala M, Yang W, Wilson RB. Acute frataxin knockdown in induced pluripotent stem cell-derived cardiomyocytes activates a type I interferon response. Dis Model Mech 2023; 16:dmm049497. [PMID: 36107856 PMCID: PMC9637271 DOI: 10.1242/dmm.049497] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Friedreich ataxia, the most common hereditary ataxia, is a neuro- and cardio-degenerative disorder caused, in most cases, by decreased expression of the mitochondrial protein frataxin. Cardiomyopathy is the leading cause of premature death. Frataxin functions in the biogenesis of iron-sulfur clusters, which are prosthetic groups that are found in proteins involved in many biological processes. To study the changes associated with decreased frataxin in human cardiomyocytes, we developed a novel isogenic model by acutely knocking down frataxin, post-differentiation, in cardiomyocytes derived from induced pluripotent stem cells (iPSCs). Transcriptome analysis of four biological replicates identified severe mitochondrial dysfunction and a type I interferon response as the pathways most affected by frataxin knockdown. We confirmed that, in iPSC-derived cardiomyocytes, loss of frataxin leads to mitochondrial dysfunction. The type I interferon response was activated in multiple cell types following acute frataxin knockdown and was caused, at least in part, by release of mitochondrial DNA into the cytosol, activating the cGAS-STING sensor pathway.
Collapse
Affiliation(s)
- M. Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shujuan Xia
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rachel Truitt
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolai M. Doliba
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea V. Rozo
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W. Tobias
- Department of Genetics, Penn Genomics Analysis Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taehee Lee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Justin Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill S. Napierala
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marek Napierala
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenli Yang
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B. Wilson
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Marshall KD, Klutho PJ, Song L, Roy R, Krenz M, Baines CP. Cardiac Myocyte-Specific Overexpression of FASTKD1 Prevents Ventricular Rupture After Myocardial Infarction. J Am Heart Assoc 2023; 12:e025867. [PMID: 36789858 PMCID: PMC10111501 DOI: 10.1161/jaha.122.025867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background The mitochondrial mRNA-binding protein FASTKD1 (Fas-activated serine/threonine [FAST] kinase domain-containing protein 1) protects myocytes from oxidative stress in vitro. However, the role of FASTKD1 in the myocardium in vivo is unknown. Therefore, we developed cardiac-specific FASTKD1 transgenic mice to test the effects of this protein on experimental myocardial infarction (MI). Methods and Results Transgenic mouse lines with cardiac myocyte-specific overexpression of FASTKD1 to varying degrees were generated. These mice displayed normal cardiac morphological features and function at the gross and microscopic levels. Isolated cardiac mitochondria from all transgenic mouse lines showed normal mitochondrial function, ATP levels, and permeability transition pore activity. Male nontransgenic and transgenic mice from the highest-expressing line were subjected to 8 weeks of permanent coronary ligation. Of nontransgenic mice, 40% underwent left ventricular free wall rupture within 7 days of MI compared with 0% of FASTKD1-overexpressing mice. At 3 days after MI, FASTKD1 overexpression did not alter infarct size. However, increased FASTKD1 resulted in decreased neutrophil and increased macrophage infiltration, elevated levels of the extracellular matrix component periostin, and enhanced antioxidant capacity compared with control mice. In contrast, markers of mitochondrial fusion/fission and apoptosis remained unaltered. Instead, transcriptomic analyses indicated activation of the integrated stress response in the FASTKD1 transgenic hearts. Conclusions Cardiac-specific overexpression of FASTKD1 results in viable mice displaying normal cardiac morphological features and function. However, these mice are resistant to MI-induced cardiac rupture and display altered inflammatory, extracellular matrix, and antioxidant responses following MI. Moreover, these protective effects were associated with enhanced activation of the integrated stress response.
Collapse
Affiliation(s)
- Kurt D Marshall
- Department of Biomedical Sciences University of Missouri Columbia MO
| | - Paula J Klutho
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Lihui Song
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Rajika Roy
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Christopher P Baines
- Department of Biomedical Sciences University of Missouri Columbia MO.,Department of Medical Pharmacology and Physiology University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| |
Collapse
|
11
|
Tong WH, Ollivierre H, Noguchi A, Ghosh MC, Springer DA, Rouault TA. Hyperactivation of mTOR and AKT in a cardiac hypertrophy animal model of Friedreich ataxia. Heliyon 2022; 8:e10371. [PMID: 36061025 PMCID: PMC9433723 DOI: 10.1016/j.heliyon.2022.e10371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/28/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiomyopathy is a primary cause of death in Friedreich ataxia (FRDA) patients with defective iron-sulfur cluster (ISC) biogenesis due to loss of functional frataxin and in rare patients with functional loss of other ISC biogenesis factors. The mechanistic target of rapamycin (mTOR) and AKT signaling cascades that coordinate eukaryotic cell growth and metabolism with environmental inputs, including nutrients and growth factors, are crucial regulators of cardiovascular growth and homeostasis. We observed increased phosphorylation of AKT and dysregulation of multiple downstream effectors of mTORC1, including S6K1, S6, ULK1 and 4EBP1, in a cardiac/skeletal muscle specific FRDA conditional knockout (cKO) mouse model and in human cell lines depleted of ISC biogenesis factors. Knockdown of several mitochondrial metabolic proteins that are downstream targets of ISC biogenesis, including lipoyl synthase and subunit B of succinate dehydrogenase, also resulted in activation of mTOR and AKT signaling, suggesting that mTOR and AKT hyperactivations are part of the metabolic stress response to ISC deficiencies. Administration of rapamycin, a specific inhibitor of mTOR signaling, enhanced the survival of the Fxn cKO mice, providing proof of concept for the potential of mTOR inhibition to ameliorate cardiac disease in patients with defective ISC biogenesis. However, AKT phosphorylation remained high in rapamycin-treated Fxn cKO hearts, suggesting that parallel mTOR and AKT inhibition might be necessary to further improve the lifespan and healthspan of ISC deficient individuals.
Collapse
Affiliation(s)
- Wing-Hang Tong
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
| | - Hayden Ollivierre
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
| | - Audrey Noguchi
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, United States
| | - Manik C. Ghosh
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
| | - Danielle A. Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, United States
| | - Tracey A. Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, United States
- Corresponding author.
| |
Collapse
|
12
|
Regulation and function of elF2B in neurological and metabolic disorders. Biosci Rep 2022; 42:231311. [PMID: 35579296 PMCID: PMC9208314 DOI: 10.1042/bsr20211699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic initiation factor 2B, eIF2B is a guanine nucleotide exchange, factor with a central role in coordinating the initiation of translation. During stress and disease, the activity of eIF2B is inhibited via the phosphorylation of its substrate eIF2 (p-eIF2α). A number of different kinases respond to various stresses leading to the phosphorylation of the alpha subunit of eIF2, and collectively this regulation is known as the integrated stress response, ISR. This targeting of eIF2B allows the cell to regulate protein synthesis and reprogramme gene expression to restore homeostasis. Advances within structural biology have furthered our understanding of how eIF2B interacts with eIF2 in both the productive GEF active form and the non-productive eIF2α phosphorylated form. Here, current knowledge of the role of eIF2B in the ISR is discussed within the context of normal and disease states focusing particularly on diseases such as vanishing white matter disease (VWMD) and permanent neonatal diabetes mellitus (PNDM), which are directly linked to mutations in eIF2B. The role of eIF2B in synaptic plasticity and memory formation is also discussed. In addition, the cellular localisation of eIF2B is reviewed and considered along with the role of additional in vivo eIF2B binding factors and protein modifications that may play a role in modulating eIF2B activity during health and disease.
Collapse
|
13
|
Vásquez-Trincado C, Dunn J, Han JI, Hymms B, Tamaroff J, Patel M, Nguyen S, Dedio A, Wade K, Enigwe C, Nichtova Z, Lynch DR, Csordas G, McCormack SE, Seifert EL. Frataxin deficiency lowers lean mass and triggers the integrated stress response in skeletal muscle. JCI Insight 2022; 7:e155201. [PMID: 35531957 PMCID: PMC9090249 DOI: 10.1172/jci.insight.155201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited disorder caused by reduced levels of frataxin (FXN), which is required for iron-sulfur cluster biogenesis. Neurological and cardiac comorbidities are prominent and have been a major focus of study. Skeletal muscle has received less attention despite indications that FXN loss affects it. Here, we show that lean mass is lower, whereas body mass index is unaltered, in separate cohorts of adults and children with FRDA. In adults, lower lean mass correlated with disease severity. To further investigate FXN loss in skeletal muscle, we used a transgenic mouse model of whole-body inducible and progressive FXN depletion. There was little impact of FXN loss when FXN was approximately 20% of control levels. When residual FXN was approximately 5% of control levels, muscle mass was lower along with absolute grip strength. When we examined mechanisms that can affect muscle mass, only global protein translation was lower, accompanied by integrated stress response (ISR) activation. Also in mice, aerobic exercise training, initiated prior to the muscle mass difference, improved running capacity, yet, muscle mass and the ISR remained as in untrained mice. Thus, FXN loss can lead to lower lean mass, with ISR activation, both of which are insensitive to exercise training.
Collapse
Affiliation(s)
- César Vásquez-Trincado
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Julia Dunn
- Division of Endocrinology and Diabetes and
| | - Ji In Han
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Briyanna Hymms
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Monika Patel
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Anna Dedio
- Division of Endocrinology and Diabetes and
| | | | | | - Zuzana Nichtova
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology and
| | - Gyorgy Csordas
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shana E. McCormack
- Division of Endocrinology and Diabetes and
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin L. Seifert
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Lees JG, Napierala M, Pébay A, Dottori M, Lim SY. Cellular pathophysiology of Friedreich's ataxia cardiomyopathy. Int J Cardiol 2022; 346:71-78. [PMID: 34798207 DOI: 10.1016/j.ijcard.2021.11.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022]
Abstract
Friedreich's ataxia (FRDA) is a hereditary neuromuscular disorder. Cardiomyopathy is the leading cause of premature death in FRDA. FRDA cardiomyopathy is a complex and progressive disease with no cure or treatment to slow its progression. At the cellular level, cardiomyocyte hypertrophy, apoptosis and fibrosis contribute to the cardiac pathology. However, the heart is composed of multiple cell types and several clinical studies have reported the involvement of cardiac non-myocytes such as vascular cells, autonomic neurons, and inflammatory cells in the pathogenesis of FRDA cardiomyopathy. In fact, several of the cardiac pathologies associated with FRDA including cardiomyocyte necrosis, fibrosis, and arrhythmia, could be contributed to by a diseased vasculature and autonomic dysfunction. Here, we review available evidence regarding the current understanding of cellular mechanisms for, and the involvement of, cardiac non-myocytes in the pathogenesis of FRDA cardiomyopathy.
Collapse
Affiliation(s)
- Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, School of Medicine, Molecular Horizons, University of Wollongong, New South Wales 2522, Australia; Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
15
|
Vásquez-Trincado C, Patel M, Sivaramakrishnan A, Bekeová C, Anderson-Pullinger L, Wang N, Tang HY, Seifert EL. Adaptation of the heart to Frataxin depletion: Evidence that integrated stress response can predominate over mTORC1 activation. Hum Mol Genet 2021; 33:ddab216. [PMID: 34550363 PMCID: PMC11000666 DOI: 10.1093/hmg/ddab216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/12/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited disorder caused by depletion of frataxin (FXN), a mitochondrial protein required for iron-sulfur cluster (ISC) biogenesis. Cardiac dysfunction is the main cause of death. Yet pathogenesis, and, more generally, how the heart adapts to FXN loss, remain poorly understood, though are expected to be linked to an energy deficit. We modified a transgenic (TG) mouse model of inducible FXN depletion that permits phenotypic evaluation of the heart at different FXN levels, and focused on substrate-specific bioenergetics and stress signaling. When FXN protein in the TG heart was 17% of normal, bioenergetics and signaling were not different from control. When, 8 weeks later, FXN was ~ 97% depleted in the heart, TG heart mass and cardiomyocyte cross-sectional area were less, without evidence of fibrosis or apoptosis. mTORC1 signaling was activated, as was the integrated stress response, evidenced by greater phosphorylation of eIF2α relative to total eIF2α, and decreased protein translation. We interpret these results to suggest that, in TG hearts, an anabolic stimulus was constrained by eIF2α phosphorylation. Cardiac contractility was maintained in the 97%-FXN-depleted hearts, possibly contributed by an unexpected preservation of β-oxidation, though pyruvate oxidation was lower. Bioenergetics alterations were matched by changes in the mitochondrial proteome, including a non-uniform decrease in abundance of ISC-containing proteins. Altogether, these findings suggest that the FXN depleted heart can suppress a major ATP demanding process such as protein translation, which, together with some preservation of β-oxidation, could be adaptive, at least in the short term.
Collapse
Affiliation(s)
- César Vásquez-Trincado
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Monika Patel
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Aishwarya Sivaramakrishnan
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Carmen Bekeová
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Lauren Anderson-Pullinger
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Nadan Wang
- Center for Translational Medicine, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA 19104, United States
| | - Erin L Seifert
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
16
|
Bentley RET, Hindmarch CCT, Dunham-Snary KJ, Snetsinger B, Mewburn JD, Thébaud A, Lima PDA, Thébaud B, Archer SL. The molecular mechanisms of oxygen-sensing in human ductus arteriosus smooth muscle cells: A comprehensive transcriptome profile reveals a central role for mitochondria. Genomics 2021; 113:3128-3140. [PMID: 34245829 PMCID: PMC10659099 DOI: 10.1016/j.ygeno.2021.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 01/22/2023]
Abstract
The ductus arteriosus (DA) connects the fetal pulmonary artery and aorta, diverting placentally oxygenated blood from the developing lungs to the systemic circulation. The DA constricts in response to increases in oxygen (O2) with the first breaths, resulting in functional DA closure, with anatomic closure occurring within the first days of life. Failure of DA closure results in persistent patent ductus arteriosus (PDA), a common complication of extreme preterm birth. The DA's response to O2, though modulated by the endothelium, is intrinsic to the DA smooth muscle cells (DASMC). DA constriction is mediated by mitochondrial-derived reactive oxygen species, which increase in proportion to arterial partial pressure of oxygen (PaO2). The resulting redox changes inhibit voltage-gated potassium channels (Kv) leading to cell depolarization, calcium influx and DASMC constriction. To date, there has not been an unbiased assessment of the human DA O2-sensors using transcriptomics, nor are there known molecular mechanisms which characterize DA closure. DASMCs were isolated from DAs obtained from 10 term infants at the time of congenital heart surgery. Cells were purified by flow cytometry, negatively sorting using CD90 and CD31 to eliminate fibroblasts or endothelial cells, respectively. The purity of the DASMC population was confirmed by positive staining for α-smooth muscle actin, smoothelin B and caldesmon. Cells were grown for 96 h in hypoxia (2.5% O2) or normoxia (19% O2) and confocal imaging with Cal-520 was used to determine oxygen responsiveness. An oxygen-induced increase in intracellular calcium of 18.1% ± 4.4% and SMC constriction (-27% ± 1.5% shortening) occurred in all cell lines within five minutes. RNA sequencing of the cells grown in hypoxia and normoxia revealed significant regulation of 1344 genes (corrected p < 0.05). We examined these genes using Gene Ontology (GO). This unbiased assessment of altered gene expression indicated significant enrichment of the following GOterms: mitochondria, cellular respiration and transcription. The top regulated biologic process was generation of precursor metabolites and energy. The top regulated cellular component was mitochondrial matrix. The top regulated molecular function was transcription coactivator activity. Multiple members of the NADH-ubiquinone oxidoreductase (NDUF) family are upregulated in human DASMC (hDASMC) following normoxia. Several of our differentially regulated transcripts are encoded by genes that have been associated with genetic syndromes that have an increased incidence of PDA (Crebb binding protein and Histone Acetyltransferase P300). This first examination of the effects of O2 on human DA transcriptomics supports a putative role for mitochondria as oxygen sensors.
Collapse
Affiliation(s)
| | - Charles C T Hindmarch
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Science, Queen's University, Canada
| | - Brooke Snetsinger
- QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Jeffrey D Mewburn
- Department of Biomedical and Molecular Science, Queen's University, Canada
| | - Arthur Thébaud
- Department of Kinesiology and Health Studies, Queen's University, Canada
| | - Patricia D A Lima
- QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada; Department of Pediatrics, Division of Neonatology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada.
| |
Collapse
|
17
|
Chiang S, Braidy N, Maleki S, Lal S, Richardson DR, Huang MLH. Mechanisms of impaired mitochondrial homeostasis and NAD + metabolism in a model of mitochondrial heart disease exhibiting redox active iron accumulation. Redox Biol 2021; 46:102038. [PMID: 34416478 PMCID: PMC8379503 DOI: 10.1016/j.redox.2021.102038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 01/18/2023] Open
Abstract
Due to the high redox activity of the mitochondrion, this organelle can suffer oxidative stress. To manage energy demands while minimizing redox stress, mitochondrial homeostasis is maintained by the dynamic processes of mitochondrial biogenesis, mitochondrial network dynamics (fusion/fission), and mitochondrial clearance by mitophagy. Friedreich's ataxia (FA) is a mitochondrial disease resulting in a fatal hypertrophic cardiomyopathy due to the deficiency of the mitochondrial protein, frataxin. Our previous studies identified defective mitochondrial iron metabolism and oxidative stress potentiating cardiac pathology in FA. However, how these factors alter mitochondrial homeostasis remains uncharacterized in FA cardiomyopathy. This investigation examined the muscle creatine kinase conditional frataxin knockout mouse, which closely mimics FA cardiomyopathy, to dissect the mechanisms of dysfunctional mitochondrial homeostasis. Dysfunction of key mitochondrial homeostatic mechanisms were elucidated in the knockout hearts relative to wild-type littermates, namely: (1) mitochondrial proliferation with condensed cristae; (2) impaired NAD+ metabolism due to perturbations in Sirt1 activity and NAD+ salvage; (3) increased mitochondrial biogenesis, fusion and fission; and (4) mitochondrial accumulation of Pink1/Parkin with increased autophagic/mitophagic flux. Immunohistochemistry of FA patients' heart confirmed significantly enhanced expression of markers of mitochondrial biogenesis, fusion/fission and autophagy. These novel findings demonstrate cardiac frataxin-deficiency results in significant changes to metabolic mechanisms critical for mitochondrial homeostasis. This mechanistic dissection provides critical insight, offering the potential for maintaining mitochondrial homeostasis in FA and potentially other cardio-degenerative diseases by implementing innovative treatments targeting mitochondrial homeostasis and NAD+ metabolism.
Collapse
Affiliation(s)
- Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, NSW, 2006, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, NSW, 2052, Australia
| | - Sanaz Maleki
- Department of Pathology, University of Sydney, NSW, 2006, Australia
| | - Sean Lal
- School of Medical Sciences, University of Sydney, NSW, 2006, Australia; Division of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, NSW, 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.
| | - Michael L-H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, NSW, 2006, Australia; School of Medical Sciences, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
18
|
Lovatt M, Kocaba V, Hui Neo DJ, Soh YQ, Mehta JS. Nrf2: A unifying transcription factor in the pathogenesis of Fuchs' endothelial corneal dystrophy. Redox Biol 2020; 37:101763. [PMID: 33099215 PMCID: PMC7578533 DOI: 10.1016/j.redox.2020.101763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor, erythroid 2 like 2 (Nrf2), is an oxidative stress induced transcription factor that regulates cytoprotective gene expression. Thus, Nrf2 is essential for cellular redox homeostasis. Loss or dysregulation of Nrf2 expression has been implicated in the pathogenesis of degenerative diseases, including diseases of the cornea. One of the most common diseases of the cornea in which Nrf2 is implicated is Fuchs' endothelial cornea dystrophy (FECD). FECD is the leading indication for corneal transplantation; and is associated with a loss of corneal endothelial cell (CEC) function. In this review, we propose that Nrf2 is an essential regulator of CEC function. Furthermore, we demonstrate that deficiency of Nrf2 function is a hallmark of FECD. In addition, we advocate that pharmacological targeting of Nrf2 as a possible therapy for FECD.
Collapse
Affiliation(s)
- Matthew Lovatt
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore.
| | - Viridiana Kocaba
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, the Netherlands
| | - Dawn Jing Hui Neo
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Yu Qiang Soh
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore.
| |
Collapse
|
19
|
Chiang S, Huang MLH, Richardson DR. Treatment of dilated cardiomyopathy in a mouse model of Friedreich's ataxia using N-acetylcysteine and identification of alterations in microRNA expression that could be involved in its pathogenesis. Pharmacol Res 2020; 159:104994. [PMID: 32534099 DOI: 10.1016/j.phrs.2020.104994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/01/2023]
Abstract
Deficient expression of the mitochondrial protein, frataxin, leads to a deadly cardiomyopathy. Our laboratory reported the master regulator of oxidative stress, nuclear factor erythroid 2-related factor-2 (Nrf2), demonstrates marked down-regulation after frataxin deletion in the heart. This was due, in part, to a pronounced increase in Keap1. To assess if this can be therapeutically targeted, cells were incubated with N-acetylcysteine (NAC), or buthionine sulfoximine (BSO), which increases or decreases glutathione (GSH), respectively, or the NRF2-inducer, sulforaphane (SFN). While SFN significantly (p < 0.05) induced NRF2, KEAP1 and BACH1, NAC attenuated SFN-induced NRF2, KEAP1 and BACH1. The down-regulation of KEAP1 by NAC was of interest, as Keap1 is markedly increased in the MCK conditional frataxin knockout (MCK KO) mouse model and this could lead to the decreased Nrf2 levels. Considering this, MCK KO mice were treated with i.p. NAC (500- or 1500-mg/kg, 5 days/week for 5-weeks) and demonstrated slightly less (p > 0.05) body weight loss versus the vehicle-treated KO. However, NAC did not rescue the cardiomyopathy. To additionally examine the dys-regulation of Nrf2 upon frataxin deletion, studies assessed the role of microRNA (miRNA) in this process. In MCK KO mice, miR-144 was up-regulated, which down-regulates Nrf2. Furthermore, miRNA screening in MCK KO mice demonstrated 23 miRNAs from 756 screened were significantly (p < 0.05) altered in KOs versus WT littermates. Of these, miR-21*, miR-34c*, and miR-200c, demonstrated marked alterations, with functional clustering analysis showing they regulate genes linked to cardiac hypertrophy, cardiomyopathy, and oxidative stress, respectively.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Animals
- Basic-Leucine Zipper Transcription Factors/metabolism
- Cardiomyopathy, Dilated/drug therapy
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cell Line, Tumor
- Disease Models, Animal
- Friedreich Ataxia/complications
- Friedreich Ataxia/genetics
- Gene Expression Regulation
- Humans
- Iron-Binding Proteins/genetics
- Iron-Binding Proteins/metabolism
- Isothiocyanates/pharmacology
- Kelch-Like ECH-Associated Protein 1/metabolism
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Sulfoxides/pharmacology
- Frataxin
Collapse
Affiliation(s)
- S Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| | - M L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| | - D R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia; Centre for Cancer Cell Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia.
| |
Collapse
|
20
|
Belbellaa B, Reutenauer L, Messaddeq N, Monassier L, Puccio H. High Levels of Frataxin Overexpression Lead to Mitochondrial and Cardiac Toxicity in Mouse Models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:120-138. [PMID: 33209958 PMCID: PMC7648087 DOI: 10.1016/j.omtm.2020.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Friedreich ataxia (FA) is currently an incurable inherited mitochondrial disease caused by reduced levels of frataxin (FXN). Cardiac dysfunction is the main cause of premature death in FA. Adeno-associated virus (AAV)-mediated gene therapy constitutes a promising approach for FA, as demonstrated in cardiac and neurological mouse models. While the minimal therapeutic level of FXN protein to be restored and biodistribution have recently been defined for the heart, it is unclear if FXN overexpression could be harmful. Indeed, depending on the vector delivery route and dose administered, the resulting FXN protein level could reach very high levels in the heart, cerebellum, or off-target organs such as the liver. The present study demonstrates safety of FXN cardiac overexpression up to 9-fold the normal endogenous level but significant toxicity to the mitochondria and heart above 20-fold. We show gradual severity with increasing FXN overexpression, ranging from subclinical cardiotoxicity to left ventricle dysfunction. This appears to be driven by impairment of the mitochondria respiratory chain and ultrastructure, which leads to cardiomyocyte subcellular disorganization, cell death, and fibrosis. Overall, this study underlines the need, during the development of gene therapy approaches, to consider appropriate vector expression level, long-term safety, and biomarkers to monitor such events.
Collapse
Affiliation(s)
- Brahim Belbellaa
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Laurence Reutenauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire EA7296, Faculté de Médecine, Strasbourg 67085, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
21
|
Rodríguez LR, Lapeña T, Calap-Quintana P, Moltó MD, Gonzalez-Cabo P, Navarro Langa JA. Antioxidant Therapies and Oxidative Stress in Friedreich´s Ataxia: The Right Path or Just a Diversion? Antioxidants (Basel) 2020; 9:E664. [PMID: 32722309 PMCID: PMC7465446 DOI: 10.3390/antiox9080664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Friedreich´s ataxia is the commonest autosomal recessive ataxia among population of European descent. Despite the huge advances performed in the last decades, a cure still remains elusive. One of the most studied hallmarks of the disease is the increased production of oxidative stress markers in patients and models. This feature has been the motivation to develop treatments that aim to counteract such boost of free radicals and to enhance the production of antioxidant defenses. In this work, we present and critically review those "antioxidant" drugs that went beyond the disease´s models and were approved for its application in clinical trials. The evaluation of these trials highlights some crucial aspects of the FRDA research. On the one hand, the analysis contributes to elucidate whether oxidative stress plays a central role or whether it is only an epiphenomenon. On the other hand, it comments on some limitations in the current trials that complicate the analysis and interpretation of their outcome. We also include some suggestions that will be interesting to implement in future studies and clinical trials.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Tamara Lapeña
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pablo Calap-Quintana
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 46100 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | |
Collapse
|
22
|
Chiang S, Kalinowski DS, Dharmasivam M, Braidy N, Richardson DR, Huang MLH. The potential of the novel NAD + supplementing agent, SNH6, as a therapeutic strategy for the treatment of Friedreich's ataxia. Pharmacol Res 2020; 155:104680. [PMID: 32032665 DOI: 10.1016/j.phrs.2020.104680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Friedreich's ataxia (FA) is due to deficiency of the mitochondrial protein, frataxin, which results in multiple pathologies including a deadly, hypertrophic cardiomyopathy. Frataxin loss leads to deleterious accumulations of redox-active, mitochondrial iron, and suppressed mitochondrial bioenergetics. Hence, there is an urgent need to develop innovative pharmaceuticals. Herein, the activity of the novel compound, 6-methoxy-2-salicylaldehyde nicotinoyl hydrazone (SNH6), was assessed in vivo using the well-characterized muscle creatine kinase (MCK) conditional frataxin knockout (KO) mouse model of FA. The design of SNH6 incorporated a dual-mechanism mediating: (1) NAD+-supplementation to restore cardiac bioenergetics; and (2) iron chelation to remove toxic mitochondrial iron. In these studies, MCK wild-type (WT) and KO mice were treated for 4-weeks from the asymptomatic age of 4.5-weeks to 8.5-weeks of age, where the mouse displays an overt cardiomyopathy. SNH6-treatment significantly elevated NAD+ and markedly increased NAD+ consumption in WT and KO hearts. In SNH6-treated KO mice, nuclear Sirt1 activity was also significantly increased together with the NAD+-metabolic product, nicotinamide (NAM). Therefore, NAD+-supplementation by SNH6 aided mitochondrial function and cardiac bioenergetics. SNH6 also chelated iron in cultured cardiac cells and also removed iron-loading in vivo from the MCK KO heart. Despite its dual beneficial properties of supplementing NAD+ and chelating iron, SNH6 did not mitigate cardiomyopathy development in the MCK KO mouse. Collectively, SNH6 is an innovative therapeutic with marked pharmacological efficacy, which successfully enhanced cardiac NAD+ and nuclear Sirt1 activity and reduced cardiac iron-loading in MCK KO mice. No other pharmaceutical yet designed exhibits both these effective pharmacological properties.
Collapse
Affiliation(s)
- Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Mahendiran Dharmasivam
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Michael L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
23
|
Ghosh A, Shcherbik N. Effects of Oxidative Stress on Protein Translation: Implications for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E2661. [PMID: 32290431 PMCID: PMC7215667 DOI: 10.3390/ijms21082661] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of disorders that affect the heart and blood vessels. Due to their multifactorial nature and wide variation, CVDs are the leading cause of death worldwide. Understanding the molecular alterations leading to the development of heart and vessel pathologies is crucial for successfully treating and preventing CVDs. One of the causative factors of CVD etiology and progression is acute oxidative stress, a toxic condition characterized by elevated intracellular levels of reactive oxygen species (ROS). Left unabated, ROS can damage virtually any cellular component and affect essential biological processes, including protein synthesis. Defective or insufficient protein translation results in production of faulty protein products and disturbances of protein homeostasis, thus promoting pathologies. The relationships between translational dysregulation, ROS, and cardiovascular disorders will be examined in this review.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
24
|
Vela D. Keeping heart homeostasis in check through the balance of iron metabolism. Acta Physiol (Oxf) 2020; 228:e13324. [PMID: 31162883 DOI: 10.1111/apha.13324] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Highly active cardiomyocytes need iron for their metabolic activity. In physiological conditions, iron turnover is a delicate process which is dependent on global iron supply and local autonomous regulatory mechanisms. Though less is known about the autonomous regulatory mechanisms, data suggest that these mechanisms can preserve cellular iron turnover even in the presence of systemic iron disturbance. Therefore, activity of local iron protein machinery and its relationship with global iron metabolism is important to understand cardiac iron metabolism in physiological conditions and in cardiac disease. Our knowledge in this respect has helped in designing therapeutic strategies for different cardiac diseases. This review is a synthesis of our current knowledge concerning the regulation of cardiac iron metabolism. In addition, different models of cardiac iron dysmetabolism will be discussed through the examples of heart failure (cardiomyocyte iron deficiency), myocardial infarction (acute changes in cardiac iron turnover), doxorubicin-induced cardiotoxicity (cardiomyocyte iron overload in mitochondria), thalassaemia (cardiomyocyte cytosolic and mitochondrial iron overload) and Friedreich ataxia (asymmetric cytosolic/mitochondrial cardiac iron dysmetabolism). Finally, future perspectives will be discussed in order to resolve actual gaps in knowledge, which should be helpful in finding new treatment possibilities in different cardiac diseases.
Collapse
Affiliation(s)
- Driton Vela
- Faculty of Medicine, Department of Physiology University of Prishtina Prishtina Kosovo
| |
Collapse
|
25
|
Guo Q, Zhang Y, Zhang S, Jin J, Pang S, Wu X, Zhang W, Bi X, Zhang Y, Zhang Q, Jiang F. Genome-wide translational reprogramming of genes important for myocyte functions in overload-induced heart failure. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165649. [PMID: 31870714 DOI: 10.1016/j.bbadis.2019.165649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
Genome-wide changes in gene translational efficiency during the development of heart failure are poorly understood. We tested the hypothesis that aberrant changes in translational efficiency of cardiac genes are associated with the development of myocyte decompensation in response to persistent stress stimuli. We demonstrated that chronic pressure overload in mice resulted in a genome-wide reprogramming of translational efficiency, with >50% of the translatome exhibiting decreased translational efficiencies during the transition from myocardial compensation to decompensation. Importantly, these translationally repressed genes included those involved in angiogenesis and energy metabolism. Moreover, we showed that the stress-induced translational reprogramming was accompanied by persistent activation of the eukaryotic initiation factor 2α (eIF2α)-mediated stress response pathway. Counteracting the endogenous eIF2α functions by cardiac-specific overexpression of an eIF2α-S51A mutant ameliorated the development of myocyte decompensation, with concomitant improvements in translation of cardiac functional genes and increases in angiogenic responses. These data suggest that the mismatch between transcription and translation of the cardiac genes with essential functions may represent a novel molecular mechanism underlying the development of myocyte decompensation in response to chronic stress stimuli, and the eIF2α pathway may be a viable therapeutic target for recovering the optimal translation of the repressed cardiac genes.
Collapse
Affiliation(s)
- Qianqian Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yongtao Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China; Department of Cardiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shucui Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiajia Jin
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shu Pang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiao Wu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaolei Bi
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Fan Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
26
|
Tsushima M, Liu J, Hirao W, Yamazaki H, Tomita H, Itoh K. Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Arch Pharm Res 2019; 43:286-296. [DOI: 10.1007/s12272-019-01188-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022]
|
27
|
Genin EC, Madji Hounoum B, Bannwarth S, Fragaki K, Lacas-Gervais S, Mauri-Crouzet A, Lespinasse F, Neveu J, Ropert B, Augé G, Cochaud C, Lefebvre-Omar C, Bigou S, Chiot A, Mochel F, Boillée S, Lobsiger CS, Bohl D, Ricci JE, Paquis-Flucklinger V. Mitochondrial defect in muscle precedes neuromuscular junction degeneration and motor neuron death in CHCHD10 S59L/+ mouse. Acta Neuropathol 2019; 138:123-145. [PMID: 30874923 DOI: 10.1007/s00401-019-01988-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/30/2022]
Abstract
Recently, we provided genetic basis showing that mitochondrial dysfunction can trigger motor neuron degeneration, through identification of CHCHD10 encoding a mitochondrial protein. We reported patients, carrying the p.Ser59Leu heterozygous mutation in CHCHD10, from a large family with a mitochondrial myopathy associated with motor neuron disease (MND). Rapidly, our group and others reported CHCHD10 mutations in amyotrophic lateral sclerosis (ALS), frontotemporal dementia-ALS and other neurodegenerative diseases. Here, we generated knock-in (KI) mice, carrying the p.Ser59Leu mutation, that mimic the mitochondrial myopathy with mtDNA instability displayed by the patients from our original family. Before 14 months of age, all KI mice developed a fatal mitochondrial cardiomyopathy associated with enhanced mitophagy. CHCHD10S59L/+ mice also displayed neuromuscular junction (NMJ) and motor neuron degeneration with hyper-fragmentation of the motor end plate and moderate but significant motor neuron loss in lumbar spinal cord at the end stage of the disease. At this stage, we observed TDP-43 cytoplasmic aggregates in spinal neurons. We also showed that motor neurons differentiated from human iPSC carrying the p.Ser59Leu mutation were much more sensitive to Staurosporine or glutamate-induced caspase activation than control cells. These data confirm that mitochondrial deficiency associated with CHCHD10 mutations can be at the origin of MND. CHCHD10 is highly expressed in the NMJ post-synaptic part. Importantly, the fragmentation of the motor end plate was associated with abnormal CHCHD10 expression that was also observed closed to NMJs which were morphologically normal. Furthermore, we found OXPHOS deficiency in muscle of CHCHD10S59L/+ mice at 3 months of age in the absence of neuron loss in spinal cord. Our data show that the pathological effects of the p.Ser59Leu mutation target muscle prior to NMJ and motor neurons. They likely lead to OXPHOS deficiency, loss of cristae junctions and destabilization of internal membrane structure within mitochondria at motor end plate of NMJ, impairing neurotransmission. These data are in favor with a key role for muscle in MND associated with CHCHD10 mutations.
Collapse
|
28
|
Ast T, Meisel JD, Patra S, Wang H, Grange RMH, Kim SH, Calvo SE, Orefice LL, Nagashima F, Ichinose F, Zapol WM, Ruvkun G, Barondeau DP, Mootha VK. Hypoxia Rescues Frataxin Loss by Restoring Iron Sulfur Cluster Biogenesis. Cell 2019; 177:1507-1521.e16. [PMID: 31031004 PMCID: PMC6911770 DOI: 10.1016/j.cell.2019.03.045] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/11/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022]
Abstract
Friedreich's ataxia (FRDA) is a devastating, multisystemic disorder caused by recessive mutations in the mitochondrial protein frataxin (FXN). FXN participates in the biosynthesis of Fe-S clusters and is considered to be essential for viability. Here we report that when grown in 1% ambient O2, FXN null yeast, human cells, and nematodes are fully viable. In human cells, hypoxia restores steady-state levels of Fe-S clusters and normalizes ATF4, NRF2, and IRP2 signaling events associated with FRDA. Cellular studies and in vitro reconstitution indicate that hypoxia acts through HIF-independent mechanisms that increase bioavailable iron as well as directly activate Fe-S synthesis. In a mouse model of FRDA, breathing 11% O2 attenuates the progression of ataxia, whereas breathing 55% O2 hastens it. Our work identifies oxygen as a key environmental variable in the pathogenesis associated with FXN depletion, with important mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Tslil Ast
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joshua D Meisel
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Shachin Patra
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Hong Wang
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Robert M H Grange
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sharon H Kim
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Calvo
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Lauren L Orefice
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Fumiaki Nagashima
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Warren M Zapol
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Han THL, Camadro JM, Barbault F, Santos R, El Hage Chahine JM, Ha-Duong NT. In Vitro interaction between yeast frataxin and superoxide dismutases: Influence of mitochondrial metals. Biochim Biophys Acta Gen Subj 2019; 1863:883-892. [PMID: 30797804 DOI: 10.1016/j.bbagen.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Friedreich's ataxia results from a decreased expression of the nuclear gene encoding the mitochondrial protein, frataxin. Frataxin participates in the biosynthesis of iron-sulfur clusters and heme cofactors, as well as in iron storage and protection against oxidative stress. How frataxin interacts with the antioxidant defence components is poorly understood. METHODS Therefore, we have investigated by kinetic, thermodynamic and modelling approaches the molecular interactions between yeast frataxin (Yfh1) and superoxide dismutases, Sod1 and Sod2, and the influence of Yfh1 on their enzymatic activities. RESULTS Yfh1 interacts with cytosolic Sod1 with a dissociation constant, Kd = 1.3 ± 0.3 μM, in two kinetic steps. The first step occurs in the 200 ms range and corresponds to the Yfh1-Sod1 interaction, whereas the second is slow and is assumed to be a change in the conformation of the protein-protein adduct. Furthermore, computational investigations confirm the stability of the Yfh1-Sod1 complex. Yfh1 forms two protein complexes with mitochondrial Sod2 with 1:1 and 2:1 Yfh1/Sod2 stoichiometry (Kd1 = 1.05 ± 0.05 and Kd2 = 6.6 ± 0.1 μM). Furthermore, Yfh1 increases the enzymatic activity of Sod1 while slightly affecting that of Sod2. Finally, the stabilities of the protein-protein adducts and the effect of Yfh1 on superoxide dismutase activities depend on the nature of the mitochondrial metal. CONCLUSIONS This work confirms the participation of Yfh1 in cellular defence against oxidative stress.
Collapse
Affiliation(s)
- Thi Hong Lien Han
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Jean-Michel Camadro
- Mitochondries, Métaux et Stress Oxydant, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Florent Barbault
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Renata Santos
- Mitochondries, Métaux et Stress Oxydant, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Jean-Michel El Hage Chahine
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Nguyet-Thanh Ha-Duong
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France.
| |
Collapse
|
30
|
Belbellaa B, Reutenauer L, Monassier L, Puccio H. Correction of half the cardiomyocytes fully rescue Friedreich ataxia mitochondrial cardiomyopathy through cell-autonomous mechanisms. Hum Mol Genet 2019; 28:1274-1285. [PMID: 30544254 DOI: 10.1093/hmg/ddy427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2023] Open
Abstract
Friedreich ataxia (FA) is currently an incurable inherited mitochondrial neurodegenerative disease caused by reduced levels of frataxin. Cardiac failure constitutes the main cause of premature death in FA. While adeno-associated virus-mediated cardiac gene therapy was shown to fully reverse the cardiac and mitochondrial phenotype in mouse models, this was achieved at high dose of vector resulting in the transduction of almost all cardiomyocytes, a dose and biodistribution that is unlikely to be replicated in clinic. The purpose of this study was to define the minimum vector biodistribution corresponding to the therapeutic threshold, at different stages of the disease progression. Correlative analysis of vector cardiac biodistribution, survival, cardiac function and biochemical hallmarks of the disease revealed that full rescue of the cardiac function was achieved when only half of the cardiomyocytes were transduced. In addition, meaningful therapeutic effect was achieved with as little as 30% transduction coverage. This therapeutic effect was mediated through cell-autonomous mechanisms for mitochondria homeostasis, although a significant increase in survival of uncorrected neighboring cells was observed. Overall, this study identifies the biodistribution thresholds and the underlying mechanisms conditioning the success of cardiac gene therapy in Friedreich ataxia and provides guidelines for the development of the clinical administration paradigm.
Collapse
Affiliation(s)
- Brahim Belbellaa
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Laurence Reutenauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Laurent Monassier
- Faculté de Médecine, Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Strasbourg, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine and Neurogenetics, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
31
|
The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6392763. [PMID: 31057691 PMCID: PMC6476015 DOI: 10.1155/2019/6392763] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
The mitochondrion is an essential organelle important for the generation of ATP for cellular function. This is especially critical for cells with high energy demands, such as neurons for signal transmission and cardiomyocytes for the continuous mechanical work of the heart. However, deleterious reactive oxygen species are generated as a result of mitochondrial electron transport, requiring a rigorous activation of antioxidative defense in order to maintain homeostatic mitochondrial function. Indeed, recent studies have demonstrated that the dysregulation of antioxidant response leads to mitochondrial dysfunction in human degenerative diseases affecting the nervous system and the heart. In this review, we outline and discuss the mitochondrial and oxidative stress factors causing degenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and Friedreich's ataxia. In particular, the pathological involvement of mitochondrial dysfunction in relation to oxidative stress, energy metabolism, mitochondrial dynamics, and cell death will be explored. Understanding the pathology and the development of these diseases has highlighted novel regulators in the homeostatic maintenance of mitochondria. Importantly, this offers potential therapeutic targets in the development of future treatments for these degenerative diseases.
Collapse
|
32
|
Llorens JV, Soriano S, Calap-Quintana P, Gonzalez-Cabo P, Moltó MD. The Role of Iron in Friedreich's Ataxia: Insights From Studies in Human Tissues and Cellular and Animal Models. Front Neurosci 2019; 13:75. [PMID: 30833885 PMCID: PMC6387962 DOI: 10.3389/fnins.2019.00075] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a rare early-onset degenerative disease that affects both the central and peripheral nervous systems, and other extraneural tissues, mainly the heart and endocrine pancreas. This disorder progresses as a mixed sensory and cerebellar ataxia, primarily disturbing the proprioceptive pathways in the spinal cord, peripheral nerves and nuclei of the cerebellum. FRDA is an inherited disease with an autosomal recessive pattern caused by an insufficient amount of the nuclear-encoded mitochondrial protein frataxin, which is an essential and highly evolutionary conserved protein whose deficit results in iron metabolism dysregulation and mitochondrial dysfunction. The first experimental evidence connecting frataxin with iron homeostasis came from Saccharomyces cerevisiae; iron accumulates in the mitochondria of yeast with deletion of the frataxin ortholog gene. This finding was soon linked to previous observations of iron deposits in the hearts of FRDA patients and was later reported in animal models of the disease. Despite advances made in the understanding of FRDA pathophysiology, the role of iron in this disease has not yet been completely clarified. Some of the questions still unresolved include the molecular mechanisms responsible for the iron accumulation and iron-mediated toxicity. Here, we review the contribution of the cellular and animal models of FRDA and relevance of the studies using FRDA patient samples to gain knowledge about these issues. Mechanisms of mitochondrial iron overload are discussed considering the potential roles of frataxin in the major mitochondrial metabolic pathways that use iron. We also analyzed the effect of iron toxicity on neuronal degeneration in FRDA by reactive oxygen species (ROS)-dependent and ROS-independent mechanisms. Finally, therapeutic strategies based on the control of iron toxicity are considered.
Collapse
Affiliation(s)
- José Vicente Llorens
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
- Unit for Psychiatry and Neurodegenerative Diseases, Biomedical Research Institute INCLIVA, Valencia, Spain
| | - Sirena Soriano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pablo Calap-Quintana
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
- Unit for Psychiatry and Neurodegenerative Diseases, Biomedical Research Institute INCLIVA, Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Center of Biomedical Network Research on Rare Diseases CIBERER, Valencia, Spain
- Associated Unit for Rare Diseases INCLIVA-CIPF, Biomedical Research Institute INCLIVA, Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
- Unit for Psychiatry and Neurodegenerative Diseases, Biomedical Research Institute INCLIVA, Valencia, Spain
- Center of Biomedical Network Research on Mental Health CIBERSAM, Valencia, Spain
| |
Collapse
|
33
|
Wong YL, LeBon L, Basso AM, Kohlhaas KL, Nikkel AL, Robb HM, Donnelly-Roberts DL, Prakash J, Swensen AM, Rubinstein ND, Krishnan S, McAllister FE, Haste NV, O'Brien JJ, Roy M, Ireland A, Frost JM, Shi L, Riedmaier S, Martin K, Dart MJ, Sidrauski C. eIF2B activator prevents neurological defects caused by a chronic integrated stress response. eLife 2019; 8:42940. [PMID: 30624206 PMCID: PMC6326728 DOI: 10.7554/elife.42940] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023] Open
Abstract
The integrated stress response (ISR) attenuates the rate of protein synthesis while inducing expression of stress proteins in cells. Various insults activate kinases that phosphorylate the GTPase eIF2 leading to inhibition of its exchange factor eIF2B. Vanishing White Matter (VWM) is a neurological disease caused by eIF2B mutations that, like phosphorylated eIF2, reduce its activity. We show that introduction of a human VWM mutation into mice leads to persistent ISR induction in the central nervous system. ISR activation precedes myelin loss and development of motor deficits. Remarkably, long-term treatment with a small molecule eIF2B activator, 2BAct, prevents all measures of pathology and normalizes the transcriptome and proteome of VWM mice. 2BAct stimulates the remaining activity of mutant eIF2B complex in vivo, abrogating the maladaptive stress response. Thus, 2BAct-like molecules may provide a promising therapeutic approach for VWM and provide relief from chronic ISR induction in a variety of disease contexts.
Collapse
Affiliation(s)
- Yao Liang Wong
- Calico Life Sciences LLC, South San Francisco, United States
| | - Lauren LeBon
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | | | | | | | | | | | | | - Swathi Krishnan
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Nicole V Haste
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Margaret Roy
- Calico Life Sciences LLC, South San Francisco, United States
| | - Andrea Ireland
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Lei Shi
- AbbVie, North Chicago, United States
| | | | - Kathleen Martin
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | |
Collapse
|
34
|
Kasai S, Yamazaki H, Tanji K, Engler MJ, Matsumiya T, Itoh K. Role of the ISR-ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control. J Clin Biochem Nutr 2018; 64:1-12. [PMID: 30705506 PMCID: PMC6348405 DOI: 10.3164/jcbn.18-37] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Recent investigations have clarified the importance of mitochondria in various age-related degenerative diseases, including late-onset Alzheimer’s disease and Parkinson’s disease. Although mitochondrial disturbances can be involved in every step of disease progression, several observations have demonstrated that a subtle mitochondrial functional disturbance is observed preceding the actual appearance of pathophysiological alterations and can be the target of early therapeutic intervention. The signals from damaged mitochondria are transferred to the nucleus, leading to the altered expression of nuclear-encoded genes, which includes mitochondrial proteins (i.e., mitochondrial retrograde signaling). Mitochondrial retrograde signaling improves mitochondrial perturbation (i.e., mitohormesis) and is considered a homeostatic stress response against intrinsic (ex. aging or pathological mutations) and extrinsic (ex. chemicals and pathogens) stimuli. There are several branches of the mitochondrial retrograde signaling, including mitochondrial unfolded protein response (UPRMT), but recent observations increasingly show the importance of the ISR-ATF4 pathway in mitochondrial retrograde signaling. Furthermore, Nrf2, a master regulator of the oxidative stress response, interacts with ATF4 and cooperatively upregulates a battery of antioxidant and antiapoptotic genes while repressing the ATF4-mediated proapoptotic gene, CHOP. In this review article, we summarized the upstream and downstream mechanisms of ATF4 activation during mitochondrial stresses and disturbances and discuss therapeutic intervention against degenerative diseases by using Nrf2 activators.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hiromi Yamazaki
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Máté János Engler
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
35
|
Monnier V, Llorens JV, Navarro JA. Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia. Int J Mol Sci 2018; 19:E1989. [PMID: 29986523 PMCID: PMC6073496 DOI: 10.3390/ijms19071989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila melanogaster has been for over a century the model of choice of several neurobiologists to decipher the formation and development of the nervous system as well as to mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare disease Friedreich’s ataxia (FRDA) is not an exception. Since the isolation of the responsible gene more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue to understand the development and progression of the disease, to unravel pivotal mechanisms underpinning the pathology and to identify genes and molecules that might well be either disease biomarkers or promising targets for therapeutic interventions. In this review, we aim to summarize the collection of findings provided by the Drosophila models but also to go one step beyond and propose the implications of these discoveries for the study and cure of this disorder. We will present the physiological, cellular and molecular phenotypes described in the fly, highlighting those that have given insight into the pathology and we will show how the ability of Drosophila to perform genetic and pharmacological screens has provided valuable information that is not easily within reach of other cellular or mammalian models.
Collapse
Affiliation(s)
- Véronique Monnier
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Sorbonne Paris Cité, Université Paris Diderot, UMR8251 CNRS, 75013 Paris, France.
| | - Jose Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 96100 Valencia, Spain.
| | - Juan Antonio Navarro
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
36
|
Chiang S, Kalinowski DS, Jansson PJ, Richardson DR, Huang MLH. Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia. Neurochem Int 2018; 117:35-48. [PMID: 28782591 DOI: 10.1016/j.neuint.2017.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023]
Abstract
Mitochondrial homeostasis is essential for maintaining healthy cellular function and survival. The detrimental involvement of mitochondrial dysfunction in neuro-degenerative diseases has recently been highlighted in human conditions, such as Parkinson's, Alzheimer's and Huntington's disease. Friedreich's ataxia (FA) is another neuro-degenerative, but also cardio-degenerative condition, where mitochondrial dysfunction plays a crucial role in disease progression. Deficient expression of the mitochondrial protein, frataxin, is the primary cause of FA, which leads to adverse alterations in whole cell and mitochondrial iron metabolism. Dys-regulation of iron metabolism in these compartments, results in the accumulation of inorganic iron deposits in the mitochondrial matrix that is thought to potentiate oxidative damage observed in FA. Therefore, the maintenance of mitochondrial homeostasis is crucial in the progression of neuro-degenerative conditions, particularly in FA. In this review, vital mitochondrial homeostatic processes and their roles in FA pathogenesis will be discussed. These include mitochondrial iron processing, mitochondrial dynamics (fusion and fission processes), mitophagy, mitochondrial biogenesis, mitochondrial energy production and calcium metabolism.
Collapse
Affiliation(s)
- Shannon Chiang
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Danuta S Kalinowski
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Patric J Jansson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Des R Richardson
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Michael L-H Huang
- Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
37
|
Edenharter O, Schneuwly S, Navarro JA. Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Drosophila Model of Friedreich's Ataxia. Front Mol Neurosci 2018; 11:38. [PMID: 29563863 PMCID: PMC5845754 DOI: 10.3389/fnmol.2018.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a forward genetic screen to analyze genetic interactions between genes controlling mitochondrial homeostasis and Drosophila frataxin. Our screen has identified silencing of Drosophila mitofusin (Marf) as a suppressor of FRDA phenotypes in glia. Drosophila Marf is known to play crucial roles in mitochondrial fusion, mitochondrial degradation and in the interface between mitochondria and endoplasmic reticulum (ER). Thus, we have analyzed the effects of frataxin knockdown on mitochondrial morphology, mitophagy and ER function in our fly FRDA model using different histological and molecular markers such as tetramethylrhodamine, ethyl ester (TMRE), mitochondria-targeted GFP (mitoGFP), p62, ATG8a, LAMP1, Xbp1 and BiP/GRP78. Furthermore, we have generated the first Drosophila transgenic line containing the mtRosella construct under the UAS control to study the progression of the mitophagy process in vivo. Our results indicated that frataxin-deficiency had a small impact on mitochondrial morphology but enhanced mitochondrial clearance and altered the ER stress response in Drosophila. Remarkably, we demonstrate that downregulation of Marf suppresses ER stress in frataxin-deficient cells and this is sufficient to improve locomotor dysfunction, brain degeneration and lipid dyshomeostasis in our FRDA model. In agreement, chemical reduction of ER stress by means of two different compounds was sufficient to ameliorate the effects of frataxin deficiency in three different fly FRDA models. Altogether, our results strongly suggest that the protection mediated by Marf knockdown in glia is mainly linked to its role in the mitochondrial-ER tethering and not to mitochondrial dynamics or mitochondrial degradation and that ER stress is a novel and pivotal player in the progression and etiology of FRDA. This work might define a new pathological mechanism in FRDA, linking mitochondrial dysfunction due to frataxin deficiency and mitofusin-mediated ER stress, which might be responsible for characteristic cellular features of the disease and also suggests ER stress as a therapeutic target.
Collapse
Affiliation(s)
- Oliver Edenharter
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
38
|
Evstafieva AG, Kovaleva IE, Shoshinova MS, Budanov AV, Chumakov PM. Implication of KRT16, FAM129A and HKDC1 genes as ATF4 regulated components of the integrated stress response. PLoS One 2018; 13:e0191107. [PMID: 29420561 PMCID: PMC5805170 DOI: 10.1371/journal.pone.0191107] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/28/2017] [Indexed: 02/06/2023] Open
Abstract
The ATF4 transcription factor is a key regulator of the adaptive integrated stress response (ISR) induced by various stresses and pathologies. Identification of novel transcription targets of ATF4 during ISR would contribute to the understanding of adaptive networks and help to identify novel therapeutic targets. We were previously searching for genes that display an inverse regulation mode by the transcription factors ATF4 and p53 in response to mitochondrial respiration chain complex III inhibition. Among the selected candidates the human genes for cytokeratine 16 (KRT16), anti-apoptotic protein Niban (FAM129A) and hexokinase HKDC1 have been found highly responsive to ATF4 overexpression. Here we explored potential roles of the induction of KRT16, FAM129A and HKDC1 genes in ISR. As verified by RT-qPCR, a dysfunction of mitochondrial respiration chain and ER stress resulted in a partially ATF4-dependent stimulation of KRT16, FAM129A and HKDC1 expression in the HCT116 colon carcinoma cell line. ISRIB, a specific inhibitor of ISR, was able to downregulate the ER stress-induced levels of KRT16, FAM129A and HKDC1 transcripts. An inhibition of ATF4 by RNAi attenuated the induction of KRT16, FAM129A and HKDC1 mRNAs in response to ER stress or to a dysfunctional mitochondrial respiration. The similar induction of the three genes was observed in another tumor-derived cervical carcinoma cell line HeLa. However, in HaCaT and HEK293T cells that display transformed phenotypes, but do not originate from patient-derived tumors, the ER stress-inducing treatments resulted in an upregulation of FAM129A and HKDC1, but not KRT16 transcripts, By a luciferase reporter approach we identified a highly active ATF4-responsive element within the upstream region of the KRT16 gene. The results suggest a conditional regulation of KRT16 gene by ATF4 that may be inhibited in normal cells, but engaged during cancer progression. Potential roles of KRT16, FAM129A and HKDC1 genes upregulation in adaptive stress responses and pathologies are discussed.
Collapse
Affiliation(s)
- Alexandra G. Evstafieva
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- * E-mail: (AGE); (PMC)
| | - Irina E. Kovaleva
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria S. Shoshinova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrei V. Budanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Dublin, Ireland
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Federal Scientific Center for Research and Development of Immune-Biology Products, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (AGE); (PMC)
| |
Collapse
|
39
|
Purroy R, Britti E, Delaspre F, Tamarit J, Ros J. Mitochondrial pore opening and loss of Ca 2+ exchanger NCLX levels occur after frataxin depletion. Biochim Biophys Acta Mol Basis Dis 2018; 1864:618-631. [PMID: 29223733 DOI: 10.1016/j.bbadis.2017.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022]
Abstract
Frataxin-deficient neonatal rat cardiomyocytes and dorsal root ganglia neurons have been used as cell models of Friedreich ataxia. In previous work we show that frataxin depletion resulted in mitochondrial swelling and lipid droplet accumulation in cardiomyocytes, and compromised DRG neurons survival. Now, we show that these cells display reduced levels of the mitochondrial calcium transporter NCLX that can be restored by calcium-chelating agents and by external addition of frataxin fused to TAT peptide. Also, the transcription factor NFAT3, involved in cardiac hypertrophy and apoptosis, becomes activated by dephosphorylation in both cardiomyocytes and DRG neurons. In cardiomyocytes, frataxin depletion also results in mitochondrial permeability transition pore opening. Since the pore opening can be inhibited by cyclosporin A, we show that this treatment reduces lipid droplets and mitochondrial swelling in cardiomyocytes, restores DRG neuron survival and inhibits NFAT dephosphorylation. These results highlight the importance of calcium homeostasis and that targeting mitochondrial pore by repurposing cyclosporin A, could be envisaged as a new strategy to treat the disease.
Collapse
Affiliation(s)
- R Purroy
- Department of Ciències Mèdiques Bàsiques, Fac. Medicina, University of Lleida, IRB Lleida, Lleida, Spain
| | - E Britti
- Department of Ciències Mèdiques Bàsiques, Fac. Medicina, University of Lleida, IRB Lleida, Lleida, Spain
| | - F Delaspre
- Department of Ciències Mèdiques Bàsiques, Fac. Medicina, University of Lleida, IRB Lleida, Lleida, Spain
| | - J Tamarit
- Department of Ciències Mèdiques Bàsiques, Fac. Medicina, University of Lleida, IRB Lleida, Lleida, Spain
| | - J Ros
- Department of Ciències Mèdiques Bàsiques, Fac. Medicina, University of Lleida, IRB Lleida, Lleida, Spain.
| |
Collapse
|
40
|
Anzovino A, Chiang S, Brown BE, Hawkins CL, Richardson DR, Huang MLH. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia: An Impaired Nrf2 Response Mediated via Upregulation of Keap1 and Activation of the Gsk3β Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2858-2875. [PMID: 28935570 DOI: 10.1016/j.ajpath.2017.08.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022]
Abstract
Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a master regulator of the antioxidant response. However, studies in models of Friedreich ataxia, a neurodegenerative and cardiodegenerative disease associated with oxidative stress, reported decreased Nrf2 expression attributable to unknown mechanisms. Using a mouse conditional frataxin knockout (KO) model in the heart and skeletal muscle, we examined the Nrf2 pathway in these tissues. Frataxin KO results in fatal cardiomyopathy, whereas skeletal muscle was asymptomatic. In the KO heart, protein oxidation and a decreased glutathione/oxidized glutathione ratio were observed, but the opposite was found in skeletal muscle. Decreased total and nuclear Nrf2 and increased levels of its inhibitor, Kelch-like ECH-associated protein 1, were evident in the KO heart, but not in skeletal muscle. Moreover, a mechanism involving activation of the nuclear Nrf2 export/degradation machinery via glycogen synthase kinase-3β (Gsk3β) signaling was demonstrated in the KO heart. This process involved the following: i) increased Gsk3β activation, ii) β-transducin repeat containing E3 ubiquitin protein ligase nuclear accumulation, and iii) Fyn phosphorylation. A corresponding decrease in Nrf2-DNA-binding activity and a general decrease in Nrf2-target mRNA were observed in KO hearts. Paradoxically, protein levels of some Nrf2 antioxidant targets were significantly increased in KO mice. Collectively, cardiac frataxin deficiency reduces Nrf2 levels via two potential mechanisms: increased levels of cytosolic Kelch-like ECH-associated protein 1 and activation of Gsk3β signaling, which decreases nuclear Nrf2. These findings are in contrast to the frataxin-deficient skeletal muscle, where Nrf2 was not decreased.
Collapse
Affiliation(s)
- Amy Anzovino
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Bronwyn E Brown
- Inflammation Group, Heart Research Institute, Newtown, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Clare L Hawkins
- Inflammation Group, Heart Research Institute, Newtown, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia.
| | - Michael L-H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
41
|
Reber S, Mechtersheimer J, Nasif S, Benitez JA, Colombo M, Domanski M, Jutzi D, Hedlund E, Ruepp MD. CRISPR-Trap: a clean approach for the generation of gene knockouts and gene replacements in human cells. Mol Biol Cell 2017; 29:75-83. [PMID: 29167381 PMCID: PMC5909934 DOI: 10.1091/mbc.e17-05-0288] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023] Open
Abstract
CRISPR/Cas9-based genome editing offers the possibility to knock out almost any gene of interest in an affordable and simple manner. The most common strategy is the introduction of a frameshift into the open reading frame (ORF) of the target gene which truncates the coding sequence (CDS) and targets the corresponding transcript for degradation by nonsense-mediated mRNA decay (NMD). However, we show that transcripts containing premature termination codons (PTCs) are not always degraded efficiently and can generate C-terminally truncated proteins which might have residual or dominant negative functions. Therefore, we recommend an alternative approach for knocking out genes, which combines CRISPR/Cas9 with gene traps (CRISPR-Trap) and is applicable to ∼50% of all spliced human protein-coding genes and a large subset of lncRNAs. CRISPR-Trap completely prevents the expression of the ORF and avoids expression of C-terminal truncated proteins. We demonstrate the feasibility of CRISPR-Trap by utilizing it to knock out several genes in different human cell lines. Finally, we also show that this approach can be used to efficiently generate gene replacements allowing for modulation of protein levels for otherwise lethal knockouts (KOs). Thus, CRISPR-Trap offers several advantages over conventional KO approaches and allows for generation of clean CRISPR/Cas9-based KOs.
Collapse
Affiliation(s)
- Stefan Reber
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Jonas Mechtersheimer
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Sofia Nasif
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | | | - Martino Colombo
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Daniel Jutzi
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet,171 77 Stockholm, Sweden
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
42
|
Sasagawa S, Nishimura Y, Okabe S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R, Okamoto R, Ito M, Tanaka T. Downregulation of GSTK1 Is a Common Mechanism Underlying Hypertrophic Cardiomyopathy. Front Pharmacol 2016; 7:162. [PMID: 27378925 PMCID: PMC4905960 DOI: 10.3389/fphar.2016.00162] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and is associated with a number of potential outcomes, including impaired diastolic function, heart failure, and sudden cardiac death. Various etiologies have been described for HCM, including pressure overload and mutations in sarcomeric and non-sarcomeric genes. However, the molecular pathogenesis of HCM remains incompletely understood. In this study, we performed comparative transcriptome analysis to identify dysregulated genes common to five mouse HCM models of differing etiology: (i) mutation of myosin heavy chain 6, (ii) mutation of tropomyosin 1, (iii) expressing human phospholamban on a null background, (iv) knockout of frataxin, and (v) transverse aortic constriction. Gene-by-gene comparison identified five genes dysregulated in all five HCM models. Glutathione S-transferase kappa 1 (Gstk1) was significantly downregulated in the five models, whereas myosin heavy chain 7 (Myh7), connective tissue growth factor (Ctgf), periostin (Postn), and reticulon 4 (Rtn4) were significantly upregulated. Gene ontology comparison revealed that 51 cellular processes were significantly enriched in genes dysregulated in each transcriptome dataset. Among them, six processes (oxidative stress, aging, contraction, developmental process, cell differentiation, and cell proliferation) were related to four of the five genes dysregulated in all HCM models. GSTK1 was related to oxidative stress only, whereas the other four genes were related to all six cell processes except MYH7 for oxidative stress. Gene–gene functional interaction network analysis suggested correlative expression of GSTK1, MYH7, and actin alpha 2 (ACTA2). To investigate the implications of Gstk1 downregulation for cardiac function, we knocked out gstk1 in zebrafish using the clustered regularly interspaced short palindromic repeats/Cas9 system. We found that expression of the zebrafish homologs of MYH7, ACTA2, and actin alpha 1 were increased in the gstk1-knockout zebrafish. In vivo imaging of zebrafish expressing a fluorescent protein in cardiomyocytes showed that gstk1 deletion significantly decreased the end diastolic volume and, to a lesser extent, end systolic volume. These results suggest that downregulation of GSTK1 may be a common mechanism underlying HCM of various etiologies, possibly through increasing oxidative stress and the expression of sarcomere genes.
Collapse
Affiliation(s)
- Shota Sasagawa
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu Japan
| | - Yuhei Nishimura
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, TsuJapan; Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, TsuJapan; Mie University Medical Zebrafish Research Center, TsuJapan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, TsuJapan; Department of Bioinformatics, Mie University Life Science Research Center, TsuJapan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Koki Kawaguchi
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu Japan
| | - Reiko Kawase
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu Japan
| | - Ryuji Okamoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu Japan
| | - Toshio Tanaka
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, TsuJapan; Mie University Medical Zebrafish Research Center, TsuJapan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, TsuJapan; Department of Bioinformatics, Mie University Life Science Research Center, TsuJapan
| |
Collapse
|
43
|
Abstract
Autophagy is an important physiological process in the heart, and alterations in autophagic activity can exacerbate or mitigate injury during various pathological processes. Methods to assess autophagy have changed rapidly because the field of research has expanded. As with any new field, methods and standards for data analysis and interpretation evolve as investigators acquire experience and insight. The purpose of this review is to summarize current methods to measure autophagy, selective mitochondrial autophagy (mitophagy), and autophagic flux. We will examine several published studies where confusion arose in data interpretation, to illustrate the challenges. Finally, we will discuss methods to assess autophagy in vivo and in patients.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- From the Cedars-Sinai Heart Institute and the Barbra Streisand Women's Heart Center Cedars-Sinai Medical Center, Los Angeles, CA.
| | - Allen M Andres
- From the Cedars-Sinai Heart Institute and the Barbra Streisand Women's Heart Center Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jon Sin
- From the Cedars-Sinai Heart Institute and the Barbra Streisand Women's Heart Center Cedars-Sinai Medical Center, Los Angeles, CA
| | - David P J Taylor
- From the Cedars-Sinai Heart Institute and the Barbra Streisand Women's Heart Center Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
44
|
Martelli A, Schmucker S, Reutenauer L, Mathieu JRR, Peyssonnaux C, Karim Z, Puy H, Galy B, Hentze MW, Puccio H. Iron regulatory protein 1 sustains mitochondrial iron loading and function in frataxin deficiency. Cell Metab 2015; 21:311-323. [PMID: 25651183 DOI: 10.1016/j.cmet.2015.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/22/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022]
Abstract
Mitochondrial iron accumulation is a hallmark of diseases associated with impaired iron-sulfur cluster (Fe-S) biogenesis, such as Friedreich ataxia linked to frataxin (FXN) deficiency. The pathophysiological relevance of the mitochondrial iron loading and the underlying mechanisms are unknown. Using a mouse model of hepatic FXN deficiency in combination with mice deficient for iron regulatory protein 1 (IRP1), a key regulator of cellular iron metabolism, we show that IRP1 activation in conditions of Fe-S deficiency increases the available cytosolic labile iron pool. Surprisingly, our data indicate that IRP1 activation sustains mitochondrial iron supply and function rather than driving detrimental iron overload. Mitochondrial iron accumulation is shown to depend on mitochondrial dysfunction and heme-dependent upregulation of the mitochondrial iron importer mitoferrin-2. Our results uncover an unexpected protective role of IRP1 in pathological conditions associated with altered Fe-S metabolism.
Collapse
Affiliation(s)
- Alain Martelli
- Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; INSERM, U596, 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France; Collège de France, Chaire de génétique humaine, 67400 Illkirch, France.
| | - Stéphane Schmucker
- Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; INSERM, U596, 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France; Collège de France, Chaire de génétique humaine, 67400 Illkirch, France
| | - Laurence Reutenauer
- Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; INSERM, U596, 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France; Collège de France, Chaire de génétique humaine, 67400 Illkirch, France
| | - Jacques R R Mathieu
- Institut Cochin, INSERM, U1016, CNRS, UMR8104, Université Paris Descartes, 75014 Paris, France
| | - Carole Peyssonnaux
- Institut Cochin, INSERM, U1016, CNRS, UMR8104, Université Paris Descartes, 75014 Paris, France
| | - Zoubida Karim
- Inserm Unité 1149, Center for Research on Inflammation (CRI), Université Paris Diderot, Sorbonne Paris Cité, site Bichat, 75018 Paris, France
| | - Hervé Puy
- Inserm Unité 1149, Center for Research on Inflammation (CRI), Université Paris Diderot, Sorbonne Paris Cité, site Bichat, 75018 Paris, France; AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, 92701 Colombes, France
| | - Bruno Galy
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Hélène Puccio
- Translational Medecine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France; INSERM, U596, 67400 Illkirch, France; CNRS, UMR7104, 67400 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France; Collège de France, Chaire de génétique humaine, 67400 Illkirch, France.
| |
Collapse
|
45
|
An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14044. [PMID: 26015982 PMCID: PMC4362356 DOI: 10.1038/mtm.2014.44] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022]
Abstract
Friedreich ataxia (FRDA) is a genetic disease due to increased repeats of the GAA trinucleotide in intron 1 of the frataxin gene. This mutation leads to a reduced expression of frataxin. We have produced an adeno-associated virus (AAV)9 coding for human frataxin (AAV9-hFXN). This AAV was delivered by intraperitoneal (IP) injection to young conditionally knockout mice in which the frataxin gene had been knocked-out in some tissues during embryogenesis by breeding them with mice expressing the Cre recombinase gene under the muscle creatine kinase (MCK) or the neuron-specific enolase (NSE) promoter. In the first part of the study, different doses of virus were tested from 6 × 1011 v.p. to 6 × 109 v.p. in NSE-cre mice and all leading to an increase in life spent of the mice. The higher and the lower dose were also tested in MCK-cre mice. A single administration of the AAV9-hFXN at 6 × 1011 v.p. more than doubled the life of these mice. In fact the MCK-cre mice treated with the AAV9-hFXN were sacrificed for further molecular investigations at the age of 29 weeks without apparent symptoms. Echography analysis of the heart function clearly indicated that the cardiac systolic function was better preserved in the mice that received 6 × 1011 v.p. of AAV9-hFXN. The human frataxin protein was detected by ELISA in the heart, brain, muscles, kidney, and liver with the higher dose of virus in both mouse models. Thus, gene therapy with an AAV9-hFXN is a potential treatment of FRDA.
Collapse
|
46
|
Shan B, Xu C, Zhang Y, Xu T, Gottesfeld JM, Yates JR. Quantitative proteomic analysis identifies targets and pathways of a 2-aminobenzamide HDAC inhibitor in Friedreich's ataxia patient iPSC-derived neural stem cells. J Proteome Res 2014; 13:4558-66. [PMID: 24933366 PMCID: PMC4227551 DOI: 10.1021/pr500514r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Members
of the 2-aminobenzamide class of histone deacetylase (HDAC) inhibitors
show promise as therapeutics for the neurodegenerative diseases Friedreich’s
ataxia (FRDA) and Huntington’s disease (HD). While it is clear
that HDAC3 is one of the important targets of the 2-aminobenzamide
HDAC inhibitors, inhibition of other class I HDACs (HDACs 1 and 2)
may also be involved in the beneficial effects of these compounds
in FRDA and HD, and other HDAC interacting proteins may be impacted
by the compound. To this end, we synthesized activity-based profiling
probe (ABPP) versions of one of our HDAC inhibitors (compound 106),
and in the present study we used a quantitative proteomic method coupled
with multidimensional protein identification technology (MudPIT) to
identify the proteins captured by the ABPP 106 probe. Nuclear proteins
were extracted from FRDA patient iPSC-derived neural stem cells, and
then were reacted with control and ABPP 106 probe. After reaction,
the bound proteins were digested on the beads, and the peptides were
modified using stable isotope-labeled formaldehyde to form dimethyl
amine. The selectively bound proteins determined by mass spectrometry
were subjected to functional and pathway analysis. Our findings suggest
that the targets of compound 106 are involved not only in transcriptional
regulation but also in posttranscriptional processing of mRNA.
Collapse
Affiliation(s)
- Bing Shan
- Department of Chemical Physiology, ‡Department of Cell and Molecular biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
47
|
Perdomini M, Belbellaa B, Monassier L, Reutenauer L, Messaddeq N, Cartier N, Crystal RG, Aubourg P, Puccio H. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia. Nat Med 2014; 20:542-7. [PMID: 24705334 DOI: 10.1038/nm.3510] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/20/2014] [Indexed: 12/29/2022]
Abstract
Cardiac failure is the most common cause of mortality in Friedreich's ataxia (FRDA), a mitochondrial disease characterized by neurodegeneration, hypertrophic cardiomyopathy and diabetes. FRDA is caused by reduced levels of frataxin (FXN), an essential mitochondrial protein involved in the biosynthesis of iron-sulfur (Fe-S) clusters. Impaired mitochondrial oxidative phosphorylation, bioenergetics imbalance, deficit of Fe-S cluster enzymes and mitochondrial iron overload occur in the myocardium of individuals with FRDA. No treatment exists as yet for FRDA cardiomyopathy. A conditional mouse model with complete frataxin deletion in cardiac and skeletal muscle (Mck-Cre-Fxn(L3/L-) mice) recapitulates most features of FRDA cardiomyopathy, albeit with a more rapid and severe course. Here we show that adeno-associated virus rh10 vector expressing human FXN injected intravenously in these mice fully prevented the onset of cardiac disease. Moreover, later administration of the frataxin-expressing vector, after the onset of heart failure, was able to completely reverse the cardiomyopathy of these mice at the functional, cellular and molecular levels within a few days. Our results demonstrate that cardiomyocytes with severe energy failure and ultrastructure disorganization can be rapidly rescued and remodeled by gene therapy and establish the preclinical proof of concept for the potential of gene therapy in treating FRDA cardiomyopathy.
Collapse
Affiliation(s)
- Morgane Perdomini
- 1] Départment de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France. [2] INSERM, U596, Illkirch, France. [3] CNRS, UMR7104, Illkirch, France. [4] Université de Strasbourg, Strasbourg, France. [5] Collège de France, Chaire de génétique humaine, Illkirch, France. [6]
| | - Brahim Belbellaa
- 1] Départment de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France. [2] INSERM, U596, Illkirch, France. [3] CNRS, UMR7104, Illkirch, France. [4] Université de Strasbourg, Strasbourg, France. [5] Collège de France, Chaire de génétique humaine, Illkirch, France. [6]
| | - Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Fédération de Médecine Translationnelle, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Laurence Reutenauer
- 1] Départment de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France. [2] INSERM, U596, Illkirch, France. [3] CNRS, UMR7104, Illkirch, France. [4] Université de Strasbourg, Strasbourg, France. [5] Collège de France, Chaire de génétique humaine, Illkirch, France
| | - Nadia Messaddeq
- 1] Départment de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France. [2] INSERM, U596, Illkirch, France. [3] CNRS, UMR7104, Illkirch, France. [4] Université de Strasbourg, Strasbourg, France. [5] Collège de France, Chaire de génétique humaine, Illkirch, France
| | | | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, USA
| | - Patrick Aubourg
- 1] INSERM, U986, Le Kremlin-Bicêtre, France. [2] University Paris-Sud, Paris, France. [3] Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hélène Puccio
- 1] Départment de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France. [2] INSERM, U596, Illkirch, France. [3] CNRS, UMR7104, Illkirch, France. [4] Université de Strasbourg, Strasbourg, France. [5] Collège de France, Chaire de génétique humaine, Illkirch, France
| |
Collapse
|
48
|
Anzovino A, Lane DJR, Huang MLH, Richardson DR. Fixing frataxin: 'ironing out' the metabolic defect in Friedreich's ataxia. Br J Pharmacol 2014; 171:2174-90. [PMID: 24138602 PMCID: PMC3976629 DOI: 10.1111/bph.12470] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/17/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
The metabolically active and redox-active mitochondrion appears to play a major role in the cellular metabolism of the transition metal, iron. Frataxin, a mitochondrial matrix protein, has been identified as playing a key role in the iron metabolism of this organelle due to its iron-binding properties and is known to be essential for iron-sulphur cluster formation. However, the precise function of frataxin remains elusive. The decrease in frataxin expression, as seen in the inherited disorder Friedreich's ataxia, markedly alters cellular and mitochondrial iron metabolism in both the mitochondrion and the cell. The resulting dysregulation of iron trafficking damages affects tissues leading to neuro- and cardiodegeneration. This disease underscores the importance of iron homeostasis in the redox-active environment of the mitochondrion and the molecular players involved. Unravelling the mechanisms of altered iron metabolism in Friedreich's ataxia will help elucidate a biochemical function for frataxin. Consequently, this will enable the development of more effective and rationally designed treatments. This review will focus on the emerging function of frataxin in relation to the observed alterations in mitochondrial iron metabolism in Friedreich's ataxia. Tissue-specific alterations due to frataxin loss will also be discussed, as well as current and emerging therapeutic strategies.
Collapse
Affiliation(s)
- A Anzovino
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | - D J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of SydneySydney, NSW, Australia
| | | | - D R Richardson
- Correspondence Professor D R Richardson, Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia. E-mail:
| |
Collapse
|
49
|
Lane DJR, Mills TM, Shafie NH, Merlot AM, Saleh Moussa R, Kalinowski DS, Kovacevic Z, Richardson DR. Expanding horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the epithelial-mesenchymal transition. Biochim Biophys Acta Rev Cancer 2014; 1845:166-81. [PMID: 24472573 DOI: 10.1016/j.bbcan.2014.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022]
Abstract
Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important "Achilles' heel" for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a "double punch" mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine(®) and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial-mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the "expanding horizons" for iron chelators in selectively targeting cancer cells.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas M Mills
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nurul H Shafie
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rayan Saleh Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
50
|
Lane DJR, Huang MLH, Ting S, Sivagurunathan S, Richardson DR. Biochemistry of cardiomyopathy in the mitochondrial disease Friedreich's ataxia. Biochem J 2013; 453:321-36. [PMID: 23849057 DOI: 10.1042/bj20130079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
FRDA (Friedreich's ataxia) is a debilitating mitochondrial disorder leading to neural and cardiac degeneration, which is caused by a mutation in the frataxin gene that leads to decreased frataxin expression. The most common cause of death in FRDA patients is heart failure, although it is not known how the deficiency in frataxin potentiates the observed cardiomyopathy. The major proposed biochemical mechanisms for disease pathogenesis and the origins of heart failure in FRDA involve metabolic perturbations caused by decreased frataxin expression. Additionally, recent data suggest that low frataxin expression in heart muscle of conditional frataxin knockout mice activates an integrated stress response that contributes to and/or exacerbates cardiac hypertrophy and the loss of cardiomyocytes. The elucidation of these potential mechanisms will lead to a more comprehensive understanding of the pathogenesis of FRDA, and will contribute to the development of better treatments and therapeutics.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building, D06, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|