1
|
Li Z, Sun M, Yang R, Wang Z, Zhu Q, Zhang Y, Yang H, Meng Z, Hu L, Sui L. Mediator complex subunit 1 promotes oral squamous cell carcinoma progression by activating MMP9 transcription and suppressing CD8 + T cell antitumor immunity. J Exp Clin Cancer Res 2024; 43:270. [PMID: 39343952 PMCID: PMC11440895 DOI: 10.1186/s13046-024-03191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The role of Mediator complex subunit 1 (MED1), a pivotal transcriptional coactivator implicated in diverse biological pathways, remains unexplored in the context of oral squamous cell carcinoma (OSCC). This study aims to elucidate the contributory mechanisms and potential impact of MED1 on the progression of OSCC. METHODS The expression and clinical significance of MED1 in OSCC tissues were evaluated through the bioinformatics analyses. The effects of MED1 on the biological behavior of OSCC cancer cells were assessed both in vitro and in vivo. Dual-luciferase reporter assay, chromatin immunoprecipitation (ChIP) assay, bioinformatic analysis, CD8+ T cell isolation experiment, coculture experiment, enzyme-linked immunosorbent assay (ELISA), and flow cytometric analysis were employed to elucidate the underlying mechanism through which MED1 operates in the progression of OSCC. RESULTS MED1 exhibited upregulation in both OSCC tissues and multiple OSCC cell lines, which correlated with decreased overall survival in patients. In vitro experiments demonstrated that knockdown of MED1 in metastatic OSCC cell lines SCC-9 and UPCI-SCC-154 hindered cell migration and invasion, while overexpression of MED1 promoted these processes. Whereas, MED1 knockdown had no impact on proliferation of cell lines mentioned above. In vivo studies further revealed that downregulation of MED1 effectively suppressed distant metastasis in OSCC. Mechanistically, MED1 enhanced the binding of transcription factors c-Jun and c-Fos to the matrix metalloprotein 9 (MMP9) promoters, resulting in a significant upregulation of MMP9 transcription. This process contributes to the migration and invasion of SCC-9 and UPCI-SCC-154 cells. Furthermore, MED1 modulated the expression of programmed death-ligand 1 (PD-L1) through the Notch signaling pathway, consequently impacting the tumor-killing capacity of CD8+ T cells in the tumor microenvironment. CONCLUSIONS Our findings indicate that MED1 plays a pivotal role in OSCC progression through the activation of MMP9 transcription and suppression of CD8+ T cell antitumor immunity, suggesting that MED1 may serve as a novel prognostic marker and therapeutic target in OSCC.
Collapse
Affiliation(s)
- Zhe Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Mengke Sun
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Ruimeng Yang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zheng Wang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Qianyu Zhu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China
| | - Yue Zhang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Haosun Yang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institue of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China.
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University Institute of Stomatology, 12 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
2
|
Wasik MA, Kim PM, Nejati R. Diverse and reprogrammable mechanisms of malignant cell transformation in lymphocytes: pathogenetic insights and translational implications. Front Oncol 2024; 14:1383741. [PMID: 38638855 PMCID: PMC11024630 DOI: 10.3389/fonc.2024.1383741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
While normal B- and T-lymphocytes require antigenic ligands to become activated via their B- and T-cell receptors (BCR and TCR, respectively), B- and T-cell lymphomas show the broad spectrum of cell activation mechanisms regarding their dependence on BCR or TCR signaling, including loss of such dependence. These mechanisms are generally better understood and characterized for B-cell than for T-cell lymphomas. While some lymphomas, particularly the indolent, low-grade ones remain antigen-driven, other retain dependence on activation of their antigen receptors seemingly in an antigen-independent manner with activating mutations of the receptors playing a role. A large group of lymphomas, however, displays complete antigen receptor independence, which can develop gradually, in a stepwise manner or abruptly, through involvement of powerful oncogenes. Whereas some of the lymphomas undergo activating mutations of genes encoding proteins involved in signaling cascades downstream of the antigen-receptors, others employ activation mechanisms capable of substituting for these BCR- or TCR-dependent signaling pathways, including reliance on signaling pathways physiologically activated by cytokines. Finally, lymphomas can develop cell-lineage infidelity and in the extreme cases drastically rewire their cell activation mechanisms and engage receptors and signaling pathways physiologically active in hematopoietic stem cells or non-lymphoid cells. Such profound reprograming may involve partial cell dedifferentiation or transdifferentiation towards histocytes, dendritic, or mesodermal cells with various degree of cell maturation along these lineages. In this review, we elaborate on these diverse pathogenic mechanisms underlying cell plasticity and signaling reprogramming as well as discuss the related diagnostic and therapeutic implications and challenges.
Collapse
Affiliation(s)
- Mariusz A. Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Patricia M. Kim
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
3
|
Zhang Q, Basappa J, Wang HY, Nunez-Cruz S, Lobello C, Wang S, Liu X, Chekol S, Guo L, Ziober A, Nejati R, Shestov A, Feldman M, Glickson JD, Turner SD, Blair IA, Van Dang C, Wasik MA. Chimeric kinase ALK induces expression of NAMPT and selectively depends on this metabolic enzyme to sustain its own oncogenic function. Leukemia 2023; 37:2436-2447. [PMID: 37773266 PMCID: PMC11152057 DOI: 10.1038/s41375-023-02038-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
As we show in this study, NAMPT, the key rate-limiting enzyme in the salvage pathway, one of the three known pathways involved in NAD synthesis, is selectively over-expressed in anaplastic T-cell lymphoma carrying oncogenic kinase NPM1::ALK (ALK + ALCL). NPM1::ALK induces expression of the NAMPT-encoding gene with STAT3 acting as transcriptional activator of the gene. Inhibition of NAMPT affects ALK + ALCL cells expression of numerous genes, many from the cell-signaling, metabolic, and apoptotic pathways. NAMPT inhibition also functionally impairs the key metabolic and signaling pathways, strikingly including enzymatic activity and, hence, oncogenic function of NPM1::ALK itself. Consequently, NAMPT inhibition induces cell death in vitro and suppresses ALK + ALCL tumor growth in vivo. These results indicate that NAMPT is a novel therapeutic target in ALK + ALCL and, possibly, other similar malignancies. Targeting metabolic pathways selectively activated by oncogenic kinases to which malignant cells become "addicted" may become a novel therapeutic approach to cancer, alternative or, more likely, complementary to direct inhibition of the kinase enzymatic domain. This potential therapy to simultaneously inhibit and metabolically "starve" oncogenic kinases may not only lead to higher response rates but also delay, or even prevent, development of drug resistance, frequently seen when kinase inhibitors are used as single agents.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johnvesly Basappa
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hong Y Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cosimo Lobello
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shengchun Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Xiaobin Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seble Chekol
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Guo
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Ziober
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reza Nejati
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Shestov
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerry D Glickson
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ian A Blair
- Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Chi Van Dang
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Wistar Institute, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Mai D, Johnson O, Reff J, Fan TJ, Scholler J, Sheppard NC, June CH. Combined disruption of T cell inflammatory regulators Regnase-1 and Roquin-1 enhances antitumor activity of engineered human T cells. Proc Natl Acad Sci U S A 2023; 120:e2218632120. [PMID: 36920923 PMCID: PMC10041166 DOI: 10.1073/pnas.2218632120] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
A fundamental limitation of T cell therapies in solid tumors is loss of inflammatory effector functions, such as cytokine production and proliferation. Here, we target a regulatory axis of T cell inflammatory responses, Regnase-1 and Roquin-1, to enhance antitumor responses in human T cells engineered with two clinical-stage immune receptors. Building on previous observations of Regnase-1 or Roquin-1 knockout in murine T cells or in human T cells for hematological malignancy models, we found that knockout of either Regnase-1 or Roquin-1 alone enhances antitumor function in solid tumor models, but that knockout of both Regnase-1 and Roquin-1 increases function further than knockout of either regulator alone. Double knockout of Regnase-1 and Roquin-1 increased resting T cell inflammatory activity and led to at least an order of magnitude greater T cell expansion and accumulation in xenograft mouse models, increased cytokine activity, and persistence. However double knockout of Regnase-1 and Roguin-1 also led to a lymphoproliferative syndrome and toxicity in some mice. These results suggest that regulators of immune inflammatory functions may be interesting targets to modulate to improve antitumor responses.
Collapse
Affiliation(s)
- David Mai
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA19104
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Omar Johnson
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jordan Reff
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ting-Jia Fan
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Neil C. Sheppard
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
5
|
Zhang Q, Wang HY, Nayak A, Nunez-Cruz S, Slupianek A, Liu X, Basappa J, Fan JS, Chekol S, Nejati R, Bogusz AM, Turner SD, Swaminathan K, Wasik MA. Induction of Transcriptional Inhibitor HES1 and the Related Repression of Tumor-Suppressor TXNIP Are Important Components of Cell-Transformation Program Imposed by Oncogenic Kinase NPM-ALK. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1186-1198. [PMID: 35640677 PMCID: PMC9379685 DOI: 10.1016/j.ajpath.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
This study reports that hairy and enhancer of split homolog-1 (HES1), known to repress gene transcription in progenitor cells of several cell lineages, was strongly expressed in cells and tissues of T-cell lymphoma expressing the oncogenic chimeric tyrosine kinase nucleophosmin (NPM)-anaplastic lymphoma kinase [ALK; ALK+ T-cell lymphoma (TCL)]. The structural analysis of the Orange domain of HES1 indicated that HES1 formed a highly stable homodimer. Of note, repression of HES1 expression led to inhibition of ALK+ TCL cell growth in vivo. The expression of the HES1 gene was induced by NPM-ALK through activation of STAT3, which bound to the gene's promoter and induced the gene's transcription. NPM-ALK also directly phosphorylated HES1 protein. In turn, HES1 up-regulated and down-regulated in ALK+ TCL cells, the expression of numerous genes, protein products of which are involved in key cell functions, such as cell proliferation and viability. Among the genes inhibited by HES1 was thioredoxin-interacting protein (TXNIP), encoding a protein implicated in promotion of cell death in various types of cells. Accordingly, ALK+ TCL cells and tissues lacked expression of TXNIP, and its transcription was co-inhibited by HES1 and STAT3 in an NPM-ALK-dependent manner. Finally, the induced expression of TXNIP induced massive apoptotic cell death of ALK+ TCL cells. The results reveal a novel NPM-ALK-controlled pro-oncogenic regulatory network and document an important role of HES and TXNIP in the NPM-ALK-driven oncogenesis, with the former protein displaying oncogenic and the latter tumor suppressor properties.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Y Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anindita Nayak
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Artur Slupianek
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xiaobin Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Johnvesly Basappa
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Seble Chekol
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Agata M Bogusz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
6
|
Babin L, Darchen A, Robert E, Aid Z, Borry R, Soudais C, Piganeau M, De Cian A, Giovannangeli C, Bawa O, Rigaud C, Scoazec JY, Couronné L, Veleanu L, Cieslak A, Asnafi V, Sibon D, Lamant L, Meggetto F, Mercher T, Brunet E. De novo generation of the NPM-ALK fusion recapitulates the pleiotropic phenotypes of ALK+ ALCL pathogenesis and reveals the ROR2 receptor as target for tumor cells. Mol Cancer 2022; 21:65. [PMID: 35246138 PMCID: PMC8895835 DOI: 10.1186/s12943-022-01520-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 11/12/2022] Open
Abstract
Background Anaplastic large cell lymphoma positive for ALK (ALK+ ALCL) is a rare type of non-Hodgkin lymphoma. This lymphoma is caused by chromosomal translocations involving the anaplastic lymphoma kinase gene (ALK). In this study, we aimed to identify mechanisms of transformation and therapeutic targets by generating a model of ALK+ ALCL lymphomagenesis ab initio with the specific NPM-ALK fusion. Methods We performed CRISPR/Cas9-mediated genome editing of the NPM-ALK chromosomal translocation in primary human activated T lymphocytes. Results Both CD4+ and CD8+ NPM-ALK-edited T lymphocytes showed rapid and reproducible competitive advantage in culture and led to in vivo disease development with nodal and extra-nodal features. Murine tumors displayed the phenotypic diversity observed in ALK+ ALCL patients, including CD4+ and CD8+ lymphomas. Assessment of transcriptome data from models and patients revealed global activation of the WNT signaling pathway, including both canonical and non-canonical pathways, during ALK+ ALCL lymphomagenesis. Specifically, we found that the WNT signaling cell surface receptor ROR2 represented a robust and genuine marker of all ALK+ ALCL patient tumor samples. Conclusions In this study, ab initio modeling of the ALK+ ALCL chromosomal translocation in mature T lymphocytes enabled the identification of new therapeutic targets. As ROR2 targeting approaches for other cancers are under development (including lung and ovarian tumors), our findings suggest that ALK+ ALCL cases with resistance to current therapies may also benefit from ROR2 targeting strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01520-0.
Collapse
Affiliation(s)
- Loélia Babin
- Laboratory of the « Genome Dynamics in the Immune System », Équipe Labellisée La Ligue Contre Le Cancer, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Alice Darchen
- Laboratory of the « Genome Dynamics in the Immune System », Équipe Labellisée La Ligue Contre Le Cancer, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Elie Robert
- Programme PEDIAC, Equipe labellisée Ligue Contre le Cancer, OPALE Carnot Institute, Université Paris Saclay, INSERM Unité U1170, Gustave Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94805, Villejuif, France
| | - Zakia Aid
- Programme PEDIAC, Equipe labellisée Ligue Contre le Cancer, OPALE Carnot Institute, Université Paris Saclay, INSERM Unité U1170, Gustave Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94805, Villejuif, France
| | - Rosalie Borry
- Laboratory of the « Genome Dynamics in the Immune System », Équipe Labellisée La Ligue Contre Le Cancer, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Université de Paris, INSERM UMR1163, Institut Imagine, Paris, France
| | - Marion Piganeau
- INSERM U1154, CNRS UMR 7196, Sorbonne Universités, Museum National d'Histoire Naturelle, 43 rue Cuvier, F-75231, Paris, France
| | - Anne De Cian
- INSERM U1154, CNRS UMR 7196, Sorbonne Universités, Museum National d'Histoire Naturelle, 43 rue Cuvier, F-75231, Paris, France
| | - Carine Giovannangeli
- INSERM U1154, CNRS UMR 7196, Sorbonne Universités, Museum National d'Histoire Naturelle, 43 rue Cuvier, F-75231, Paris, France
| | - Olivia Bawa
- PETRA platform, AMMICa, University Paris Saclay, CNRS-UMS 3655 Inserm US23, Gustave Roussy, 94805, Villejuif, France
| | - Charlotte Rigaud
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94805, Villejuif, France
| | - Jean-Yves Scoazec
- Department of Pathology, AMMICa CNRS UMS3655 Inserm US23 Université Paris Saclay, Gustave Roussy, 94805, Villejuif, France
| | - Lucile Couronné
- Laboratory of Onco Hematology, Hôpital Necker - Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP); Laboratory of Normal and pathological lymphoid differentiation, University of Paris, INSERM U1151, INEM Institute, Paris, France
| | - Layla Veleanu
- Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM U1151, and Laboratory of Onco-Hematology, AP-HP Hôpital Necker Enfants-Malades, Paris, France
| | - Agata Cieslak
- Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM U1151, and Laboratory of Onco-Hematology, AP-HP Hôpital Necker Enfants-Malades, Paris, France
| | - Vahid Asnafi
- Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM U1151, and Laboratory of Onco-Hematology, AP-HP Hôpital Necker Enfants-Malades, Paris, France
| | - David Sibon
- Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM U1151, and Laboratory of Onco-Hematology, AP-HP Hôpital Necker Enfants-Malades, Paris, France
| | - Laurence Lamant
- Université Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer-TOUCAN, Équipe Labellisée La Ligue Contre Le Cancer, CNRS UMR5071, Inserm, UMR1037, CRCT, F-31000, Toulouse, France
| | - Fabienne Meggetto
- Université Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer-TOUCAN, Équipe Labellisée La Ligue Contre Le Cancer, CNRS UMR5071, Inserm, UMR1037, CRCT, F-31000, Toulouse, France
| | - Thomas Mercher
- Programme PEDIAC, Equipe labellisée Ligue Contre le Cancer, OPALE Carnot Institute, Université Paris Saclay, INSERM Unité U1170, Gustave Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94805, Villejuif, France.
| | - Erika Brunet
- Laboratory of the « Genome Dynamics in the Immune System », Équipe Labellisée La Ligue Contre Le Cancer, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Institut Imagine, Paris, France.
| |
Collapse
|
7
|
Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL. Cancers (Basel) 2021; 13:cancers13236003. [PMID: 34885113 PMCID: PMC8656581 DOI: 10.3390/cancers13236003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In general, the non-Hodgkin lymphoma (NHL), anaplastic large cell lymphoma (ALCL) diagnosed in childhood has a good survival outcome when treated with multi-agent chemotherapy. However, side effects of treatment are common, and outcomes are poorer after relapse, which occurs in up to 30% of cases. New drugs are required that are more effective and have fewer side effects. Targeted therapies are potential solutions to these problems, however, the development of resistance may limit their impact. This review summarises the potential resistance mechanisms to these targeted therapies. Abstract Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma (LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90% but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs. Therefore, targeted therapies are of interest as potential solutions to these problems. However, the major problem with all targeted agents is the development of resistance. Mechanisms of resistance are not well understood, but increased knowledge will facilitate optimal management strategies through improving our understanding of when to select each targeted agent, and when a combinatorial approach may be helpful. This review summarises currently available knowledge regarding resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL. Specifically, we outline where gaps in knowledge exist, and further investigation is required in order to find a solution to the clinical problem of drug resistance in ALCL.
Collapse
|
8
|
Pawlicki JM, Cookmeyer DL, Maseda D, Everett JK, Wei F, Kong H, Zhang Q, Wang HY, Tobias JW, Walter DM, Zullo KM, Javaid S, Watkins A, Wasik MA, Bushman FD, Riley JL. NPM-ALK-Induced Reprogramming of Mature TCR-Stimulated T Cells Results in Dedifferentiation and Malignant Transformation. Cancer Res 2021; 81:3241-3254. [PMID: 33619116 PMCID: PMC8260452 DOI: 10.1158/0008-5472.can-20-2297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Fusion genes including NPM-ALK can promote T-cell transformation, but the signals required to drive a healthy T cell to become malignant remain undefined. In this study, we introduce NPM-ALK into primary human T cells and demonstrate induction of the epithelial-to-mesenchymal transition (EMT) program, attenuation of most T-cell effector programs, reemergence of an immature epigenomic profile, and dynamic regulation of c-Myc, E2F, and PI3K/mTOR signaling pathways early during transformation. A mutant of NPM-ALK failed to bind several signaling complexes including GRB2/SOS, SHC1, SHC4, and UBASH3B and was unable to transform T cells. Finally, T-cell receptor (TCR)-generated signals were required to achieve T-cell transformation, explaining how healthy individuals can harbor T cells with NPM-ALK translocations. These findings describe the fundamental mechanisms of NPM-ALK-mediated oncogenesis and may serve as a model to better understand factors that regulate tumor formation. SIGNIFICANCE: This investigation into malignant transformation of T cells uncovers a requirement for TCR triggering, elucidates integral signaling complexes nucleated by NPM-ALK, and delineates dynamic transcriptional changes as a T cell transforms.See related commentary by Spasevska and Myklebust, p. 3160.
Collapse
MESH Headings
- Apoptosis
- Cell Dedifferentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cellular Reprogramming
- Humans
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/immunology
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Phosphorylation
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jan M Pawlicki
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Cookmeyer
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Damian Maseda
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John K Everett
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fang Wei
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Kong
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qian Zhang
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Y Wang
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Walter
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly M Zullo
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah Javaid
- Merck Research Laboratories, Boston, Massachusetts
| | | | - Mariusz A Wasik
- Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James L Riley
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania.
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Spasevska I, Myklebust JH. What It Takes to Transform a T Cell. Cancer Res 2021; 81:3160-3161. [PMID: 34224376 DOI: 10.1158/0008-5472.can-21-0784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
The role of fusion genes and cancer driver genes in malignant transformation has traditionally been explored using transgenic or chimeric mouse models. It has been challenging to develop models that fully resemble the characteristics and morphology of human cancers. This applies to anaplastic large-cell lymphoma (ALCL), a malignancy classified as a peripheral T-cell lymphoma. It is still unclear at which stage of T-cell development ALCL can occur, as well as the early molecular events required for malignant transformation. In this issue of Cancer Research, Pawlicki and colleagues introduced the NPM-ALK fusion gene and mutant variants into primary T cells from healthy donors. By monitoring transduced T-cell clones over time, they demonstrated that transformed T cells undergo a progressive loss of T-cell identity accompanied with upregulation of epithelial-to-mesenchymal transition program and reemergence of an immature, thymic profile. Introduction of NPM-ALK was, however, not sufficient to convert healthy T cells to malignant clones, as this process required activation of T-cell receptor signaling. The study sets the stage for modeling early genetic changes in human tumors.See related article by Pawlicki et al., p. 3241.
Collapse
Affiliation(s)
- Ivana Spasevska
- KG Jebsen Centre for B-cell Malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - June H Myklebust
- KG Jebsen Centre for B-cell Malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Congras A, Hoareau-Aveilla C, Caillet N, Tosolini M, Villarese P, Cieslak A, Rodriguez L, Asnafi V, Macintyre E, Egger G, Brousset P, Lamant L, Meggetto F. ALK-transformed mature T lymphocytes restore early thymus progenitor features. J Clin Invest 2021; 130:6395-6408. [PMID: 33141118 DOI: 10.1172/jci134990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL) is a mature T cell neoplasm that often expresses the CD4+ T cell surface marker. It usually harbors the t(2;5) (p23;q35) translocation, leading to the ectopic expression of NPM-ALK, a chimeric tyrosine kinase. We demonstrated that in vitro transduction of normal human CD4+ T lymphocytes with NPM-ALK results in their immortalization and malignant transformation. The tumor cells displayed morphological and immunophenotypical characteristics of primary patient-derived anaplastic large cell lymphomas. Cell growth, proliferation, and survival were strictly dependent on NPM-ALK activity and include activation of the key factors STAT3 and DNMT1 and expression of CD30 (the hallmark of anaplastic large-cell lymphoma). Implantation of NPM-ALK-transformed CD4+ T lymphocytes into immunodeficient mice resulted in the formation of tumors indistinguishable from patients' anaplastic large cell lymphomas. Integration of "Omic" data revealed that NPM-ALK-transformed CD4+ T lymphocytes and primary NPM-ALK+ ALCL biopsies share similarities with early T cell precursors. Of note, these NPM-ALK+ lymphoma cells overexpress stem cell regulators (OCT4, SOX2, and NANOG) and HIF2A, which is known to affect hematopoietic precursor differentiation and NPM-ALK+ cell growth. Altogether, for the first time our findings suggest that NPM-ALK could restore progenitor-like features in mature CD30+ peripheral CD4+ T cells, in keeping with a thymic progenitor-like pattern.
Collapse
Affiliation(s)
- Annabelle Congras
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Coralie Hoareau-Aveilla
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Nina Caillet
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France
| | - Marie Tosolini
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Pôle Technologique du CRCT, Plateau Bioinformatique, Toulouse, France
| | - Patrick Villarese
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Agata Cieslak
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Laura Rodriguez
- Etablissement Français du Sang, Nouvelle Aquitaine, INSERM U1035, Université de Bordeaux, Bordeaux, France
| | - Vahid Asnafi
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Elisabeth Macintyre
- Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France
| | - Gerda Egger
- Department of Pathology, Medical University Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Pierre Brousset
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France
| | - Laurence Lamant
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France.,European Research Initiative on ALK-Related Malignancies, Cambridge, United Kingdom, Vienna, Austria, and Toulouse, France
| | - Fabienne Meggetto
- INSERM, UMR1037 CRCT, F-31000, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000, Toulouse, France.,CNRS, ERL5294 UMR1037 CRCT, F-31000, Toulouse, France.,Equipe Labellisée LIGUE 2017, Toulouse, France.,Hematology and INSERM1151, Institut Necker-Enfants Malades, University Sorbonne Paris Cité at Descartes and Assistance Publique-Hopitaux de Paris, Paris, France.,Institut Carnot Lymphome, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer and after Cancer (Labex TOUCAN), Toulouse, France.,European Research Initiative on ALK-Related Malignancies, Cambridge, United Kingdom, Vienna, Austria, and Toulouse, France
| |
Collapse
|
11
|
NPM-ALK: A Driver of Lymphoma Pathogenesis and a Therapeutic Target. Cancers (Basel) 2021; 13:cancers13010144. [PMID: 33466277 PMCID: PMC7795840 DOI: 10.3390/cancers13010144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anaplastic lymphoma kinase (ALK) is a tyrosine kinase associated with Anaplastic Large Cell lymphoma (ALCL) through oncogenic translocations mainly NPM-ALK. Chemotherapy is effective in ALK(+) ALCL patients and induces remission rates of approximately 80%. The remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. Different classes of ALK tyrosine kinase inhibitors (TKI) are available but used exclusively for EML4-ALK (+) lung cancers. The significant toxicities of most ALK inhibitors explain the delay in their use in pediatric ALCL patients. Some ALCL patients do not respond to the first generation TKI or develop an acquired resistance. Combination therapy with ALK inhibitors in ALCL is the current challenge. Abstract Initially discovered in anaplastic large cell lymphoma (ALCL), the ALK anaplastic lymphoma kinase is a tyrosine kinase which is affected in lymphomas by oncogenic translocations, mainly NPM-ALK. To date, chemotherapy remains a viable option in ALCL patients with ALK translocations as it leads to remission rates of approximately 80%. However, the remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. It is therefore crucial to identify new and better treatment options. Nowadays, different classes of ALK tyrosine kinase inhibitors (TKI) are available and used exclusively for EML4-ALK (+) lung cancers. In fact, the significant toxicities of most ALK inhibitors explain the delay in their use in ALCL patients, who are predominantly children. Moreover, some ALCL patients do not respond to Crizotinib, the first generation TKI, or develop an acquired resistance months following an initial response. Combination therapy with ALK inhibitors in ALCL is the current challenge.
Collapse
|
12
|
B7-H3 Chimeric Antigen Receptor Redirected T Cells Target Anaplastic Lymphoma Kinase-Positive Anaplastic Large Cell Lymphoma. Cancers (Basel) 2020; 12:cancers12123815. [PMID: 33348781 PMCID: PMC7766167 DOI: 10.3390/cancers12123815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Although chemotherapy is associated with high relapse rates and numerous side effects, it is still used as the front line treatment of anaplastic large cell lymphoma (ALCL). Therefore, alternative treatment options for ALCL are needed. In this study, we show that B7-H3 is a novel and promising target in ALCLs, and demonstrate that B7-H3 directed chimeric antigen receptor (CAR) T cells have therapeutic potency in controlling ALCL tumor growth. Abstract Potent CAR-T therapies that target appropriate antigens can benefit the treatment of anaplastic lymphoma kinase-positive (ALK+) anaplastic large cell lymphoma (ALCL), which is the most common subtype of T cell lymphoma. In this study, we observed overexpression of B7-H3 in ALCL cell lines derived from clinical samples and differential expression of B7-H3 in an ALK-induced T cell transformation model. A B7-H3-redirected CAR based on scFv from mAb 376.96 was developed. B7-H3 CAR-T cells showed strong cytotoxicity and cytokine secretion against target ALCL cells (SUP-M2, SU-DHL-1, and Karpas 299) in vitro. Furthermore, the B7-H3 CAR-T cells exhibited proliferative capacity and a memory phenotype upon repeated antigen stimulation. We demonstrated that B7-H3 CAR-T cells could promptly eradicate ALCL in murine xenografts. Taken together, B7-H3 is a novel and promising target in ALCLs and B7-H3 CAR-T may be a viable treatment option for ALCL.
Collapse
|
13
|
Hu W, Zi Z, Jin Y, Li G, Shao K, Cai Q, Ma X, Wei F. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother 2019; 68:365-377. [PMID: 30523370 PMCID: PMC11028344 DOI: 10.1007/s00262-018-2281-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 12/01/2018] [Indexed: 12/30/2022]
Abstract
The interaction between programmed cell death protein 1 (PD-1) on activated T cells and its ligands on a target tumour may limit the capacity of chimeric antigen receptor (CAR) T cells to eradicate solid tumours. PD-1 blockade could potentially enhance CAR T cell function. Here, we show that mesothelin is overexpressed in human triple-negative breast cancer cells and can be targeted by CAR T cells. To overcome the suppressive effect of PD-1 on CAR T cells, we utilized CRISPR/Cas9 ribonucleoprotein-mediated editing to disrupt the programmed cell death-1 (PD-1) gene locus in human primary T cells, resulting in a significantly reduced PD-1hi population. This reduction had little effect on CAR T cell proliferation but strongly augmented CAR T cell cytokine production and cytotoxicity towards PD-L1-expressing cancer cells in vitro. CAR T cells with PD-1 disruption show enhanced tumour control and relapse prevention in vivo when compared with CAR T cells with or without αPD-1 antibody blockade. Our study demonstrates a potential advantage of integrated immune checkpoint blockade with CAR T cells in controlling solid tumours and provides an alternative CAR T cell strategy for adoptive transfer therapy.
Collapse
Affiliation(s)
- Wanghong Hu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Zhenguo Zi
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Yanling Jin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Gaoxin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Kang Shao
- Affiliated Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiliang Cai
- MOE and MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaojing Ma
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
| |
Collapse
|
14
|
Gambi G, Di Simone E, Basso V, Ricci L, Wang R, Verma A, Elemento O, Ponzoni M, Inghirami G, Icardi L, Mondino A. The Transcriptional Regulator Sin3A Contributes to the Oncogenic Potential of STAT3. Cancer Res 2019; 79:3076-3087. [PMID: 30692217 DOI: 10.1158/0008-5472.can-18-0359] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/14/2018] [Accepted: 01/23/2019] [Indexed: 11/16/2022]
Abstract
Epigenetic silencing of promoter and enhancer regions is a common phenomenon in malignant cells. The transcription factor STAT3 is aberrantly activated in several tumors, where its constitutive acetylation accounts for the transcriptional repression of a number of tumor suppressor genes (TSG) via molecular mechanisms that remain to be understood. Using nucleophosmin-anaplastic lymphoma kinase-positive (NPM-ALK+) anaplastic large-cell lymphoma (ALCL) as model system, we found in cells and patient-derived tumor xenografts that STAT3 is constitutively acetylated as a result of ALK activity. STAT3 acetylation relied on intact ALK-induced PI3K- and mTORC1-dependent signaling and was sensitive to resveratrol. Resveratrol lowered STAT3 acetylation, rescued TSG expression, and induced ALCL apoptotic cell death. STAT3 constitutively bound the Sin3A transcriptional repressor complex, and both STAT3 and Sin3A bound the promoter region of silenced TSG via a resveratrol-sensitive mechanism. Silencing SIN3A caused reexpression of TSG, induced ALCL apoptotic cell death in vitro, and hindered ALCL tumorigenic potential in vivo. A constitutive STAT3-Sin3A interaction was also found in breast adenocarcinoma cells and proved critical for TSG silencing and cell survival. Collectively, these results suggest that oncogene-driven STAT3 acetylation and its constitutive association with Sin3A represent novel and concomitant events contributing to STAT3 oncogenic potential. SIGNIFICANCE: This study delineates the transcriptional regulatory complex Sin3A as a mediator of STAT3 transcriptional repressor activity and identifies the STAT3/Sin3A axis as a druggable target to antagonize STAT3-addicted tumors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3076/F1.large.jpg.See related commentary by Monteleone and Poli, p. 3031.
Collapse
Affiliation(s)
- Giovanni Gambi
- Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Di Simone
- Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Basso
- Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Ricci
- Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rui Wang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Akanksha Verma
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York.,Institute for Precision Medicine, Weill Cornell Medical College, New York, New York.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York.,Institute for Precision Medicine, Weill Cornell Medical College, New York, New York.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Maurilio Ponzoni
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.,Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Turin, Turin, Italy.,Department of Pathology and NYU Cancer Center, New York University School of Medicine, New York, New York
| | - Laura Icardi
- Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
15
|
Abstract
The MYC proto-oncogene is a gene product that coordinates the transcriptional regulation of a multitude of genes that are essential to cellular programs required for normal as well as neoplastic cellular growth and proliferation, including cell cycle, self-renewal, survival, cell growth, metabolism, protein and ribosomal biogenesis, and differentiation. Here, we propose that MYC regulates these programs in a manner that is coordinated with a global influence on the host immune response. MYC had been presumed to contribute to tumorigenesis through tumor cell-intrinsic influences. More recently, MYC expression in tumor cells has been shown to regulate the tumor microenvironment through effects on both innate and adaptive immune effector cells and immune regulatory cytokines. Then, MYC was shown to regulate the expression of the immune checkpoint gene products CD47 and programmed death-ligand 1. Similarly, other oncogenes, which are known to modulate MYC, have been shown to regulate immune checkpoints. Hence, MYC may generally prevent highly proliferative cells from eliciting an immune response. MYC-driven neoplastic cells have coopted this mechanism to bypass immune detection. Thus, MYC inactivation can restore the immune response against a tumor. MYC-induced tumors may be particularly sensitive to immuno-oncology therapeutic interventions.
Collapse
|
16
|
Tabbò F, Pizzi M, Kyriakides PW, Ruggeri B, Inghirami G. Oncogenic kinase fusions: an evolving arena with innovative clinical opportunities. Oncotarget 2018; 7:25064-86. [PMID: 26943776 PMCID: PMC5041889 DOI: 10.18632/oncotarget.7853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/24/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer biology relies on intrinsic and extrinsic deregulated pathways, involving a plethora of intra-cellular and extra-cellular components. Tyrosine kinases are frequently deregulated genes, whose aberrant expression is often caused by major cytogenetic events (e.g. chromosomal translocations). The resulting tyrosine kinase fusions (TKFs) prompt the activation of oncogenic pathways, determining the biological and clinical features of the associated tumors. First reported half a century ago, oncogenic TKFs are now found in a large series of hematologic and solid tumors. The molecular basis of TKFs has been thoroughly investigated and tailored therapies against recurrent TKFs have recently been developed. This review illustrates the biology of oncogenic TKFs and their role in solid as well as hematological malignancies. We also address the therapeutic implications of TKFs and the many open issues concerning their clinical impact.
Collapse
Affiliation(s)
- Fabrizio Tabbò
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marco Pizzi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Peter W Kyriakides
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bruce Ruggeri
- Pre-Clinical Discovery Biology, Incyte Corporation, Wilmington, DE, USA
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
MYC: Master Regulator of Immune Privilege. Trends Immunol 2017; 38:298-305. [PMID: 28233639 DOI: 10.1016/j.it.2017.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/23/2022]
Abstract
Cancers are often initiated by genetic events that activate proto-oncogenes or inactivate tumor-suppressor genes. These events are also crucial for sustained tumor cell proliferation and survival, a phenomenon described as oncogene addiction. In addition to this cell-intrinsic role, recent evidence indicates that oncogenes also directly regulate immune responses, leading to immunosuppression. Expression of many oncogenes or loss of tumor suppressors induces the expression of immune checkpoints that regulate the immune response, such as PD-L1. We discuss here how oncogenes, and in particular MYC, suppress immune surveillance, and how oncogene-targeted therapies may restore the immune response against tumors.
Collapse
|
18
|
Nucleophosmin-anaplastic lymphoma kinase: the ultimate oncogene and therapeutic target. Blood 2016; 129:823-831. [PMID: 27879258 DOI: 10.1182/blood-2016-05-717793] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/06/2016] [Indexed: 12/12/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase physiologically expressed by fetal neural cells. However, aberrantly expressed ALK is involved in the pathogenesis of diverse malignancies, including distinct types of lymphoma, lung carcinoma, and neuroblastoma. The aberrant ALK expression in nonneural cells results from chromosomal translocations that create novel fusion proteins. These protein hybrids compose the proximal part of a partner gene, including its promoter region, and the distal part of ALK, including the coding sequence for the entire kinase domain. ALK was first identified in a subset of T-cell lymphomas with anaplastic large cell lymphoma (ALCL) morphology (ALK+ ALCL), the vast majority of which harbor the well-characterized nucleophosmin (NPM)-ALK fusion protein. NPM-ALK co-opts several intracellular signal transduction pathways, foremost being the STAT3 pathway, normally activated by cytokines from the interleukin-2 (IL-2) family to promote cell proliferation and to inhibit apoptosis. Many genes and proteins modulated by NPM-ALK are also involved in evasion of antitumor immune response, protection from hypoxia, angiogenesis, DNA repair, cell migration and invasiveness, and cell metabolism. In addition, NPM-ALK uses epigenetic silencing mechanisms to downregulate tumor suppressor genes to maintain its own expression. Importantly, NPM-ALK is capable of transforming primary human CD4+ T cells into immortalized cell lines indistinguishable from patient-derived ALK+ ALCL. Preliminary clinical studies indicate that inhibition of NPM-ALK induces long-lasting complete remissions in a large subset of heavily pretreated adult patients and the vast majority of children with high-stage ALK+ ALCL. Combining ALK inhibition with other novel therapeutic modalities should prove even more effective.
Collapse
|
19
|
Herling M, Rengstl B, Scholtysik R, Hartmann S, Küppers R, Hansmann ML, Diebner HH, Roeder I, Abken H, Newrzela S, Kirberg J. Concepts in mature T-cell lymphomas - highlights from an international joint symposium on T-cell immunology and oncology<sup/>. Leuk Lymphoma 2016; 58:788-796. [PMID: 27643643 DOI: 10.1080/10428194.2016.1222381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Growing attention in mature T-cell lymphomas/leukemias (MTCL) is committed to more accurate and meaningful classifications, improved pathogenetic concepts and expanded therapeutic options. This requires considerations of the immunologic concepts of T-cell homeostasis and the specifics of T-cell receptor (TCR) affinities and signaling. Scientists from various disciplines established the CONTROL-T research unit and in an international conference on MTCL they brought together experts from T-cell immunity, oncology, immunotherapy and systems biology. We report here meeting highlights on the covered topics of diagnostic pitfalls, implications by the new WHO classification, insights from discovered genomic lesions as well as TCR-centric concepts of cellular dynamics in host defense, auto-immunity and tumorigenic clonal escape, including predictions to be derived from in vivo imaging and mathematical modeling. Presentations on novel treatment approaches were supplemented by strategies of optimizing T-cell immunotherapies. Work packages, that in joint efforts would advance the field of MTCL more efficiently, are identified.
Collapse
Affiliation(s)
- Marco Herling
- a Department of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD) , University of Cologne , Cologne , Germany
| | - Benjamin Rengstl
- b Dr. Senckenberg Institute of Pathology, Goethe-University , Frankfurt/M , Germany
| | - René Scholtysik
- c Institute of Cell Biology (Cancer Research), University of Duisburg-Essen , Essen , Germany
| | - Sylvia Hartmann
- b Dr. Senckenberg Institute of Pathology, Goethe-University , Frankfurt/M , Germany
| | - Ralf Küppers
- c Institute of Cell Biology (Cancer Research), University of Duisburg-Essen , Essen , Germany
| | - Martin-Leo Hansmann
- b Dr. Senckenberg Institute of Pathology, Goethe-University , Frankfurt/M , Germany
| | - Hans H Diebner
- d Faculty of Medicine Carl Gustav Carus , Technische Universität Dresden, Institute for Medical Informatics and Biometry , Dresden , Germany
| | - Ingo Roeder
- d Faculty of Medicine Carl Gustav Carus , Technische Universität Dresden, Institute for Medical Informatics and Biometry , Dresden , Germany
| | - Hinrich Abken
- a Department of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD) , University of Cologne , Cologne , Germany.,e Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany
| | - Sebastian Newrzela
- b Dr. Senckenberg Institute of Pathology, Goethe-University , Frankfurt/M , Germany
| | - Jörg Kirberg
- f Division of Immunology , Paul-Ehrlich-Institute , Langen , Germany
| |
Collapse
|
20
|
Malcolm TIM, Hodson DJ, Macintyre EA, Turner SD. Challenging perspectives on the cellular origins of lymphoma. Open Biol 2016; 6:rsob.160232. [PMID: 27683157 PMCID: PMC5043587 DOI: 10.1098/rsob.160232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
Both B and T lymphocytes have signature traits that set them apart from other cell types. They actively and repeatedly rearrange their DNA in order to produce a unique and functional antigen receptor, they have potential for massive clonal expansion upon encountering antigen via this receptor or its precursor, and they have the capacity to be extremely long lived as ‘memory’ cells. All three of these traits are fundamental to their ability to function as the adaptive immune response to infectious agents, but concurrently render these cells vulnerable to transformation. Thus, it is classically considered that lymphomas arise at a relatively late stage in a lymphocyte's development during the process of modifying diversity within antigen receptors, and when the cell is capable of responding to stimulus via its receptor. Attempts to understand the aetiology of lymphoma have reinforced this notion, as the most notable advances to date have shown chronic stimulation of the antigen receptor by infectious agents or self-antigens to be key drivers of these diseases. Despite this, there is still uncertainty about the cell of origin in some lymphomas, and increasing evidence that a subset arises in a more immature cell. Specifically, a recent study indicates that T-cell lymphoma, in particular nucleophosmin-anaplastic lymphoma kinase-driven anaplastic large cell lymphoma, may originate in T-cell progenitors in the thymus.
Collapse
Affiliation(s)
- Tim I M Malcolm
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Lab Block Level 3, Box 231, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Daniel J Hodson
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Elizabeth A Macintyre
- Hematology and INSERM1151, Institut Necker-Enfants Malades, Université Sorbonne Paris Cité at Descartes and Assistance Publique-Hôpitaux de Paris, Paris 75743 Cedex 15, France
| | - Suzanne D Turner
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Lab Block Level 3, Box 231, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
21
|
Ruella M, Kenderian SS, Shestova O, Fraietta JA, Qayyum S, Zhang Q, Maus MV, Liu X, Nunez-Cruz S, Klichinsky M, Kawalekar OU, Milone M, Lacey SF, Mato A, Schuster SJ, Kalos M, June CH, Gill S, Wasik MA. The Addition of the BTK Inhibitor Ibrutinib to Anti-CD19 Chimeric Antigen Receptor T Cells (CART19) Improves Responses against Mantle Cell Lymphoma. Clin Cancer Res 2016; 22:2684-96. [PMID: 26819453 DOI: 10.1158/1078-0432.ccr-15-1527] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/16/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Responses to therapy with chimeric antigen receptor T cells recognizing CD19 (CART19, CTL019) may vary by histology. Mantle cell lymphoma (MCL) represents a B-cell malignancy that remains incurable despite novel therapies such as the BTK inhibitor ibrutinib, and where data from CTL019 therapy are scant. Using MCL as a model, we sought to build upon the outcomes from CTL019 and from ibrutinib therapy by combining these in a rational manner. EXPERIMENTAL DESIGN MCL cell lines and primary MCL samples were combined with autologous or normal donor-derived anti-CD19 CAR T cells along with ibrutinib. The effect of the combination was studied in vitro and in mouse xenograft models. RESULTS MCL cells strongly activated multiple CTL019 effector functions, and MCL killing by CTL019 was further enhanced in the presence of ibrutinib. In a xenograft MCL model, we showed superior disease control in the CTL019- as compared with ibrutinib-treated mice (median survival not reached vs. 95 days, P < 0.005) but most mice receiving CTL019 monotherapy eventually relapsed. Therefore, we added ibrutinib to CTL019 and showed that 80% to 100% of mice in the CTL019 + ibrutinib arm and 0% to 20% of mice in the CTL019 arm, respectively, remained in long-term remission (P < 0.05). CONCLUSIONS Combining CTL019 with ibrutinib represents a rational way to incorporate two of the most recent therapies in MCL. Our findings pave the way to a two-pronged therapeutic strategy in patients with MCL and other types of B-cell lymphoma. Clin Cancer Res; 22(11); 2684-96. ©2016 AACR.
Collapse
Affiliation(s)
- Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saad S Kenderian
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Olga Shestova
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sohail Qayyum
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qian Zhang
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcela V Maus
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaobin Liu
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Selene Nunez-Cruz
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Klichinsky
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Omkar U Kawalekar
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simon F Lacey
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anthony Mato
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen J Schuster
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Kalos
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saar Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Mariusz A Wasik
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Inghirami G, Chan WC, Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol Rev 2015; 263:124-59. [PMID: 25510275 DOI: 10.1111/imr.12248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell lymphoproliferative disorders are a heterogeneous group of neoplasms with distinct clinical-biological properties. The normal cellular counterpart of these processes has been postulated based on functional and immunophenotypic analyses. However, T lymphocytes have been proven to be remarkably capable of modulating their properties, adapting their function in relationship with multiple stimuli and to the microenvironment. This impressive plasticity is determined by the equilibrium among a pool of transcription factors and by DNA chromatin regulators. It is now proven that the acquisition of specific genomic defects leads to the enforcement/activation of distinct pathways, which ultimately alter the preferential activation of defined regulators, forcing the neoplastic cells to acquire features and phenotypes distant from their original fate. Thus, dissecting the landscape of the genetic defects and their functional consequences in T-cell neoplasms is critical not only to pinpoint the origin of these tumors but also to define innovative mechanisms to re-adjust an unbalanced state to which the tumor cells have become addicted and make them vulnerable to therapies and targetable by the immune system. In our review, we briefly describe the pathological and clinical aspects of the T-cell lymphoma subtypes as well as NK-cell lymphomas and then focus on the current understanding of their pathogenesis and the implications on diagnosis and treatment.
Collapse
Affiliation(s)
- Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy; Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
23
|
Abate F, Todaro M, van der Krogt JA, Boi M, Landra I, Machiorlatti R, Tabbo’ F, Messana K, Barreca A, Novero D, Gaudiano M, Aliberti S, Di Giacomo F, Tousseyn T, Lasorsa E, Crescenzo R, Bessone L, Ficarra E, Acquaviva A, Rinaldi A, Ponzoni M, Longo DL, Aime S, Cheng M, Ruggeri B, Piccaluga PP, Pileri S, Tiacci E, Falini B, Pera-Gresely B, Cerchietti L, Iqbal J, Chan WC, Shultz LD, Kwee I, Piva R, Wlodarska I, Rabadan R, Bertoni F, Inghirami G, European T-cell Lymphoma Study Group. A novel patient-derived tumorgraft model with TRAF1-ALK anaplastic large-cell lymphoma translocation. Leukemia 2015; 29:1390-1401. [PMID: 25533804 PMCID: PMC4864432 DOI: 10.1038/leu.2014.347] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/10/2014] [Accepted: 11/19/2014] [Indexed: 01/25/2023]
Abstract
Although anaplastic large-cell lymphomas (ALCL) carrying anaplastic lymphoma kinase (ALK) have a relatively good prognosis, aggressive forms exist. We have identified a novel translocation, causing the fusion of the TRAF1 and ALK genes, in one patient who presented with a leukemic ALK+ ALCL (ALCL-11). To uncover the mechanisms leading to high-grade ALCL, we developed a human patient-derived tumorgraft (hPDT) line. Molecular characterization of primary and PDT cells demonstrated the activation of ALK and nuclear factor kB (NFkB) pathways. Genomic studies of ALCL-11 showed the TP53 loss and the in vivo subclonal expansion of lymphoma cells, lacking PRDM1/Blimp1 and carrying c-MYC gene amplification. The treatment with proteasome inhibitors of TRAF1-ALK cells led to the downregulation of p50/p52 and lymphoma growth inhibition. Moreover, a NFkB gene set classifier stratified ALCL in distinct subsets with different clinical outcome. Although a selective ALK inhibitor (CEP28122) resulted in a significant clinical response of hPDT mice, nevertheless the disease could not be eradicated. These data indicate that the activation of NFkB signaling contributes to the neoplastic phenotype of TRAF1-ALK ALCL. ALCL hPDTs are invaluable tools to validate the role of druggable molecules, predict therapeutic responses and implement patient specific therapies.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Animals
- Blotting, Western
- Drug Resistance, Neoplasm
- Flow Cytometry
- Gene Expression Profiling
- High-Throughput Nucleotide Sequencing
- Humans
- Immunoprecipitation
- In Situ Hybridization, Fluorescence
- Lymphoma, Large-Cell, Anaplastic/drug therapy
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/mortality
- Mice
- Mice, Inbred NOD
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Positive Regulatory Domain I-Binding Factor 1
- Proteasome Inhibitors/pharmacology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- TNF Receptor-Associated Factor 1/genetics
- TNF Receptor-Associated Factor 1/metabolism
- Translocation, Genetic/genetics
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Francesco Abate
- Department of Control and Computer Engineering, Politecnico di Torino, 10129, Italy
- Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10027 USA
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Maria Todaro
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | | | - Michela Boi
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, 6500 Switzerland
| | - Indira Landra
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Rodolfo Machiorlatti
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Fabrizio Tabbo’
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Katia Messana
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Antonella Barreca
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Domenico Novero
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Marcello Gaudiano
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Sabrina Aliberti
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Filomena Di Giacomo
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Thomas Tousseyn
- Translational Cell and Tissue Research, KU Leuven, Department of Pathology, UZ Leuven, Leuven, 3000 Belgium
| | - Elena Lasorsa
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Ramona Crescenzo
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Luca Bessone
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
| | - Elisa Ficarra
- Department of Control and Computer Engineering, Politecnico di Torino, 10129, Italy
| | - Andrea Acquaviva
- Department of Control and Computer Engineering, Politecnico di Torino, 10129, Italy
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, 6500 Switzerland
| | - Maurilio Ponzoni
- Pathology & Lymphoid Malignancies Units, San Raffaele Scientific Institute, Milan, 20132 Italy
| | - Dario Livio Longo
- Molecular Imaging Center, Department of Chemistry IFM and Molecular Imaging Center, University of Torino, Torino, 10125 Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Chemistry IFM and Molecular Imaging Center, University of Torino, Torino, 10125 Italy
| | - Mangeng Cheng
- Teva Pharmaceuticals, Inc, North Wales, PA 19454 USA
| | - Bruce Ruggeri
- Teva Pharmaceuticals, Inc, North Wales, PA 19454 USA
| | - Pier Paolo Piccaluga
- Institute of Hematology and Medical Oncology L. and A. Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, 40138 Italy
| | - Stefano Pileri
- Institute of Hematology and Medical Oncology L. and A. Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, 40138 Italy
| | - Enrico Tiacci
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, Perugia, 06156 Italy
| | - Brunangelo Falini
- Institute of Hematology, University of Perugia, Ospedale S. Maria della Misericordia, S. Andrea delle Fratte, Perugia, 06156 Italy
| | - Benet Pera-Gresely
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Leandro Cerchietti
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte CA, 91010, USA
| | | | - Ivo Kwee
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, 6500 Switzerland
- IDSIA Dalle Molle Institute for Artificial Intelligence, Manno, CH-6928 Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Roberto Piva
- Department of Control and Computer Engineering, Politecnico di Torino, 10129, Italy
- Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, 10016 USA
| | - Iwona Wlodarska
- Department of Human Genetics, KU Leuven, Leuven, 3000 Belgium
| | - Raul Rabadan
- Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10027 USA
| | - Francesco Bertoni
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, 6500 Switzerland
- Lymphoma Unit, IOSI Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, 10126 Italy
- Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, 10016 USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 525 East 68th Street, Starr Pavilion Rm 715 New York, NY 10065 USA
| | | |
Collapse
|
24
|
Engineering T Cells to Functionally Cure HIV-1 Infection. Mol Ther 2015; 23:1149-1159. [PMID: 25896251 DOI: 10.1038/mt.2015.70] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023] Open
Abstract
Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1-resistant cells, redirecting HIV-1-specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1-specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy-mediated functional cure.
Collapse
|
25
|
Decreased expression of nucleophosmin/B23 increases drug sensitivity of adriamycin-resistant Molt-4 leukemia cells through mdr-1 regulation and Akt/mTOR signaling. Immunobiology 2015; 220:331-40. [DOI: 10.1016/j.imbio.2014.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/23/2014] [Accepted: 10/12/2014] [Indexed: 11/17/2022]
|
26
|
Xing X, Feldman AL. Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous. Adv Anat Pathol 2015; 22:29-49. [PMID: 25461779 DOI: 10.1097/pap.0000000000000047] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Anaplastic large cell lymphomas (ALCLs) comprise a group of CD30-positive non-Hodgkin lymphomas that generally are of T-cell origin and share common morphologic and phenotypic characteristics. The World Health Organization recognizes 3 entities: primary cutaneous ALCL (pcALCL), anaplastic lymphoma kinase (ALK)-positive ALCL, and, provisionally, ALK-negative ALCL. Despite overlapping pathologic features, these tumors differ in clinical behavior and genetics. pcALCL presents in the skin and, while it may involve locoregional lymph nodes, rarely disseminates. Outcomes typically are excellent. ALK-positive ALCL and ALK-negative ALCL are systemic diseases. ALK-positive ALCLs consistently have chromosomal rearrangements involving the ALK gene with varied gene partners, and generally have a favorable prognosis. ALK-negative ALCLs lack ALK rearrangements and their genetic and clinical features are more variable. A subset of ALK-negative ALCLs has rearrangements in or near the DUSP22 gene and has a favorable prognosis similar to that of ALK-positive ALCL. DUSP22 rearrangements also are seen in a subset of pcALCLs. In this review, we discuss the clinical, morphologic, phenotypic, genetic, and biological features of ALCLs.
Collapse
|
27
|
Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell 2014; 55:829-842. [PMID: 25201414 DOI: 10.1016/j.molcel.2014.08.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 01/28/2023]
Abstract
Breakpoint junctions of the chromosomal translocations that occur in human cancers display hallmarks of nonhomologous end-joining (NHEJ). In mouse cells, translocations are suppressed by canonical NHEJ (c-NHEJ) components, which include DNA ligase IV (LIG4), and instead arise from alternative NHEJ (alt-NHEJ). Here we used designer nucleases (ZFNs, TALENs, and CRISPR/Cas9) to introduce DSBs on two chromosomes to study translocation joining mechanisms in human cells. Remarkably, translocations were altered in cells deficient for LIG4 or its interacting protein XRCC4. Translocation junctions had significantly longer deletions and more microhomology, indicative of alt-NHEJ. Thus, unlike mouse cells, translocations in human cells are generated by c-NHEJ. Human cancer translocations induced by paired Cas9 nicks also showed a dependence on c-NHEJ, despite having distinct joining characteristics. These results demonstrate an unexpected and striking species-specific difference for common genomic rearrangements associated with tumorigenesis.
Collapse
|