1
|
Getachew H, Mehrotra S, Kaur T, Fernandez-Godino R, Pierce EA, Garita-Hernandez M. The RNA content of extracellular vesicles from gene-edited PRPF31 +/- hiPSC-RPE show potential as biomarkers of retinal degeneration. Mol Ther Methods Clin Dev 2025; 33:101452. [PMID: 40231248 PMCID: PMC11995067 DOI: 10.1016/j.omtm.2025.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal degeneration (IRD), causing vision loss via the dysfunction and death of photoreceptors and retinal pigment epithelium (RPE). Mutations in the PRPF31 gene are associated with autosomal dominant RP, impairing RPE function. While adeno-associated virus (AAV)-mediated gene therapy shows promise for treating IRDs, the slow progression of these diseases often makes timely measurement of clinical efficacy challenging. Extracellular vesicles (EVs) are lipid enclosed vesicles secreted by cells, and their RNA contents are being explored as circulating biomarkers for other diseases. We hypothesize that EV RNAs could serve as biomarkers of the health status of the neural retina and RPE. To test this, we used PRPF31 +/+ and PRPF31 +/- human induced pluripotent stem cell (hiPSC)-derived RPE (hi-RPE) to investigate the RNAs contained in RPE-derived EVs and how they change in disease. We also compared the RNA contents of RPE-EVs with the RNAs of the hi-RPE cells themselves. We found that EVs from mutant PRPF31 hi-RPE cells have distinct RNA profiles compared to those from control cells, suggesting that EV RNA contents change during disease. Additionally, we identified 18 miRNAs and 865 poly(A) RNAs enriched in EVs from PRPF31 +/- hi-RPE, which could serve as biomarkers for RPE degeneration.
Collapse
Affiliation(s)
- Heran Getachew
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Tarandeep Kaur
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Marcela Garita-Hernandez
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Kemal RA, O’Keefe RT. Addressing the tissue specificity of U5 snRNP spliceosomopathies. Front Cell Dev Biol 2025; 13:1572188. [PMID: 40264708 PMCID: PMC12011746 DOI: 10.3389/fcell.2025.1572188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Precursor mRNA (pre-mRNA) must undergo splicing to remove intron sequences and join exons. This splicing process is catalysed by an RNA/protein complex called the spliceosome. At the centre of the catalytic spliceosome is the U5 small nuclear ribonucleoprotein (snRNP). Pathogenic variants in U5 snRNP core proteins are associated with various diseases commonly known as spliceosomopathies. Variants in TXNL4A and EFTUD2 manifest in craniofacial malformations while variants in PRPF8 and SNRNP200 manifest in retinitis pigmentosa. This perspective highlights research addressing how these specific manifestations come about as the spliceosome is required in all cells and at all developmental stages. Cell and animal models can replicate the human clinical specificity providing explanations for the specificity of the disorders. We propose that future research could benefit from models originating from patient-derived induced pluripotent stem cells (iPSCs) and isogenic controls to compare the coding and non-coding transcriptomic perturbations. Analysis of spliceosomal protein complexes and their interactome could also uncover novel insights on molecular pathogenesis. Finally, as studies highlight changes in metabolic processes, metabolomic studies could become a new venture in studying the consequences of U5 snRNP variants.
Collapse
Affiliation(s)
- Rahmat Azhari Kemal
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Department of Medical Biology, Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
| | - Raymond T. O’Keefe
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Zimmann F, McNicoll F, Thakur PK, Blažíková M, Kubovčiak J, Hernández Cañás MC, Nováková Z, Bařinka C, Kolář M, Staněk D, Müller-McNicoll M, Cvačková Z. Retinitis pigmentosa-linked mutations impair the snRNA unwinding activity of SNRNP200 and reduce pre-mRNA binding of PRPF8. Cell Mol Life Sci 2025; 82:103. [PMID: 40045025 PMCID: PMC11883072 DOI: 10.1007/s00018-025-05621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
Retinitis pigmentosa (RP) is a hereditary disorder caused by mutations in more than 70 different genes including those that encode proteins important for pre-mRNA splicing. Most RP-associated mutations in splicing factors reduce either their expression, stability or incorporation into functional splicing complexes. However, we have previously shown that two RP mutations in PRPF8 (F2314L and Y2334N) and two in SNRNP200 (S1087L and R1090L) behaved differently, and it was still unclear how these mutations affect the functions of both proteins. To investigate this in the context of functional spliceosomes, we used iCLIP in HeLa and retinal pigment epithelial (RPE) cells. We found that both mutations in the RNA helicase SNRNP200 change its interaction with U4 and U6 snRNAs. The significantly broader binding profile of mutated SNRNP200 within the U4 region upstream of the U4/U6 stem I strongly suggests that its activity to unwind snRNAs is impaired. This was confirmed by FRAP measurements and helicase activity assays comparing mutant and WT protein. The RP variants of PRPF8 did not affect snRNAs, but showed a reduced binding to pre-mRNAs, which resulted in the slower splicing of introns and altered expression of hundreds of genes in RPE cells. This suggests that changes in the expression and splicing of specific genes are the main driver of retinal degeneration in PRPF8-linked RP.
Collapse
Affiliation(s)
- Felix Zimmann
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Francois McNicoll
- Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Prasoon Kumar Thakur
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Blažíková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovčiak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Zora Nováková
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Cyril Bařinka
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Müller-McNicoll
- Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany.
- Max Planck Institute of Biophysics, Frankfurt, Germany.
| | - Zuzana Cvačková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Vanoni EM, Enderlin J, Rieu Q, Hamieh F, Réty S, Nandrot EF. Oxidative Stress and Energetic Failure: Common Features and Dissimilarities in 3 Different Mouse Models of Retinal Pigment Epithelium Phagocytosis Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:259-263. [PMID: 39930206 DOI: 10.1007/978-3-031-76550-6_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amidst the various crucial functions ensured by retinal pigment epithelial (RPE) cells is the circadian phagocytosis of oxidized photoreceptor outer segments (POS) extremities. We have been exploring three mouse models with defective RPE phagocytosis: β5-/- mice inactivated for the αvβ5 integrin synchronizing phagocytosis, MerTKCR knockin mice devoid of the MerTK internalization receptor cleavage site, and Pre-mRNA Processing Factors 31 knockout mice, PRPF splicing factor mutations constituting the second most important cause of autosomic dominant retinitis pigmentosa in patients. Failure in mitochondrial activity and energetic metabolism has been detected in all three models. Signs of cellular stress and increasing oxidative processes were observed in β5-/- and Prpf31+/- RPE cells, while MerTKCR mutants seem to be sensitive to light-derived stress associated with augmented retinal inflammation. Taken together, these results highlight some common pathological mechanisms in these mice, as well as particular features related to the specific function of each protein.
Collapse
Affiliation(s)
- Elora M Vanoni
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012, Paris, France
| | - Julie Enderlin
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012, Paris, France
| | - Quentin Rieu
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012, Paris, France
| | - Florian Hamieh
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012, Paris, France
| | - Salomé Réty
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012, Paris, France
| | - Emeline F Nandrot
- Sorbonne Université, CNRS, Inserm, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
5
|
Cerna-Chavez R, Ortega-Gasco A, Baig HMA, Ehrenreich N, Metais T, Scandura MJ, Bujakowska K, Pierce EA, Garita-Hernandez M. Optimized Prime Editing of Human Induced Pluripotent Stem Cells to Efficiently Generate Isogenic Models of Mendelian Diseases. Int J Mol Sci 2024; 26:114. [PMID: 39795970 PMCID: PMC11719581 DOI: 10.3390/ijms26010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs). PE leads to minimal off-targets or indels when introducing single-strand breaks (SSB) in the DNA. Low efficiency can be an obstacle to its use in hiPSCs, especially when the genetic context precludes the screening of multiple pegRNAs, and other strategies must be employed to achieve the desired edit. We developed a PE platform to efficiently generate isogenic models of Mendelian disorders. We introduced the c.25G>A (p.V9M) mutation in the NMNAT1 gene with over 25% efficiency by optimizing the PE workflow. Using our optimized system, we generated other isogenic models of inherited retinal diseases (IRDs), including the c.1481C>T (p.T494M) mutation in PRPF3 and the c.6926A>C (p.H2309P) mutation in PRPF8. We modified several determinants of the hiPSC PE procedure, such as plasmid concentrations, PE component ratios, and delivery method settings, showing that our improved workflow increased the hiPSC editing efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marcela Garita-Hernandez
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (R.C.-C.); (A.O.-G.); (H.M.A.B.); (N.E.); (T.M.); (M.J.S.); (K.B.); (E.A.P.)
| |
Collapse
|
6
|
Enderlin J, Rieu Q, Réty S, Vanoni EM, Roux S, Dégardin J, César Q, Augustin S, Nous C, Cai B, Fontaine V, Sennlaub F, Nandrot EF. Retinal atrophy, inflammation, phagocytic and metabolic disruptions develop in the MerTK-cleavage-resistant mouse model. Front Neurosci 2024; 18:1256522. [PMID: 38680449 PMCID: PMC11047123 DOI: 10.3389/fnins.2024.1256522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/11/2024] [Indexed: 05/01/2024] Open
Abstract
In the eye, cells from the retinal pigment epithelium (RPE) facing the neurosensory retina exert several functions that are all crucial for long-term survival of photoreceptors (PRs) and vision. Among those, RPE cells phagocytose under a circadian rhythm photoreceptor outer segment (POS) tips that are constantly subjected to light rays and oxidative attacks. The MerTK tyrosine kinase receptor is a key element of this phagocytic machinery required for POS internalization. Recently, we showed that MerTK is subjected to the cleavage of its extracellular domain to finely control its function. In addition, monocytes in retinal blood vessels can migrate inside the inner retina and differentiate into macrophages expressing MerTK, but their role in this context has not been studied yet. We thus investigated the ocular phenotype of MerTK cleavage-resistant (MerTKCR) mice to understand the relevance of this characteristic on retinal homeostasis at the RPE and macrophage levels. MerTKCR retinae appear to develop and function normally, as observed in retinal sections, by electroretinogram recordings and optokinetic behavioral tests. Monitoring of MerTKCR and control mice between the ages of 3 and 18 months showed the development of large degenerative areas in the central retina as early as 4 months when followed monthly by optical coherence tomography (OCT) plus fundus photography (FP)/autofluorescence (AF) detection but not by OCT alone. The degenerative areas were associated with AF, which seems to be due to infiltrated macrophages, as observed by OCT and histology. MerTKCR RPE primary cultures phagocytosed less POS in vitro, while in vivo, the circadian rhythm of POS phagocytosis was deregulated. Mitochondrial function and energy production were reduced in freshly dissected RPE/choroid tissues at all ages, thus showing a metabolic impairment not present in macrophages. RPE anomalies were detected by electron microscopy, including phagosomes retained in the apical area and vacuoles. Altogether, this new mouse model displays a novel phenotype that could prove useful to understanding the interplay between RPE and PRs in inflammatory retinal degenerations and highlights new roles for MerTK in the regulation of the energetic metabolism and the maintenance of the immune privilege in the retina.
Collapse
Affiliation(s)
- Julie Enderlin
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Quentin Rieu
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Salomé Réty
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Elora M. Vanoni
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Solène Roux
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Julie Dégardin
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Quénol César
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Sébastien Augustin
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Caroline Nous
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Valérie Fontaine
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Florian Sennlaub
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| | - Emeline F. Nandrot
- INSERM, CNRS, Institut de la Vision, Therapeutics Department, Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Atkinson R, Georgiou M, Yang C, Szymanska K, Lahat A, Vasconcelos EJR, Ji Y, Moya Molina M, Collin J, Queen R, Dorgau B, Watson A, Kurzawa-Akanbi M, Laws R, Saxena A, Shyan Beh C, Siachisumo C, Goertler F, Karwatka M, Davey T, Inglehearn CF, McKibbin M, Lührmann R, Steel DH, Elliott DJ, Armstrong L, Urlaub H, Ali RR, Grellscheid SN, Johnson CA, Mozaffari-Jovin S, Lako M. PRPF8-mediated dysregulation of hBrr2 helicase disrupts human spliceosome kinetics and 5´-splice-site selection causing tissue-specific defects. Nat Commun 2024; 15:3138. [PMID: 38605034 PMCID: PMC11009313 DOI: 10.1038/s41467-024-47253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.
Collapse
Affiliation(s)
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Albert Lahat
- Department of Biosciences, Durham University, Durham, UK
| | | | - Yanlong Ji
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Moya Molina
- Biosciences Institute, Newcastle University, Newcastle, UK
- Newcells Biotech, Newcastle, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Avril Watson
- Biosciences Institute, Newcastle University, Newcastle, UK
- Newcells Biotech, Newcastle, UK
| | | | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Abhijit Saxena
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chia Shyan Beh
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | | | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | | | - Martin McKibbin
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Reinhard Lührmann
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - David H Steel
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Henning Urlaub
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences, Georg August University of Göttingen, Göttingen, Germany
| | - Robin R Ali
- Centre for Cell and Gene Therapy, Kings College London, London, UK
| | - Sushma-Nagaraja Grellscheid
- Department of Biosciences, Durham University, Durham, UK
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Colin A Johnson
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| | - Sina Mozaffari-Jovin
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Medical Genetics and Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle, UK.
| |
Collapse
|
8
|
Aweidah H, Xi Z, Sahel JA, Byrne LC. PRPF31-retinitis pigmentosa: Challenges and opportunities for clinical translation. Vision Res 2023; 213:108315. [PMID: 37714045 PMCID: PMC10872823 DOI: 10.1016/j.visres.2023.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023]
Abstract
Mutations in pre-mRNA processing factor 31 cause autosomal dominant retinitis pigmentosa (PRPF31-RP), for which there is currently no efficient treatment, making this disease a prime target for the development of novel therapeutic strategies. PRPF31-RP exhibits incomplete penetrance due to haploinsufficiency, in which reduced levels of gene expression from the mutated allele result in disease. A variety of model systems have been used in the investigation of disease etiology and therapy development. In this review, we discuss recent advances in both in vivo and in vitro model systems, evaluating their advantages and limitations in the context of therapy development for PRPF31-RP. Additionally, we describe the latest approaches for treatment, including AAV-mediated gene augmentation, genome editing, and late-stage therapies such as optogenetics, cell transplantation, and retinal prostheses.
Collapse
Affiliation(s)
- Hamzah Aweidah
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhouhuan Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Ophthalmology, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Liang Y, Sun X, Duan C, Tang S, Chen J. Application of patient-derived induced pluripotent stem cells and organoids in inherited retinal diseases. Stem Cell Res Ther 2023; 14:340. [PMID: 38012786 PMCID: PMC10683306 DOI: 10.1186/s13287-023-03564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Inherited retinal diseases (IRDs) can induce severe sight-threatening retinal degeneration and impose a considerable economic burden on patients and society, making efforts to cure blindness imperative. Transgenic animals mimicking human genetic diseases have long been used as a primary research tool to decipher the underlying pathogenesis, but there are still some obvious limitations. As an alternative strategy, patient-derived induced pluripotent stem cells (iPSCs), particularly three-dimensional (3D) organoid technology, are considered a promising platform for modeling different forms of IRDs, including retinitis pigmentosa, Leber congenital amaurosis, X-linked recessive retinoschisis, Batten disease, achromatopsia, and best vitelliform macular dystrophy. Here, this paper focuses on the status of patient-derived iPSCs and organoids in IRDs in recent years concerning disease modeling and therapeutic exploration, along with potential challenges for translating laboratory research to clinical application. Finally, the importance of human iPSCs and organoids in combination with emerging technologies such as multi-omics integration analysis, 3D bioprinting, or microfluidic chip platform are highlighted. Patient-derived retinal organoids may be a preferred choice for more accurately uncovering the mechanisms of human retinal diseases and will contribute to clinical practice.
Collapse
Affiliation(s)
- Yuqin Liang
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xihao Sun
- Aier Eye Institute, Changsha, 410015, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunwen Duan
- Aier Eye Institute, Changsha, 410015, China
- Changsha Aier Eye Hospital, Changsha, 410015, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
| | - Jiansu Chen
- Aier Eye Institute, Changsha, 410015, China.
- Changsha Aier Eye Hospital, Changsha, 410015, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Kelley RA, Wu Z. Utilization of the retinal organoid model to evaluate the feasibility of genetic strategies to ameliorate retinal disease(s). Vision Res 2023; 210:108269. [PMID: 37295270 DOI: 10.1016/j.visres.2023.108269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Organoid models have quickly become a popular research tool to evaluate novel therapeutics on 3-D recapitulated tissue. This has enabled researchers to use physiologically relevant human tissue in vitro to augment the standard use of immortalized cells and animal models. Organoids can also provide a model when an engineered animal cannot recreate a specific disease phenotype. In particular, the retinal research field has taken advantage of this burgeoning technology to provide insight into inherited retinal disease(s) mechanisms and therapeutic intervention to ameliorate their effects. In this review we will discuss the use of both wild-type and patient-specific retinal organoids to further gene therapy research that could potentially prevent retinal disease(s) progression. Furthermore, we will discuss the pitfalls of current retinal organoid technology and present potential solutions that could overcome these hurdles in the near future.
Collapse
Affiliation(s)
- Ryan A Kelley
- PTC Therapeutics, 100 Corporate Ct #2400, South Plainfield, NJ 07080, USA.
| | - Zhijian Wu
- PTC Therapeutics, 100 Corporate Ct #2400, South Plainfield, NJ 07080, USA
| |
Collapse
|
11
|
Daich Varela M, Georgiadis A, Michaelides M. Genetic treatment for autosomal dominant inherited retinal dystrophies: approaches, challenges and targeted genotypes. Br J Ophthalmol 2023; 107:1223-1230. [PMID: 36038193 DOI: 10.1136/bjo-2022-321903] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Inherited retinal diseases (IRDs) have been in the front line of gene therapy development for the last decade, providing a useful platform to test novel therapeutic approaches. More than 40 clinical trials have been completed or are ongoing, tackling autosomal recessive and X-linked conditions, mostly through adeno-associated viral vector delivery of a normal copy of the disease-causing gene. However, only recently has autosomal dominant (ad) disease been targeted, with the commencement of a trial for rhodopsin (RHO)-associated retinitis pigmentosa (RP), implementing antisense oligonucleotide (AON) therapy, with promising preliminary results (NCT04123626).Autosomal dominant RP represents 15%-25% of all RP, with RHO accounting for 20%-30% of these cases. Autosomal dominant macular and cone-rod dystrophies (MD/CORD) correspond to approximately 7.5% of all IRDs, and approximately 35% of all MD/CORD cases, with the main causative gene being BEST1 Autosomal dominant IRDs are not only less frequent than recessive, but also tend to be less severe and have later onset; for example, an individual with RHO-adRP would typically become severely visually impaired at an age 2-3 times older than in X-linked RPGR-RP.Gain-of-function and dominant negative aetiologies are frequently seen in the prevalent adRP genes RHO, RP1 and PRPF31 among others, which would not be effectively addressed by gene supplementation alone and need creative, novel approaches. Zinc fingers, RNA interference, AON, translational read-through therapy, and gene editing by clustered regularly interspaced short palindromic repeats/Cas are some of the strategies that are currently under investigation and will be discussed here.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
12
|
Watson A, Lako M. Retinal organoids provide unique insights into molecular signatures of inherited retinal disease throughout retinogenesis. J Anat 2023; 243:186-203. [PMID: 36177499 PMCID: PMC10335378 DOI: 10.1111/joa.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022] Open
Abstract
The demand for induced pluripotent stem cells (iPSC)-derived retinal organoid and retinal pigment epithelium (RPE) models for the modelling of inherited retinopathies has increased significantly in the last decade. These models are comparable with foetal retinas up until the later stages of retinogenesis, expressing all of the key neuronal markers necessary for retinal function. These models have proven to be invaluable in the understanding of retinogenesis, particular in the context of patient-specific diseases. Inherited retinopathies are infamously described as clinically and phenotypically heterogeneous, such that developing gene/mutation-specific animal models in each instance of retinal disease is not financially or ethically feasible. Further to this, many animal models are insufficient in the study of disease pathogenesis due to anatomical differences and failure to recapitulate human disease phenotypes. In contrast, iPSC-derived retinal models provide a high throughput platform which is physiologically relevant for studying human health and disease. They also serve as a platform for drug screening, gene therapy approaches and in vitro toxicology of novel therapeutics in pre-clinical studies. One unique characteristic of stem cell-derived retinal models is the ability to mimic in vivo retinogenesis, providing unparalleled insights into the effects of pathogenic mutations in cells of the developing retina, in a highly accessible way. This review aims to give the reader an overview of iPSC-derived retinal organoids and/or RPE in the context of disease modelling of several inherited retinopathies including Retinitis Pigmentosa, Stargardt disease and Retinoblastoma. We describe the ability of each model to recapitulate in vivo disease phenotypes, validate previous findings from animal models and identify novel pathomechanisms that underpin individual IRDs.
Collapse
Affiliation(s)
- Avril Watson
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Majlinda Lako
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
13
|
Krausová M, Kreplová M, Banik P, Cvačková Z, Kubovčiak J, Modrák M, Zudová D, Lindovský J, Kubik-Zahorodna A, Pálková M, Kolář M, Procházka J, Sedláček R, Staněk D. Retinitis pigmentosa-associated mutations in mouse Prpf8 cause misexpression of circRNAs and degeneration of cerebellar granule cells. Life Sci Alliance 2023; 6:e202201855. [PMID: 37019475 PMCID: PMC10078954 DOI: 10.26508/lsa.202201855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
A subset of patients with retinitis pigmentosa (RP) carry mutations in several spliceosomal components including the PRPF8 protein. Here, we established two alleles of murine Prpf8 that genocopy or mimic aberrant PRPF8 found in RP patients-the substitution p.Tyr2334Asn and an extended protein variant p.Glu2331ValfsX15. Homozygous mice expressing the aberrant Prpf8 variants developed within the first 2 mo progressive atrophy of the cerebellum because of extensive granule cell loss, whereas other cerebellar cells remained unaffected. We further show that a subset of circRNAs were deregulated in the cerebellum of both Prpf8-RP mouse strains. To identify potential risk factors that sensitize the cerebellum for Prpf8 mutations, we monitored the expression of several splicing proteins during the first 8 wk. We observed down-regulation of all selected splicing proteins in the WT cerebellum, which coincided with neurodegeneration onset. The decrease in splicing protein expression was further pronounced in mouse strains expressing mutated Prpf8. Collectively, we propose a model where physiological reduction in spliceosomal components during postnatal tissue maturation sensitizes cells to the expression of aberrant Prpf8 and the subsequent deregulation of circRNAs triggers neuronal death.
Collapse
Affiliation(s)
- Michaela Krausová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Kreplová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Poulami Banik
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Cvačková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovčiak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Modrák
- Core Facility Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Zudová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Jiří Lindovský
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Agnieszka Kubik-Zahorodna
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Marcela Pálková
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Procházka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedláček
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Vanoni EM, Nandrot EF. The Retinal Pigment Epithelium: Cells That Know the Beat! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:539-545. [PMID: 37440084 DOI: 10.1007/978-3-031-27681-1_79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The retinal pigment epithelium (RPE) ensures different functions crucial for photoreceptor survival, and thus for vision, such as photoreceptor outer segments (POS) phagocytosis and retinal adhesion. Both follow a circadian rhythm with an activity peak occurring respectively 1.5-2 and 3.5 h after light onset. Interestingly, we showed that two rodent models, β5-/- and Prpf31+/- mice, display distinct alterations in both functions leading to different phenotypes. Indeed, the phagocytic peak totally disappears in β5 knockout mice but is attenuated and shifted in Prpf31+/- mice. Conversely, the retinal adhesion peak only attenuated in β5-/- mice is lost in Prpf31+/- mice. These distinct alterations have different consequences on retinal homeostasis proportional to the observed defects: β5-/- mice progressively lose vision and accumulate RPE lipofuscin deposits, while Prpf31+/- mice develop RPE metabolic dysfunctions and gradual structural modifications indicative of cellular stress. Hence, animal models are useful to understand the importance of the proper regulation of these functions.
Collapse
Affiliation(s)
- Elora M Vanoni
- Therapeutics Department, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Emeline F Nandrot
- Therapeutics Department, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| |
Collapse
|
15
|
Gene augmentation prevents retinal degeneration in a CRISPR/Cas9-based mouse model of PRPF31 retinitis pigmentosa. Nat Commun 2022; 13:7695. [PMID: 36509783 PMCID: PMC9744804 DOI: 10.1038/s41467-022-35361-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in PRPF31 cause autosomal dominant retinitis pigmentosa, an untreatable form of blindness. Gene therapy is a promising treatment for PRPF31-retinitis pigmentosa, however, there are currently no suitable animal models in which to develop AAV-mediated gene augmentation. Here we establish Prpf31 mutant mouse models using AAV-mediated CRISPR/Cas9 knockout, and characterize the resulting retinal degeneration phenotype. Mouse models with early-onset morphological and functional impairments like those in patients were established, providing new platforms in which to investigate pathogenetic mechanisms and develop therapeutic methods. AAV-mediated PRPF31 gene augmentation restored the retinal structure and function in a rapidly degenerating mouse model, demonstrating the first in vivo proof-of-concept for AAV-mediated gene therapy to treat PRPF31-retinitis pigmentosa. AAV-CRISPR/Cas9-PRPF31 knockout constructs also mediated efficient PRPF31 knockout in human and non-human primate retinal explants, laying a foundation for establishing non-human primate models using the method developed here.
Collapse
|
16
|
A 69 kb Deletion in chr19q13.42 including PRPF31 Gene in a Chinese Family Affected with Autosomal Dominant Retinitis Pigmentosa. J Clin Med 2022; 11:jcm11226682. [PMID: 36431159 PMCID: PMC9695658 DOI: 10.3390/jcm11226682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify the genetic cause of autosomal dominant retinitis pigmentosa (adRP) and characterize the underlying molecular mechanisms of incomplete penetrance in a Chinese family affected with adRP. All enrolled family members underwent ophthalmic examinations. Whole-genome sequencing (WGS), multiplex ligation-dependent probe amplification (MLPA), linkage analysis and haplotype construction were performed in all participants. RNA-seq was performed to analyze the regulating mechanism of incomplete penetrance among affected patients, mutation carriers and healthy controls. In the studied family, 14 individuals carried a novel heterozygous large deletion of 69 kilobase (kb) in 19q13.42 encompassing exon 1 of the PRPF31 gene and five upstream genes: TFPT, OSCAR, NDUFA3, TARM1, and VSTM1. Three family members were sequenced and diagnosed as non-penetrant carriers (NPCs). RNA-seq showed significant differential expression of genes in deletion between mutation carriers and healthy control. The RP11 pedigree in this study was the largest pedigree compared to other reported RP11 pedigrees with large deletions. Early onset in all affected members in this pedigree was considered to be a special phenotype and was firstly reported in a RP11 family for the first time. Differential expression of PRPF31 between affected and unaffected subjects indicates a haploinsufficiency to cause the disease in the family. The other genes with significant differential expression might play a cooperative effect on the penetrance of RP11.
Collapse
|
17
|
Nazlamova L, Villa Vasquez SS, Lord J, Karthik V, Cheung MK, Lakowski J, Wheway G. Microtubule modification defects underlie cilium degeneration in cell models of retinitis pigmentosa associated with pre-mRNA splicing factor mutations. Front Genet 2022; 13:1009430. [PMID: 36176300 PMCID: PMC9513239 DOI: 10.3389/fgene.2022.1009430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of hereditary blindness, and may occur in isolation as a non-syndromic condition or alongside other features in a syndromic presentation. Biallelic or monoallelic mutations in one of eight genes encoding pre-mRNA splicing factors are associated with non-syndromic RP. The molecular mechanism of disease remains incompletely understood, limiting opportunities for targeted treatment. Here we use CRISPR and base edited PRPF6 and PRPF31 mutant cell lines, and publicly-available data from human PRPF31+/− patient derived retinal organoids and PRPF31 siRNA-treated organotypic retinal cultures to confirm an enrichment of differential splicing of microtubule, centrosomal, cilium and DNA damage response pathway genes in these cells. We show that genes with microtubule/centrosome/centriole/cilium gene ontology terms are enriched for weak 3′ and 5′ splice sites, and that subtle defects in spliceosome activity predominantly affect efficiency of splicing of these exons. We suggest that the primary defect in PRPF6 or PRPF31 mutant cells is microtubule and centrosomal defects, leading to defects in cilium and mitotic spindle stability, with the latter leading to DNA damage, triggering differential splicing of DNA damage response genes to activate this pathway. Finally, we expand understanding of “splicing factor RP” by investigating the function of TTLL3, one of the most statistically differentially expressed genes in PRPF6 and PRPF31 mutant cells. We identify that TTLL3 is the only tubulin glycylase expressed in the human retina, essential for monoglycylation of microtubules of the cilium, including the retinal photoreceptor cilium, to prevent cilium degeneration and retinal degeneration. Our preliminary data suggest that rescue of tubulin glycylation through overexpression of TTLL3 is sufficient to rescue cilium number in PRPF6 and PRPF31 mutant cells, suggesting that this defect underlies the cellular defect and may represent a potential target for therapeutic intervention in this group of disorders.
Collapse
Affiliation(s)
- Liliya Nazlamova
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Suly Saray Villa Vasquez
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jenny Lord
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Varshini Karthik
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Man-Kim Cheung
- Centre for Research in Biosciences, University of the West of England, Bristol, United Kingdom
| | - Jörn Lakowski
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Gabrielle Wheway,
| |
Collapse
|
18
|
Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue. NPJ Regen Med 2022; 7:39. [PMID: 35974011 PMCID: PMC9381579 DOI: 10.1038/s41536-022-00235-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the ubiquitously expressed pre-mRNA processing factor (PRPF) 31 gene, one of the most common causes of dominant form of Retinitis Pigmentosa (RP), lead to a retina-specific phenotype. It is uncertain which retinal cell types are affected and animal models do not clearly present the RP phenotype observed in PRPF31 patients. Retinal organoids and retinal pigment epithelial (RPE) cells derived from human-induced pluripotent stem cells (iPSCs) provide potential opportunities for studying human PRPF31-related RP. We demonstrate here that RPE cells carrying PRPF31 mutations present important morphological and functional changes and that PRPF31-mutated retinal organoids recapitulate the human RP phenotype, with a rod photoreceptor cell death followed by a loss of cones. The low level of PRPF31 expression may explain the defective phenotypes of PRPF31-mutated RPE and photoreceptor cells, which were not observed in cells derived from asymptomatic patients or after correction of the pathogenic mutation by CRISPR/Cas9. Transcriptome profiles revealed differentially expressed and mis-spliced genes belonging to pathways in line with the observed defective phenotypes. The rescue of RPE and photoreceptor defective phenotypes by PRPF31 gene augmentation provide the proof of concept for future therapeutic strategies.
Collapse
|
19
|
Liang Y, Tan F, Sun X, Cui Z, Gu J, Mao S, Chan HF, Tang S, Chen J. Aberrant Retinal Pigment Epithelial Cells Derived from Induced Pluripotent Stem Cells of a Retinitis Pigmentosa Patient with the PRPF6 Mutation. Int J Mol Sci 2022; 23:ijms23169049. [PMID: 36012314 PMCID: PMC9409096 DOI: 10.3390/ijms23169049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Pre-mRNA processing factors (PRPFs) are vital components of the spliceosome and are involved in the physiological process necessary for pre-mRNA splicing to mature mRNA. As an important member, PRPF6 mutation resulting in autosomal dominant retinitis pigmentosa (adRP) is not common. Recently, we reported the establishment of an induced pluripotent stem cells (iPSCs; CSUASOi004-A) model by reprogramming the peripheral blood mononuclear cells of a PRPF6-related adRP patient, which could recapitulate a consistent disease-specific genotype. In this study, a disease model of retinal pigment epithelial (RPE) cells was generated from the iPSCs of this patient to further investigate the underlying molecular and pathological mechanisms. The results showed the irregular morphology, disorganized apical microvilli and reduced expressions of RPE-specific genes in the patient’s iPSC-derived RPE cells. In addition, RPE cells carrying the PRPF6 mutation displayed a decrease in the phagocytosis of fluorescein isothiocyanate-labeled photoreceptor outer segments and exhibited impaired cell polarity and barrier function. This study will benefit the understanding of PRPF6-related RPE cells and future cell therapy.
Collapse
Affiliation(s)
- Yuqin Liang
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Feng Tan
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Xihao Sun
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Zekai Cui
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
| | - Jianing Gu
- Aier Eye Institute, Changsha 410015, China
| | | | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
- Correspondence: (S.T.); (J.C.); Tel.: +86-139-2510-0123 (S.T.); +86-186-7583-9029 (J.C.)
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha 410015, China
- Aier Eye Institute, Changsha 410015, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China
- Correspondence: (S.T.); (J.C.); Tel.: +86-139-2510-0123 (S.T.); +86-186-7583-9029 (J.C.)
| |
Collapse
|
20
|
Bertrand RE, Wang J, Li Y, Cheng X, Wang K, Stoilov P, Chen R. Cwc27, associated with retinal degeneration, functions as a splicing factor in vivo. Hum Mol Genet 2022; 31:1278-1292. [PMID: 34726245 PMCID: PMC9029344 DOI: 10.1093/hmg/ddab319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
Previous in vitro studies indicate that CWC27 functions as a splicing factor in the Bact spliceosome complex, interacting with CWC22 to form a landing platform for eIF4A3, a core component of the exon junction complex. However, the function of CWC27 as a splicing factor has not been validated in any in vivo systems. CWC27 variants have been shown to cause autosomal recessive retinal degeneration, in both syndromic and non-syndromic forms. The Cwc27K338fs/K338fs mouse model was shown to have significant retinal dysfunction and degeneration by 6 months of age. In this report, we have taken advantage of the Cwc27K338fs/K338fs mouse model to show that Cwc27 is involved in splicing in vivo in the context of the retina. Bulk RNA and single cell RNA-sequencing of the mouse retina showed that there were gene expression and splicing pattern changes, including alternative splice site usage and intron retention. Positive staining for CHOP suggests that ER stress may be activated in response to the splicing pattern changes and is a likely contributor to the disease mechanism. Our results provide the first evidence that CWC27 functions as a splicing factor in an in vivo context. The splicing defects and gene expression changes observed in the Cwc27K338fs/K338fs mouse retina provide insight to the potential disease mechanisms, paving the way for targeted therapeutic development.
Collapse
Affiliation(s)
- Renae Elaine Bertrand
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Valdés-Sánchez L, Borrego-González S, Montero-Sánchez A, Massalini S, de la Cerda B, Díaz-Cuenca A, Díaz-Corrales FJ. Mesoporous Silica-Based Nanoparticles as Non-Viral Gene Delivery Platform for Treating Retinitis Pigmentosa. J Clin Med 2022; 11:jcm11082170. [PMID: 35456263 PMCID: PMC9026300 DOI: 10.3390/jcm11082170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Gene therapy is a therapeutic possibility for retinitis pigmentosa (RP), in which therapeutic transgenes are currently delivered to the retina by adeno-associated viral vectors (AAVs). Although their safety and efficacy have been demonstrated in both clinical and preclinical settings, AAVs present some technical handicaps, such as limited cargo capacity and possible immunogenicity in repetitive doses. The development of alternative, non-viral delivery platforms like nanoparticles is of great interest to extend the application of gene therapy for RP. METHODS Amino-functionalized mesoporous silica-based nanoparticles (N-MSiNPs) were synthesized, physico-chemically characterized, and evaluated as gene delivery systems for human cells in vitro and for retinal cells in vivo. Transgene expression was evaluated by WB and immunofluorescence. The safety evaluation of mice subjected to subretinal injection was assessed by ophthalmological tests (electroretinogram, funduscopy, tomography, and optokinetic test). RESULTS N-MSiNPs delivered transgenes to human cells in vitro and to retinal cells in vivo. No adverse effects were detected for the integrity of the retinal tissue or the visual function of treated eyes. N-MSiNPs were able to deliver a therapeutic transgene candidate for RP, PRPF31, both in vitro and in vivo. CONCLUSIONS N-MSiNPs are safe for retinal delivery and thus a potential alternative to viral vectors.
Collapse
Affiliation(s)
- Lourdes Valdés-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Sara Borrego-González
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain;
- Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Adoración Montero-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Simone Massalini
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
| | - Berta de la Cerda
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| | - Aránzazu Díaz-Cuenca
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain;
- Networking Research Center on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| | - Francisco J. Díaz-Corrales
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Sevilla, Spain; (L.V.-S.); (A.M.-S.); (S.M.)
- Correspondence: (B.d.l.C.); (A.D.-C.); (F.J.D.-C.)
| |
Collapse
|
22
|
Shen XL, Yuan JF, Qin XH, Song GP, Hu HB, Tu HQ, Song ZQ, Li PY, Xu YL, Li S, Jian XX, Li JN, He CY, Yu XP, Liang LY, Wu M, Han QY, Wang K, Li AL, Zhou T, Zhang YC, Wang N, Li HY. LUBAC regulates ciliogenesis by promoting CP110 removal from the mother centriole. J Cell Biol 2022; 221:212875. [PMID: 34813648 PMCID: PMC8614155 DOI: 10.1083/jcb.202105092] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Primary cilia transduce diverse signals in embryonic development and adult tissues. Defective ciliogenesis results in a series of human disorders collectively known as ciliopathies. The CP110–CEP97 complex removal from the mother centriole is an early critical step for ciliogenesis, but the underlying mechanism for this step remains largely obscure. Here, we reveal that the linear ubiquitin chain assembly complex (LUBAC) plays an essential role in ciliogenesis by targeting the CP110–CEP97 complex. LUBAC specifically generates linear ubiquitin chains on CP110, which is required for CP110 removal from the mother centriole in ciliogenesis. We further identify that a pre-mRNA splicing factor, PRPF8, at the distal end of the mother centriole acts as the receptor of the linear ubiquitin chains to facilitate CP110 removal at the initial stage of ciliogenesis. Thus, our study reveals a direct mechanism of regulating CP110 removal in ciliogenesis and implicates the E3 ligase LUBAC as a potential therapy target of cilia-associated diseases, including ciliopathies and cancers.
Collapse
Affiliation(s)
- Xiao-Lin Shen
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jin-Feng Yuan
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xuan-He Qin
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai East Hospital, Tongji University, Shanghai, China
| | - Guang-Ping Song
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Huai-Bin Hu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hai-Qing Tu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Zeng-Qing Song
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Pei-Yao Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Ling Xu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Sen Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xiao-Xiao Jian
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jia-Ning Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Chun-Yu He
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xi-Ping Yu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Li-Yun Liang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Qiu-Ying Han
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Kai Wang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ai-Ling Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Cheng Zhang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Na Wang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hui-Yan Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China.,School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Determinants of Disease Penetrance in PRPF31-Associated Retinopathy. Genes (Basel) 2021; 12:genes12101542. [PMID: 34680937 PMCID: PMC8535263 DOI: 10.3390/genes12101542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Retinitis pigmentosa 11 (RP11) is caused by dominant mutations in PRPF31, however a significant proportion of mutation carriers do not develop retinopathy. Here, we investigated the relationship between CNOT3 polymorphism, MSR1 repeat copy number and disease penetrance in RP11 patients and non-penetrant carriers (NPCs). We further characterized PRPF31 and CNOT3 expression in fibroblasts from eight RP11 patients and one NPC from a family carrying the c.1205C>T variant. Retinal organoids (ROs) and retinal pigment epithelium (RPE) were differentiated from induced pluripotent stem cells derived from RP11 patients, an NPC and a control subject. All RP11 patients were homozygous for the 3-copy MSR1 repeat in the PRPF31 promoter, while 3/5 NPCs carried a 4-copy MSR1 repeat. The CNOT3 rs4806718 genotype did not correlate with disease penetrance. PRFP31 expression declined with age in adult cadaveric retina. PRPF31 and CNOT3 expression was reduced in RP11 fibroblasts, RO and RPE compared with controls. Both RP11 and NPC RPE displayed shortened primary cilia compared with controls, however a subpopulation of cells with normal cilia lengths was present in NPC RPE monolayers. Our results indicate that RP11 non-penetrance is associated with the inheritance of a 4-copy MSR1 repeat, but not with CNOT3 polymorphisms.
Collapse
|
24
|
Yang C, Georgiou M, Atkinson R, Collin J, Al-Aama J, Nagaraja-Grellscheid S, Johnson C, Ali R, Armstrong L, Mozaffari-Jovin S, Lako M. Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond. Front Cell Dev Biol 2021; 9:700276. [PMID: 34395430 PMCID: PMC8355544 DOI: 10.3389/fcell.2021.700276] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors (PRPF3, 4, 6, 8, 31, SNRNP200, and RP9) have been linked to 15–20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF-RPs driven disease pathogenesis. The current review focuses on the key RP-PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell’s transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF-RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF-RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF-RP patients.
Collapse
Affiliation(s)
- Chunbo Yang
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Georgiou
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert Atkinson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jumana Al-Aama
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Colin Johnson
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Robin Ali
- King's College London, London, United Kingdom
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
25
|
Milićević N, Ait-Hmyed Hakkari O, Bagchi U, Sandu C, Jongejan A, Moerland PD, Ten Brink JB, Hicks D, Bergen AA, Felder-Schmittbuhl MP. Core circadian clock genes Per1 and Per2 regulate the rhythm in photoreceptor outer segment phagocytosis. FASEB J 2021; 35:e21722. [PMID: 34160105 DOI: 10.1096/fj.202100293rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Retinal photoreceptors undergo daily renewal of their distal outer segments, a process indispensable for maintaining retinal health. Photoreceptor outer segment (POS) phagocytosis occurs as a daily peak, roughly about 1 hour after light onset. However, the underlying cellular and molecular mechanisms which initiate this process are still unknown. Here we show that, under constant darkness, mice deficient for core circadian clock genes (Per1 and Per2) lack a daily peak in POS phagocytosis. By qPCR analysis, we found that core clock genes were rhythmic over 24 hours in both WT and Per1, Per2 double mutant whole retinas. More precise transcriptomics analysis of laser capture microdissected WT photoreceptors revealed no differentially expressed genes between time points preceding and during the peak of POS phagocytosis. In contrast, we found that microdissected WT retinal pigment epithelium (RPE) had a number of genes that were differentially expressed at the peak phagocytic time point compared to adjacent ones. We also found a number of differentially expressed genes in Per1, Per2 double mutant RPE compared to WT ones at the peak phagocytic time point. Finally, based on STRING analysis, we found a group of interacting genes that potentially drive POS phagocytosis in the RPE. This potential pathway consists of genes such as: Pacsin1, Syp, Camk2b, and Camk2d among others. Our findings indicate that Per1 and Per2 are necessary clock components for driving POS phagocytosis and suggest that this process is transcriptionally driven by the RPE.
Collapse
Affiliation(s)
- Nemanja Milićević
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Ouafa Ait-Hmyed Hakkari
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Udita Bagchi
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jacoline B Ten Brink
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - David Hicks
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, the Netherlands
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
26
|
Arzalluz-Luque Á, Cabrera JL, Skottman H, Benguria A, Bolinches-Amorós A, Cuenca N, Lupo V, Dopazo A, Tarazona S, Delás B, Carballo M, Pascual B, Hernan I, Erceg S, Lukovic D. Mutant PRPF8 Causes Widespread Splicing Changes in Spliceosome Components in Retinitis Pigmentosa Patient iPSC-Derived RPE Cells. Front Neurosci 2021; 15:636969. [PMID: 33994920 PMCID: PMC8116631 DOI: 10.3389/fnins.2021.636969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is a rare, progressive disease that affects photoreceptors and retinal pigment epithelial (RPE) cells with blindness as a final outcome. Despite high medical and social impact, there is currently no therapeutic options to slow down the progression of or cure the disease. The development of effective therapies was largely hindered by high genetic heterogeneity, inaccessible disease tissue, and unfaithful model organisms. The fact that components of ubiquitously expressed splicing factors lead to the retina-specific disease is an additional intriguing question. Herein, we sought to correlate the retinal cell-type-specific disease phenotype with the splicing profile shown by a patient with autosomal recessive RP, caused by a mutation in pre-mRNA splicing factor 8 (PRPF8). In order to get insight into the role of PRPF8 in homeostasis and disease, we capitalize on the ability to generate patient-specific RPE cells and reveal differentially expressed genes unique to RPE cells. We found that spliceosomal complex and ribosomal functions are crucial in determining cell-type specificity through differential expression and alternative splicing (AS) and that PRPF8 mutation causes global changes in splice site selection and exon inclusion that particularly affect genes involved in these cellular functions. This finding corroborates the hypothesis that retinal tissue identity is conferred by a specific splicing program and identifies retinal AS events as a framework toward the design of novel therapeutic opportunities.
Collapse
Affiliation(s)
- Ángeles Arzalluz-Luque
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, València, Spain
| | - Jose Luis Cabrera
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alberto Benguria
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain
| | - Arantxa Bolinches-Amorós
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center Principe Felipe, Valencia, Spain
- National Stem Cell Bank-Valencia Node, Research Center Principe Felipe, Valencia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid, Spain
| | - Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, València, Spain
| | - Bárbara Delás
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Miguel Carballo
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Beatriz Pascual
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Imma Hernan
- Unitat de Genética Molecular, Hospital de Terrassa, Terrassa, Spain
| | - Slaven Erceg
- Stem Cells Therapies in Neurodegenerative Diseases Lab, Research Center Principe Felipe, Valencia, Spain
- National Stem Cell Bank-Valencia Node, Research Center Principe Felipe, Valencia, Spain
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Dunja Lukovic
- Rare Diseases Joint Units, IIS La Fe-CIPF, Valencia, Spain
- Retinal Degeneration Lab, Research Centre Principe Felipe, Valencia, Spain
| |
Collapse
|
27
|
Dewell TE, Gjoni K, Liu AZ, Libby ARG, Moore AT, So PL, Conklin BR. Transcription factor overexpression drives reliable differentiation of retinal pigment epithelium from human induced pluripotent stem cells. Stem Cell Res 2021; 53:102368. [PMID: 34087997 DOI: 10.1016/j.scr.2021.102368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/10/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration and genetic forms of blindness such as Best Disease and Retinitis Pigmentosa can be caused by degeneration of the Retinal Pigment Epithelium (RPE). RPE generated from patient-derived induced pluripotent stem cells (iPSCs) is valuable for both the study of disease mechanisms and development of therapeutic strategies. However, protocols to produce iPSC-derived RPE in vitro are often inefficient, labor-intensive, low-throughput, and highly variable between cell lines and within batches. Here, we report a robust, scalable method to generate iPSC-RPE using doxycycline-inducible expression of eye field transcription factors OTX2, PAX6 and MITF paired with RPE-permissive culture media. Doxycycline addition induces exogenous expression of these transcription factors in Best Disease patient- and wildtype iPSCs to efficiently produce monolayers of RPE with characteristic morphology and gene expression. Further, these RPE monolayers display functionality features including light absorption via pigmentation, polarity-driven fluid transport, and phagocytosis. With this method, we achieve a highly efficient and easily scalable differentiation without the need for mechanical isolation or enrichment methods, generating RPE cultures applicable for in vitro studies.
Collapse
Affiliation(s)
- Tessa E Dewell
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Ketrin Gjoni
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Angela Z Liu
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Ashley R G Libby
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA; Developmental and Stem Cell Biology Program, University of California, 1675 Owens St, San Francisco, CA 94158, USA
| | - Anthony T Moore
- UCSF Department of Ophthalmology, 10 Koret Way, San Francisco, CA 94143-0730, USA
| | - Po-Lin So
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA; Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, CA 94720, USA; Gladstone Institutes Stem Cell Core, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Bruce R Conklin
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA 94158, USA; UCSF Department of Ophthalmology, 10 Koret Way, San Francisco, CA 94143-0730, USA; Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, CA 94720, USA; UCSF Department of Medicine, 535 Mission Bay Blvd South, San Francisco, CA 94158, USA.
| |
Collapse
|
28
|
Li J, Liu F, Lv Y, Sun K, Zhao Y, Reilly J, Zhang Y, Tu J, Yu S, Liu X, Qin Y, Huang Y, Gao P, Jia D, Chen X, Han Y, Shu X, Luo D, Tang Z, Liu M. Prpf31 is essential for the survival and differentiation of retinal progenitor cells by modulating alternative splicing. Nucleic Acids Res 2021; 49:2027-2043. [PMID: 33476374 PMCID: PMC7913766 DOI: 10.1093/nar/gkab003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
Dysfunction of splicing factors often result in abnormal cell differentiation and apoptosis, especially in neural tissues. Mutations in pre-mRNAs processing factor 31 (PRPF31) cause autosomal dominant retinitis pigmentosa, a progressive retinal degeneration disease. The transcriptome-wide splicing events specifically regulated by PRPF31 and their biological roles in the development and maintenance of retina are still unclear. Here, we showed that the differentiation and viability of retinal progenitor cells (RPCs) are severely perturbed in prpf31 knockout zebrafish when compared with other tissues at an early embryonic stage. At the cellular level, significant mitotic arrest and DNA damage were observed. These defects could be rescued by the wild-type human PRPF31 rather than the disease-associated mutants. Further bioinformatic analysis and experimental verification uncovered that Prpf31 deletion predominantly causes the skipping of exons with a weak 5′ splicing site. Moreover, genes necessary for DNA repair and mitotic progression are most enriched among the differentially spliced events, which may explain the cellular and tissular defects in prpf31 mutant retinas. This is the first time that Prpf31 is demonstrated to be essential for the survival and differentiation of RPCs during retinal neurogenesis by specifically modulating the alternative splicing of genes involved in DNA repair and mitosis.
Collapse
Affiliation(s)
- Jingzhen Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuntong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Science, Wuhan 430072, PR China
| | - Jamas Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK
| | - Yangjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Science, Wuhan 430072, PR China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| |
Collapse
|
29
|
Hebbar S, Lehmann M, Behrens S, Hälsig C, Leng W, Yuan M, Winkler S, Knust E. Mutations in the splicing regulator Prp31 lead to retinal degeneration in Drosophila. Biol Open 2021; 10:10/1/bio052332. [PMID: 33495354 PMCID: PMC7860132 DOI: 10.1242/bio.052332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Retinitis pigmentosa (RP) is a clinically heterogeneous disease affecting 1.6 million people worldwide. The second-largest group of genes causing autosomal dominant RP in human encodes regulators of the splicing machinery. Yet, how defects in splicing factor genes are linked to the aetiology of the disease remains largely elusive. To explore possible mechanisms underlying retinal degeneration caused by mutations in regulators of the splicing machinery, we induced mutations in Drosophila Prp31, the orthologue of human PRPF31, mutations in which are associated with RP11. Flies heterozygous mutant for Prp31 are viable and develop normal eyes and retina. However, photoreceptors degenerate under light stress, thus resembling the human disease phenotype. Degeneration is associated with increased accumulation of the visual pigment rhodopsin 1 and increased mRNA levels of twinfilin, a gene associated with rhodopsin trafficking. Reducing rhodopsin levels by raising animals in a carotenoid-free medium not only attenuates rhodopsin accumulation, but also retinal degeneration. Given a similar importance of proper rhodopsin trafficking for photoreceptor homeostasis in human, results obtained in flies presented here will also contribute to further unravel molecular mechanisms underlying the human disease. This paper has an associated First Person interview with the co-first authors of the article. Summary: Retinitis pigmentosa (RP) is a human disease resulting in blindness, which affects 1 in 4.000 people worldwide. So far >90 genes have been identified that are causally related to RP. Mutations in the splicing factor PRPF31 are linked to RP11. We induced mutations in the Drosophila orthologue Prp31 and show that flies heterozygous for Prp31 undergo light-dependent retinal degeneration. Degeneration is associated with increased accumulation of the light-sensitive molecule, rhodopsin 1. In fact, reducing rhodopsin levels by dietary intervention modifies the extent of retinal degeneration. This model will further contribute to better understand the aetiology of the human disease.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Malte Lehmann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sarah Behrens
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Catrin Hälsig
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Weihua Leng
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Michaela Yuan
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sylke Winkler
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
30
|
Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet 2020; 22:185-198. [PMID: 33235359 DOI: 10.1038/s41576-020-00302-y] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
RNA-binding proteins (RBPs) are critical effectors of gene expression, and as such their malfunction underlies the origin of many diseases. RBPs can recognize hundreds of transcripts and form extensive regulatory networks that help to maintain cell homeostasis. System-wide unbiased identification of RBPs has increased the number of recognized RBPs into the four-digit range and revealed new paradigms: from the prevalence of structurally disordered RNA-binding regions with roles in the formation of membraneless organelles to unsuspected and potentially pervasive connections between intermediary metabolism and RNA regulation. Together with an increasingly detailed understanding of molecular mechanisms of RBP function, these insights are facilitating the development of new therapies to treat malignancies. Here, we provide an overview of RBPs involved in human genetic disorders, both Mendelian and somatic, and discuss emerging aspects in the field with emphasis on molecular mechanisms of disease and therapeutic interventions.
Collapse
Affiliation(s)
- Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain. .,University Pompeu Fabra (UPF), Barcelona, Spain.
| | - Thomas Schwarzl
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Juan Valcárcel
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,University Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | |
Collapse
|
31
|
Narasimhan I, Murali A, Subramanian K, Ramalingam S, Parameswaran S. Autosomal dominant retinitis pigmentosa with toxic gain of function: Mechanisms and therapeutics. Eur J Ophthalmol 2020; 31:304-320. [PMID: 32962414 DOI: 10.1177/1120672120957605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autosomal dominant retinitis pigmentosa is a form of retinitis pigmentosa, an inherited retinal degenerative disorder characterized by progressive loss of photoreceptors eventually leading to irreversible loss of vision. Mutations in genes involved in the basic functions of the visual system give rise to this condition. These mutations can either lead to loss of function or toxic gain of function phenotypes. While autosomal dominant retinitis pigmentosa caused by loss of function can be ideally treated by gene supplementation with a single vector to address a different spectrum of mutations in a gene, the same strategy cannot be applied to toxic gain of function phenotypes. In toxic gain of function phenotypes, the mutation in the gene results in the acquisition of a new function that can interrupt the functioning of the wildtype protein by various mechanisms leading to cell toxicity, thus making a single approach impractical. This review focuses on the genes and mechanisms that cause toxic gain of function phenotypes associated with autosomal dominant retinitis pigmentosa and provide a bird's eye view on current therapeutic strategies and ongoing clinical trials.
Collapse
Affiliation(s)
- Ishwarya Narasimhan
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Aishwarya Murali
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Krishnakumar Subramanian
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Sivaprakash Ramalingam
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
32
|
Hamieh A, Nandrot EF. Retinal Pigment Epithelial Cells: The Unveiled Component in the Etiology of Prpf Splicing Factor-Associated Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1185:227-231. [PMID: 31884616 DOI: 10.1007/978-3-030-27378-1_37] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pre-mRNA splicing is a critical step in RNA processing in all eukaryotic cells. It consists of introns removal and requires the assembly of a large RNA-protein complex called the spliceosome. This complex of small nuclear ribonucleoproteins is associated with accessory proteins from the pre-mRNA processing factor (PRPF) family. Mutations in different splicing factor-encoding genes were identified in retinitis pigmentosa (RP) patients. A surprising feature of these ubiquitous factors is that the outcome of their alteration is restricted to the retina. Because of their high metabolic demand, most studies focused on photoreceptors dysfunction and associated degeneration. However, cells from the retinal pigment epithelium (RPE) are also crucial to maintaining retinal homeostasis and photoreceptor function. Moreover, mutations in RPE-specific genes are associated with some RP cases. Indeed, we identified major RPE defects in Prpf31-mutant mice: circadian rhythms of both photoreceptor outer segments (POS) phagocytosis and retinal adhesion were attenuated or lost, leading to ultrastructural anomalies and vacuoles. Taken together, our published and ongoing data suggest that (1) similar molecular events take place in human and mouse cells and (2) these functional defects generate various stress processes.
Collapse
Affiliation(s)
- Abdallah Hamieh
- Therapeutics Department, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Emeline F Nandrot
- Therapeutics Department, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| |
Collapse
|
33
|
Mutation spectrum of PRPF31, genotype-phenotype correlation in retinitis pigmentosa, and opportunities for therapy. Exp Eye Res 2020; 192:107950. [PMID: 32014492 PMCID: PMC7065041 DOI: 10.1016/j.exer.2020.107950] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Pathogenic variants in pre-messenger RNA (pre-mRNA) splicing factor 31, PRPF31, are the second most common genetic cause of autosomal dominant retinitis pigmentosa (adRP) in most populations. This remains a completely untreatable and incurable form of blindness, and it can be difficult to predict the clinical course of disease. In order to design appropriate targeted therapies, a thorough understanding of the genetics and molecular mechanism of this disease is required. Here, we present the structure of the PRPF31 gene and PRPF31 protein, current understanding of PRPF31 protein function and the full spectrum of all reported clinically relevant variants in PRPF31. We delineate the correlation between specific PRPF31 genotype and RP phenotype, suggesting that, except in cases of complete gene deletion or large-scale deletions, dominant negative effects contribute to phenotype as well as haploinsufficiency. This has important impacts on design of targeted therapies, particularly the feasibility of gene augmentation as a broad approach for treatment of PRPF31-associated RP. We discuss other opportunities for therapy, including antisense oligonucleotide therapy and gene-independent approaches and offer future perspectives on treatment of this form of RP. PRPF31 is the second most common cause of autosomal dominant retinitis pigmentosa and a potential target for gene therapy. We present all reported pathogenic variants in PRPF31 as a resource for clinicians, diagnostic genetics labs, and researchers. Genotype-phenotype correlations suggest that, dominant negative effects contribute to disease in addition to haploinsufficiency. This finding has important impacts on the suitability of gene augmentation approaches across all mutation types. This finding may aid prognosis of disease in PRPF31-associated RP patients.
Collapse
|
34
|
Valdés-Sánchez L, Calado SM, de la Cerda B, Aramburu A, García-Delgado AB, Massalini S, Montero-Sánchez A, Bhatia V, Rodríguez-Bocanegra E, Diez-Lloret A, Rodríguez-Martínez D, Chakarova C, Bhattacharya SS, Díaz-Corrales FJ. Retinal pigment epithelium degeneration caused by aggregation of PRPF31 and the role of HSP70 family of proteins. Mol Med 2019; 26:1. [PMID: 31892304 PMCID: PMC6938640 DOI: 10.1186/s10020-019-0124-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mutations in pre-mRNA splicing factor PRPF31 can lead to retinitis pigmentosa (RP). Although the exact disease mechanism remains unknown, it has been hypothesized that haploinsufficiency might be involved in the pathophysiology of the disease. METHODS In this study, we have analyzed a mouse model containing the p.A216P mutation in Prpf31 gene. RESULTS We found that mutant Prpf31 protein produces cytoplasmic aggregates in the retinal pigment epithelium and decreasing the protein levels of this splicing factor in the nucleus. Additionally, normal protein was recruited in insoluble aggregates when the mutant protein was overexpressed in vitro. In response to protein aggregation, Hspa4l is overexpressed. This member of the HSP70 family of chaperones might contribute to the correct folding and solubilization of the mutant protein, allowing its translocation to the nucleus. CONCLUSIONS Our data suggests that a mechanism haploinsufficiency and dominant-negative is involved in retinal degeneration due to mutations in PRPF31. HSP70 over-expression might be a new therapeutic target for the treatment of retinal degeneration due to PRPF31 mutations.
Collapse
Affiliation(s)
- Lourdes Valdés-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain
| | - Sofia M Calado
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain
- Present Address: Center for Biomedical Research (CBMR), University of Algarve, 8800-139, Faro, Portugal
| | - Berta de la Cerda
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain
| | - Ana Aramburu
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain
- Present Address: Clinique de l'Oeil, Avenue Bois de la Chapelle 15, 1213, Onex, Switzerland
| | - Ana Belén García-Delgado
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain
| | - Simone Massalini
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain
- Present Address: Center for Molecular and Cellular Bioengineering (CMCB) DFG-Research Center for Regenerative Therapies Dresden (CRTD) Cluster of Excellence, Technische Universität Dresden, Fetscherstraße, 105 01307, Dresden, Germany
| | - Adoración Montero-Sánchez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain
| | - Vaibhav Bhatia
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain
| | - Eduardo Rodríguez-Bocanegra
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain
- Present Address: Universitätsklinikum Tübingen, Forschungsinstitut für Augenheilkunde, Elfriede-Aulhorn-Str. 7, 72076, Tübingen, Germany
| | - Andrea Diez-Lloret
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain
| | - Daniel Rodríguez-Martínez
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain
| | - Christina Chakarova
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Shom S Bhattacharya
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Francisco J Díaz-Corrales
- Regeneration and Cell Therapy Department, Andalusian Molecular Biology and Regenerative Medicine Centre-CABIMER (Junta de Andalucía), CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Americo Vespucio 24, 41092, Seville, Spain.
| |
Collapse
|
35
|
Shakhmantsir I, Dooley SJ, Kishore S, Chen D, Pierce E, Bennett J, Sehgal A. RNA Splicing Factor Mutations That Cause Retinitis Pigmentosa Result in Circadian Dysregulation. J Biol Rhythms 2019; 35:72-83. [PMID: 31726916 DOI: 10.1177/0748730419887876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Circadian clocks regulate multiple physiological processes in the eye, but their requirement for retinal health remains unclear. We previously showed that Drosophila homologs of spliceosome proteins implicated in human retinitis pigmentosa (RP), the most common genetically inherited cause of blindness, have a role in the brain circadian clock. In this study, we report circadian phenotypes in murine models of RP. We found that mice carrying a homozygous H2309P mutation in Pre-mRNA splicing factor 8 (Prpf8) display a lengthened period of the circadian wheel-running activity rhythm. We show also that the daily cycling of circadian gene expression is dampened in the retina of Prpf8-H2309P mice. Surprisingly, molecular rhythms are intact in the eye cup, which includes the retinal pigment epithelium (RPE), even though the RPE is thought to be the primary tissue affected in this form of RP. Downregulation of Prp31, another RNA splicing factor implicated in RP, leads to period lengthening in a human cell culture model. The period of circadian bioluminescence in primary fibroblasts of human RP patients is not significantly altered. Together, these studies link a prominent retinal disorder to circadian deficits, which could contribute to disease pathology.
Collapse
Affiliation(s)
- Iryna Shakhmantsir
- Chronobiology and Sleep institute (CSI) and Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott J Dooley
- Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Siddharth Kishore
- Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dechun Chen
- Chronobiology and Sleep institute (CSI) and Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric Pierce
- Ocular Genomics Institute, Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Chronobiology and Sleep institute (CSI) and Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Brydon EM, Bronstein R, Buskin A, Lako M, Pierce EA, Fernandez-Godino R. AAV-Mediated Gene Augmentation Therapy Restores Critical Functions in Mutant PRPF31 +/- iPSC-Derived RPE Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:392-402. [PMID: 31890732 PMCID: PMC6909184 DOI: 10.1016/j.omtm.2019.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
Retinitis pigmentosa (RP) is the most common form of inherited vision loss and is characterized by degeneration of retinal photoreceptor cells and the retinal pigment epithelium (RPE). Mutations in pre-mRNA processing factor 31 (PRPF31) cause dominant RP via haploinsufficiency with incomplete penetrance. There is good evidence that the diverse severity of this disease is a result of differing levels of expression of the wild-type allele among patients. Thus, we hypothesize that PRPF31-related RP will be amenable to treatment by adeno-associated virus (AAV)-mediated gene augmentation therapy. To test this hypothesis, we used induced pluripotent stem cells (iPSCs) with mutations in PRPF31 and differentiated them into RPE cells. The mutant PRPF31 iPSC-RPE cells recapitulate the cellular phenotype associated with the PRPF31 pathology, including defective cell structure, diminished phagocytic function, defects in ciliogenesis, and compromised barrier function. Treatment of the mutant PRPF31 iPSC-RPE cells with AAV-PRPF31 restored normal phagocytosis and cilia formation, and it partially restored structure and barrier function. These results suggest that AAV-based gene therapy targeting RPE cells holds therapeutic promise for patients with PRPF31-related RP.
Collapse
Affiliation(s)
- Elizabeth M Brydon
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Revital Bronstein
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Buskin
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Eric A Pierce
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Rosario Fernandez-Godino
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Azizzadeh Pormehr L, Ahmadian S, Daftarian N, Mousavi SA, Shafiezadeh M. PRPF31 reduction causes mis-splicing of the phototransduction genes in human organotypic retinal culture. Eur J Hum Genet 2019; 28:491-498. [PMID: 31654038 DOI: 10.1038/s41431-019-0531-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 12/22/2022] Open
Abstract
PRPF31 is ubiquitously expressed splicing factor and has an essential role in the pre-mRNA splicing in all tissues. However, it is not clear how reduced expression of this general splicing factor leads to retinal restricted disease, retinitis pigmentosa (RP). In this study, we used RNA interference and RNA-sequencing to mimic the PRPF31 haploinsufficiency in human organotypic retinal cultures (HORCs). We examined the effects of PRPF31 deficiency on splicing by analyzing the differential exon usages (DEUs) and intron retentions of the retinal transcriptome. Our results revealed that the PRPF31 deficiency causes mis-splicing of genes involved in RNA processing (PRPF3, PRPF8, PRPF4, and PRPF19) and phototransduction (RHO, ROM1, FSCN2, GNAT2, and GNAT1) in the retina in the PRPF31 reduced samples. Mis-splicing of genes implicated in phototransduction was associated with photoreceptor degeneration observed in RP patients. Our data revealed that PRPF31 deficiency leads to the mis-splicing of a distinct subset of pre-mRNAs with a widespread effect on phototransduction and RNA processing.
Collapse
Affiliation(s)
- Leila Azizzadeh Pormehr
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Narsis Daftarian
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahshid Shafiezadeh
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
38
|
Blond F, Léveillard T. Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. Int J Mol Sci 2019; 20:E4922. [PMID: 31590277 PMCID: PMC6801968 DOI: 10.3390/ijms20194922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.
Collapse
Affiliation(s)
- Frédéric Blond
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
39
|
Liu B, Calton MA, Abell NS, Benchorin G, Gloudemans MJ, Chen M, Hu J, Li X, Balliu B, Bok D, Montgomery SB, Vollrath D. Genetic analyses of human fetal retinal pigment epithelium gene expression suggest ocular disease mechanisms. Commun Biol 2019; 2:186. [PMID: 31123710 PMCID: PMC6527609 DOI: 10.1038/s42003-019-0430-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The retinal pigment epithelium (RPE) serves vital roles in ocular development and retinal homeostasis but has limited representation in large-scale functional genomics datasets. Understanding how common human genetic variants affect RPE gene expression could elucidate the sources of phenotypic variability in selected monogenic ocular diseases and pinpoint causal genes at genome-wide association study (GWAS) loci. We interrogated the genetics of gene expression of cultured human fetal RPE (fRPE) cells under two metabolic conditions and discovered hundreds of shared or condition-specific expression or splice quantitative trait loci (e/sQTLs). Co-localizations of fRPE e/sQTLs with age-related macular degeneration (AMD) and myopia GWAS data suggest new candidate genes, and mechanisms by which a common RDH5 allele contributes to both increased AMD risk and decreased myopia risk. Our study highlights the unique transcriptomic characteristics of fRPE and provides a resource to connect e/sQTLs in a critical ocular cell type to monogenic and complex eye disorders.
Collapse
Affiliation(s)
- Boxiang Liu
- Department of Biology, Stanford University, Stanford, CA 94305 USA
| | - Melissa A. Calton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Nathan S. Abell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Gillie Benchorin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael J. Gloudemans
- Program in Biomedical Informatics, Stanford University School of Medicine, Stanford, 94305 CA USA
| | - Ming Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Jane Hu
- Department of Ophthalmology, Jules Stein Eye Institute, UCLA, Los Angeles, 90095 CA USA
| | - Xin Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Brunilda Balliu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Dean Bok
- Department of Ophthalmology, Jules Stein Eye Institute, UCLA, Los Angeles, 90095 CA USA
| | - Stephen B. Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
40
|
Li Y, Furhang R, Ray A, Duncan T, Soucy J, Mahdi R, Chaitankar V, Gieser L, Poliakov E, Qian H, Liu P, Dong L, Rogozin IB, Redmond TM. Aberrant RNA splicing is the major pathogenic effect in a knock-in mouse model of the dominantly inherited c.1430A>G human RPE65 mutation. Hum Mutat 2019; 40:426-443. [PMID: 30628748 DOI: 10.1002/humu.23706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 01/03/2023]
Abstract
Human RPE65 mutations cause a spectrum of retinal dystrophies that result in blindness. While RPE65 mutations have been almost invariably recessively inherited, a c.1430A>G (p.(D477G)) mutation has been reported to cause autosomal dominant retinitis pigmentosa (adRP). To study the pathogenesis of this human mutation, we have replicated the mutation in a knock-in (KI) mouse model using CRISPR/Cas9-mediated genome editing. Significantly, in contrast to human patients, heterozygous KI mice do not exhibit any phenotypes in visual function tests. When raised in regular vivarium conditions, homozygous KI mice display relatively undisturbed visual functions with minimal retinal structural changes. However, KI/KI mouse retinae are more sensitive to light exposure and exhibit signs of degenerative features when subjected to light stress. We find that instead of merely producing a missense mutant protein, the A>G nucleotide substitution greatly affects appropriate splicing of Rpe65 mRNA by generating an ectopic splice site in comparable context to the canonical one, thereby disrupting RPE65 protein expression. Similar splicing defects were also confirmed for the human RPE65 c.1430G mutant in an in vitro Exontrap assay. Our data demonstrate that a splicing defect is associated with c.1430G pathogenesis, and therefore provide insights in the therapeutic strategy for human patients.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Rachel Furhang
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Amanda Ray
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Todd Duncan
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Joseph Soucy
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Rashid Mahdi
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| | - Haohua Qian
- Visual Function Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Pinghu Liu
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, NIH, Bethesda, Maryland
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland
| | - T Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland
| |
Collapse
|
41
|
Donato L, Scimone C, Nicocia G, D'Angelo R, Sidoti A. Role of oxidative stress in Retinitis pigmentosa: new involved pathways by an RNA-Seq analysis. Cell Cycle 2018; 18:84-104. [PMID: 30569795 DOI: 10.1080/15384101.2018.1558873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a very heterogeneous inherited ocular disorder group characterized by progressive retinal disruption. Retinal pigment epithelium (RPE) degeneration, due to oxidative stress which arrests the metabolic support to photoreceptors, represents one of the principal causes of RP. Here, the role of oxidative stress in RP onset and progression was analyzed by a comparative whole transcriptome analysis of human RPE cells, treated with 100 µg/ml of oxLDL and untreated, at different time points. Experiment was thrice repeated and performed on Ion ProtonTM sequencing system. Data analysis, including low quality reads trimming and gene expression quantification, was realized by CLC Genomics Workbench software. The whole analysis highlighted 14 clustered "macro-pathways" and many sub-pathways, classified by selection of 5271 genes showing the highest alteration of expression. Among them, 23 genes were already known to be RP causative ones (15 over-expressed and 8 down-expressed), and their enrichment and intersection analyses highlighted new 77 candidate related genes (49 over-expressed and 28 down-expressed). A final filtering analysis then highlighted 29 proposed candidate genes. This data suggests that many new genes, not yet associated with RP, could influence its etiopathogenesis.
Collapse
Affiliation(s)
- Luigi Donato
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Concetta Scimone
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Giacomo Nicocia
- c Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Rosalia D'Angelo
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| | - Antonina Sidoti
- a Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine , University of Messina , Messina , Italy.,b Department of Cutting-Edge Medicine and Therapies, Biomolecular Strategies and Neuroscience, Section of Applied Neuroscience, Molecular Genetics and Predictive Medicine , I.E.ME.S.T. ., Palermo , Italy
| |
Collapse
|
42
|
Foltz LP, Howden SE, Thomson JA, Clegg DO. Functional Assessment of Patient-Derived Retinal Pigment Epithelial Cells Edited by CRISPR/Cas9. Int J Mol Sci 2018; 19:E4127. [PMID: 30572641 PMCID: PMC6321630 DOI: 10.3390/ijms19124127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa is the most common form of inherited blindness and can be caused by a multitude of different genetic mutations that lead to similar phenotypes. Specifically, mutations in ubiquitously expressed splicing factor proteins are known to cause an autosomal dominant form of the disease, but the retina-specific pathology of these mutations is not well understood. Fibroblasts from a patient with splicing factor retinitis pigmentosa caused by a missense mutation in the PRPF8 splicing factor were used to produce three diseased and three CRISPR/Cas9-corrected induced pluripotent stem cell (iPSC) clones. We differentiated each of these clones into retinal pigment epithelial (RPE) cells via directed differentiation and analyzed the RPE cells in terms of gene and protein expression, apicobasal polarity, and phagocytic ability. We demonstrate that RPE cells can be produced from patient-derived and corrected cells and they exhibit morphology and functionality similar but not identical to wild-type RPE cells in vitro. Functionally, the RPE cells were able to establish apicobasal polarity and phagocytose photoreceptor outer segments at the same capacity as wild-type cells. These data suggest that patient-derived iPSCs, both diseased and corrected, are able to differentiate into RPE cells with a near normal phenotype and without differences in phagocytosis, a result that differs from previous mouse models. These RPE cells can now be studied to establish a disease-in-a-dish system relevant to retinitis pigmentosa.
Collapse
Affiliation(s)
- Leah P Foltz
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Sara E Howden
- Murdoch Children's Research Institute, University of Melbourne, Parkville 3052, Australia.
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - James A Thomson
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
43
|
Buskin A, Zhu L, Chichagova V, Basu B, Mozaffari-Jovin S, Dolan D, Droop A, Collin J, Bronstein R, Mehrotra S, Farkas M, Hilgen G, White K, Pan KT, Treumann A, Hallam D, Bialas K, Chung G, Mellough C, Ding Y, Krasnogor N, Przyborski S, Zwolinski S, Al-Aama J, Alharthi S, Xu Y, Wheway G, Szymanska K, McKibbin M, Inglehearn CF, Elliott DJ, Lindsay S, Ali RR, Steel DH, Armstrong L, Sernagor E, Urlaub H, Pierce E, Lührmann R, Grellscheid SN, Johnson CA, Lako M. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat Commun 2018; 9:4234. [PMID: 30315276 PMCID: PMC6185938 DOI: 10.1038/s41467-018-06448-y] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022] Open
Abstract
Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31+/- mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31+/- mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical - basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies.
Collapse
Affiliation(s)
- Adriana Buskin
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Lili Zhu
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Valeria Chichagova
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Basudha Basu
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Sina Mozaffari-Jovin
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - David Dolan
- Department of Biological Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Alastair Droop
- MRC Medical Bioinformatics Centre, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Revital Bronstein
- Ocular Genomics Institute, Mass Eye and Ear and Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Mass Eye and Ear and Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Michael Farkas
- Departments of Ophthalmology and Biochemistry, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, 955 Main Street, Buffalo, NY, 14203-1121, USA
| | - Gerrit Hilgen
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kathryn White
- Electron Microscopy Research Services, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kuan-Ting Pan
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - Achim Treumann
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katarzyna Bialas
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Git Chung
- Newcastle University Protein and Proteome Analysis (NUPPA), Devonshire Building, Devonshire Terrace, Newcastle upon Tyne, NE1 7RU, UK
| | - Carla Mellough
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Yuchun Ding
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Urban Sciences Building, 1 Science Square, Newcastle Helix, Newcastle upon Tyne, NE4 5TG, UK
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Urban Sciences Building, 1 Science Square, Newcastle Helix, Newcastle upon Tyne, NE4 5TG, UK
| | - Stefan Przyborski
- Department of Biological Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Simon Zwolinski
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jumana Al-Aama
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, 7393 Al-Malae'b St, Jeddah, 22252, Saudi Arabia
| | - Sameer Alharthi
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, 7393 Al-Malae'b St, Jeddah, 22252, Saudi Arabia
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Gabrielle Wheway
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Katarzyna Szymanska
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Martin McKibbin
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Chris F Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - David H Steel
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Evelyne Sernagor
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - Eric Pierce
- Ocular Genomics Institute, Mass Eye and Ear and Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany
| | - Sushma-Nagaraja Grellscheid
- Department of Biological Sciences, Durham University, South Road, Durham, DH1 3LE, UK.
- Computational Biology Unit, Department of Biological Sciences, University of Bergen, Thormohlensgt 55, Bergen, N-5008, Norway.
| | - Colin A Johnson
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
44
|
Foltz LP, Clegg DO. Patient-derived induced pluripotent stem cells for modelling genetic retinal dystrophies. Prog Retin Eye Res 2018; 68:54-66. [PMID: 30217765 DOI: 10.1016/j.preteyeres.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022]
Abstract
The human retina is a highly complex tissue that makes up an integral part of our central nervous system. It is astonishing that our retina works seamlessly to provide one of our most critical senses, and it is equally devastating when a disease destroys a portion of the retina and robs people of their vision. After decades of research, scientists are beginning to understand retinal cells in a way that can benefit the millions of individuals suffering from inherited blindness. This understanding has come about in part with the ability to culture human embryonic stem cells and the innovation of induced pluripotent stem cells, which can be cultured from patients and used to model their disease. In this review, we highlight the successes of specific disease modelling studies and resulting molecular discoveries. The greatest strides in cellular modelling have come from mutations in genes with established and well-understood cellular functions in the context of the retina. We believe that the future of cellular modelling depends on emphasising reproducible production of retinal cell types, demonstrating functional rescue using site-specific programmable nucleases, and shifting towards unbiased screening using next generation sequencing.
Collapse
Affiliation(s)
- Leah P Foltz
- Biochemistry and Molecular Biology, University of California, Santa Barbara, CA, USA; Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA, USA.
| | - Dennis O Clegg
- Biochemistry and Molecular Biology, University of California, Santa Barbara, CA, USA; Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA, USA
| |
Collapse
|
45
|
Shen J, He J, Wang F. Isolation and Culture of Primary Mouse Retinal Pigment Epithelial (RPE) Cells with Rho-Kinase and TGFβR-1/ALK5 Inhibitor. Med Sci Monit 2017; 23:6132-6136. [PMID: 29279601 PMCID: PMC5751728 DOI: 10.12659/msm.905569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Primary RPE cells could be a reliable model for representing in vivo status of RPE compared with cell lines. We present a protocol for in vitro isolation and culture of primary RPE cells from C57BL mice. Material/Methods We used C57BL mice ages 7 days to 4 months. The RPE layer was separated from the neural retina layer by digestion with 2% Dispase for 45 min and scraped off from the choroid after 25-min incubation in 37°C. Collected RPE sheets were gently pipetted up into smaller sheets. RPE sheets were transferred into well plates and cultured in vitro for 2 weeks. To inhibit epithelial-mesenchymal transition (EMT) of RPE cells, we used Y27632 and Repsox to treat cultured primary RPE cells. Results RPE cells isolated from C57BL mice maintained pigmented and hexagonal morphology in culture. However, long-term in vitro culture lead to the periphery cells of a RPE sheet becoming mesenchymal-like cells. In contrast to the control group, Y27632 and Repsox, which are inhibitors of Rho-kinase or TGFβR-1/ALK5, promoted primary RPE cells to maintain epithelial-like morphology and eventually become confluent. Conclusions RPE cells isolated from C57BL mice could be a powerful cell model to study the biological function of RPE. Especially, C57BL mice with different defective genetic background resulting in ocular diseases, would expand the genome type of RPE cells. The method presented here could be an efficient and applicable technique to obtain large numbers of primary RPE cells that maintain some characteristics of in vivo RPE.
Collapse
Affiliation(s)
- Junhui Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Jianfeng He
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
46
|
Escher P, Passarin O, Munier FL, Tran VH, Vaclavik V. Variability in clinical phenotypes of PRPF8-linked autosomal dominant retinitis pigmentosa correlates with differential PRPF8/SNRNP200 interactions. Ophthalmic Genet 2017; 39:80-86. [DOI: 10.1080/13816810.2017.1393825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Pascal Escher
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Olga Passarin
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Francis L. Munier
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Viet H. Tran
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Veronika Vaclavik
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
- Hôpital Cantonal, Fribourg, Switzerland
| |
Collapse
|
47
|
snRNP proteins in health and disease. Semin Cell Dev Biol 2017; 79:92-102. [PMID: 29037818 DOI: 10.1016/j.semcdb.2017.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
Abstract
Split gene architecture of most human genes requires removal of intervening sequences by mRNA splicing that occurs on large multiprotein complexes called spliceosomes. Mutations compromising several spliceosomal components have been recorded in degenerative syndromes and haematological neoplasia, thereby highlighting the importance of accurate splicing execution in homeostasis of assorted adult tissues. Moreover, insufficient splicing underlies defective development of craniofacial skeleton and upper extremities. This review summarizes recent advances in the understanding of splicing factor function deduced from cryo-EM structures. We combine these data with the characterization of splicing factors implicated in hereditary or somatic disorders, with a focus on potential functional consequences the mutations may elicit in spliceosome assembly and/or performance. Given aberrant splicing or perturbations in splicing efficiency substantially underpin disease pathogenesis, profound understanding of the mis-splicing principles may open new therapeutic vistas. In three major sections dedicated to retinal dystrophies, hereditary acrofacial syndromes, and haematological malignancies, we delineate the noticeable variety of conditions associated with dysfunctional splicing and accentuate recurrent patterns in splicing defects.
Collapse
|
48
|
Au ED, Fernandez-Godino R, Kaczynksi TJ, Sousa ME, Farkas MH. Characterization of lincRNA expression in the human retinal pigment epithelium and differentiated induced pluripotent stem cells. PLoS One 2017; 12:e0183939. [PMID: 28837677 PMCID: PMC5570510 DOI: 10.1371/journal.pone.0183939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022] Open
Abstract
Long intervening non-coding RNAs (lincRNAs) are increasingly being implicated as important factors in many aspects of cellular development, function, and disease, but remain poorly understood. In this study, we examine the human retinal pigment epithelium (RPE) lincRNA transcriptome using RNA-Seq data generated from human fetal RPE (fRPE), RPE derived from human induced pluripotent stem cells (iPS-RPE), and undifferentiated iPS (iPS). In addition, we determine the suitability of iPS-RPE, from a transcriptome standpoint, as a model for use in future studies of lincRNA structure and function. A comparison of gene and isoform expression across the whole transcriptome shows only minimal differences between all sample types, though fRPE and iPS-RPE show higher concordance than either shows with iPS. Notably, RPE signature genes show the highest degree of fRPE to iPS-RPE concordance, indicating that iPS-RPE cells provide a suitable model for use in future studies. An analysis of lincRNAs demonstrates high concordance between fRPE and iPS-RPE, but low concordance between either RPE and iPS. While most lincRNAs are expressed at low levels (RPKM < 10), there is a high degree of concordance among replicates within each sample type, suggesting the expression is consistent, even at levels subject to high variability. Finally, we identified and annotated 180 putative novel genes in the fRPE samples, a majority of which are also expressed in the iPS-RPE. Overall, this study represents the first characterization of lincRNA expression in the human RPE, and provides a model for studying the role lincRNAs play in RPE development, function, and disease.
Collapse
Affiliation(s)
- Elizabeth D. Au
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Tadeusz J. Kaczynksi
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, United States of America
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, United States of America
| | - Maria E. Sousa
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, United States of America
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, United States of America
| | - Michael H. Farkas
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, United States of America
- Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, United States of America
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
49
|
Lv JN, Zhou GH, Chen X, Chen H, Wu KC, Xiang L, Lei XL, Zhang X, Wu RH, Jin ZB. Targeted RP9 ablation and mutagenesis in mouse photoreceptor cells by CRISPR-Cas9. Sci Rep 2017; 7:43062. [PMID: 28216641 PMCID: PMC5317003 DOI: 10.1038/srep43062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/17/2017] [Indexed: 01/24/2023] Open
Abstract
Precursor messenger RNA (Pre-mRNA) splicing is an essential biological process in eukaryotic cells. Genetic mutations in many spliceosome genes confer human eye diseases. Mutations in the pre-mRNA splicing factor, RP9 (also known as PAP1), predispose autosomal dominant retinitis pigmentosa (adRP) with an early onset and severe vision loss. However, underlying molecular mechanisms of the RP9 mutation causing photoreceptor degeneration remains fully unknown. Here, we utilize the CRISPR/Cas9 system to generate both the Rp9 gene knockout (KO) and point mutation knock in (KI) (Rp9, c.A386T, P.H129L) which is analogous to the reported one in the retinitis pigmentosa patients (RP9, c.A410T, P.H137L) in 661 W retinal photoreceptor cells in vitro. We found that proliferation and migration were significantly decreased in the mutated cells. Gene expression profiling by RNA-Seq demonstrated that RP associated genes, Fscn2 and Bbs2, were down-regulated in the mutated cells. Furthermore, pre-mRNA splicing of the Fscn2 gene was markedly affected. Our findings reveal a functional relationship between the ubiquitously expressing RP9 and the disease-specific gene, thereafter provide a new insight of disease mechanism in RP9-related retinitis pigmentosa.
Collapse
Affiliation(s)
- Ji-Neng Lv
- Lab for Stem Cell &Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital of Wenzhou Medical University, The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health Wenzhou 325027, China.,Division of Ophthalmic Genetics, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Gao-Hui Zhou
- Lab for Stem Cell &Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital of Wenzhou Medical University, The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health Wenzhou 325027, China.,Division of Ophthalmic Genetics, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuejiao Chen
- Lab for Stem Cell &Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital of Wenzhou Medical University, The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health Wenzhou 325027, China.,Division of Ophthalmic Genetics, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Chen
- Lab for Stem Cell &Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital of Wenzhou Medical University, The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health Wenzhou 325027, China.,Division of Ophthalmic Genetics, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Kun-Chao Wu
- Lab for Stem Cell &Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital of Wenzhou Medical University, The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health Wenzhou 325027, China.,Division of Ophthalmic Genetics, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lue Xiang
- Lab for Stem Cell &Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital of Wenzhou Medical University, The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health Wenzhou 325027, China.,Division of Ophthalmic Genetics, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xin-Lan Lei
- Lab for Stem Cell &Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital of Wenzhou Medical University, The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health Wenzhou 325027, China.,Division of Ophthalmic Genetics, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiao Zhang
- Lab for Stem Cell &Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital of Wenzhou Medical University, The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health Wenzhou 325027, China.,Division of Ophthalmic Genetics, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Rong-Han Wu
- Lab for Stem Cell &Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital of Wenzhou Medical University, The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health Wenzhou 325027, China.,Division of Ophthalmic Genetics, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zi-Bing Jin
- Lab for Stem Cell &Retinal Regeneration, Institute of Stem Cell Research, The Eye Hospital of Wenzhou Medical University, The State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health Wenzhou 325027, China.,Division of Ophthalmic Genetics, The Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
50
|
Hafler BP, Comander J, Weigel DiFranco C, Place EM, Pierce EA. Course of Ocular Function in PRPF31 Retinitis Pigmentosa. Semin Ophthalmol 2016; 31:49-52. [PMID: 26959129 DOI: 10.3109/08820538.2015.1114856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in pre-mRNA splicing factors are the second most common cause of autosomal dominant retinitis pigmentosa, and a major cause of vision loss. The development of gene augmentation therapy for disease caused by mutations in PRPF31 necessitates defining pretreatment characteristics and disease progression of patients with PRPF31-related retinitis pigmentosa. We show rates of decline of visual field area -6.9% per year and 30-Hz flicker cone response of -9.2% per year, which are both similar to observed rates for retinitis pigmentosa. We hypothesize that RNA splicing factor retinitis pigmentosa will be amenable to treatment by AAV-mediated gene therapy, and that understanding the clinical progression rates of PRPF31 retinitis pigmentosa will help with the design of gene therapy clinical trials.
Collapse
Affiliation(s)
- Brian P Hafler
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| | - Jason Comander
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| | - Carol Weigel DiFranco
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| | - Emily M Place
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| | - Eric A Pierce
- a Department of Ophthalmology , Massachusetts Eye and Ear Infirmary , Boston , Massachusetts , USA
| |
Collapse
|