1
|
Miyamoto R, Takigawa H, Yuge R, Shimizu D, Ariyoshi M, Otani R, Tsuboi A, Tanaka H, Yamashita K, Hiyama Y, Urabe Y, Ishikawa A, Sentani K, Oka S. Analysis of anti-tumor effect and mechanism of GLS1 inhibitor CB-839 in colorectal cancer using a stroma-abundant tumor model. Exp Mol Pathol 2024; 137:104896. [PMID: 38703552 DOI: 10.1016/j.yexmp.2024.104896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/01/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Glutaminase 1 (GLS1), a key enzyme in glutamine metabolism in cancer cells, acts as a tumor promoter and could be a potential therapeutic target. CB-839, a GLS1-specific inhibitor, was developed recently. Herein, we aimed to elucidate the anti-tumor effects and mechanism of action of CB-839 in colorectal cancer (CRC). METHODS Using the UCSC Xena public database, we evaluated GLS1 expression in various cancers. Immunostaining for GLS1 was performed on 154 surgically resected human CRC specimens. Subsequently, we examined the GLS1 mRNA expression levels in eight CRC cell lines and evaluated the association between GLS1 expression and CB-839 efficacy. To create a reproducible CRC model with abundant stroma and an allogeneic immune response, we co-transplanted CT26 and stem cells into BALB/c mice and treated them with CB-839. Finally, RNA sequencing of mouse tumors was performed. RESULTS Database analysis showed higher GLS1 expression in CRC tissues than in normal colon tissues. Clinical samples from 114 of the 154 patients with CRC showed positive GLS1 expression. GLS1 expression in clinical CRC tissues correlated with vascular invasion. CB-839 treatment inhibited cancer cell proliferation depending on GLS1 expression in vitro and inhibited tumor growth and metastasis in the CRC mouse model. RNA sequencing revealed that CB-839 treatment inhibited stromal activation, tumor growth, migration, and angiogenesis. These findings were validated through in vitro and in vivo experiments and clinical specimen analysis. CONCLUSIONS GLS1 expression in CRC plays important roles in tumor progression. CB-839 has inhibitory effects on cancer proliferation and the tumor microenvironment.
Collapse
Affiliation(s)
- Ryo Miyamoto
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidehiko Takigawa
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Ryo Yuge
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daisuke Shimizu
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Misa Ariyoshi
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Rina Otani
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akiyoshi Tsuboi
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidenori Tanaka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ken Yamashita
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuichi Hiyama
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuji Urabe
- Department of Gastrointestinal Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Akira Ishikawa
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Otani R, Takigawa H, Yuge R, Shimizu D, Ariyoshi M, Miyamoto R, Kadota H, Hiyama Y, Hayashi R, Urabe Y, Ishikawa A, Oue N, Kitadai Y, Oka S, Tanaka S. The Anti-Tumor Effect of the Newly Developed LAT1 Inhibitor JPH203 in Colorectal Carcinoma, According to a Comprehensive Analysis. Cancers (Basel) 2023; 15:cancers15051383. [PMID: 36900176 PMCID: PMC10000236 DOI: 10.3390/cancers15051383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
A novel large neutral amino acid transporter 1 (LAT1)-specific inhibitor, JPH203, is expected to cause cancer-specific starvation and possess anti-tumor effects; however, its anti-tumor mechanism for colorectal cancer (CRC) remains unclear. We analyzed LAT family gene expressions in public databases using UCSC Xena and evaluated LAT1 protein expression using immunohistochemistry in 154 cases of surgically resected CRC. We also evaluated mRNA expression using polymerase chain reaction in 10 CRC cell lines. Furthermore, JPH203 treatment experiments were conducted in vitro and in vivo using an allogeneic immune-responsive mouse model with abundant stroma created via the orthotopic transplantation of the mouse-derived CRC cell line CT26 and mesenchymal stem cells. The treatment experiments were followed by comprehensive gene expression analyses with RNA sequencing. Database analyses and immunohistochemistry research on clinical specimens revealed that LAT1 expression was cancer-dominant, and its increase was accompanied by tumor progression. In vitro, JPH203 was effective in an LAT1 expression-dependent manner. In vivo, JPH203 treatment considerably reduced tumor size and metastasis, and RNA sequencing-based pathway analysis showed that not only tumor growth and amino acid metabolism pathways, but also stromal activation-related pathways were suppressed. The results of the RNA sequencing were validated in the clinical specimens, as well as both in vitro and in vivo. LAT1 expression in CRC plays an important role in tumor progression. JPH203 may inhibit the progression of CRC and tumor stromal activity.
Collapse
Affiliation(s)
- Rina Otani
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hidehiko Takigawa
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-822575939
| | - Ryo Yuge
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Daisuke Shimizu
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Misa Ariyoshi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Ryo Miyamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hiroki Kadota
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yuichi Hiyama
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Ryohei Hayashi
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yuji Urabe
- Department of Gastrointestinal Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Akira Ishikawa
- Department of Molecular Pathology, Hiroshima University, Hiroshima 734-8551, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yasuhiko Kitadai
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
3
|
Organotropism of breast cancer metastasis: A comprehensive approach to the shared gene network. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Kadota H, Yuge R, Shimizu D, Miyamoto R, Otani R, Hiyama Y, Takigawa H, Hayashi R, Urabe Y, Kitadai Y, Oka S, Tanaka S. Anti-Programmed Cell Death-1 Antibody and Dasatinib Combination Therapy Exhibits Efficacy in Metastatic Colorectal Cancer Mouse Models. Cancers (Basel) 2022; 14:cancers14246146. [PMID: 36551634 PMCID: PMC9776338 DOI: 10.3390/cancers14246146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the in vivo metastasis suppression effects of the platelet-derived growth factor receptor inhibitor dasatinib, which targets cancer-associated fibroblasts (CAFs), in combination with an anti-programmed cell death-1 (PD-1) antibody. We classified clinical CRC cases as inflamed, excluded, or desert using immunohistochemical analysis and evaluated the tumor stroma. The excluded type was the most common, and cases with high-volume stroma in the primary lesions also had a high stromal volume in the liver metastatic lesions. Liver-metastasis mouse models with different stromal volumes were established and treatment-induced changes in the tumor immune microenvironment were evaluated. The anti-PD-1 antibody alone exhibited a therapeutic effect for the liver metastases with low stromal volumes but not for the liver metastases with high stromal volumes. In contrast, antitumor effects were observed with anti-PD-1 antibody/dasatinib combination therapy even in the liver metastases with high stromal volumes. Combination therapy reduced the stromal volume, promoted immune cell infiltration, induced antitumor cytotoxic T-cell responses, activated antitumor immunity, and promoted tumor regression. These results suggest that CAFs play an important role in the immune evasion of CRC and that anti-PD-1 antibody/dasatinib combination therapy has potential as a treatment option for patients with metastatic CRC for whom immunotherapy alone is ineffective.
Collapse
Affiliation(s)
- Hiroki Kadota
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Ryo Yuge
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Correspondence: ; Tel.: +81-822575191
| | - Daisuke Shimizu
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Ryo Miyamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Rina Otani
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yuichi Hiyama
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hidehiko Takigawa
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Ryohei Hayashi
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yuji Urabe
- Department of Gastroenterointestinal Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yasuhiko Kitadai
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
5
|
Zheng Z, Li Y, Lu X, Zhang J, Liu Q, Zhou D, Deng X, Qiu Y, Chen Q, Zheng H, Dai J. A novel mTOR-associated gene signature for predicting prognosis and evaluating tumor immune microenvironment in lung adenocarcinoma. Comput Biol Med 2022; 145:105394. [PMID: 35325730 DOI: 10.1016/j.compbiomed.2022.105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The mechanistic target of rapamycin (mTOR) was proven to have great impact on apoptosis, cell proliferation, autophagy, and many other fundamental cellular processes; moreover, it closely correlates with tumor occurrence and development. However, few studies have constructed signatures based on mTOR-associated genes to assess multiple indicators of prognosis in lung adenocarcinoma (LUAD) patients. METHODS mTOR-associated gene sets, whole mRNA expression matrices, and clinical information of LUAD patients in training and validation cohorts were obtained from multiple public databases. Multiple methods were used to screen candidate genes, construct signatures, validate internally and externally, and conduct further studies: differentially expressed gene analysis, LASSO Cox regression analysis, Cox regression analysis, risk factor analysis, nomogram analysis, functional enrichment analysis, analyses in tumor immune microenvironment, and therapy. RESULTS A prognostic signature containing 8 genes (LDHA, SLA, WNT7A, PLK1, CCT6A, BTG2, TXNRD1, and DDIT4) was constructed. It performed well in both internal and external validation. Subsequent analysis found that the prognostic signature was of great significance in evaluating the tumor immune microenvironment and could guide the treatment of patients with LUAD to a certain extent. CONCLUSION The constructed mTOR-associated gene signature accurately predicted the prognostic pattern of patients with LUAD and is expected to be extremely useful in guiding LUAD therapy.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yanqi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Quanxing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Xufeng Deng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Qian Chen
- Cancer Center of Daping Hospital, Third Military Medical University (Army Medical University), ChangJiang Sub-Road, Chongqing, 400042, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| | - Jigang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
6
|
Xu Y, Tian H, Luan CG, Sun K, Bao PJ, Zhang HY, Zhang N. Telocytes promote hepatocellular carcinoma by activating the ERK signaling pathway and miR-942-3p/MMP9 axis. Cell Death Discov 2021; 7:209. [PMID: 34376644 PMCID: PMC8355302 DOI: 10.1038/s41420-021-00592-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
In China, hepatocellular carcinoma (HCC) is considered a malignant tumor with poor prognosis, frequent metastasis, and a high relapse rate. Telocytes (TCs) participate in tumorigenic, invasive, and migratory processes by secreting functional proteins and transmitting cell-to-cell information, but their functions in HCC are still unknown. TC counts and MMP9 expression in liver cancer tissues were measured using immunohistochemistry, western blotting, and RT-PCR. Primary TCs from liver para-cancer tissues were cultured in vitro. To verify the role of TCs in HCC, a metastatic cancer animal model was established using three types of liver cancer cell lines in vivo. TCs promoted HCC cell metastasis by MMP9 expression in vitro and in vivo. Platelet-derived growth factor-alpha (PDGF-α), secreted by HCC cells, activated the Ras/ERK signaling pathway in TCs, thereby increasing MMP9 expression; Moreover, miR-942-3p suppressed MMP9 expression in TCs. Our results reveal the role of TCs in HCC and the mechanisms by which they elicit their effects, and they may serve as novel prognostic markers for HCC.
Collapse
Affiliation(s)
- Ying Xu
- Shandong First Medical University and Shandong Academy of Medical Science, Shandong Cancer Hospital and Institute, Ji'nan, Shandong, China
| | - Hu Tian
- The First Affiliated Hospital of Shandong First Medical University, General Surgery, Ji'nan, Shandong, China.
| | - Chao Guang Luan
- Ji 'nan Municipal Three Hospitals, General Surgery, Ji'nan, Shandong, China
| | - Kai Sun
- The First Affiliated Hospital of Shandong First Medical University, General Surgery, Ji'nan, Shandong, China
| | - Peng Jin Bao
- Shandong First Medical University and Shandong Academy of Medical Science, Shandong Cancer Hospital and Institute, Ji'nan, Shandong, China
| | - Hua Yu Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, China
| | - Nan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong, China
| |
Collapse
|
7
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
8
|
Benedicto A, García-Kamiruaga I, Arteta B. Neuropilin-1: A feasible link between liver pathologies and COVID-19. World J Gastroenterol 2021; 27:3516-3529. [PMID: 34239266 PMCID: PMC8240058 DOI: 10.3748/wjg.v27.i24.3516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has a tremendous impact on the health of millions of people worldwide. Unfortunately, those suffering from previous pathological conditions are more vulnerable and tend to develop more severe disease upon infection with the new SARS-CoV-2. This coronavirus interacts with the angiotensin-converting enzyme 2 receptor to invade the cells. Recently, another receptor, neuropilin-1 (NRP-1), has been reported to amplify the viral infection. Interestingly, NRP-1 is expressed in nonparenchymal liver cells and is related to and upregulated in a wide variety of liver-related pathologies. It has been observed that SARS-CoV-2 infection promotes liver injury through several pathways that may be influenced by the previous pathological status of the patient and liver expression of NRP-1. Moreover, coronavirus disease 2019 causes an inflammatory cascade called cytokine storm in patients with severe disease. This cytokine storm may influence liver sinusoidal-cell phenotype, facilitating viral invasion. In this review, the shreds of evidence linking NRP-1 with liver pathologies such as hepatocellular carcinoma, liver fibrosis, nonalcoholic fatty liver disease and inflammatory disorders are discussed in the context of SARS-CoV-2 infection. In addition, the involvement of the infection-related cytokine storm in NRP-1 overexpression and the subsequent increased risk of SARS-CoV-2 infection are also analyzed. This review aims to shed some light on the involvement of liver NRP-1 during SARS-CoV-2 infection and emphasizes the possible involvement this receptor with the observed liver damage.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cellular Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Leioa 48940, Bizkaia, Spain
| | - Iñigo García-Kamiruaga
- Department of Gastroenterology and Hepatology, San Eloy Hospital, Barakaldo 48902, Spain
| | - Beatriz Arteta
- Department of Cellular Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Leioa 48940, Bizkaia, Spain
| |
Collapse
|
9
|
Yorita N, Yuge R, Takigawa H, Ono A, Kuwai T, Kuraoka K, Kitadai Y, Tanaka S, Chayama K. Stromal reaction inhibitor and immune-checkpoint inhibitor combination therapy attenuates excluded-type colorectal cancer in a mouse model. Cancer Lett 2020; 498:111-120. [PMID: 33129954 DOI: 10.1016/j.canlet.2020.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022]
Abstract
Despite recent advances in cancer immunotherapy, the efficacy of colorectal cancer (CRC) immunotherapy regimens is limited. This study evaluated the combined effect of an anti-PD-1 antibody and a platelet-derived growth factor receptor inhibitor (imatinib) on CRC progression using an orthotopic transplanted mouse model that reproduced the three histological phenotypes of CRC (inflamed-, excluded-, and desert-type). The frequency of each of these phenotypes in 196 human CRC tissue samples was also evaluated. Excluded-type CRC had the highest frequency in human tissue samples. In the mouse model, imatinib suppressed stromal reaction and increased sensitivity to anti-PD-1 treatment in excluded-type CRC. Antitumor effect was observed in mice with excluded-type tumors only after concomitant administration of anti-PD-1 antibody and imatinib. Immunohistological analysis revealed a reduction in stromal volume and an increase in the number of CD8-positive T cells in the tumor nest following combination therapy. RNA sequencing revealed significant activation of immune-related pathways and suppression of stromal-related pathways in transplanted tumors treated with combination therapy compared with tumors treated with anti-PD-1 antibody monotherapy. This combination therapy may prove effective for CRC cases that are unresponsive to anti-PD-1 antibody monotherapy.
Collapse
Affiliation(s)
- Naoki Yorita
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryo Yuge
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan.
| | - Hidehiko Takigawa
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Atsushi Ono
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshio Kuwai
- Department of Gastroenterology, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Kazuya Kuraoka
- Department of Anatomical Pathology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yasuhiko Kitadai
- Department of Health and Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Liu X, Niu X, Qiu Z. A Five-Gene Signature Based on Stromal/Immune Scores in the Tumor Microenvironment and Its Clinical Implications for Liver Cancer. DNA Cell Biol 2020; 39:1621-1638. [PMID: 32758021 DOI: 10.1089/dna.2020.5512] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence highlights the clinical significance of stromal cells and immune cells in the liver cancer microenvironment. However, reliable prognostic models have not been well established. This study aimed to develop a gene signature for liver cancer based on stromal and immune scores. Using the estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) algorithm, stromal and immune scores were estimated based on the transcriptome profile of The Cancer Genome Atlas (TCGA) liver cancer cohort. Stromal-/immune-related differentially expressed genes were identified, followed by functional enrichment analysis. The Cox regression model was used to select prognostic genes and construct a gene signature. Its predictive potential was evaluated by receiver operating characteristic (ROC). The correlation between the risk score and immune cell infiltration was analyzed using Tumor Immune Estimation Resource (TIMER). Three hundred sixty-four upregulated and 10 downregulated stromal-/immune-related genes were identified, were mainly enriched in immune-related processes and pathways. Through univariate and multivariate cox survival analysis, a five-gene risk score was constructed, composed of FABP3, HTRA3, OLFML2B, PDZD4 and SLAMF6. Patients with high score indicated a poorer prognosis than those with low risk score. The areas under the ROC curves of overall survival (OS), progression-free interval, 3-, 5-year, OS status were 0.68, 0.57, 0.72, 0.74 and 0.728, indicating its well performance on predicting patients' prognoses. Furthermore, the risk score and the five genes were significantly correlated with immune cell infiltration in the tumor microenvironment. In this study, we proposed a prognostic five-gene signature based on stromal/immune scores in the liver cancer microenvironment.
Collapse
Affiliation(s)
- Xichun Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Zhigang Qiu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
In-Depth Characterization of Mass Spectrometry-Based Proteomic Profiles Revealed Novel Signature Proteins Associated with Liver Metastatic Colorectal Cancers. Anal Cell Pathol (Amst) 2019; 2019:7653230. [PMID: 31781478 PMCID: PMC6875276 DOI: 10.1155/2019/7653230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Liver metastasis is the most common form of metastatic colorectal cancers during the course of the disease. The global change in protein abundance in liver metastatic colorectal cancers and its role in metastasis establishment have not been comprehensively analyzed. In the present study, fresh-frozen tissue samples including normal colon/localized/liver metastatic CRCs from each recruited patient were analyzed by quantitative proteomics using a multiplexed TMT labeling strategy. Around 5000 protein groups were quantified from all samples. The proteomic profile of localized/metastatic CRCs varied greatly from that of normal colon tissues; differential proteins were mainly from extracellular regions and participate in immune activities, which is crucial for the chronic inflammation signaling pathways in the tumor microenvironment. Further statistical analysis revealed 47 proteins exhibiting statistical significance between localized and metastatic CRCs, of which FILI1P1 and PLG were identified for the first time in proteomic data, which were highly associated with liver metastasis in CRCs.
Collapse
|
12
|
Jeitany M, Leroy C, Tosti P, Lafitte M, Le Guet J, Simon V, Bonenfant D, Robert B, Grillet F, Mollevi C, El Messaoudi S, Otandault A, Canterel-Thouennon L, Busson M, Thierry AR, Martineau P, Pannequin J, Roche S, Sirvent A. Inhibition of DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer. EMBO Mol Med 2019; 10:emmm.201707918. [PMID: 29438985 PMCID: PMC5887546 DOI: 10.15252/emmm.201707918] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The clinical management of metastatic colorectal cancer (mCRC) faces major challenges. Here, we show that nilotinib, a clinically approved drug for chronic myeloid leukaemia, strongly inhibits human CRC cell invasion in vitro and reduces their metastatic potential in intrasplenic tumour mouse models. Nilotinib acts by inhibiting the kinase activity of DDR1, a receptor tyrosine kinase for collagens, which we identified as a RAS‐independent inducer of CRC metastasis. Using quantitative phosphoproteomics, we identified BCR as a new DDR1 substrate and demonstrated that nilotinib prevents DDR1‐mediated BCR phosphorylation on Tyr177, which is important for maintaining β‐catenin transcriptional activity necessary for tumour cell invasion. DDR1 kinase inhibition also reduced the invasion of patient‐derived metastatic and circulating CRC cell lines. Collectively, our results indicate that the targeting DDR1 kinase activity with nilotinib may be beneficial for patients with mCRC.
Collapse
Affiliation(s)
- Maya Jeitany
- CRBM, CNRS, University Montpellier, Montpellier, France
| | - Cédric Leroy
- CRBM, CNRS, University Montpellier, Montpellier, France.,Novartis Institutes for Biomedical Research, Postfach, Basel, Switzerland.,Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Marie Lafitte
- CRBM, CNRS, University Montpellier, Montpellier, France
| | - Jordy Le Guet
- CRBM, CNRS, University Montpellier, Montpellier, France
| | - Valérie Simon
- CRBM, CNRS, University Montpellier, Montpellier, France
| | - Debora Bonenfant
- Novartis Institutes for Biomedical Research, Postfach, Basel, Switzerland
| | - Bruno Robert
- IRCM, INSERM, University Montpellier, Montpellier, France
| | - Fanny Grillet
- IGF, CNRS, INSERM, University Montpellier, Montpellier, France
| | | | | | | | | | - Muriel Busson
- IRCM, INSERM, University Montpellier, Montpellier, France
| | | | | | - Julie Pannequin
- IGF, CNRS, INSERM, University Montpellier, Montpellier, France
| | - Serge Roche
- CRBM, CNRS, University Montpellier, Montpellier, France
| | | |
Collapse
|
13
|
Sae-Lim S, Soontornworajit B, Rotkrua P. Inhibition of Colorectal Cancer Cell Proliferation by Regulating Platelet-Derived Growth Factor B Signaling with a DNA Aptamer. Asian Pac J Cancer Prev 2019; 20:487-494. [PMID: 30803211 PMCID: PMC6897029 DOI: 10.31557/apjcp.2019.20.2.487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Overexpression of platelet-derived growth factor-BB (PDGF-BB) is associated with colorectal carcinogenesis. PDGF-BB plays a role in the autocrine growth stimulation of cancer cells. Aptamers are short single-stranded oligonucleotides that can bind to cellular targets with high affinity and specificity and offer the advantage of non-immunogenicity, non-toxicity and high stability. Thus, they receive interest as potential therapeutic agents. Methods: The endogenous level of PDGF-BB in Caco-2 and SW480, colorectal cancer (CRC) cells, was evaluated using ELISA. The effect of the PDGF-BB aptamer on cell proliferation was investigated in two CRC cell lines and CCD841 CoN, normal colon cells. The effective molar ratio between PDGF-BB and PDGF-BB aptamer was further explored. Cell viability in all experiments was analyzed using MTS assay. Western blotting was performed to examine the alteration of relevant signaling pathways. Results: Caco-2 and SW480 cells endogenously synthesized and secreted PDGF-BB to stimulate their growth. Cells treated with the PDGF-BB aptamer proliferated at a slower rate, but CCD841 CoN did not. Pre-incubation of PDGF-BB with the corresponding aptamer at the molar ratio 1:1 could significantly silence its proliferative effect on CRC cells. Western blot analysis revealed that the phosphorylation level of ERK1/2, a key component in PDGF downstream signaling pathway, was down-regulated by the aptamer, indicating the underlying mechanism of inhibition of CRC cell proliferation. Conclusions: This study demonstrated that using a DNA aptamer to interfere with the binding of PDGF-BB to its receptor suppressed CRC cell proliferation in part via down-regulation of the Ras/Raf/MEK/ERK signaling pathway. It raised the possibility that the PDGF-BB-specific aptamer could be a promising therapeutic agent for CRC targeted therapy.
Collapse
Affiliation(s)
- Suvaraporn Sae-Lim
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.
| | | | | |
Collapse
|
14
|
Cuny T, de Herder W, Barlier A, Hofland LJ. Role of the tumor microenvironment in digestive neuroendocrine tumors. Endocr Relat Cancer 2018; 25:R519-R544. [PMID: 30306777 DOI: 10.1530/erc-18-0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) represent a group of heterogeneous tumors whose incidence increased over the past few years. Around half of patients already present with metastatic disease at the initial diagnosis. Despite extensive efforts, cytotoxic and targeted therapies have provided only limited efficacy for patients with metastatic GEP-NETs, mainly due to the development of a certain state of resistance. One factor contributing to both the failure of systemic therapies and the emergence of an aggressive tumor phenotype may be the tumor microenvironment (TME), comprising dynamic and adaptative assortment of extracellular matrix components and non-neoplastic cells, which surround the tumor niche. Accumulating evidence shows that the TME can simultaneously support both tumor growth and metastasis and contribute to a certain state of resistance to treatment. In this review, we summarize the current knowledge of the TME of GEP-NETs and discuss the current therapeutic agents that target GEP-NETs and those that could be of interest in the (near) future.
Collapse
Affiliation(s)
- Thomas Cuny
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Department of Endocrinology, Assistance Publique - Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Marseille, France
| | - Wouter de Herder
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anne Barlier
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Marseille, France
- Department of Endocrinology, Assistance Publique - Hôpitaux de Marseille (AP-HM), Hôpital de la Conception, Centre de Référence des Maladies Rares Hypophysaires HYPO, Marseille, France
| | - Leo J Hofland
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Gu D, Lin H, Zhang X, Fan Q, Chen S, Shahda S, Liu Y, Sun J, Xie J. Simultaneous Inhibition of MEK and Hh Signaling Reduces Pancreatic Cancer Metastasis. Cancers (Basel) 2018; 10:cancers10110403. [PMID: 30373214 PMCID: PMC6266431 DOI: 10.3390/cancers10110403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancer types, with an estimated 44,330 death in 2018 in the US alone. While targeted therapies and immune checkpoint inhibitors have significantly improved treatment options for patients with lung cancer and renal cell carcinomas, little progress has been made in pancreatic cancer, with a dismal 5-year survival rate currently at ~8%. Upon diagnosis, the majority of pancreatic cancer cases (~80%) are already metastatic. Thus, identifying ways to reduce pancreatic cancer metastasis is an unmet medical need. Furthermore, pancreatic cancer is notorious resistant to chemotherapy. While Kirsten RAt Sarcoma virus oncogene (K-RAS) mutation is the major driver for pancreatic cancer, specific inhibition of RAS signaling has been very challenging, and combination therapy is thought to be promising. In this study, we report that combination of hedgehog (Hh) and Mitogen-activated Protein/Extracellular Signal-regulated Kinase Kinase (MEK) signaling inhibitors reduces pancreatic cancer metastasis in mouse models. In mouse models of pancreatic cancer metastasis using human pancreatic cancer cells, we found that Hh target gene Gli1 is up-regulated during pancreatic cancer metastasis. Specific inhibition of smoothened signaling significantly altered the gene expression profile of the tumor microenvironment but had no significant effects on cancer metastasis. By combining Hh signaling inhibitor BMS833923 with RAS downstream MEK signaling inhibitor AZD6244, we observed reduced number of metastatic nodules in several mouse models for pancreatic cancer metastasis. These two inhibitors also decreased cell proliferation significantly and reduced CD45+ cells (particularly Ly6G+CD11b+ cells). We demonstrated that depleting Ly6G+ CD11b+ cells is sufficient to reduce cancer cell proliferation and the number of metastatic nodules. In vitro, Ly6G+ CD11b+ cells can stimulate cancer cell proliferation, and this effect is sensitive to MEK and Hh inhibition. Our studies may help design novel therapeutic strategies to mitigate pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Dongsheng Gu
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Hai Lin
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiaoli Zhang
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Qipeng Fan
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shaoxiong Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Safi Shahda
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Division of Medical Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Yunlong Liu
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Molecular and Medical Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Jie Sun
- Departments of Medicine and Immunology, Mayo Clinic, Rochester, Minnesota, MN 55905, USA.
| | - Jingwu Xie
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
16
|
Kramer B, Polit M, Birk R, Rotter N, Aderhold C. HIF-1α and mTOR - Possible Novel Strategies of Targeted Therapies in p16-positive and -negative HNSCC. Cancer Genomics Proteomics 2018; 15:175-184. [PMID: 29695399 DOI: 10.21873/cgp.20075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Targeted therapy in head and neck squamous cell carcinoma (HNSCC) is limited. HIF-1α and mTOR are involved in the formation of local tumor progression and distant metastasis. The present study analyzed the influence of well-established tyrosine kinase inhibitors nilotinib, dasatinib, erlotinib and gefitinib on the expression of HIF-1α and mTOR in p16-positive and -negative squamous cancer cells (SCC) in vitro in order to develop novel strategies in the treatment of HNSCC. MATERIALS AND METHODS Expression of HIF-1α and mTOR was analyzed by using Sandwich-ELISA in p16-negative and p16-positive SCC after treatment with nilotinib, dasatinib, erlotinib and gefitinib (20 μmol/l, 24-96 h of incubation). RESULTS All substances significantly reduced mTOR expression in both, p16-negative and p16-positive SCC (p<0.05). HIF-1α expression was significantly reduced by all tested substances in p16-negative SCC. However, a statistically significant increase of HIF-1α was observed in p16-positive SCC. CONCLUSION This is the first study to investigate the alteration of expression levels of HIF-1α and mTOR under selective tyrosine kinase inhibition in both p16-positive and -negative SCC. Our findings provide novel insights for a better understanding of HIF-1α and mTOR in the tumor biology of HNSCC and their interaction with selective small-molecule inhibitors.
Collapse
Affiliation(s)
- Benedikt Kramer
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Max Polit
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Richard Birk
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philips-Universität, Marburg, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Christoph Aderhold
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| |
Collapse
|
17
|
Tiwari A, Saraf S, Verma A, Panda PK, Jain SK. Novel targeting approaches and signaling pathways of colorectal cancer: An insight. World J Gastroenterol 2018; 24:4428-4435. [PMID: 30357011 PMCID: PMC6196338 DOI: 10.3748/wjg.v24.i39.4428] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/24/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer of mortality in the world. Chemotherapy based treatment leads to innumerable side effects as it delivers the anticancer drug to both normal cells besides cancer cells. Sonic Hedgehog (SHH), Wnt wingless-type mouse mammary tumor virus/β-catenin, transforming growth factor-β/SMAD, epidermal growth factor receptor and Notch are the main signaling pathways involved in the progression of CRC. Targeted therapies necessitate information regarding the particular aberrant pathways. Advancements in gene therapies have resulted in the recognition of novel therapeutic targets related with these signal-transduction cascades. CRC is a step-wise process where mutations occur over the time and activation of oncogenes and deactivation of tissue suppressor genes takes place. Genetic changes which are responsible for the induction of carcinogenesis include loss of heterozygosity in tumor suppressor genes such as adenomatous polyposis coli, mutation or deletion of genes like p53 and K-ras. Therefore, many gene-therapy approaches like gene correction, virus-directed enzyme-prodrug therapy, immunogenetic manipulation and virotherapy are currently being explored. Development of novel strategies for the safe and effective delivery of drugs to the cancerous site is the need of the hour. This editorial accentuates different novel strategies with emphasis on gene therapy and immunotherapy for the management of CRC.
Collapse
Affiliation(s)
- Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar 470003, India
| | - Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar 470003, India
| | - Amit Verma
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar 470003, India
| | - Pritish Kumar Panda
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar 470003, India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar 470003, India
| |
Collapse
|
18
|
Zinc finger protein 746 promotes colorectal cancer progression via c-Myc stability mediated by glycogen synthase kinase 3β and F-box and WD repeat domain-containing 7. Oncogene 2018; 37:3715-3728. [DOI: 10.1038/s41388-018-0225-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022]
|
19
|
Andres SF, Williams KN, Rustgi AK. The Molecular Basis of Metastatic Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2018; 14:69-79. [PMID: 30237756 PMCID: PMC6141197 DOI: 10.1007/s11888-018-0403-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Metastatic colorectal cancer (CRC) is a vexing clinical problem. In contrast to early stage disease, once CRC metastasizes to other organs, long-term survival is compromised. We seek to review the molecular pathogenesis, animal models, and functional genomics for an enhanced understanding of how CRC metastasizes and how this can be exploited therapeutically. RECENT FINDINGS Mouse models may recapitulate certain aspects of metastatic human CRC and allow for studies to identify regulators of metastasis. Modulation of transcription factors, onco-proteins, or tumor suppressors have been identified to activate known metastatic pathways. CD44 variants, microRNAs and RNA binding proteins are emerging as metastatic modulators. SUMMARY CRC metastasis is a multi-faceted and heterogeneous disease. Despite common pathways contributing to metastatic development, there are numerous variables that modulate metastatic signals in subsets of patients. It is paramount that studies continue to investigate metastatic drivers, enhancers and inhibitors in CRC to develop therapeutic targets and improve disease outcomes.
Collapse
Affiliation(s)
- Sarah F Andres
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kathy N Williams
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
20
|
Tan HY, Wang N, Lam W, Guo W, Feng Y, Cheng YC. Targeting tumour microenvironment by tyrosine kinase inhibitor. Mol Cancer 2018; 17:43. [PMID: 29455663 PMCID: PMC5817793 DOI: 10.1186/s12943-018-0800-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tumour microenvironment (TME) is a key determinant of tumour growth and metastasis. TME could be very different for each type and location of tumour and TME may change constantly during tumour growth. Multiple counterparts in surrounding microenvironment including mesenchymal-, hematopoietic-originated cells as well as non-cellular components affect TME. Thus, therapeutics that can disrupt the tumour-favouring microenvironment should be further explored for cancer therapy. Previous efforts in unravelling the dysregulated mechanisms of TME components has identified numerous protein tyrosine kinases, while its corresponding inhibitors have demonstrated potent modulatory effect on TME. Recent works have demonstrated that beyond the direct action on cancer cells, tyrosine kinase inhibitors (TKIs) have been implicated in inactivation or normalization of dysregulated TME components leading to cancer regression. Either through re-sensitizing the tumour cells or reversing the immunological tolerance microenvironment, the emergence of these TME modulatory mechanism of TKIs supports the combinatory use of TKIs with current chemotherapy or immunotherapy for cancer therapy. Therefore, an appropriate understanding on TME modulation by TKIs may offer another mode of action of TKIs for cancer treatment. This review highlights mode of kinase activation or paracrine ligand production from TME components and summarises the findings on the potential use of various TKIs on regulating TME components. At last, the combination use of current TKIs with immunotherapy in the perspectives of efficacy and safety are discussed.
Collapse
Affiliation(s)
- Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Shu R, Xu Y, Tian Y, Zeng Y, Sun L, Gong F, Lei Y, Wang K, Luo H. Differential expression profiles of long noncoding RNA and mRNA in colorectal cancer tissues from patients with lung metastasis. Mol Med Rep 2018; 17:5666-5675. [PMID: 29436635 PMCID: PMC5866008 DOI: 10.3892/mmr.2018.8576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Lungs are the most common extra-abdominal site of metastasis of colorectal cancer (CRC), in which long noncoding RNA (lncRNA) may serve a role. In the present study, a high-throughput microarray assay was performed to detect lncRNA expression and identify novel targets for further study of lung metastasis in CRC. In the CRC tissues from patients with lung metastasis, 7,632 lncRNA (3,574 upregulated and 4,058 downregulated) and 6,185 mRNA (3,394 upregulated and 2,791 downregulated) were detected to be differentially expressed with a fold change ≥2 and P<0.05 compared with the CRC tissues without metastasis. A total of six differentially regulated lncRNA were confirmed by reverse transcription-quantitative polymerase chain reaction in 20 pairs of CRC samples. Furthermore, gene ontology and pathway analysis were conducted to predict the possible roles of the identified mRNA. The upregulated mRNA were associated with cell division (biological processes), protein kinase B binding (molecular functions) and cellular components. The downregulated mRNA were associated with cell adhesion, platelet-derived growth factor binding and membrane components. Pathway analysis determined that the upregulated mRNA were associated with the Wnt signaling pathway in the CRC tissues from patients with lung metastasis, while the downregulated mRNA were associated with the phosphoinositide 3-kinase/Akt signaling pathway. The results of the present study suggested that differentially expressed lncRNA may be associated with lung metastasis and may provide insights into the biology and prevention of lung metastasis.
Collapse
Affiliation(s)
- Ruo Shu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yan Tian
- Kunming Engineering Technology Center of Digestive Disease, Kunming, Yunnan 650032, P.R. China
| | - Yujian Zeng
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liang Sun
- Kunming Engineering Technology Center of Digestive Disease, Kunming, Yunnan 650032, P.R. China
| | - Fangyou Gong
- Kunming Engineering Technology Center of Digestive Disease, Kunming, Yunnan 650032, P.R. China
| | - Yi Lei
- Kunming Engineering Technology Center of Digestive Disease, Kunming, Yunnan 650032, P.R. China
| | - Kunhua Wang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
22
|
Moench R, Grimmig T, Kannen V, Tripathi S, Faber M, Moll EM, Chandraker A, Lissner R, Germer CT, Waaga-Gasser AM, Gasser M. Exclusive inhibition of PI3K/Akt/mTOR signaling is not sufficient to prevent PDGF-mediated effects on glycolysis and proliferation in colorectal cancer. Oncotarget 2018; 7:68749-68767. [PMID: 27626684 PMCID: PMC5356587 DOI: 10.18632/oncotarget.11899] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022] Open
Abstract
Platelet-derived growth factor (PDGF) and signaling via its receptors plays a crucial role in tumor cell proliferation and thus may represent an attractive target besides VEGF/EGFR-based antibody therapies. In this study we analyzed the influence of PDGF in colorectal cancer. PDGF was expressed intensively in early and even more intensively in late stage primary CRCs. Like VEGF, PDGF enhanced human colon cancer proliferation, and increased oxidative glycolytic activity, and activated HIF1α and c-Myc in vitro. PDGF activated the PI3K/Akt/mTOR pathway while leaving MAPK signaling untouched. Further dissection showed that inhibition of Akt strongly impeded cancer cell growth while inhibition of PI3K did not. MAPK analysis suggested an inhibitory crosstalk between both pathways, thus explaining the different effects of the Akt and PI3K inhibitors on cancer cell proliferation. PDGF stimulates colon cancer cell proliferation, and prevents inhibitor induced apoptosis, resulting in tumor growth. Therefore inhibition of PDGF signaling seems to be a promising target in colorectal cancer therapy. However, due to the multifaceted nature of the intracellular PDGF signaling, careful intervention strategies are needed when looking into specific signaling pathways like PI3K/Akt/mTOR and MAPK.
Collapse
Affiliation(s)
- Romana Moench
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Tanja Grimmig
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Vinicius Kannen
- Ribeirao Preto Pharmaceutical Sciences School, Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | - Sudipta Tripathi
- Brigham and Women's Hospital, Transplant Research Center, Harvard Medical School, Boston, MA, USA
| | - Marc Faber
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Eva-Maria Moll
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Anil Chandraker
- Brigham and Women's Hospital, Transplant Research Center, Harvard Medical School, Boston, MA, USA
| | - Reinhard Lissner
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Ana Maria Waaga-Gasser
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany.,Brigham and Women's Hospital, Transplant Research Center, Harvard Medical School, Boston, MA, USA
| | - Martin Gasser
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
23
|
Xu RH, Shen L, Wang KM, Wu G, Shi CM, Ding KF, Lin LZ, Wang JW, Xiong JP, Wu CP, Li J, Liu YP, Wang D, Ba Y, Feng JP, Bai YX, Bi JW, Ma LW, Lei J, Yang Q, Yu H. Famitinib versus placebo in the treatment of refractory metastatic colorectal cancer: a multicenter, randomized, double-blinded, placebo-controlled, phase II clinical trial. CHINESE JOURNAL OF CANCER 2017; 36:97. [PMID: 29273089 PMCID: PMC5741870 DOI: 10.1186/s40880-017-0263-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
Abstract
Background Metastatic colorectal cancer (mCRC) patients with progressive disease after all available standard therapies need new medication for further treatment. Famitinib is a small-molecule multikinase inhibitor, with promising anticancer activities. This multicenter, randomized, double-blinded, placebo-controlled, phase II clinical trial was designed to evaluate the safety and efficacy of famitinib in mCRC. Methods Famitinib or placebo was administered orally once daily. The primary endpoint was progression-free survival (PFS). Secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), quality-of-life (QoL), and safety. Results Between July 18, 2012 and Jan 22, 2014, a total of 167 patients were screened, and 154 patients were randomized in a 2:1 ratio to receive either famitinib (n = 99) or placebo (n = 55). The median PFS was 2.8 and 1.5 months in the famitinib and placebo groups (hazard ratio = 0.60, 95% confidence interval = 0.41–0.86, P = 0.004). The DCR was 59.8% and 31.4% (P = 0.002) and the ORR was 2.2% and 0.0% (P = 0.540) in the famitinib and placebo groups, respectively. The most frequent grade 3–4 adverse events were hypertension (11.1%), hand-foot syndrome (10.1%), thrombocytopenia (10.1%), and neutropenia (9.1%). Serious adverse events occurred in 11 (11.1%) patients in the famitinib group and 5 (9.1%) in the placebo group (P = 0.788). The median OS of the famitinib and placebo groups was 7.4 and 7.2 months (P = 0.657). Conclusion Famitinib prolonged PFS in refractory mCRC patients with acceptable tolerability. Trial registration This study was registered on ClinicalTrials.gov (NCT01762293) and was orally presented in the 2015 ASCO-Gastrointestinal Symposium
Collapse
Affiliation(s)
- Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, No 52, Fucheng Road, Haidian District, Beijing, 100142, P. R. China.
| | - Ke-Ming Wang
- Department of Medical Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, P. R. China
| | - Gang Wu
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China
| | - Chun-Mei Shi
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, P. R. China
| | - Ke-Feng Ding
- Department of Surgical Oncology, Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, P. R. China
| | - Li-Zhu Lin
- Department of Oncology, First Affiliated Hospital of Guangzhou Medical University of Chinese Medicine, Guangzhou, 510405, Guangdong, P. R. China
| | - Jin-Wan Wang
- Department of Medical Oncology, Chinese Academy of Medical Sciences Cancer Hospital, Beijing, 100021, P. R. China
| | - Jian-Ping Xiong
- Department of Medical Oncology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P. R. China
| | - Chang-Ping Wu
- Department of Medical Oncology, First People's Hospital of Changzhou, Changzhou, 213003, Jiangsu, P. R. China
| | - Jin Li
- Department of Medical Oncology, Fudan University Cancer Hospital, Shanghai, 200032, P. R. China
| | - Yun-Peng Liu
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, 110001, Liaoning, P. R. China
| | - Dong Wang
- Cancer Center, Daping Hospital and Institute of Surgery Research, Third Military Medical University, Chongqing, 400042, P. R. China
| | - Yi Ba
- Department of Gastrointestinal Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, P. R. China
| | - Jue-Ping Feng
- Department of Oncology, PuAi Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, P. R. China
| | - Yu-Xian Bai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, P. R. China
| | - Jing-Wang Bi
- Department of Oncology, Jinan Military General Hospital, Jinan, 250000, Shandong, P. R. China
| | - Li-Wen Ma
- Department of Tumor Chemotherapy and Radiology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Jian Lei
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, P. R. China
| | - Qing Yang
- Department of Clinical Medicine, Jiangsu Hengrui Medicine Co., Ltd, Lianyungang, 222047, Jiangsu, P. R. China
| | - Hao Yu
- Department of Epidemic and Health Statistics, Nanjing Medical University, Nanjing, 211166, Jiangsu, P. R. China
| |
Collapse
|
24
|
Jiang T, Ye L, Han Z, Liu Y, Yang Y, Peng Z, Fan J. miR-19b-3p promotes colon cancer proliferation and oxaliplatin-based chemoresistance by targeting SMAD4: validation by bioinformatics and experimental analyses. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:131. [PMID: 28938919 PMCID: PMC5610468 DOI: 10.1186/s13046-017-0602-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
Background As a disease with extremely complex molecular mechanisms, many deregulated miRNAs have been identified in colon cancer. Few studies have been performed by using Ingenuity Pathways Analysis (IPA) to predict miRNAs specifically expressed in colon cancer. Methods A characteristic microRNA-target network of colon cancer was explored using IPA. Then the clinical significance of miR-19b-3p was evaluated in 211 colon cancer patients. The roles of miR-19b-3p and its candidate target gene, SMAD4, in colon cancer progression were examined both in vitro and in vivo. Results Bioinformatics analysis showed that 15 microRNAs screened by IPA were significantly correlated with malignant biological behaviors of colon cancer. miR-19b-3p was the most significantly upregulated candidate based on the validation experiment using 211 colon cancer samples. High expression of miR-19b-3p was significantly associated with high N stage (P < 0.001), high AJCC stage (P < 0.001), poor histologic grade (P = 0.032), frequent venous and lymphatic invasion (P = 0.027), and liver metastasis (P < 0.001). Survival analysis revealed that miR-19b-3p was an independent prognostic factor associated with colon cancer patient’s overall survival (OS) and disease-free survival (DFS). miR-19b-3p promoted proliferation and chemoresistance of colon cancer cells, but had no effect on invasion in vitro, along with tumorigenesis in vivo. In addition, we confirmed that miR-19b-3p mediates resistance to oxaliplatin-based chemotherapy via SMAD4. Conclusions Our findings demonstrate the role of miR-19b-3p-SMAD4 axis in colon cancer progression, which may become a potential therapeutic target against chemotherapy resistance. Electronic supplementary material The online version of this article (10.1186/s13046-017-0602-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Ling Ye
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, People's Republic of China
| | - Zhongbo Han
- Department of General Surgery, Central Hospital of Zi Bo, Zi Bo, 255000, People's Republic of China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, People's Republic of China
| | - Yinxue Yang
- Department of Anal-Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, People's Republic of China.
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, People's Republic of China.
| |
Collapse
|
25
|
Kitano H, Kitadai Y, Teishima J, Yuge R, Shinmei S, Goto K, Inoue S, Hayashi T, Sentani K, Yasui W, Matsubara A. Combination therapy using molecular-targeted drugs modulates tumor microenvironment and impairs tumor growth in renal cell carcinoma. Cancer Med 2017; 6:2308-2320. [PMID: 28834289 PMCID: PMC5633586 DOI: 10.1002/cam4.1124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Tumor growth and metastasis are determined not by cancer cells alone but also by a variety of stromal cells, various populations of which overexpress platelet‐derived growth factor receptors (PDGF‐Rs). In addition, activation of PI3K‐AKT‐mammalian target of rapamycin (mTOR) signaling is frequently observed in many cancer types as well. mTOR comprises a serine/threonine kinase that increases the production of proteins that stimulate key cellular processes such as cell growth and proliferation, cell metabolism, and angiogenesis. In this study, we investigated the impact of molecular‐targeting agents including PDGF‐R and mTOR inhibitors on the tumor stroma of human kidney cancer and examined the efficacy of combination therapy with these agents against this disease. Treatment with sunitinib did not suppress tumor growth, but significantly decreased stromal reactivity, microvessel density, and pericyte coverage of tumor microvessels in an orthotopic mouse model. In contrast, treatment with everolimus decreased tumor growth and microvessel density but not stromal reactivity. However, sunitinib and everolimus in combination reduced both the growth rate and stromal reaction. These findings suggest that target molecule‐based inhibition of the cancer–stromal cell interaction appears promising as an effective antitumor therapy.
Collapse
Affiliation(s)
- Hiroyuki Kitano
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Yasuhiko Kitadai
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Jun Teishima
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Ryo Yuge
- Department of Gastroenterology & Metabolism, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Shinmei
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Keisuke Goto
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Shogo Inoue
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| |
Collapse
|
26
|
Senger S, Sperling J, Oberkircher B, Schilling MK, Kollmar O, Menger MD, Ziemann C. Portal branch ligation does not counteract the inhibiting effect of temsirolimus on extrahepatic colorectal metastatic growth. Clin Exp Metastasis 2017. [PMID: 28631253 DOI: 10.1007/s10585-017-9852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mTor-inhibitor temsirolimus (TEM) has potent anti-tumor activities on extrahepatic colorectal metastases. Treatment of patients with advanced disease may require portal branch ligation (PBL). While PBL can induce intrahepatic tumor growth, the effect of PBL on extrahepatic metastases under TEM treatment is unknown. Therefore, we analyzed the effects of TEM treatment on extrahepatic metastases during PBL-associated liver regeneration. GFP-transfected CT26.WT colorectal cancer cells were implanted into the dorsal skinfold chamber of BALB/c-mice. Mice were randomized to four groups (n = 8). One was treated daily with TEM (1.5 mg/kg), PBS-treated animals served as controls. Another group underwent PBL of the left liver lobe and received daily TEM treatment. Animals with PBL and PBS treatment served as controls. Tumor vascularization and growth as well as tumor cell migration, proliferation and apoptosis were studied over 14 days. In non-PBL animals TEM treatment inhibited tumor cell proliferation as well as vascularization and growth of the extrahepatic metastases. PBL did not influence tumor cell engraftment, vascularization and metastatic growth. Of interest, TEM treatment significantly reduced tumor cell engraftment, neovascularization and metastatic groth also after PBL. PBL does not counteract the inhibiting effect of TEM on extrahepatic colorectal metastatic growth.
Collapse
Affiliation(s)
- Sebastian Senger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Department of Neurosurgery, Saarland University, Homburg/Saar, Germany
| | - Jens Sperling
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Barbara Oberkircher
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Martin K Schilling
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
- Klinik St. Anna Ärztehaus Lützelmatt, Lucerne, Switzerland
| | - Otto Kollmar
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
- Department of General and Visceral Surgery, Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Christian Ziemann
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany.
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany.
- Department of Cardiovascular Surgery, University Heart Center, University Medical Center, University of Freiburg, Freiburg, Germany.
- Department of General, Visceral, Vascular and Pediatric Surgery and Institute for Clinical and Experimental Surgery, Saarland Medical School, Saarland University, Kirrberger Straße 1, 66424, Homburg/Saar, Germany.
| |
Collapse
|
27
|
Onwuka E, Best C, Sawyer A, Yi T, Heuer E, Sams M, Wiet M, Zheng H, Kyriakides T, Breuer C. The role of myeloid cell-derived PDGF-B in neotissue formation in a tissue-engineered vascular graft. Regen Med 2017; 12:249-261. [PMID: 28524773 DOI: 10.2217/rme-2016-0141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIM Inflammatory myeloid lineage cells mediate neotissue formation in tissue-engineered vascular grafts, but the molecular mechanism is not completely understood. We examined the role of vasculogenic PDGF-B in tissue-engineered vascular graft neotissue development. MATERIALS & METHODS Myeloid cell-specific PDGF-B knockout mice (PDGF-KO) were generated using bone marrow transplantation, and scaffolds were implanted as inferior vena cava interposition grafts in either PDGF-KO or wild-type mice. RESULTS After 2 weeks, grafts from PDGF-KO mice had more remaining scaffold polymer and less intimal neotissue development. Increased macrophage apoptosis, decreased smooth muscle cell proliferation and decreased collagen content was also observed. CONCLUSION Myeloid cell-derived PDGF contributes to vascular neotissue formation by regulating macrophage apoptosis, smooth muscle cell proliferation and extracellular matrix deposition.
Collapse
Affiliation(s)
- Ekene Onwuka
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Cameron Best
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Andrew Sawyer
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Tai Yi
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Eric Heuer
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Malik Sams
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Wiet
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Hong Zheng
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Themis Kyriakides
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Christopher Breuer
- Tissue Engineering & Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
28
|
Pan HD, Peng YF, Xiao G, Gu J. High levels of serum platelet-derived growth factor-AA and human epidermal growth factor receptor-2 are predictors of colorectal cancer liver metastasis. World J Gastroenterol 2017; 23:1233-1240. [PMID: 28275303 PMCID: PMC5323448 DOI: 10.3748/wjg.v23.i7.1233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/13/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To develop predictive markers in blood for colorectal cancer liver metastasis.
METHODS Twenty colorectal cancer patients were selected and divided into two groups. Group A consisted of 10 patients whose pathological TNM stage was IIIC (T3-4N2M0), while another 10 patients with synchronous liver metastasis (TNM stage IV) were recruited for group B. During the surgical procedure, a 10-mL drainage vein (DV) blood sample was obtained from the DV of the tumor-bearing segment prior to the ligation of the DV. At the same time, a 10-mL peripheral vein (PV) blood sample was collected via peripheral venipuncture. The serum levels of 24 molecules that are potentially involved in the mechanism of liver metastasis in both DV blood and PV blood were analyzed by using high-throughput enzyme-linked immunosorbent assay technology.
RESULTS Univariate analysis revealed that platelet-derived growth factor AA (PDGFAA) in DV blood (dPDGFAA) (P = 0.001), PDGFAA in PV blood (pPDGFAA) (P = 0.007), and human epidermal growth factor receptor-2 in PV blood (pHER2) (P = 0.001), pMMP7 (P = 0.028), pRANTES (P = 0.013), and pEGF (P = 0.007) were significantly correlated with synchronous liver metastasis. Multivariate analysis identified dPDGFAA (HR = 1.001, P = 0.033) and pHER2 (HR = 1.003, P = 0.019) as independent predictive factors for synchronous liver metastasis. Besides, high peripheral HER2 level may also be a risk factor for metachronous liver metastasis, although the difference did not reach statistical significance (P = 0.06). Significant correlations were found between paired DV and PV blood levels for PDGFAA (r = 0.794, P < 0.001), but not for HER2 (r = 0.189, P = 0.424).
CONCLUSION PDGFAA in tumor drainage and HER2 in PV blood may be useful predictive factors for synchronous liver metastasis of colorectal cancer.
Collapse
|
29
|
Fang WL, Huang KH, Lan YT, Lin CH, Chang SC, Chen MH, Chao Y, Lin WC, Lo SS, Li AFY, Wu CW, Chiou SH, Shyr YM. Mutations in PI3K/AKT pathway genes and amplifications of PIK3CA are associated with patterns of recurrence in gastric cancers. Oncotarget 2017; 7:6201-20. [PMID: 26701847 PMCID: PMC4868750 DOI: 10.18632/oncotarget.6641] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/05/2015] [Indexed: 12/17/2022] Open
Abstract
Mutations in genes involved in the PI3K/AKT pathway and amplifications of the PIK3CA gene in gastric cancer and their associations with clinicopathological characteristics and EBV infection were analyzed in this study. A total of 431 patients with gastric adenocarcinomas were enrolled, and 39 mutation hotspots were evaluated in these patients using MALDI-TOF mass spectrometry were analyzed. PIK3CA amplifications were analyzed using real-time quantitative PCR. Regarding patients with intestinal-type gastric cancer, those with mutations in PI3K/AKT pathway genes were also more likely to have tumors located in the lower-third of the stomach than were those without mutations. Regarding patients with diffuse-type gastric cancer, those with PI3K/AKT pathway mutations were more likely to have tumors located in the upper-third of the stomach and to have more hematogenous metastases, particularly in the liver and lungs, than were patients without such mutations (22.2% vs. 4.5%). No significant survival difference was observed between patients with vs. without PI3K/AKT pathway mutations. Mutations in PI3K/AKT pathway genes were associated with hematogenous metastasis in patients with diffuse-type gastric cancer. Only when the tumors were located in the middle-third of stomach, tumor with mutations of the PIK3CA gene or mutations of the PI3K/AKT pathway genes were associated with more EBV infection than those without mutations. Patients with PIK3CA amplifications were more likely to have diffuse-type and poorly differentiated gastric cancers and were more likely to experience peritoneal recurrence compared with those without PIK3CA amplifications. Even upon subgroup analysis, PI3KCA amplifications were found to not affect the patients’ outcomes.
Collapse
Affiliation(s)
- Wen-Liang Fang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan.,School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | - Kuo-Hung Huang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan.,School of Medicine, National Yang-Ming University, Taipei City, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | - Yuan-Tzu Lan
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan.,Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Chien-Hsing Lin
- Genome Research Center, National Yang-Ming University, Taipei City, Taiwan
| | - Shih-Ching Chang
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan.,Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ming-Huang Chen
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Su-Shun Lo
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan.,National Yang-Ming University Hospital, Yilan City, Taiwan
| | - Anna Fen-Yau Li
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan.,Department of Pathology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Chew-Wun Wu
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan.,School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei City, Taiwan.,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei City, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei City, Taiwan
| | - Yi-Ming Shyr
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan.,School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| |
Collapse
|
30
|
PDGF-D/PDGFRβ promotes tongue squamous carcinoma cell (TSCC) progression via activating p38/AKT/ERK/EMT signal pathway. Biochem Biophys Res Commun 2016; 478:845-51. [PMID: 27507215 DOI: 10.1016/j.bbrc.2016.08.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 01/07/2023]
Abstract
Platelet-derived growth factor D (PDGF-D) signaling plays significant roles during the development and progression of human malignancies via interacting with the receptor of PDGF-D (PDGFR). Meanwhile, the majority of human tumor metastasis is closely associated with epithelial-mesenchymal transition (EMT). However, the underlying mechanism between PDGF-D/PDGFR signaling and EMT which involved in tumor metastasis remain dismal. This study aimed to investigate the role of PDGF-D signaling during EMT process of tongue squamous cell carcinoma (TSCC). In our study, the expression of PDGF-D and PDGFR were examined in primary TSCC samples and the expression of PDGF-D was also determined in TSCC cell lines. In addition, the correlation between PDGF-D expression and TSCC aggressive histopathological features was analyzed. Our results implied that upregulation of PDGFRβ in UM1 cells induced with exogenous PDGF-D can remarkably promote tumor cells invasiveness; conversely, when using small interfering RNA (siRNA), the invasiveness can be severely prohibited. Furthermore, PDGF-D downstream signal molecules p38, AKT, ERK and EMT biomarkers (E-cadherin, N-cadherin, Vimentin and snail) were measured using Western blot. Our results showed that PDGF-D can induce p38, AKT and ERK phosphorylation; downregulate epithelial markers and upregulate mesenchymal markers. On the contrary, PDGFRβ siRNA significantly prohibited p38, AKT and ERK phosphorylation; inhibited EMT process. Function analysis revealed that PDGFRβ siRNA obviously interfered with UM1 cell migration and invasion, according to transwell and wound healing assay. In conclusion, this study suggested that EMT process can be triggered by the PDGF-D/PDGFRβ axis in TSCC, and then involved in the tumor cell invasion via activation of p38/AKT/ERK/EMT pathway.
Collapse
|
31
|
Takigawa H, Kitadai Y, Shinagawa K, Yuge R, Higashi Y, Tanaka S, Yasui W, Chayama K. Multikinase inhibitor regorafenib inhibits the growth and metastasis of colon cancer with abundant stroma. Cancer Sci 2016; 107:601-8. [PMID: 26865419 PMCID: PMC5001714 DOI: 10.1111/cas.12907] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 01/29/2016] [Accepted: 02/06/2016] [Indexed: 12/19/2022] Open
Abstract
Interaction between tumor cells and stromal cells plays an important role in the growth and metastasis of colon cancer. We previously found that carcinoma-associated fibroblasts (CAFs) expressed platelet-derived growth factor receptor-β (PDGFR-β) and that PDGFR targeted therapy using imatinib or nilotinib inhibited stromal reaction. Bone marrow-derived mesenchymal stem cells (MSCs) migrate to tumor stroma and differentiate into CAFs. A novel oral multikinase inhibitor regorafenib inhibits receptor tyrosine kinases expressed on stromal cells (vascular endothelial growth factor receptor 1-3, TIE2, PDGFR-β, and fibroblast growth factors) and tumor cells (c-KIT, RET, and BRAF). These molecules are involved in tumor growth, angiogenesis, lymphangiogenesis, and stromal activation. Therefore, we examined whether regorafenib impaired the tumor-promoting effect of CAFs/MSCs. KM12SM human colon cancer cells alone or KM12SM cells with MSCs were transplanted into the cecal wall of nude mice. Co-implantation of KM12SM cells with MSCs into the cecal wall of nude mice produced tumors with abundant stromal component and promoted tumor growth and lymph node metastasis. Single treatment with regorafenib inhibited tumor growth and metastasis by inhibiting both tumor cells and stromal reaction. This tumor-inhibitory effect of regorafenib was more obvious in tumors developed by co-implanting KM12SM cells with MSCs. Our data suggested that targeting of the tumor microenvironment with regorafenib affected tumor cell-MSC interaction, which in turn inhibited the growth and metastasis of colon cancer.
Collapse
Affiliation(s)
- Hidehiko Takigawa
- Department of Gastroenterology and MetabolismHiroshima UniversityHiroshimaJapan
| | - Yasuhiko Kitadai
- Department of Gastroenterology and MetabolismHiroshima UniversityHiroshimaJapan
| | - Kei Shinagawa
- Department of EndoscopyHiroshima Prefectural HospitalHiroshimaJapan
| | - Ryo Yuge
- Department of Gastroenterology and MetabolismHiroshima UniversityHiroshimaJapan
| | - Yukihito Higashi
- Department of Cardiovascular Physiology and MedicineHiroshima UniversityHiroshimaJapan
| | - Shinji Tanaka
- Department of EndoscopyHiroshima University HospitalHiroshimaJapan
| | - Wataru Yasui
- Department of Molecular PathologyHiroshima UniversityHiroshimaJapan
| | - Kazuaki Chayama
- Department of Gastroenterology and MetabolismHiroshima UniversityHiroshimaJapan
| |
Collapse
|
32
|
Lund T. Treatment Opportunities for Colorectal Liver Metastases. EUROPEAN MEDICAL JOURNAL 2016. [DOI: 10.33590/emj/10311794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Colorectal liver metastases (CLM) are the most common hepatic malignancy and are caused by disseminated tumour cells (DTCs) seeded early in the tumourigenesis of colorectal cancer. Despite optimal treatment, CLM are associated with high mortality rates. This review provides an overview of three promising strategies to extend survival in CLM: treatment of DTCs, immunotherapy, and new surgical resection techniques.
Collapse
Affiliation(s)
- Tormod Lund
- Surgical Department, Vestre Viken Hospital Trust, Drammen, Norway
| |
Collapse
|
33
|
Farooqi AA, Siddik ZH. Platelet-derived growth factor (PDGF) signalling in cancer: rapidly emerging signalling landscape. Cell Biochem Funct 2015; 33:257-65. [PMID: 26153649 DOI: 10.1002/cbf.3120] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/02/2015] [Accepted: 05/11/2015] [Indexed: 12/25/2022]
Abstract
Platelet-derived growth factor (PDGF)-mediated signalling has emerged as one of the most extensively and deeply studied biological mechanism reported to be involved in regulation of growth and survival of different cell types. However, overwhelmingly increasing scientific evidence is also emphasizing on dysregulation of spatio-temporally controlled PDGF-induced signalling as a basis for cancer development. We partition this multi-component review into recently developing understanding of dysregulation PDGF signalling in different cancers, how PDGF receptors are quantitatively controlled by microRNAs. Moreover, we also summarize most recent advancements in therapeutic targeting of PDGFR as evidenced by preclinical studies. Better understanding of the PDGF-induced intracellular signalling in different cancers will be helpful in catalysing the transition from a segmented view of cancer biology to a conceptual continuum.
Collapse
Affiliation(s)
| | - Zahid H Siddik
- University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|