1
|
Song Q, Zhang K, Li S, Weng S. Trichosanthes kirilowii Maxim. Polysaccharide attenuates diabetes through the synergistic impact of lipid metabolism and modulating gut microbiota. Curr Res Food Sci 2025; 10:100977. [PMID: 39906503 PMCID: PMC11791362 DOI: 10.1016/j.crfs.2025.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Polysaccharide, a chain of sugars bound by glycosidic bonds, have a wide range of physiological activities, including hypoglycemic activity. In present study, we established T2DM mice models to explore the effects and mechanism of Trichosanthes kirilowii Maxim polysaccharide (TMSP1) on high-fat diet/streptozotocin (HF-STZ) induced diabetes mice. The results showed that high-fat diet significantly increased the oral glucose tolerance test (OGTT), viscera index, oxidative stress, impaired glucose tolerance, decreased body weight, immune response and short-chain fatty acid (SCFAs) content, and disrupted the balance of intestinal flora structure. However, after 6 weeks of TMSP1 intervention decreased lipid accumulation, ameliorated gut microbiota dysbiosis by increasing SCFAs-producing bacteria and mitigated intestinal inflammation and oxidative stress. Moreover, TMSP1 significantly restored the integrity of the intestinal epithelial barrier and mucus barrier. The results of fecal microbiota transplantation confirmed that TMSP1 exerted hypoglycemic effect through regulating intestinal flora to a certain extent. Collectively, the findings revealed TMSP1 intervention inhibits hyperglycemia by improving gut microbiota disorder, lipid metabolism, and inflammation. Hence, TMSP1 may be an effective measure to ameliorate HF-STZ induced diabetes.
Collapse
Affiliation(s)
- Qiaoying Song
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Kunpeng Zhang
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Shuyan Li
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| | - Shaoting Weng
- College of Biotechnology and Food Science, Anyang Institute of Technology, Huanghe Road, Anyang, 455000, China
| |
Collapse
|
2
|
Lin X, Lin K, Lai Y, Peng Q, Xu M, Xu Y, Yang J, Liu H, Shen J. Effect of Acetyl tributyl citrate on bone metabolism based on network toxicology and molecular docking technology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117434. [PMID: 39615059 DOI: 10.1016/j.ecoenv.2024.117434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
This study aims to elucidate the intricate effects of Acetyl tributyl citrate (ATBC) on bone metabolism, disentangling the underlying molecular mechanisms that govern the impact of environmental contaminants on disease processes. Leveraging the exhaustive exploration of databases such as ChEMBL, STITCH, GeneCards, and OMIM, we have identified a comprehensive list of 164 potential targets intimately associated with both ATBC and bone metabolism. Following rigorous refinement using the STRING platform and Cytoscape software, we pinpointed ten core targets, encompassing KDM1A, EP300, HDAC2, EHMT2, DNMT1, and several others. In-depth Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, conducted within the Metascape database, revealed that the core targets of ATBC's influence on bone metabolism are predominantly concentrated within vital signaling cascades, including thyroid hormone signaling, FOXO signaling, glucagon signaling, AMPK signaling, insulin signaling, adipocytokine signaling, and Notch signaling pathways. Additionally, molecular docking simulations performed with AutoDock software confirmed the robust binding interactions between ATBC and these core targets, reinforcing our understanding of their interactions. To explore the cellular impact of ATBC, we performed in vitro experiments using osteoblasts (MC3T3-E1) exposed to relevant concentrations. Our findings revealed that low-dose ATBC (100 μM) significantly impaired cell proliferation and migration. Concurrently, we observed a downregulation in the transcriptional expression of key epigenetic regulators (KDM1A, EP300, HDAC2), suggesting that ATBC can disrupt bone metabolism at the cellular level. Collectively, our findings provide a theoretical scaffold for comprehending the intricate molecular mechanisms mediating ATBC's effects on bone metabolism, and paves the way for the development of preventive and therapeutic strategies against orthopedic disorders that may arise from exposure to plastic products containing ATBC or excessive ATBC environments.
Collapse
Affiliation(s)
- Xuan Lin
- Central Laboratory, Affiliated Hospital of Putian University, Putian, Fujian Province 351100, China; Department of Environmental and Biological Engineering, Putian University, Putian, Fujian Province 351100, China
| | - Kun Lin
- Department of Laboratory Medicine, the Affiliated Hospital of Putian University, Putian University, Putian 351100, China
| | - Yue Lai
- The First Clinical Medical School, Guangdong Medical University, Zhanjiang, Guangdong Province 524002, China
| | - Qingping Peng
- Collage of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Miao Xu
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian Province 350100, China
| | - Yiting Xu
- Department of Clinical Medicine, Putian University, Putian, Fujian Province 351100, China
| | - Jialin Yang
- Department of Clinical Medicine, Putian University, Putian, Fujian Province 351100, China
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Jianlin Shen
- Central Laboratory, Affiliated Hospital of Putian University, Putian, Fujian Province 351100, China; Department of Orthopedics, Affiliated Hospital of Putian University, Putian, Fujian Province 351100, China.
| |
Collapse
|
3
|
Goldberg D, Buchshtab N, Charni-Natan M, Goldstein I. Transcriptional cascades during fasting amplify gluconeogenesis and instigate a secondary wave of ketogenic gene transcription. Liver Int 2024; 44:2964-2982. [PMID: 39162082 DOI: 10.1111/liv.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS During fasting, bodily homeostasis is maintained due to hepatic production of glucose (gluconeogenesis) and ketone bodies (ketogenesis). The main hormones governing hepatic fuel production are glucagon and glucocorticoids that initiate transcriptional programs aimed at supporting gluconeogenesis and ketogenesis. METHODS Using primary mouse hepatocytes as an ex vivo model, we employed transcriptomic analysis (RNA-seq), genome-wide profiling of enhancer dynamics (ChIP-seq), perturbation experiments (inhibitors, shRNA), hepatic glucose production measurements and computational analyses. RESULTS We found that in addition to the known metabolic genes transcriptionally induced by glucagon and glucocorticoids, these hormones induce a set of genes encoding transcription factors (TFs) thereby initiating transcriptional cascades. Upon activation by glucocorticoids, the glucocorticoid receptor (GR) induced the genes encoding two TFs: CCAAT/enhancer-binding protein beta (C/EBPβ) and peroxisome proliferator-activated receptor alpha (PPARα). We found that the GR-C/EBPβ cascade mainly serves as a secondary amplifier of primary hormone-induced gene programs. C/EBPβ augmented gluconeogenic gene expression and hepatic glucose production. Conversely, the GR-PPARα cascade initiated a secondary transcriptional wave of genes supporting ketogenesis. The cascade led to synergistic induction of ketogenic genes which is dependent on protein synthesis. Genome-wide analysis of enhancer dynamics revealed numerous enhancers activated by the GR-PPARα cascade. These enhancers were proximal to ketogenic genes, enriched for the PPARα response element and showed increased PPARα binding. CONCLUSION This study reveals abundant transcriptional cascades occurring during fasting. These cascades serve two separated purposes: the amplification of the gluconeogenic transcriptional program and the induction of a gene program aimed at enhancing ketogenesis.
Collapse
Affiliation(s)
- Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
4
|
Ampofo E, Pack M, Wrublewsky S, Boewe AS, Spigelman AF, Koch H, MacDonald PE, Laschke MW, Montenarh M, Götz C. CK2 activity is crucial for proper glucagon expression. Diabetologia 2024; 67:1368-1385. [PMID: 38503901 PMCID: PMC11153270 DOI: 10.1007/s00125-024-06128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
AIMS/HYPOTHESIS Protein kinase CK2 acts as a negative regulator of insulin expression in pancreatic beta cells. This action is mainly mediated by phosphorylation of the transcription factor pancreatic and duodenal homeobox protein 1 (PDX1). In pancreatic alpha cells, PDX1 acts in a reciprocal fashion on glucagon (GCG) expression. Therefore, we hypothesised that CK2 might positively regulate GCG expression in pancreatic alpha cells. METHODS We suppressed CK2 kinase activity in αTC1 cells by two pharmacological inhibitors and by the CRISPR/Cas9 technique. Subsequently, we analysed GCG expression and secretion by real-time quantitative RT-PCR, western blot, luciferase assay, ELISA and DNA pull-down assays. We additionally studied paracrine effects on GCG secretion in pseudoislets, isolated murine islets and human islets. In vivo, we examined the effect of CK2 inhibition on blood glucose levels by systemic and alpha cell-specific CK2 inhibition. RESULTS We found that CK2 downregulation reduces GCG secretion in the murine alpha cell line αTC1 (e.g. from 1094±124 ng/l to 459±110 ng/l) by the use of the CK2-inhibitor SGC-CK2-1. This was due to a marked decrease in Gcg gene expression through alteration of the binding of paired box protein 6 (PAX6) and transcription factor MafB to the Gcg promoter. The analysis of the underlying mechanisms revealed that both transcription factors are displaced by PDX1. Ex vivo experiments in isolated murine islets and pseudoislets further demonstrated that CK2-mediated reduction in GCG secretion was only slightly affected by the higher insulin secretion after CK2 inhibition. The kidney capsule transplantation model showed the significance of CK2 for GCG expression and secretion in vivo. Finally, CK2 downregulation also reduced the GCG secretion in islets isolated from humans. CONCLUSIONS/INTERPRETATION These novel findings not only indicate an important function of protein kinase CK2 for proper GCG expression but also demonstrate that CK2 may be a promising target for the development of novel glucose-lowering drugs.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Mandy Pack
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Anne S Boewe
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Hanna Koch
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany.
| |
Collapse
|
5
|
Kabeer SW, Sharma S, Sriramdasu S, Tikoo K. MicroRNA-721 regulates gluconeogenesis via KDM2A-mediated epigenetic modulation in diet-induced insulin resistance in C57BL/6J mice. Biol Res 2024; 57:27. [PMID: 38745315 PMCID: PMC11092102 DOI: 10.1186/s40659-024-00495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Aberrant gluconeogenesis is considered among primary drivers of hyperglycemia under insulin resistant conditions, with multiple studies pointing towards epigenetic dysregulation. Here we examine the role of miR-721 and effect of epigenetic modulator laccaic acid on the regulation of gluconeogenesis under high fat diet induced insulin resistance. RESULTS Reanalysis of miRNA profiling data of high-fat diet-induced insulin-resistant mice model, GEO dataset (GSE94799) revealed a significant upregulation of miR-721, which was further validated in invivo insulin resistance in mice and invitro insulin resistance in Hepa 1-6 cells. Interestingly, miR-721 mimic increased glucose production in Hepa 1-6 cells via activation of FOXO1 regulated gluconeogenic program. Concomitantly, inhibition of miR-721 reduced glucose production in palmitate induced insulin resistant Hepa 1-6 cells by blunting the FOXO1 induced gluconeogenesis. Intriguingly, at epigenetic level, enrichment of the transcriptional activation mark H3K36me2 got decreased around the FOXO1 promoter. Additionally, identifying targets of miR-721 using miRDB.org showed H3K36me2 demethylase KDM2A as a potential target. Notably, miR-721 inhibitor enhanced KDM2A expression which correlated with H3K36me2 enrichment around FOXO1 promoter and the downstream activation of the gluconeogenic pathway. Furthermore, inhibition of miR-721 in high-fat diet-induced insulin-resistant mice resulted in restoration of KDM2A levels, concomitantly reducing FOXO1, PCK1, and G6PC expression, attenuating gluconeogenesis, hyperglycemia, and improving glucose tolerance. Interestingly, the epigenetic modulator laccaic acid also reduced the hepatic miR-721 expression and improved KDM2A expression, supporting our earlier report that laccaic acid attenuates insulin resistance by reducing gluconeogenesis. CONCLUSION Our study unveils the role of miR-721 in regulating gluconeogenesis through KDM2A and FOXO1 under insulin resistance, pointing towards significant clinical and therapeutic implications for metabolic disorders. Moreover, the promising impact of laccaic acid highlights its potential as a valuable intervention in managing insulin resistance-associated metabolic diseases.
Collapse
Affiliation(s)
- Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Shivam Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Shalemraju Sriramdasu
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
6
|
Zheng Q, Zheng Y, Jia RB, Luo D, Chen C, Zhao M. Fucus vesiculosus polysaccharide alleviates type 2 diabetes in rats via remodeling gut microbiota and regulating glycolipid metabolism-related gene expression. Int J Biol Macromol 2023; 248:126504. [PMID: 37625739 DOI: 10.1016/j.ijbiomac.2023.126504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The antidiabetic activity and underlying mechanisms of Fucus vesiculosus polysaccharide (FVP) were studied in type 2 diabetic rats. Our results exhibited that FVP intervention reversed body weight loss, alleviated hyperglycemia and insulin resistance in diabetic rats. FVP also had the potential to ameliorate dyslipidemia, liver and kidney dysfunction, decrease oxidative stress, promote glycogen synthesis, and boost short-chain fatty acid production and total bile acid excretion. 16S rRNA gene sequencing analysis suggested that FVP interfered with the gut microbiota in a beneficial manner. Moreover, RT-qPCR results demonstrated that the antidiabetic activity of FVP in connection with the acceleration of blood glucose absorption and glycogen synthesis, the inhibition of gluconeogenesis, and the regulation of lipid metabolism in the liver. These findings suggested that FVP had antidiabetic effects on high-fat diet and STZ-induced diabetic rats and could be a potential resource for treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Qianwen Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Yang Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rui-Bo Jia
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Donghui Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
7
|
Hu L, Han M, Deng Y, Gong J, Hou Z, Zeng Y, Zhang Y, He J, Zhong C. Genetic distinction between functional tissue-resident and conventional natural killer cells. iScience 2023; 26:107187. [PMID: 37404378 PMCID: PMC10316664 DOI: 10.1016/j.isci.2023.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Tissue-residential natural killer (trNK) cells act as pioneering responders during infectious challenges. However, their discrimination with conventional NK (cNK) cells is still an issue. Through an integrative transcriptome comparison of the two NK subgroups from different tissues, we have defined two genesets capable of efficiently distinguishing them. Based on the two genesets, a fundamental difference between the activation of trNK and cNK is identified and further confirmed. Mechanistically, we have discovered a particular role of chromatin landscape in regulating the trNK activation. In addition, IL-21R and IL-18R are respectively highly expressed by trNK and cNK, indicating a role of cytokine milieu in determining their differential activation. Indeed, IL-21 is particularly critical in accessorily promoting trNK activation using a bunch of bifunctional transcription factors. Together, this study sheds light on the bona fide difference between trNK and cNK, which will further expand our knowledge about their distinct functionalities during immune responses.
Collapse
Affiliation(s)
- Luni Hu
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mengwei Han
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yichen Deng
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China
| | - Yanyu Zeng
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yime Zhang
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing He
- Department of Rheumatology and Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Peking University People’s Hospital, Beijing, China
| | - Chao Zhong
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
8
|
Wu J, Bu D, Wang H, Shen D, Chong D, Zhang T, Tao W, Zhao M, Zhao Y, Fang L, Li P, Xue B, Li CJ. The rhythmic coupling of Egr-1 and Cidea regulates age-related metabolic dysfunction in the liver of male mice. Nat Commun 2023; 14:1634. [PMID: 36964140 PMCID: PMC10038990 DOI: 10.1038/s41467-023-36775-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 02/14/2023] [Indexed: 03/26/2023] Open
Abstract
The liver lipid metabolism of older individuals canbecome impaired and the circadian rhythm of genes involved in lipid metabolism is also disturbed. Although the link between metabolism and circadian rhythms is already recognized, how these processes are decoupled in liver during aging is still largely unknown. Here, we show that the circadian rhythm for the transcription factor Egr-1 expression is shifted forward with age in male mice. Egr-1 deletion accelerates liver age-related metabolic dysfunction, which associates with increased triglyceride accumulation, disruption of the opposite rhythmic coupling of Egr-1 and Cidea (Cell Death Inducing DFFA Like Effector A) at the transcriptional level and large lipid droplet formation. Importantly, adjustment of the central clock with light via a 4-hour forward shift in 6-month-old mice, leads to recovery the rhythm shift of Egr-1 during aging and largely ameliorated liver metabolic dysfunction. All our collected data suggest that liver Egr-1 might integrate the central and peripheral rhythms and regulate metabolic homeostasis in the liver.
Collapse
Affiliation(s)
- Jing Wu
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Dandan Bu
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Haiquan Wang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Di Shen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Danyang Chong
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Tongyu Zhang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Weiwei Tao
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengfei Zhao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Yue Zhao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Lei Fang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School, Nanjing University, Nanjing, 210093, Jiangsu Province, China
| | - Peng Li
- Institute of Metabolism & Integrative Biology (IMIB), Fudan University, Shanghai, 200438, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Chao-Jun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
9
|
Li ZR, Jia RB, Luo D, Lin L, Zheng Q, Zhao M. The positive effects and underlying mechanisms of Undaria pinnatifida polysaccharides on type 2 diabetes mellitus in rats. Food Funct 2021; 12:11898-11912. [PMID: 34739010 DOI: 10.1039/d1fo01838h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of the current work was to investigate the anti-diabetic effects and underlying mechanisms of Undaria pinnatifida polysaccharides (UPP) based on a type 2 diabetes (T2DM) rat model. The starch loading test showed that UPP administration could reduce blood glucose fluctuations caused by eating. Analysis of diabetic symptoms and biochemical profiles showed that UPP intervention markedly decreased fasting blood glucose level, mitigated insulin resistance, improved glucose tolerance, dyslipidemia and liver and kidney damage in diabetic rats. The 16S rRNA analysis demonstrated that UPP intervention could markedly change the intestinal microflora composition, causing increases in Alistipes, Bacteroides, Christensenellaceae_R-7_group, Desulfovibrio, Muribaculaceae_norank, Ruminococcaceae_UCG-013, and Ruminococcaceae_UCG-014, and a decrease in Escherichia-Shigella. Furthermore, RT-qPCR analysis results clarified that UPP administration distinctly activated the IRS/PI3K/AKT signaling pathway, restrained PEPCK, G-6-Pase and Egr-1 genes, and affected the relative expression of HMGCR and LDLR genes. This study demonstrates that UPP could be applied as an adjuvant agent for the management of T2DM.
Collapse
Affiliation(s)
- Zhao-Rong Li
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui-Bo Jia
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lianzhu Lin
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qianwen Zheng
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Chen K, Wei X, Pariyani R, Kortesniemi M, Zhang Y, Yang B. 1H NMR Metabolomics and Full-Length RNA-Seq Reveal Effects of Acylated and Nonacylated Anthocyanins on Hepatic Metabolites and Gene Expression in Zucker Diabetic Fatty Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4423-4437. [PMID: 33835816 PMCID: PMC8154569 DOI: 10.1021/acs.jafc.1c00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/01/2023]
Abstract
Anthocyanins have been reported to possess antidiabetic effects. Recent studies indicate acylated anthocyanins have better stability and antioxidative activity compared to their nonacylated counterparts. This study compared the effects of nonacylated and acylated anthocyanins on hepatic gene expression and metabolic profile in diabetic rats, using full-length transcriptomics and 1H NMR metabolomics. Zucker diabetic fatty (ZDF) rats were fed with nonacylated anthocyanin extract from bilberries (NAAB) or acylated anthocyanin extract from purple potatoes (AAPP) at daily doses of 25 and 50 mg/kg body weight for 8 weeks. Both anthocyanin extracts restored the levels of multiple metabolites (glucose, lactate, alanine, and pyruvate) and expression of genes (G6pac, Pck1, Pklr, and Gck) involved in glycolysis and gluconeogenesis. AAPP decreased the hepatic glutamine level. NAAB regulated the expression of Mgat4a, Gstm6, and Lpl, whereas AAPP modified the expression of Mgat4a, Jun, Fos, and Egr1. This study indicated different effects of AAPP and NAAB on the hepatic transcriptomic and metabolic profiles of diabetic rats.
Collapse
Affiliation(s)
- Kang Chen
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| | - Xuetao Wei
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, Department of Toxicology, School of Public Health, Beijing University, Beijing 100191, China
| | - Raghunath Pariyani
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| | - Maaria Kortesniemi
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| | - Yumei Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Beijing University, Beijing 100191, China
| | - Baoru Yang
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| |
Collapse
|
11
|
Jia RB, Li ZR, Wu J, Ou ZR, Liao B, Sun B, Lin L, Zhao M. Mitigation mechanisms of Hizikia fusifarme polysaccharide consumption on type 2 diabetes in rats. Int J Biol Macromol 2020; 164:2659-2670. [PMID: 32846181 DOI: 10.1016/j.ijbiomac.2020.08.154] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
The objective of current work was to explore the potential anti-diabetic mechanisms of Hizikia fusifarme polysaccharide (HFP) in type 2 diabetic rats. The carbohydrate loading experiment illustrated that HFP supplement could reduce blood sugar fluctuations caused by eating through inhibiting the hydrolysis of starch in mice. The analysis of typically diabetic symptoms and serum profiles showed that oral administration of HFP could mitigate hyperglycemia, insulin resistance, dyslipidemia, chronic inflammation and oxidative stress in rats. The 16s rRNA gene sequencing analysis indicated that HFP treatment could restore beneficial composition of gut flora in diabetic rats, and the correlation analysis revealed that the improvement of diabetes is closely related to the modification of gut flora by HFP intervention. Furthermore, the RT-qPCR and western blotting analysis clarified that HFP administration could increase glycogen storage in liver and skeletal muscle of diabetic rats through activating IRS/PI3K/AKT/GLUT signaling pathway and restrain gluconeogenesis via affecting the relative expression of Egr-1 and PEPCK genes.
Collapse
Affiliation(s)
- Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Juan Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Zhi-Rong Ou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bingwu Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China.
| |
Collapse
|
12
|
Wu J, Tao W, Bu D, Zhao Y, Zhang T, Chong D, Xue B, Xing Z, Li C. Egr-1 transcriptionally activates protein phosphatase PTP1B to facilitate hyperinsulinemia-induced insulin resistance in the liver in type 2 diabetes. FEBS Lett 2019; 593:3054-3063. [PMID: 31309546 DOI: 10.1002/1873-3468.13537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 01/14/2023]
Abstract
During the development of type 2 diabetes mellitus (T2DM), hyperinsulinemia is the earliest symptom. It is believed that long-term high insulin stimulation might facilitate insulin resistance in the liver, but the underlying mechanism remains unknown. Herein, we report that hyperinsulinemia could induce persistent early growth response gene-1 (Egr-1) activation in hepatocytes, which provides negative feedback inhibition of insulin sensitivity by inducing the expression of protein tyrosine phosphatase-1B (PTP1B). Deletion of Egr-1 in the liver remarkably decreases glucose production, thus improving systemic glucose tolerance and insulin sensitivity. Mechanistic analysis indicates that Egr-1 inhibits insulin receptor phosphorylation by directly activating PTP1B transcription in the liver. Our results reveal the molecular mechanism by which hyperinsulinemia accelerates insulin resistance in hepatocytes during the progression of T2DM.
Collapse
Affiliation(s)
- Jing Wu
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Weiwei Tao
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Dandan Bu
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Yue Zhao
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Tongyu Zhang
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Danyang Chong
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, China
| | - Zheng Xing
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| | - Chaojun Li
- Medical School of Nanjing University, China.,Model Animal Research Center, Nanjing University, China
| |
Collapse
|
13
|
Wang S, Liang C, Ai H, Yang M, Yi J, Liu L, Song Z, Bao Y, Li Y, Sun L, Zhao H. Hepatic miR-181b-5p Contributes to Glycogen Synthesis Through Targeting EGR1. Dig Dis Sci 2019; 64:1548-1559. [PMID: 30627917 DOI: 10.1007/s10620-018-5442-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM The miR-181 family plays an important role in the regulation of various cellular functions. However, whether miR-181b-5p mediates hepatic insulin resistance remains unknown. In this study, we investigated the effect of miR-181b-5p on the regulation of hepatic glycogen synthesis. METHODS The miR-181b-5p levels in the livers of diabetic mice were detected by real-time PCR. The glycogen levels and AKT/GSK pathway activation were examined in human hepatic L02 cells and HepG2 cells transfected with miR-181b-5p mimic or inhibitor. The potential target genes of miR-181b-5p were evaluated using a luciferase reporter assay and Western blot analysis. EGR1-specific siRNA and pCMV-EGR1 were used to further determine the role of miR-181b-5p in hepatic glycogen synthesis in vitro. Hepatic inhibition of miR-181b-5p in mice was performed using adeno-associated virus 8 (AAV8) vectors by tail intravenous injection. RESULTS The miR-181b-5p levels were significantly decreased in the serum and livers of diabetic mice as well as the serum of type 2 diabetes patients. Importantly, inhibition of miR-181b-5p expression impaired the AKT/GSK pathway and reduced glycogenesis in hepatocytes. Moreover, upregulation of miR-181b-5p reversed high-glucose-induced suppression of glycogenesis. Further analysis revealed that early growth response 1 (EGR1) was a downstream target of miR-181b-5p. Silencing of EGR1 expression rescued miR-181b-5p inhibition-reduced AKT/GSK pathway activation and glycogenesis in hepatocytes. Hepatic inhibition of miR-181b-5p led to insulin resistance in C57BL/6 J mice. CONCLUSION We demonstrated that miR-181b-5p contributes to glycogen synthesis by targeting EGR1, thereby regulating PTEN expression to mediate hepatic insulin resistance.
Collapse
Affiliation(s)
- Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Chen Liang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Huihan Ai
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Meiting Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Jingwen Yi
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China.
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Luguo Sun
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Huiying Zhao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
14
|
The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. J Hepatol 2018; 69:1099-1109. [PMID: 29981427 DOI: 10.1016/j.jhep.2018.06.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/14/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Embedded into a complex signaling network that coordinates glucose uptake, usage and production, the nuclear bile acid receptor FXR is expressed in several glucose-processing organs including the liver. Hepatic gluconeogenesis is controlled through allosteric regulation of gluconeogenic enzymes and by glucagon/cAMP-dependent transcriptional regulatory pathways. We aimed to elucidate the role of FXR in the regulation of fasting hepatic gluconeogenesis. METHODS The role of FXR in hepatic gluconeogenesis was assessed in vivo and in mouse primary hepatocytes. Gene expression patterns in response to glucagon and FXR agonists were characterized by quantitative reverse transcription PCR and microarray analysis. FXR phosphorylation by protein kinase A was determined by mass spectrometry. The interaction of FOXA2 with FXR was identified by cistromic approaches and in vitro protein-protein interaction assays. The functional impact of the crosstalk between FXR, the PKA and FOXA2 signaling pathways was assessed by site-directed mutagenesis, transactivation assays and restoration of FXR expression in FXR-deficient hepatocytes in which gene expression and glucose production were assessed. RESULTS FXR positively regulates hepatic glucose production through two regulatory arms, the first one involving protein kinase A-mediated phosphorylation of FXR, which allowed for the synergistic activation of gluconeogenic genes by glucagon, agonist-activated FXR and CREB. The second arm involves the inhibition of FXR's ability to induce the anti-gluconeogenic nuclear receptor SHP by the glucagon-activated FOXA2 transcription factor, which physically interacts with FXR. Additionally, knockdown of Foxa2 did not alter glucagon-induced and FXR agonist enhanced expression of gluconeogenic genes, suggesting that the PKA and FOXA2 pathways regulate distinct subsets of FXR responsive genes. CONCLUSIONS Thus, hepatic glucose production is regulated during physiological fasting by FXR, which integrates the glucagon/cAMP signal and the FOXA2 signal, by being post-translationally modified, and by engaging in protein-protein interactions, respectively. LAY SUMMARY Activation of the nuclear bile acid receptor FXR regulates gene expression networks, controlling lipid, cholesterol and glucose metabolism, which are mostly effective after eating. Whether FXR exerts critical functions during fasting is unknown. The results of this study show that FXR transcriptional activity is regulated by the glucagon/protein kinase A and the FOXA2 signaling pathways, which act on FXR through phosphorylation and protein-protein interactions, respectively, to increase hepatic glucose synthesis.
Collapse
|
15
|
Wu J, Tao WW, Chong DY, Lai SS, Wang C, Liu Q, Zhang TY, Xue B, Li CJ. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription. FASEB J 2018. [PMID: 29543533 DOI: 10.1096/fj.201701340r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.
Collapse
Affiliation(s)
- Jing Wu
- Medicine School of Nanjing University, Nanjing, China
| | - Wei-Wei Tao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Dan-Yang Chong
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Shan-Shan Lai
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Chuang Wang
- Medicine School of Nanjing University, Nanjing, China
| | - Qi Liu
- Medicine School of Nanjing University, Nanjing, China
| | - Tong-Yu Zhang
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Bin Xue
- Medicine School of Nanjing University, Nanjing, China
| | - Chao-Jun Li
- Medicine School of Nanjing University, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Yeung J, Mermet J, Jouffe C, Marquis J, Charpagne A, Gachon F, Naef F. Transcription factor activity rhythms and tissue-specific chromatin interactions explain circadian gene expression across organs. Genome Res 2018; 28:182-191. [PMID: 29254942 PMCID: PMC5793782 DOI: 10.1101/gr.222430.117] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022]
Abstract
Temporal control of physiology requires the interplay between gene networks involved in daily timekeeping and tissue function across different organs. How the circadian clock interweaves with tissue-specific transcriptional programs is poorly understood. Here, we dissected temporal and tissue-specific regulation at multiple gene regulatory layers by examining mouse tissues with an intact or disrupted clock over time. Integrated analysis uncovered two distinct regulatory modes underlying tissue-specific rhythms: tissue-specific oscillations in transcription factor (TF) activity, which were linked to feeding-fasting cycles in liver and sodium homeostasis in kidney; and colocalized binding of clock and tissue-specific transcription factors at distal enhancers. Chromosome conformation capture (4C-seq) in liver and kidney identified liver-specific chromatin loops that recruited clock-bound enhancers to promoters to regulate liver-specific transcriptional rhythms. Furthermore, this looping was remarkably promoter-specific on the scale of less than 10 kilobases (kb). Enhancers can contact a rhythmic promoter while looping out nearby nonrhythmic alternative promoters, confining rhythmic enhancer activity to specific promoters. These findings suggest that chromatin folding enables the clock to regulate rhythmic transcription of specific promoters to output temporal transcriptional programs tailored to different tissues.
Collapse
Affiliation(s)
- Jake Yeung
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Jérôme Mermet
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Céline Jouffe
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Julien Marquis
- Functional Genomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Aline Charpagne
- Functional Genomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
- Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
17
|
Goldstein I, Hager GL. The Three Ds of Transcription Activation by Glucagon: Direct, Delayed, and Dynamic. Endocrinology 2018; 159:206-216. [PMID: 29077799 PMCID: PMC6283435 DOI: 10.1210/en.2017-00521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
Upon lowered blood glucose occurring during fasting, glucagon is secreted from pancreatic islets, exerting various metabolic effects to normalize glucose levels. A considerable portion of these effects is mediated by glucagon-activated transcription factors (TFs) in liver. Glucagon directly activates several TFs via immediate cyclic adenosine monophosphate (cAMP)- and calcium-dependent signaling events. Among these TFs, cAMP response element-binding protein (CREB) is a major factor. CREB recruits histone-modifying enzymes and cooperates with other TFs on the chromatin template to increase the rate of gene transcription. In addition to direct signal transduction, the transcriptional effects of glucagon are also influenced by dynamic TF cross talk. Specifically, assisted loading of one TF by a companion TF leads to increased binding and activity. Lastly, transcriptional regulation by glucagon is also exerted by TF cascades by which a primary TF induces the gene expression of secondary TFs that bring about their activity a few hours after the initial glucagon signal. This mechanism of a delayed response may be instrumental in establishing the temporal organization of the fasting response by which distinct metabolic events separate early from prolonged fasting. In this mini-review, we summarize recent advances and critical discoveries in glucagon-dependent gene regulation with a focus on direct TF activation, dynamic TF cross talk, and TF cascades.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Correspondence: Gordon L. Hager, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B602, Bethesda, Maryland 20892. E-mail: ; or Ido Goldstein, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B307, Bethesda, Maryland 20892. E-mail:
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Correspondence: Gordon L. Hager, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B602, Bethesda, Maryland 20892. E-mail: ; or Ido Goldstein, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B307, Bethesda, Maryland 20892. E-mail:
| |
Collapse
|
18
|
Goldstein I, Hager GL. Transcriptional and Chromatin Regulation during Fasting - The Genomic Era. Trends Endocrinol Metab 2015; 26:699-710. [PMID: 26520657 PMCID: PMC4673016 DOI: 10.1016/j.tem.2015.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/21/2022]
Abstract
An elaborate metabolic response to fasting is orchestrated by the liver and is heavily reliant on transcriptional regulation. In response to hormones (glucagon, glucocorticoids) many transcription factors (TFs) are activated and regulate various genes involved in metabolic pathways aimed at restoring homeostasis: gluconeogenesis, fatty acid oxidation, ketogenesis, and amino acid shuttling. We summarize recent discoveries regarding fasting-related TFs with an emphasis on genome-wide binding patterns. Collectively, the findings we discuss reveal a large degree of cooperation between TFs during fasting that occurs at motif-rich DNA sites bound by a combination of TFs. These new findings implicate transcriptional and chromatin regulation as major determinants of the response to fasting and unravels the complex, multi-TF nature of this response.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National institutes of Health, Bethesda, MD, 20892, USA.
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Tao W, Wu J, Zhang Q, Lai SS, Jiang S, Jiang C, Xu Y, Xue B, Du J, Li CJ. EGR1 regulates hepatic clock gene amplitude by activating Per1 transcription. Sci Rep 2015; 5:15212. [PMID: 26471974 PMCID: PMC4607941 DOI: 10.1038/srep15212] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/21/2015] [Indexed: 01/27/2023] Open
Abstract
The mammalian clock system is composed of a master clock and peripheral clocks. At the molecular level, the rhythm-generating mechanism is controlled by a molecular clock composed of positive and negative feedback loops. However, the underlying mechanisms for molecular clock regulation that affect circadian clock function remain unclear. Here, we show that Egr1 (early growth response 1), an early growth response gene, is expressed in mouse liver in a circadian manner. Consistently, Egr1 is transactivated by the CLOCK/BMAL1 heterodimer through a conserved E-box response element. In hepatocytes, EGR1 regulates the transcription of several core clock genes, including Bmal1, Per1, Per2, Rev-erbα and Rev-erbβ, and the rhythm amplitude of their expression is dependent on EGR1's transcriptional function. Further mechanistic studies indicated that EGR1 binds to the proximal region of the Per1 promoter to activate its transcription directly. When the peripheral clock is altered by light or feeding behavior transposition in Egr1-deficient mice, the expression phase of hepatic clock genes shifts normally, but the amplitude is also altered. Our data reveal a critical role for EGR1 in the regulation of hepatic clock circuitry, which may contribute to the rhythm stability of peripheral clock oscillators.
Collapse
Affiliation(s)
- Weiwei Tao
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center (MARC) and the School of Medicine, Nanjing University, Nanjing 210093, China
| | - Jing Wu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center (MARC) and the School of Medicine, Nanjing University, Nanjing 210093, China
| | - Qian Zhang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center (MARC) and the School of Medicine, Nanjing University, Nanjing 210093, China
| | - Shan-Shan Lai
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center (MARC) and the School of Medicine, Nanjing University, Nanjing 210093, China
| | - Shan Jiang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center (MARC) and the School of Medicine, Nanjing University, Nanjing 210093, China
| | - Chen Jiang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center (MARC) and the School of Medicine, Nanjing University, Nanjing 210093, China
| | - Ying Xu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center (MARC) and the School of Medicine, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center (MARC) and the School of Medicine, Nanjing University, Nanjing 210093, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Chao-Jun Li
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center (MARC) and the School of Medicine, Nanjing University, Nanjing 210093, China
| |
Collapse
|