1
|
Rosa M, Dupont A, Smadja DM, Soquet J, Abdoul J, Pamart T, Vincent F, Le Tanno C, Borowczak E, Bigot T, Ung A, Vaast B, Daniel M, Jashari R, Mouquet F, Delhaye C, Sottejeau Y, Rancic J, Corseaux D, Juthier F, Staels B, Susen S, Van Belle E. Aortic Valve Calcification Is Induced by the Loss of ALDH1A1 and Can Be Prevented by Agonists of Retinoic Acid Receptor Alpha: Preclinical Evidence for Drug Repositioning. Circulation 2025; 151:1329-1341. [PMID: 39989358 DOI: 10.1161/circulationaha.124.071954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND To date, the only effective treatment of severe aortic stenosis is valve replacement. With the introduction of transcatheter aortic valve replacement and extending indications to younger patients, the use of bioprosthetic valves (BPVs) has considerably increased. The main inconvenience of BPVs is their limited durability because of mechanisms similar as the fibro-calcifying processes observed in native aortic stenosis. One of the major gaps of the field is to identify therapeutic targets to prevent or slow the fibro-calcifying process leading to severe and symptomatic aortic stenosis. METHODS Explanted valves were collected from patients and organ donor hearts. A comparative transcriptomic analysis was performed on valvular interstitial cells (VIC) obtained from calcified (bicuspid and tricuspid) versus control valves. The mechanisms and consequences of aldehyde dehydrogenase 1 family member A1 (ALDH1A1) downregulation were analyzed in VIC cultures from control human aortic valves. ALDH1A1 was inhibited or silenced and its impact on osteogenic marker expression and calcification processes assessed in VIC. The effect of all-trans retinoic acid on calcification was tested on human VIC cultures and on 2 animal models: the model of subcutaneous implantation of bovine pericardium in rats and the model of xenograft aortic valve replacement in juvenile sheep. RESULTS Transcriptome analysis of human VIC identified ALDH1A1 as the most downregulated gene in VIC from calcified versus control valves. In human VIC, ALDH1A1 expression is downregulated by TGF-β in a SMAD2/3-dependent manner. ALDH1A1 inhibition promotes an osteoblast-like VIC phenotype and increases calcium deposition through inhibition of retinoic acid receptor alpha signaling. Conversely, VIC treatment with retinoids decreases calcium deposition and attenuates VIC osteoblast activity. Last, all-trans retinoic acid inhibits calcification development of aortic BPV in both in vivo models and improves aortic valve echocardiographic parameters in the xenograft sheep model. CONCLUSIONS These results show that ALDH1A1 is downregulated in calcified valves, hence promoting VIC transition into an osteoblastic phenotype. Retinoic acid receptor alpha agonists, including all-trans retinoic acid through a drug repositioning strategy, represent a promising and innovative pharmacological approach to prevent calcification of native aortic valves and BPV.
Collapse
Affiliation(s)
- Mickael Rosa
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Annabelle Dupont
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | - David M Smadja
- Université de Paris Cité, Innovative Therapies in Hemostasis, Inserm, France (D.M.S., J.R.)
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, France (D.M.S., J.R.)
| | - Jérôme Soquet
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Johan Abdoul
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Thibault Pamart
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Flavien Vincent
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Department of Interventional Cardiology for Coronary, Valves and Structural Heart Diseases (F.V., C.D., E.V.B.), CHU Lille, France
| | - Christina Le Tanno
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Eloise Borowczak
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Timothée Bigot
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Alexandre Ung
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | - Bertrand Vaast
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | - Mélanie Daniel
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | | | - Frédéric Mouquet
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | - Cedric Delhaye
- Department of Interventional Cardiology for Coronary, Valves and Structural Heart Diseases (F.V., C.D., E.V.B.), CHU Lille, France
| | - Yoann Sottejeau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Jeanne Rancic
- Université de Paris Cité, Innovative Therapies in Hemostasis, Inserm, France (D.M.S., J.R.)
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, France (D.M.S., J.R.)
| | - Delphine Corseaux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Francis Juthier
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Department of Cardiac Surgery (F.J.), CHU Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Sophie Susen
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | - Eric Van Belle
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Department of Interventional Cardiology for Coronary, Valves and Structural Heart Diseases (F.V., C.D., E.V.B.), CHU Lille, France
| |
Collapse
|
2
|
Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V, Vlahopoulos S. ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review). Oncol Lett 2025; 29:213. [PMID: 40093866 PMCID: PMC11905208 DOI: 10.3892/ol.2025.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
The expression of cytosolic aldehyde dehydrogenases (ALDHs), which mediate the last step in the pathway of the synthesis of all-trans retinoic acid, is dysregulated in various types of human cancer, and has been associated with the development of cancer stem cells (CSCs) in solid tumors and hematological malignancies. CSCs are considered a minor fraction of cancer cells with the capacity to initiate neoplastic tumors. ALDH1A1 serves a crucial role in the emergence of the CSC phenotype, induces the malignant behavior of cancer cells and promotes treatment resistance. Notably, ALDH1A1-induced therapy resistance is not exclusive to just one group of drugs, but affects diverse types of drugs that use different mechanisms to kill cells. This diversity of drug resistance-inducing effects is associated with the stemness-supporting functions of ALDH1A1. The inhibition of ALDH1A1 activity using chemicals or the depletion of ALDH1A1 via genetic approaches, such as the use of small interfering RNA, can overcome diverse pathways of therapy resistance. In the context of breast cancer, it is critical that only a fraction of malignant cells are expected to manifest stem-like features, which include increased expression of ALDH1A1. From the angle of disease prognosis, the extent of the association of ALDH1A1 with increased malignant behavior and drug resistance remains to be determined through the application of cutting-edge methods that detect the expression of tracked biomarkers within tumors.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Gorodetska I, Lukiyanchuk V, Gawin M, Sliusar M, Linge A, Lohaus F, Hölscher T, Erdmann K, Fuessel S, Borkowetz A, Wojakowska A, Fochtman D, Reardon M, Choudhury A, Antonelli Y, Leal-Egaña A, Köseer AS, Kahya U, Püschel J, Petzold A, Klusa D, Peitzsch C, Kronstein-Wiedemann R, Tonn T, Marczak L, Thomas C, Widłak P, Pietrowska M, Krause M, Dubrovska A. Blood-based detection of MMP11 as a marker of prostate cancer progression regulated by the ALDH1A1-TGF-β1 signaling mechanism. J Exp Clin Cancer Res 2025; 44:105. [PMID: 40122809 PMCID: PMC11931756 DOI: 10.1186/s13046-025-03299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/12/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second most common type of tumor diagnosed in men and the fifth leading cause of cancer-related death in male patients. The response of metastatic disease to standard treatment is heterogeneous. As for now, there is no curative treatment option available for metastatic PCa, and the clinical tests capable of predicting metastatic dissemination and metastatic response to the therapies are lacking. Our recent study identified aldehyde dehydrogenases ALDH1A1 and ALDH1A3 as critical regulators of PCa metastases. Still, the exact mechanisms mediating the role of these proteins in PCa metastatic dissemination remain not fully understood, and plasma-based biomarkers of these metastatic mechanisms are not available. METHODS Genetic silencing, gene overexpression, or treatment with different concentrations of the retinoic acid (RA) isomers, which are the products of ALDH catalytic activity, were used to modulate the interplay between retinoic acid receptors (RARs) and androgen receptor (AR). RNA sequencing (RNAseq), reporter gene assays, and chromatin immunoprecipitation (ChIP) analysis were employed to validate the role of RARs and AR in the regulation of the transforming growth factor-beta 1 (TGFB1) expression. Gene expression levels of ALDH1A1, ALDH1A3, and the matrix metalloproteinase 11 (MMP11) and their correlation with pathological parameters and clinical outcomes were analysed by mining several publicly available patient datasets as well as our multi-center transcriptomic dataset from patients with high-risk and locally advanced PCa. The level of MMP11 protein was analysed by enzyme-linked immunosorbent assay (ELISA) in independent cohorts of plasma samples from patients with primary or metastatic PCa and healthy donors, while plasma proteome profiles were obtained for selected subsets of PCa patients. RESULTS We could show that ALDH1A1 and ALDH1A3 genes differently regulate TGFB1 expression in a RAR- and AR-dependent manner. We further observed that the TGF-β1 pathway contributes to the regulation of the MMPs, including MMP11. We have confirmed the relevance of MMP11 as a promising clinical marker for PCa using several independent gene expression datasets. Further, we have validated plasma MMP11 level as a prognostic biomarker in patients with metastatic PCa. Finally, we proposed a hypothetical ALDH1A1/MMP11-related plasma proteome-based prognostic signature. CONCLUSIONS TGFB1/MMP11 signaling contributes to the ALDH1A1-driven PCa metastases. MMP11 is a promising blood-based biomarker of PCa progression.
Collapse
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Vasyl Lukiyanchuk
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Marta Gawin
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Myroslava Sliusar
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Fabian Lohaus
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Tobias Hölscher
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Kati Erdmann
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Susanne Fuessel
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Angelika Borkowetz
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Anna Wojakowska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Daniel Fochtman
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Mark Reardon
- Division of Cancer Sciences, Translational Radiobiology Group, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, Translational Radiobiology Group, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Yasmin Antonelli
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany
| | - Aldo Leal-Egaña
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany
| | - Ayse Sedef Köseer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Uğur Kahya
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Jakob Püschel
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
| | - Andrea Petzold
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
| | - Daria Klusa
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Claudia Peitzsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Romy Kronstein-Wiedemann
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Torsten Tonn
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Lukasz Marczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznań, Poland
| | - Christian Thomas
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Piotr Widłak
- 2nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Monika Pietrowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden -Rossendorf, Dresden, Germany.
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
| |
Collapse
|
4
|
Zhang Y, Xiang QM, Mu CK, Wang CL, Hou CC. Functional Study of PTSMAD4 in the Spermatogenesis of the Swimming Crab Portunus trituberculatus. Int J Mol Sci 2024; 25:13126. [PMID: 39684836 DOI: 10.3390/ijms252313126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Portunus trituberculatus holds significant economic value. The spermatogenesis is regulated by numerous signaling pathways. Among them, the TGF-β signaling pathway plays an important role in the development of testes and spermatogenesis. Smad4 is a Co-Smad protein that forms a complex with R-Smad to regulate the expression of target genes. The sperm structure in crustaceans differs greatly from that in mammals, with mature sperm lacking tails. Our previous studies have reported the function of R-Smad in the spermatogenesis of P. trituberculatus. In this study, we cloned the full-length cDNA sequence of PTSMAD4; immunofluorescence technology revealed that PTSMAD4 is expressed throughout all stages of spermatogenesis. We knocked down the expression of PTSMAD4 in P. trituberculatus using RNAi technology, and the immunofluorescence results show abnormal co-localization and weakened signals of PTSMAD4 and PTSMAD2. Additionally, transcriptome sequencing results enriched functional genes and pathways related to spermatogenesis. This study indicates that PTSMAD4 may participate in the spermatogenesis process through its involvement in signal transduction. This research not only lays the foundation for further study of the function of the TGF-β signaling pathway in spermatogenesis but also provides a theoretical basis for further investigation of the spermatogenesis mechanism in crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiu-Meng Xiang
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Kao Mu
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chun-Lin Wang
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Cong-Cong Hou
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Lavudi K, Nuguri SM, Pandey P, Kokkanti RR, Wang QE. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci 2024; 356:123033. [PMID: 39222837 DOI: 10.1016/j.lfs.2024.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Human ALDH comprise 19 subfamilies in which ALDH1A1, ALDH1A3, ALDH3A1, ALDH5A1, ALDH7A1, and ALDH18A1 are implicated in CSC. Studies have shown that ALDH can also be involved in drug resistance and standard chemotherapy regimens are ineffective in treating patients at the stage of disease recurrence. Existing chemotherapeutic drugs eliminate the bulk of tumors but are usually not effective against CSC which express ALDH+ population. Henceforth, targeting ALDH is convincing to treat the patient's post-relapse. Combination therapies that interlink signaling mechanisms seem promising to increase the overall disease-free survival rate. Therefore, targeting ALDH through ALDH inhibitors along with immunotherapies may create a novel platform for translational research. This review aims to fill in the gap between ALDH1 family members in relation to its cell signaling mechanisms, highlighting their potential as molecular targets to sensitize recurrent tumors and bring forward the future development concerning the current progress and draw backs. This review summarizes the role of cancer stem cells and their upregulation by maintaining the tumor microenvironment in which ALDH is specifically highlighted. It discusses the regulation of ALDH family proteins and the crosstalk between ALDH and CSC in relation to cancer metabolism. Furthermore, it establishes the correlation between ALDH involved signaling mechanisms and their specific targeted inhibitors, as well as their functional modularity, bioavailability, and mechanistic role in various cancers.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Shreya Madhav Nuguri
- Department of Food science and Technology, The Ohio State University, Columbus, OH, United States
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Qi-En Wang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
6
|
Miki K, Oe M, Suzuki K, Miki K, Mu H, Kato Y, Iwatake M, Yukawa H, Baba Y, Ueda Y, Mori Y, Ohe K. Dual-responsive near-infrared turn-on fluorescent probe for cancer stem cell-specific visualization. J Mater Chem B 2024; 12:6959-6967. [PMID: 38913327 DOI: 10.1039/d4tb00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) stands out as one of the most reliable intracellular biomarkers for stem cells because it is expressed in both cancer stem cells (CSCs) and normal somatic stem cells (NSCs). Although several turn-on fluorescent probes for ALDH1A1 have been developed to visualize CSCs in cancer cells, the discrimination of CSCs from NSCs is difficult. We here report an AND-type dual-responsive fluorescent probe, CHO_βgal, the near-infrared fluorescence of which can be turned on after responding to both ALDH1A1 and β-galactosidase. The AND-type dual responsiveness enables CSCs to be clearly visualized, whereas NSCs are non-emissive in microscopy. CSC-positive metastasis model lungs were successfully discriminated from normal lungs in ex vivo staining experiments using CHO_βgal, whereas the single-input ALDH1A1-responsive probe failed to achieve this discrimination owing to pronounced false-positive fluorescence output from lung NSCs. In tissue slice staining experiments, even in the presence of adjacent normal tissues, the peripheral region-specific localization of CSCs was clear. The versatility of CHO_βgal holds promise not only as a fundamental in vitro research tool for visualizing CSCs but also as a valuable asset in practical tissue staining diagnosis, significantly contributing to the assessment of cancer malignancy.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kanae Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Koki Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Yoshimi Kato
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mayumi Iwatake
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba 265-8522, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Yoshifumi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
7
|
Li Z, Ma Z, Wang S, Yan Q, Zhuang H, Zhou Z, Liu C, Chen Y, Han M, Wu Z, Huang S, Zhou Q, Hou B, Zhang C. LINC00909 up-regulates pluripotency factors and promotes cancer stemness and metastasis in pancreatic ductal adenocarcinoma by targeting SMAD4. Biol Direct 2024; 19:24. [PMID: 38504385 PMCID: PMC10949730 DOI: 10.1186/s13062-024-00463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Pancreatic cancer stem cells are crucial for tumorigenesis and cancer metastasis. Presently, long non-coding RNAs were found to be associated with Pancreatic Ductal Adenocarcinoma stemness characteristics but the underlying mechanism is largely known. Here, we aim to explore the function of LINC00909 in regulating pancreatic cancer stemness and cancer metastasis. METHODS The expression level and clinical characteristics of LINC00909 were verified in 80-paired normal pancreas and Pancreatic Ductal Adenocarcinoma tissues from Guangdong Provincial People's Hospital cohort by in situ hybridization. RNA sequencing of PANC-1 cells with empty vector or vector encoding LINC00909 was experimented for subsequent bioinformatics analysis. The effect of LINC00909 in cancer stemness and metastasis was examined by in vitro and in vivo experiments. The interaction between LINC00909 with SMAD4 and the pluripotency factors were studied. RESULTS LINC00909 was generally upregulated in pancreatic cancer tissues and was associated with inferior clinicopathologic features and outcome. Over-expression of LINC00909 enhanced the expression of pluripotency factors and cancer stem cells phenotype, while knock-down of LINC00909 decreased the expression of pluripotency factors and cancer stem cells phenotype. Moreover, LINC00909 inversely regulated SMAD4 expression, knock-down of SMAD4 rescued the effect of LINC00909-deletion inhibition on pluripotency factors and cancer stem cells phenotype. These indicated the effect of LINC00909 on pluripotency factors and CSC phenotype was dependent on SMAD4 and MAPK/JNK signaling pathway, another downstream pathway of SMAD4 was also activated by LINC00909. Specifically, LINC00909 was localized in the cytoplasm in pancreatic cancer cells and decreased the stability the SMAD4 mRNA. Finally, we found over-expression of LINC00909 not only accelerated tumor growth in subcutaneous mice models, but also facilitated tumorigenicity and spleen metastasis in orthotopic mice models. CONCLUSION We demonstrate LINC00909 inhibits SMAD4 expression at the post-transcriptional level, which up-regulates the expression of pluripotency factors and activates the MAPK/JNK signaling pathway, leading to enrichment of cancer stem cells and cancer metastasis in pancreatic cancer.
Collapse
Affiliation(s)
- Zhenchong Li
- Department of General Surgery, Heyuan people's Hospital, Heyuan, 517000, China
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Zuyi Ma
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Shujie Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Chunsheng Liu
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Mingqian Han
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zelong Wu
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shanzhou Huang
- Department of General Surgery, Heyuan people's Hospital, Heyuan, 517000, China
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, Guangdong, 516081, China.
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Baohua Hou
- Department of General Surgery, Heyuan people's Hospital, Heyuan, 517000, China.
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China.
| | - Chuanzhao Zhang
- Department of General Surgery, Heyuan people's Hospital, Heyuan, 517000, China.
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
8
|
Boudreault J, Wang N, Ghozlan M, Lebrun JJ. Transforming Growth Factor-β/Smad Signaling Inhibits Melanoma Cancer Stem Cell Self-Renewal, Tumor Formation and Metastasis. Cancers (Basel) 2024; 16:224. [PMID: 38201651 PMCID: PMC10778361 DOI: 10.3390/cancers16010224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The secreted protein transforming growth factor-beta (TGFβ) plays essential roles, ranging from cell growth regulation and cell differentiation in both normal and cancer cells. In melanoma, TGFβ acts as a potent tumor suppressor in melanoma by blocking cell cycle progression and inducing apoptosis. In the present study, we found TGFβ to regulate cancer stemness in melanoma through the Smad signaling pathway. We discovered that TGFβ/Smad signaling inhibits melanosphere formation in multiple melanoma cell lines and reduces expression of the CD133+ cancer stem cell subpopulation in a Smad3-dependent manner. Using preclinical models of melanoma, we further showed that preventing Smad3/4 signaling, by means of CRISPR knockouts, promoted both tumorigenesis and lung metastasis in vivo. Collectively, our results define new functions for the TGFβ/Smad signaling axis in melanoma stem-cell maintenance and open avenues for new therapeutic approaches to this disease.
Collapse
Affiliation(s)
| | | | | | - Jean-Jacques Lebrun
- Cancer Research Program, Department of Medicine, Research Institute of McGill University Health Center, Montreal, QU H4A 3J1, Canada; (J.B.); (N.W.); (M.G.)
| |
Collapse
|
9
|
Al-Shamma SA, Zaher DM, Hersi F, Abu Jayab NN, Omar HA. Targeting aldehyde dehydrogenase enzymes in combination with chemotherapy and immunotherapy: An approach to tackle resistance in cancer cells. Life Sci 2023; 320:121541. [PMID: 36870386 DOI: 10.1016/j.lfs.2023.121541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Modern cancer chemotherapy originated in the 1940s, and since then, many chemotherapeutic agents have been developed. However, most of these agents show limited response in patients due to innate and acquired resistance to therapy, which leads to the development of multi-drug resistance to different treatment modalities, leading to cancer recurrence and, eventually, patient death. One of the crucial players in inducing chemotherapy resistance is the aldehyde dehydrogenase (ALDH) enzyme. ALDH is overexpressed in chemotherapy-resistant cancer cells, which detoxifies the generated toxic aldehydes from chemotherapy, preventing the formation of reactive oxygen species and, thus, inhibiting the induction of oxidative stress and the stimulation of DNA damage and cell death. This review discusses the mechanisms of chemotherapy resistance in cancer cells promoted by ALDH. In addition, we provide detailed insight into the role of ALDH in cancer stemness, metastasis, metabolism, and cell death. Several studies investigated targeting ALDH in combination with other treatments as a potential therapeutic regimen to overcome resistance. We also highlight novel approaches in ALDH inhibition, including the potential synergistic employment of ALDH inhibitors in combination with chemotherapy or immunotherapy against different cancers, including head and neck, colorectal, breast, lung, and liver.
Collapse
Affiliation(s)
- Salma A Al-Shamma
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
10
|
Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol 2022; 87:48-83. [PMID: 36347438 DOI: 10.1016/j.semcancer.2022.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state. Here, we review recent research findings that provide a mechanistic link between the commonly deregulated transcription factors and stemness in cancer. In particular, we describe the role of master transcription factors (SOX, OCT4, NANOG, KLF, BRACHYURY, SALL, HOX, FOX and RUNX), signalling-regulated transcription factors (SMAD, β-catenin, YAP, TAZ, AP-1, NOTCH, STAT, GLI, ETS and NF-κB) and unclassified transcription factors (c-MYC, HIF, EMT transcription factors and P53) across diverse tumour types, thereby yielding a comprehensive overview identifying shared downstream targets, highlighting unique mechanisms and discussing complexities.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
11
|
Oe M, Suzuki K, Miki K, Mu H, Ohe K. Steric Control in Activator-Induced Nucleophilic Quencher Detachment-Based Probes: High-Contrast Imaging of Aldehyde Dehydrogenase 1A1 in Cancer Stem Cells. Chempluschem 2022; 87:e202200319. [PMID: 36416250 DOI: 10.1002/cplu.202200319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Indexed: 01/31/2023]
Abstract
Turn-on fluorescence probes can visualize the enzyme activity with high contrast. We have established a new turn-on mechanism, activator-induced nucleophilic quencher detachment (AiQd), and developed AiQd-based turn-on fluorescence probes for the detection of enzymes. Herein, we demonstrate that the precise steric control efficiently quenches the fluorescence of AiQd-based turn-on probes before the enzymatic transformation. Theoretical calculation appropriately predicted the ratio of the fluorescence-quenched closed-ring form of probes. βC5S-A, which has a sterically demanding methyl group at the β-position of a fluorescence-quenching nucleophilic mercapto group, showed a low background signal. βC5S-A responded to aldehyde dehydrogenase 1A1 (ALDH1A1) with high selectivity, thereby enabling high-contrast live imaging of cancer stem cells (signal-to-noise ratio >10). The ALDH1A1-responsiveness of βC5S-A was not significantly affected by amino acids and biological thiols, such as cysteine and glutathione.
Collapse
Affiliation(s)
- Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Kanae Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, 615-8510, Kyoto, Japan
| |
Collapse
|
12
|
Ma M, He W, Zhao K, Xue L, Xia S, Zhang B. Targeting aldehyde dehydrogenase for prostate cancer therapies. Front Oncol 2022; 12:1006340. [PMID: 36300093 PMCID: PMC9589344 DOI: 10.3389/fonc.2022.1006340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men in the United States. About 10 – 20% of PCa progress to castration-resistant PCa (CRPC), which is accompanied by metastasis and therapeutic resistance. Aldehyde dehydrogenase (ALDH) is famous as a marker of cancer stem-like cells in different cancer types, including PCa. Generally, ALDHs catalyze aldehyde oxidation into less toxic carboxylic acids and give cancers a survival advantage by reducing oxidative stress caused by aldehyde accumulation. In PCa, the expression of ALDHs is associated with a higher tumor stage and more lymph node metastasis. Functionally, increased ALDH activity makes PCa cells gain more capabilities in self-renewal and metastasis and reduces the sensitivity to castration and radiotherapy. Therefore, it is promising to target ALDH or ALDHhigh cells to eradicate PCa. However, challenges remain in moving the ALDH inhibitors to PCa therapy, potentially due to the toxicity of pan-ALDH inhibitors, the redundancy of ALDH isoforms, and the lack of explicit understanding of the metabolic signaling transduction details. For targeting PCa stem-like cells (PCSCs), different regulators have been revealed in ALDHhigh cells to control cell proliferation and tumorigenicity. ALDH rewires essential signaling transduction in PCa cells. It has been shown that ALDHs produce retinoic acid (RA), bind with androgen, and modulate diverse signaling. This review summarizes and discusses the pathways directly modulated by ALDHs, the crucial regulators that control the activities of ALDHhigh PCSCs, and the recent progress of ALDH targeted therapies in PCa. These efforts will provide insight into improving ALDH-targeted treatment.
Collapse
Affiliation(s)
| | | | | | | | - Siyuan Xia
- *Correspondence: Siyuan Xia, ; Baotong Zhang,
| | | |
Collapse
|
13
|
Schoenfeld DA, Zhou R, Zairis S, Su W, Steinbach N, Mathur D, Bansal A, Zachem AL, Tavarez B, Hasson D, Bernstein E, Rabadan R, Parsons R. Loss of PBRM1 Alters Promoter Histone Modifications and Activates ALDH1A1 to Drive Renal Cell Carcinoma. Mol Cancer Res 2022; 20:1193-1207. [PMID: 35412614 PMCID: PMC9357026 DOI: 10.1158/1541-7786.mcr-21-1039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
Subunits of SWI/SNF chromatin remodeling complexes are frequently mutated in human malignancies. The PBAF complex is composed of multiple subunits, including the tumor-suppressor protein PBRM1 (BAF180), as well as ARID2 (BAF200), that are unique to this SWI/SNF complex. PBRM1 is mutated in various cancers, with a high mutation frequency in clear cell renal cell carcinoma (ccRCC). Here, we integrate RNA-seq, histone modification ChIP-seq, and ATAC-seq data to show that loss of PBRM1 results in de novo gains in H3K4me3 peaks throughout the epigenome, including activation of a retinoic acid biosynthesis and signaling gene signature. We show that one such target gene, ALDH1A1, which regulates a key step in retinoic acid biosynthesis, is consistently upregulated with PBRM1 loss in ccRCC cell lines and primary tumors, as well as non-malignant cells. We further find that ALDH1A1 increases the tumorigenic potential of ccRCC cells. Using biochemical methods, we show that ARID2 remains bound to other PBAF subunits after loss of PBRM1 and is essential for increased ALDH1A1 after loss of PBRM1, whereas other core SWI/SNF components are dispensable, including the ATPase subunit BRG1. In total, this study uses global epigenomic approaches to uncover novel mechanisms of PBRM1 tumor suppression in ccRCC. IMPLICATIONS This study implicates the SWI/SNF subunit and tumor-suppressor PBRM1 in the regulation of promoter histone modifications and retinoic acid biosynthesis and signaling pathways in ccRCC and functionally validates one such target gene, the aldehyde dehydrogenase ALDH1A1.
Collapse
Affiliation(s)
| | - Royce Zhou
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sakellarios Zairis
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - William Su
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole Steinbach
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deepti Mathur
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ankita Bansal
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexis L. Zachem
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bertilia Tavarez
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Ramon Parsons
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
14
|
Yue H, Hu Z, Hu R, Guo Z, Zheng Y, Wang Y, Zhou Y. ALDH1A1 in Cancers: Bidirectional Function, Drug Resistance, and Regulatory Mechanism. Front Oncol 2022; 12:918778. [PMID: 35814382 PMCID: PMC9256994 DOI: 10.3389/fonc.2022.918778] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 01/16/2023] Open
Abstract
Aldehyde dehydrogenases 1 family member A1(ALDH1A1) gene codes a cytoplasmic enzyme and shows vital physiological and pathophysiological functions in many areas. ALDH1A1 plays important roles in various diseases, especially in cancers. We reviewed and summarized representative correlative studies and found that ALDH1A1 could induce cancers via the maintenance of cancer stem cell properties, modification of metabolism, promotion of DNA repair. ALDH1A1 expression is regulated by several epigenetic processes. ALDH1A1 also acted as a tumor suppressor in certain cancers. The detoxification of ALDH1A1 often causes chemotherapy failure. Currently, ALDH1A1-targeted therapy is widely used in cancer treatment, but the mechanism by which ALDH1A1 regulates cancer development is not fully understood. This review will provide insight into the status of ALDH1A1 research and new viewpoint for cancer therapy.
Collapse
Affiliation(s)
- Hanxun Yue
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zenan Hu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zeying Guo
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yongning Zhou, ; Yuping Wang,
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yongning Zhou, ; Yuping Wang,
| |
Collapse
|
15
|
Zanoni M, Bravaccini S, Fabbri F, Arienti C. Emerging Roles of Aldehyde Dehydrogenase Isoforms in Anti-cancer Therapy Resistance. Front Med (Lausanne) 2022; 9:795762. [PMID: 35299840 PMCID: PMC8920988 DOI: 10.3389/fmed.2022.795762] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) are a family of detoxifying enzymes often upregulated in cancer cells and associated with therapeutic resistance. In humans, the ALDH family comprises 19 isoenzymes active in the majority of mammalian tissues. Each ALDH isoform has a specific differential expression pattern and most of them have individual functional roles in cancer. ALDHs are overexpressed in subpopulations of cancer cells with stem-like features, where they are involved in several processes including cellular proliferation, differentiation, detoxification and survival, participating in lipids and amino acid metabolism and retinoic acid synthesis. In particular, ALDH enzymes protect cancer cells by metabolizing toxic aldehydes in less reactive and more soluble carboxylic acids. High metabolic activity as well as conventional anticancer therapies contribute to aldehyde accumulation, leading to DNA double strand breaks (DSB) through the generation of reactive oxygen species (ROS) and lipid peroxidation. ALDH overexpression is crucial not only for the survival of cancer stem cells but can also affect immune cells of the tumour microenvironment (TME). The reduction of ROS amount and the increase in retinoic acid signaling impairs immunogenic cell death (ICD) inducing the activation and stability of immunosuppressive regulatory T cells (Tregs). Dissecting the role of ALDH specific isoforms in the TME can open new scenarios in the cancer treatment. In this review, we summarize the current knowledge about the role of ALDH isoforms in solid tumors, in particular in association with therapy-resistance.
Collapse
Affiliation(s)
- Michele Zanoni
- Biosciences Laboratory,IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | | | - Chiara Arienti
- Biosciences Laboratory,IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
16
|
Zhang Y, Murphy S, Lu X. Cancer-cell-intrinsic mechanisms regulate MDSCs through cytokine networks. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 375:1-31. [PMID: 36967150 DOI: 10.1016/bs.ircmb.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunotherapy has shifted the paradigm of cancer treatment. However, the majority of cancer patients display de novo or acquired resistance to immunotherapy. One of the main mechanisms of immunotherapy resistance is the immunosuppressive microenvironment dominated by the myeloid-derived suppressor cells (MDSCs). Emerging evidence demonstrates that genetic or epigenetic aberrations in cancer cells shape the accumulation and activation of MDSCs. Understanding this genotype-immunophenotype relationship is critical to the rational design of combination immunotherapy. Here, we review the mechanisms of how molecular changes in cancer cells induce recruitment and reprogram the function of tumor-infiltrating myeloid cells, particularly MDSCs. Tumor-infiltrating MDSCs elicit various pro-tumor functions to promote tumor cell fitness, immune evasion, angiogenesis, tissue remodeling, and metastasis. Through understanding the genotype-immunophenotype relationship between neoplastic cells and MDSCs, new approaches can be developed to tailor current immunotherapy strategies to improve cancer patient outcomes.
Collapse
|
17
|
de Sousa BM, Correia CR, Ferreira JAF, Mano JF, Furlani EP, Soares Dos Santos MP, Vieira SI. Capacitive interdigitated system of high osteoinductive/conductive performance for personalized acting-sensing implants. NPJ Regen Med 2021; 6:80. [PMID: 34815414 PMCID: PMC8611088 DOI: 10.1038/s41536-021-00184-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/19/2021] [Indexed: 11/15/2022] Open
Abstract
Replacement orthopedic surgeries are among the most common surgeries worldwide, but clinically used passive implants cannot prevent failure rates and inherent revision arthroplasties. Optimized non-instrumented implants, resorting to preclinically tested bioactive coatings, improve initial osseointegration but lack long-term personalized actuation on the bone-implant interface. Novel bioelectronic devices comprising biophysical stimulators and sensing systems are thus emerging, aiming for long-term control of peri-implant bone growth through biointerface monitoring. These acting-sensing dual systems require high frequency (HF) operations able to stimulate osteoinduction/osteoconduction, including matrix maturation and mineralization. A sensing-compatible capacitive stimulator of thin interdigitated electrodes and delivering an electrical 60 kHz HF stimulation, 30 min/day, is here shown to promote osteoconduction in pre-osteoblasts and osteoinduction in human adipose-derived mesenchymal stem cells (hASCs). HF stimulation through this capacitive interdigitated system had significant effects on osteoblasts' collagen-I synthesis, matrix, and mineral deposition. A proteomic analysis of microvesicles released from electrically-stimulated osteoblasts revealed regulation of osteodifferentiation and mineralization-related proteins (e.g. Tgfb3, Ttyh3, Itih1, Aldh1a1). Proteomics data are available via ProteomeXchange with the identifier PXD028551. Further, under HF stimulation, hASCs exhibited higher osteogenic commitment and enhanced hydroxyapatite deposition. These promising osteoinductive/conductive capacitive stimulators will integrate novel bioelectronic implants able to monitor the bone-implant interface and deliver personalized stimulation to peri-implant tissues.
Collapse
Affiliation(s)
- Bárbara M de Sousa
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Clara R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jorge A F Ferreira
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Edward P Furlani
- Department of Chemical and Biological Engineering, Department of Electrical Engineering, University at Buffalo (SUNY), Buffalo, NY, 14260, USA
| | - Marco P Soares Dos Santos
- Department of Mechanical Engineering, Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal.
- Faculty of Engineering, Associated Laboratory for Energy, Transports and Aeronautics (LAETA), University of Porto, 4200-465, Porto, Portugal.
| | - Sandra I Vieira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
18
|
Liu CC, Wu CL, Lin MX, Sze CI, Gean PW. Disulfiram Sensitizes a Therapeutic-Resistant Glioblastoma to the TGF-β Receptor Inhibitor. Int J Mol Sci 2021; 22:ijms221910496. [PMID: 34638842 PMCID: PMC8508702 DOI: 10.3390/ijms221910496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
Despite neurosurgery following radiation and chemotherapy, residual glioblastoma (GBM) cells develop therapeutic resistance (TR) leading to recurrence. The GBM heterogeneity confers TR. Therefore, an effective strategy must target cancer stem cells (CSCs) and other malignant cancer cells. TGF-β and mesenchymal transition are the indicators for poor prognoses. The activity of aldehyde dehydrogenases (ALDHs) is a functional CSC marker. However, the interplay between TGF-β and ALDHs remains unclear. We developed radiation-resistant and radiation-temozolomide-resistant GBM models to investigate the underlying mechanisms conferring TR. Galunisertib is a drug targeting TGF-β receptors. Disulfiram (DSF) is an anti-alcoholism drug which functions by inhibiting ALDHs. The anti-tumor effects of combining DSF and Galunisertib were evaluated by in vitro cell grow, wound healing, Transwell assays, and in vivo orthotopic GBM model. Mesenchymal-like phenotype was facilitated by TGF-β in TR GBM. Additionally, TR activated ALDHs. DSF inhibited TR-induced cell migration and tumor sphere formation. However, DSF did not affect the tumor growth in vivo. Spectacularly, DSF sensitized TR GBM to Galunisertib both in vitro and in vivo. ALDH activity positively correlated with TGF-β-induced mesenchymal properties in TR GBM. CSCs and mesenchymal-like GBM cells targeted together by combining DSF and Galunisertib may be a good therapeutic strategy for recurrent GBM patients.
Collapse
Affiliation(s)
- Chan-Chuan Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
| | - Cheng-Lin Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng-Kung University, Tainan 701, Taiwan;
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng-Kung University, Tainan 701, Taiwan
| | - Meng-Xuan Lin
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
| | - Chun-I Sze
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng-Kung University, Tainan 701, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
- Correspondence: (C.-I.S.); (P.-W.G.)
| | - Po-Wu Gean
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan 701, Taiwan
- Correspondence: (C.-I.S.); (P.-W.G.)
| |
Collapse
|
19
|
Oe M, Miki K, Ueda Y, Mori Y, Okamoto A, Funakoshi Y, Minami H, Ohe K. Deep-Red/Near-Infrared Turn-On Fluorescence Probes for Aldehyde Dehydrogenase 1A1 in Cancer Stem Cells. ACS Sens 2021; 6:3320-3329. [PMID: 34445866 DOI: 10.1021/acssensors.1c01136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accumulating evidence supports that cancer stem cells (CSCs) are responsible for cancer proliferation, metastasis, and therapy resistance; therefore, an effective strategy to identify and isolate CSCs is required urgently. Because of their low invasiveness and high signal/noise ratio, "turn-on" fluorescence probes working in the deep-red/near-infrared (DR/NIR) region are one of the most attractive yet undeveloped tools for CSC detection. Herein, we report DR/NIR turn-on fluorescence probes, CS5-A and CS7-A, targeted to aldehyde dehydrogenase 1A1 as an intracellular CSC marker. In contrast to the conventional "always-on" green-fluorescent ALDEFLUOR, we succeeded in generating high-contrast (signal/noise ratio > 8.3) and wash-free in vitro CSC imaging with the DR probe C5S-A. This probe can facilitate CSC isolation with minimal contamination by autofluorescence from other tissues through fluorescence-activated cell sorting. Furthermore, the NIR absorbance/emission and turn-on properties of C7S-A allow simple and rapid CSC detection in vivo within 15 min.
Collapse
Affiliation(s)
- Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshifumi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Aoi Okamoto
- Division of Breast and Endocrine Surgery, Department of Surgery, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yohei Funakoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Cancer Center, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
20
|
Zhou L, Lu J, Liang ZY, Zhou WX, Wang YZ, Jiang BL, You L, Guo JC. Expression and Prognostic Value of Small Mothers Against Decapentaplegic 7, Matrix Metalloproteinase 2, and Matrix Metalloproteinase 9 in Resectable Pancreatic Ductal Adenocarcinoma. Pancreas 2021; 50:1195-1201. [PMID: 34714284 DOI: 10.1097/mpa.0000000000001892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Thus far, expression, clinicopathologic, and prognostic implication of small mothers against decapentaplegic 7 (Smad7), matrix metalloproteinase 2 (MMP2), and matrix metalloproteinase 9 (MMP9) in pancreatic ductal adenocarcinoma (PDAC) were rarely investigated or controversial. METHODS Expression of Smad7, MMP2, and MMP9 was detected using immunohistochemistry in tissue microarrays based on 322 patients with curatively resected PDAC. Their expression pattern, clinicopathologic, and prognostic relevance were further evaluated. RESULTS Smad7 expression was found to be lower in tumor than in adjacent nontumor tissues, whereas tumoral MMP2 and MMP9 staining scores were much higher than in adjacent nontumor ones. Furthermore, Smad7 was negatively associated with serum carbohydrate antigen 19-9 level. Univariate survival analyses showed that patients with high Smad7 tumors had significantly better disease-specific survival (P = 0.0007), whereas MMP2 and MMP9 predicted poor disease-specific survival (P = 0.0211 and 0.0404). In multivariate Cox regression test, Smad7 was an independent prognostic indicator (P = 0.021). In addition, these 3 proteins were also prognostic in many subgroups. CONCLUSIONS Smad7 and MMP2/9 significantly predict good or poor prognosis in resectable PDAC, respectively. Therefore, the genes might serve as a tool or targets for molecular therapy in PDAC.
Collapse
Affiliation(s)
- Li Zhou
- From the Departments of General Surgery
| | - Jun Lu
- From the Departments of General Surgery
| | - Zhi-Yong Liang
- Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wei-Xun Zhou
- Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | | | | | - Lei You
- From the Departments of General Surgery
| | | |
Collapse
|
21
|
Poturnajova M, Kozovska Z, Matuskova M. Aldehyde dehydrogenase 1A1 and 1A3 isoforms - mechanism of activation and regulation in cancer. Cell Signal 2021; 87:110120. [PMID: 34428540 PMCID: PMC8505796 DOI: 10.1016/j.cellsig.2021.110120] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022]
Abstract
In some types of human cancer, aldehyde dehydrogenases represent stemness markers and their expression is associated with advanced disease stages and poor prognosis. Although several biological functions are mediated by their product Retinoid acid, the molecular mechanism is tissue-dependent and only partially understood. In this review, we summarize the current knowledge about the role of ALDH in solid tumours, especially ALDH1A1 and ALDH1A3 isoforms, regarding the molecular mechanism of their transcription and regulation, and their crosstalk with main molecular pathways resulting in the excessive proliferation, chemoresistance, stem cells properties and invasiveness. The recent knowledge of the regulatory effect of lnRNA on ALDH1A1 and ALDH1A3 is discussed too. Aldehyde dehydrogenases are important stem cell markers in many human cancer types. ALDH1A1 or ALDH1A3 activation participates in tumour progression, chemoresistance, stem-cell properties and invasiveness. ALDH1A1 interacts with oncogenic pathways Notch, NRF, CXCR4, Polycomb, MDR, and HOX.
Collapse
Affiliation(s)
- M Poturnajova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia.
| | - Z Kozovska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - M Matuskova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
22
|
Renshaw AA. Updating the Papanicolaou Society cytologic criteria for invasive adenocarcinoma in cystic pancreaticobiliary specimens. Cancer Cytopathol 2021; 129:579-580. [PMID: 34161643 DOI: 10.1002/cncy.22487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Andrew A Renshaw
- Department of Pathology, Baptist Hospital and Miami Cancer Institute, Miami, Florida
| |
Collapse
|
23
|
Etienne J, Joanne P, Catelain C, Riveron S, Bayer AC, Lafable J, Punzon I, Blot S, Agbulut O, Vilquin JT. Aldehyde dehydrogenases contribute to skeletal muscle homeostasis in healthy, aging, and Duchenne muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2020; 11:1047-1069. [PMID: 32157826 PMCID: PMC7432589 DOI: 10.1002/jcsm.12557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/12/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are key players in cell survival, protection, and differentiation via the metabolism and detoxification of aldehydes. ALDH activity is also a marker of stem cells. The skeletal muscle contains populations of ALDH-positive cells amenable to use in cell therapy, whose distribution, persistence in aging, and modifications in myopathic context have not been investigated yet. METHODS The Aldefluor® (ALDEF) reagent was used to assess the ALDH activity of muscle cell populations, whose phenotypic characterizations were deepened by flow cytometry. The nature of ALDH isoenzymes expressed by the muscle cell populations was identified in complementary ways by flow cytometry, immunohistology, and real-time PCR ex vivo and in vitro. These populations were compared in healthy, aging, or Duchenne muscular dystrophy (DMD) patients, healthy non-human primates, and Golden Retriever dogs (healthy vs. muscular dystrophic model, Golden retriever muscular dystrophy [GRMD]). RESULTS ALDEF+ cells persisted through muscle aging in humans and were equally represented in several anatomical localizations in healthy non-human primates. ALDEF+ cells were increased in dystrophic individuals in humans (nine patients with DMD vs. five controls: 14.9 ± 1.63% vs. 3.6 ± 0.39%, P = 0.0002) and dogs (three GRMD dogs vs. three controls: 10.9 ± 2.54% vs. 3.7 ± 0.45%, P = 0.049). In DMD patients, such increase was due to the adipogenic ALDEF+ /CD34+ populations (11.74 ± 1.5 vs. 2.8 ± 0.4, P = 0.0003), while in GRMD dogs, it was due to the myogenic ALDEF+ /CD34- cells (3.6 ± 0.6% vs. 1.03 ± 0.23%, P = 0.0165). Phenotypic characterization associated the ALDEF+ /CD34- cells with CD9, CD36, CD49a, CD49c, CD49f, CD106, CD146, and CD184, some being associated with myogenic capacities. Cytological and histological analyses distinguished several ALDH isoenzymes (ALDH1A1, 1A2, 1A3, 1B1, 1L1, 2, 3A1, 3A2, 3B1, 3B2, 4A1, 7A1, 8A1, and 9A1) expressed by different cell populations in the skeletal muscle tissue belonging to multinucleated fibres, or myogenic, endothelial, interstitial, and neural lineages, designing them as potential new markers of cell type or of metabolic activity. Important modifications were noted in isoenzyme expression between healthy and DMD muscle tissues. The level of gene expression of some isoenzymes (ALDH1A1, 1A3, 1B1, 2, 3A2, 7A1, 8A1, and 9A1) suggested their specific involvement in muscle stability or regeneration in situ or in vitro. CONCLUSIONS This study unveils the importance of the ALDH family of isoenzymes in the skeletal muscle physiology and homeostasis, suggesting their roles in tissue remodelling in the context of muscular dystrophies.
Collapse
Affiliation(s)
- Jessy Etienne
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France.,Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Pierre Joanne
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Cyril Catelain
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Stéphanie Riveron
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alexandra Clarissa Bayer
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jérémy Lafable
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Isabel Punzon
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Stéphane Blot
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Onnik Agbulut
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| |
Collapse
|
24
|
Yoshino J, Akiyama Y, Shimada S, Ogura T, Ogawa K, Ono H, Mitsunori Y, Ban D, Kudo A, Yamaoka S, Tanabe M, Tanaka S. Loss of ARID1A induces a stemness gene ALDH1A1 expression with histone acetylation in the malignant subtype of cholangiocarcinoma. Carcinogenesis 2020; 41:734-742. [PMID: 31665232 DOI: 10.1093/carcin/bgz179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/21/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Genomic analyses have recently discovered the malignant subtype of human intrahepatic cholangiocarcinoma (ICC) characterized by frequent mutations of chromatin remodeling gene ARID1A; however, the biological and molecular functions still remain obscure. We here examined the clinical and biological significances of ARID1A deficiency in human ICC. Immunohistochemical analysis demonstrated that the loss of ARID1A was an independent prognostic factor for overall survival of ICC patients (P = 0.023). We established ARID1A-knockout (KO) cells by using the CRISPR/Cas9 system from two human cholangiocarcinoma cell lines. ARID1A-KO cells exhibited significantly enhanced migration, invasion, and sphere formation activity. Microarray analysis revealed that ALDH1A1, a stemness gene, was the most significantly elevated genes in ARID1A-KO cells. In addition, ALDH enzymatic activity as a hallmark of cancer stem cells was markedly high in the KO cells. ARID1A and histone deacetylase 1 were directly recruited to the ALDH1A1 promoter region in cholangiocarcinoma cells with undetectable ALDH1A1 expression by chromatin immunoprecipitation assay. The histone H3K27 acetylation level at the ALDH1A1 promoter region was increased in cells when ARID1A was disrupted (P < 0.01). Clinically, inverse correlation between ARID1A and ALDH1A1 expression was also identified in primary ICC (P = 0.018), and ARID1A-negative and ALDH1A1-positve ICCs showed worse prognosis than only ARID1A-negative cases (P = 0.002). In conclusion, ARID1A may function as a tumor suppressor in ICC through transcriptional downregulation of ALDH1A1 expression with decreasing histone H3K27 acetylation. Our studies provide the basis for the development of new epigenetic approaches to ARID1A-negative ICC. Immunohistochemical loss of ARID1A is an independent prognostic factor in intrahepatic cholangiocarcinoma patients. ARID1A recruits HDAC1 to the promoter region of ALDH1A1, a stemness gene, and epigenetically suppresses ALDH1A1 expression with decreasing histone H3K27 acetylation in cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Jun Yoshino
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Toshiro Ogura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Kosuke Ogawa
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Hiroaki Ono
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Yusuke Mitsunori
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Atsushi Kudo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| |
Collapse
|
25
|
Abstract
OBJECTIVE This study developed a prognosis-associated miRNA (PAM)-based risk score system to predict overall survival for pancreatic cancer. METHODS We screened potential PAMs using bioinformatics technology. A risk score system integrating the PAMs was established, and the predictive value was evaluated. The targets of these PAMs were identified and functional enrichment analysis was performed. RESULTS Seven PAMs (hsa-mir-188, hsa-mir-1301, hsa-mir-424, hsa-mir-5010, hsa-mir-584, hsa-mir-5091, and hsa-mir-3613) were identified. We also developed a risk score system, which showed a high Harrell concordance index (C-index, 0.723) for overall survival in the Cancer Genome Atlas data sets. The areas under the curve of the receiver operating characteristic curve at the 1-, 2-, and 3-year survival points were 0.718, 0.832, and 0.903, respectively. In addition, both the C-index and the areas under the curve for recurrence-free survival showed a good outcome, indicating that the system had a satisfactory predictive power. Furthermore, 49 target genes of PAMs were identified. Functional enrichment analysis revealed that these targets may be involved in various biological pathways, including the transforming growth factor β signaling pathway, Notch signaling, and downregulation of SMAD2/3. CONCLUSIONS The findings of this study suggest that the 7-miRNA-based risk score system is a promising prognostic model for pancreatic cancer.
Collapse
|
26
|
Dinavahi SS, Bazewicz CG, Gowda R, Robertson GP. Aldehyde Dehydrogenase Inhibitors for Cancer Therapeutics. Trends Pharmacol Sci 2019; 40:774-789. [DOI: 10.1016/j.tips.2019.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
|
27
|
Chacón‐Solano E, León C, Díaz F, García‐García F, García M, Escámez M, Guerrero‐Aspizua S, Conti C, Mencía Á, Martínez‐Santamaría L, Llames S, Pévida M, Carbonell‐Caballero J, Puig‐Butillé J, Maseda R, Puig S, de Lucas R, Baselga E, Larcher F, Dopazo J, del Río M. Fibroblast activation and abnormal extracellular matrix remodelling as common hallmarks in three cancer-prone genodermatoses. Br J Dermatol 2019; 181:512-522. [PMID: 30693469 PMCID: PMC6850467 DOI: 10.1111/bjd.17698] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB), Kindler syndrome (KS) and xeroderma pigmentosum complementation group C (XPC) are three cancer-prone genodermatoses whose causal genetic mutations cannot fully explain, on their own, the array of associated phenotypic manifestations. Recent evidence highlights the role of the stromal microenvironment in the pathology of these disorders. OBJECTIVES To investigate, by means of comparative gene expression analysis, the role played by dermal fibroblasts in the pathogenesis of RDEB, KS and XPC. METHODS We conducted RNA-Seq analysis, which included a thorough examination of the differentially expressed genes, a functional enrichment analysis and a description of affected signalling circuits. Transcriptomic data were validated at the protein level in cell cultures, serum samples and skin biopsies. RESULTS Interdisease comparisons against control fibroblasts revealed a unifying signature of 186 differentially expressed genes and four signalling pathways in the three genodermatoses. Remarkably, some of the uncovered expression changes suggest a synthetic fibroblast phenotype characterized by the aberrant expression of extracellular matrix (ECM) proteins. Western blot and immunofluorescence in situ analyses validated the RNA-Seq data. In addition, enzyme-linked immunosorbent assay revealed increased circulating levels of periostin in patients with RDEB. CONCLUSIONS Our results suggest that the different causal genetic defects converge into common changes in gene expression, possibly due to injury-sensitive events. These, in turn, trigger a cascade of reactions involving abnormal ECM deposition and underexpression of antioxidant enzymes. The elucidated expression signature provides new potential biomarkers and common therapeutic targets in RDEB, XPC and KS. What's already known about this topic? Recessive dystrophic epidermolysis bullosa (RDEB), Kindler syndrome (KS) and xeroderma pigmentosum complementation group C (XPC) are three genodermatoses with high predisposition to cancer development. Although their causal genetic mutations mainly affect epithelia, the dermal microenvironment likely contributes to the physiopathology of these disorders. What does this study add? We disclose a large overlapping transcription profile between XPC, KS and RDEB fibroblasts that points towards an activated phenotype with high matrix-synthetic capacity. This common signature seems to be independent of the primary causal deficiency, but reflects an underlying derangement of the extracellular matrix via transforming growth factor-β signalling activation and oxidative state imbalance. What is the translational message? This study broadens the current knowledge about the pathology of these diseases and highlights new targets and biomarkers for effective therapeutic intervention. It is suggested that high levels of circulating periostin could represent a potential biomarker in RDEB.
Collapse
|
28
|
Liu Y, Zhu D, Xing H, Hou Y, Sun Y. A 6‑gene risk score system constructed for predicting the clinical prognosis of pancreatic adenocarcinoma patients. Oncol Rep 2019; 41:1521-1530. [PMID: 30747226 PMCID: PMC6365694 DOI: 10.3892/or.2019.6979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/06/2018] [Indexed: 12/24/2022] Open
Abstract
Pancreatic adenocarcinoma (PAC) is the most common type of pancreatic cancer, which commonly has an unfavorable prognosis. The present study aimed to develop a novel prognostic prediction strategy for PAC patients. mRNA sequencing data of PAC (the training dataset) were extracted from The Cancer Genome Atlas database, and the validation datasets (GSE62452 and GSE79668) were acquired from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) between good and poor prognosis groups were analyzed by limma package, and then prognosis‑associated genes were screened using Cox regression analysis. Subsequently, the risk score system was constructed and confirmed using Kaplan‑Meier (KM) survival analysis. After the survival associated‑clinical factors were screened using Cox regression analysis, they were performed with stratified analysis. Using DAVID tool, the DEGs correlated with risk scores were conducted with enrichment analysis. The results revealed that there were a total of 242 DEGs between the poor and good prognosis groups. Afterwards, a risk score system was constructed based on 6 prognosis‑associated genes (CXCL11, FSTL4, SEZ6L, SPRR1B, SSTR2 and TINAG), which was confirmed in both the training and validation datasets. Cox regression analysis showed that risk score, targeted molecular therapy, and new tumor (the new tumor event days after the initial treatment according to the TCGA database) were significantly related to clinical prognosis. Under the same clinical condition, 6 clinical factors (age, history of chronic pancreatitis, alcohol consumption, radiation therapy, targeted molecular therapy and new tumor (event days) had significant associations with clinical prognosis. Under the same risk condition, only targeted molecular therapy was significantly correlated with clinical prognosis. In conclusion, the 6‑gene risk score system may be a promising strategy for predicting the outcome of PAC patients.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anesthesiology, China Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dongyan Zhu
- Department of Vascular Surgery, China Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hongjian Xing
- Department of Orthopedics, China Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yi Hou
- Department of Urology, China Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yan Sun
- Department of Anesthesiology, China Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
29
|
Vassalli G. Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells Int 2019; 2019:3904645. [PMID: 30733805 PMCID: PMC6348814 DOI: 10.1155/2019/3904645] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) is a superfamily of enzymes that detoxify a variety of endogenous and exogenous aldehydes and are required for the biosynthesis of retinoic acid (RA) and other molecular regulators of cellular function. Over the past decade, high ALDH activity has been increasingly used as a selectable marker for normal cell populations enriched in stem and progenitor cells, as well as for cell populations from cancer tissues enriched in tumor-initiating stem-like cells. Mounting evidence suggests that ALDH not only may be used as a marker for stem cells but also may well regulate cellular functions related to self-renewal, expansion, differentiation, and resistance to drugs and radiation. ALDH exerts its functional actions partly through RA biosynthesis, as all-trans RA reverses the functional effects of pharmacological inhibition or genetic suppression of ALDH activity in many cell types in vitro. There is substantial evidence to suggest that the role of ALDH as a stem cell marker comes down to the specific isoform(s) expressed in a particular tissue. Much emphasis has been placed on the ALDH1A1 and ALDH1A3 members of the ALDH1 family of cytosolic enzymes required for RA biosynthesis. ALDH1A1 and ALDH1A3 regulate cellular function in both normal stem cells and tumor-initiating stem-like cells, promoting tumor growth and resistance to drugs and radiation. An improved understanding of the molecular mechanisms by which ALDH regulates cellular function will likely open new avenues in many fields, especially in tissue regeneration and oncology.
Collapse
Affiliation(s)
- Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Center for Molecular Cardiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Toledo-Guzmán ME, Bigoni-Ordóñez GD, Ibáñez Hernández M, Ortiz-Sánchez E. Cancer stem cell impact on clinical oncology. World J Stem Cells 2018; 10:183-195. [PMID: 30613312 PMCID: PMC6306557 DOI: 10.4252/wjsc.v10.i12.183] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a widespread worldwide chronic disease. In most cases, the high mortality rate from cancer correlates with a lack of clear symptoms, which results in late diagnosis for patients, and consequently, advanced tumor disease with poor probabilities for cure, since many patients will show chemo- and radio-resistance. Several mechanisms have been studied to explain chemo- and radio-resistance to anti-tumor therapies, including cell signaling pathways, anti-apoptotic mechanisms, stemness, metabolism, and cellular phenotypes. Interestingly, the presence of cancer stem cells (CSCs), which are a subset of cells within the tumors, has been related to therapy resistance. In this review, we focus on evaluating the presence of CSCs in different tumors such as breast cancer, gastric cancer, lung cancer, and hematological neoplasias, highlighting studies where CSCs were identified in patient samples. It is evident that there has been a great drive to identify the cell surface phenotypes of CSCs so that they can be used as a tool for anti-tumor therapy treatment design. We also review the potential effect of nanoparticles, drugs, natural compounds, aldehyde dehydrogenase inhibitors, cell signaling inhibitors, and antibodies to treat CSCs from specific tumors. Taken together, we present an overview of the role of CSCs in tumorigenesis and how research is advancing to target these highly tumorigenic cells to improve oncology patient outcomes.
Collapse
Affiliation(s)
- Mariel E Toledo-Guzmán
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | | | - Miguel Ibáñez Hernández
- Departamento de Bioquímica, Laboratorio de Terapia Génica, Escuela Nacional de Ciencias Biológicas, Posgrado de Biomedicina y Biotecnología Molecular, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| |
Collapse
|
31
|
Bazewicz CG, Dinavahi SS, Schell TD, Robertson GP. Aldehyde dehydrogenase in regulatory T-cell development, immunity and cancer. Immunology 2018; 156:47-55. [PMID: 30387499 DOI: 10.1111/imm.13016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
The role of aldehyde dehydrogenase (ALDH) in carcinogenesis and resistance to cancer therapies is well known. Mounting evidence also suggests a potentially important role for ALDH in the induction and function of regulatory T (Treg) cells. Treg cells are important cells of the immune system involved in promoting immune tolerance and preventing aberrant immune responses to beneficial or non-harmful antigens. However, Treg cells also impair tumor immunity, leading to the progression of various carcinomas. ALDH expression and the subsequent production of retinoic acid by numerous cells, including dendritic cells, macrophages, eosinophils and epithelial cells, seems important in Treg induction and function in multiple organ systems. This is particularly evident in the gastrointestinal tract, pulmonary tract and skin, which are exposed to a myriad of environmental antigens and represent interfaces between the human body and the outside world. Expression of ALDH in Treg cells themselves may also be involved in the proliferation of these cells and resistance to certain cytotoxic therapies. Hence, inhibition of ALDH expression may be useful to treat cancer. Besides the direct effect of ALDH inhibition on carcinogenesis and resistance to cancer therapies, inhibition of ALDH could potentially augment the immune response to tumor antigens by inhibiting Treg induction, function and ability to promote immune tolerance to tumor cells in multiple cancer types.
Collapse
Affiliation(s)
- Christopher G Bazewicz
- College of Medicine, The Pennsylvania State University Medical Center, Hershey, PA, USA.,The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University Medical Center, Hershey, PA, USA
| | - Saketh S Dinavahi
- The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Department of Pharmacology, The Pennsylvania State University Medical Center, Hershey, PA, USA
| | - Todd D Schell
- Department of Microbiology and Immunology, The Pennsylvania State University Medical Center, Hershey, PA, USA
| | - Gavin P Robertson
- The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Department of Pharmacology, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Department of Pathology, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Department of Dermatology, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Department of Surgery, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University Medical Center, Hershey, PA, USA.,Foreman Foundation for Melanoma Research, The Pennsylvania State University Medical Center, Hershey, PA, USA
| |
Collapse
|
32
|
Chemical Landscape for Tissue Clearing Based on Hydrophilic Reagents. Cell Rep 2018; 24:2196-2210.e9. [DOI: 10.1016/j.celrep.2018.07.056] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/21/2018] [Accepted: 07/15/2018] [Indexed: 01/31/2023] Open
|
33
|
Miyazono K, Katsuno Y, Koinuma D, Ehata S, Morikawa M. Intracellular and extracellular TGF-β signaling in cancer: some recent topics. Front Med 2018; 12:387-411. [PMID: 30043220 DOI: 10.1007/s11684-018-0646-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor (TGF)-β regulates a wide variety of cellular responses, including cell growth arrest, apoptosis, cell differentiation, motility, invasion, extracellular matrix production, tissue fibrosis, angiogenesis, and immune function. Although tumor-suppressive roles of TGF-β have been extensively studied and well-characterized in many cancers, especially at early stages, accumulating evidence has revealed the critical roles of TGF-β as a pro-tumorigenic factor in various types of cancer. This review will focus on recent findings regarding epithelial-mesenchymal transition (EMT) induced by TGF-β, in relation to crosstalk with some other signaling pathways, and the roles of TGF-β in lung and pancreatic cancers, in which TGF-β has been shown to be involved in cancer progression. Recent findings also strongly suggested that targeting TGF-β signaling using specific inhibitors may be useful for the treatment of some cancers. TGF-β plays a pivotal role in the differentiation and function of regulatory T cells (Tregs). TGF-β is produced as latent high molecular weight complexes, and the latent TGF-β complex expressed on the surface of Tregs contains glycoprotein A repetitions predominant (GARP, also known as leucine-rich repeat containing 32 or LRRC32). Inhibition of the TGF-β activities through regulation of the latent TGF-β complex activation will be discussed.
Collapse
Affiliation(s)
- Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yoko Katsuno
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
34
|
Kawasaki N, Miwa T, Hokari S, Sakurai T, Ohmori K, Miyauchi K, Miyazono K, Koinuma D. Long noncoding RNA NORAD regulates transforming growth factor-β signaling and epithelial-to-mesenchymal transition-like phenotype. Cancer Sci 2018; 109:2211-2220. [PMID: 29722104 PMCID: PMC6029837 DOI: 10.1111/cas.13626] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs are involved in a variety of cellular functions. In particular, an increasing number of studies have revealed the functions of long noncoding RNA in various cancers; however, their precise roles and mechanisms of action remain to be elucidated. NORAD, a cytoplasmic long noncoding RNA, is upregulated by irradiation and functions as a potential oncogenic factor by binding and inhibiting Pumilio proteins (PUM1/PUM2). Here, we show that NORAD upregulates transforming growth factor-β (TGF-β) signaling and regulates TGF-β-induced epithelial-to-mesenchymal transition (EMT)-like phenotype, which is a critical step in the progression of lung adenocarcinoma, A549 cells. However, PUM1 does not appear to be involved in this process. We thus focused on importin β1 as a binding partner of NORAD and found that knockdown of NORAD partially inhibits the physical interaction of importin β1 with Smad3, inhibiting the nuclear accumulation of Smad complexes in response to TGF-β. Our findings may provide a new mechanism underlying the function of NORAD in cancer cells.
Collapse
Affiliation(s)
- Natsumi Kawasaki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiki Miwa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Hokari
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Respiratory Medicine and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tsubasa Sakurai
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuho Ohmori
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensuke Miyauchi
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells. Oncogene 2018; 37:2757-2772. [PMID: 29511349 PMCID: PMC5966364 DOI: 10.1038/s41388-018-0144-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022]
Abstract
Tumor microenvironment plays a pivotal role in cancer progression; however, little is known regarding how differences in the microenvironment affect characteristics of cancer cells. Here, we investigated the effects of tumor microenvironment on cancer cells by using mouse tumor models. After three cycles of inoculation and extraction of human pancreatic cancer cells, including SUIT-2 and Panc-1 cells, from tumors, distinct cancer cell lines were established: 3P cells from the pancreas obtained using the orthotopic tumor model and 3sc cells from subcutaneous tissue obtained using the subcutaneous tumor model. On re-inoculation of these cells, the 3sc cells and, more prominently, the 3P cells, exhibited higher tumorigenic activity than the parental cells. The 3P cells specifically exhibited low E-cadherin expression and high invasiveness, suggesting that they were endowed with the highest malignant characteristics. RNA-sequence analysis demonstrated that distinct signaling pathways were activated in each cell line and that the 3P cells acquired a cancer stem cell-like phenotype. Among cancer stem cell-related genes, those specifically expressed in the 3P cells, including NES, may be potential new targets for cancer therapy. The mechanisms underlying the development of highly malignant cancer cell lines were investigated. Individual cell clones within the parental cells varied in tumor-forming ability, indicating the presence of cellular heterogeneity. Moreover, the tumor-forming ability and the gene expression profile of each cell clone were altered after serial orthotopic inoculations. The present study thus suggests that both selection and education processes by tumor microenvironment are involved in the development of highly malignant cancer cells.
Collapse
|
36
|
Decreased TGFBR3/betaglycan expression enhances the metastatic abilities of renal cell carcinoma cells through TGF-β-dependent and -independent mechanisms. Oncogene 2018; 37:2197-2212. [PMID: 29391598 PMCID: PMC5906456 DOI: 10.1038/s41388-017-0084-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022]
Abstract
TGF-β regulates both the tumor-forming and migratory abilities of various types of cancer cells. However, it is unclear how the loss of TGF-β signaling components affects these abilities in clear-cell renal cell carcinoma (ccRCC). In this study, we investigated the role of TGFBR3 (TGF-β type III receptor, also known as betaglycan) in ccRCC. Database analysis revealed decreased expression of TGFBR3 in ccRCC tissues, which correlated with poor prognosis in patients. Orthotopic inoculation experiments using immunocompromised mice indicated that low TGFBR3 expression in ccRCC cells enhanced primary tumor formation and lung metastasis. In the presence of TGFBR3, TGF-β2 decreased the aldehyde dehydrogenase (ALDH)-positive ccRCC cell population, in which renal cancer-initiating cells are enriched. Loss of TGFBR3 also enhanced cell migration in cell culture and induced expression of several mesenchymal markers in a TGF-β-independent manner. Increased lamellipodium formation by FAK-PI3K signaling was observed with TGFBR3 downregulation, and this contributed to TGF-β-independent cell migration in ccRCC cells. Taken together, our findings reveal that loss of TGFBR3 endows ccRCC cells with multiple metastatic abilities through TGF-β-dependent and independent pathways.
Collapse
|
37
|
Komuro A, Raja E, Iwata C, Soda M, Isogaya K, Yuki K, Ino Y, Morikawa M, Todo T, Aburatani H, Suzuki H, Ranjit M, Natsume A, Mukasa A, Saito N, Okada H, Mano H, Miyazono K, Koinuma D. Identification of a novel fusion gene HMGA2-EGFR in glioblastoma. Int J Cancer 2017; 142:1627-1639. [PMID: 29193056 DOI: 10.1002/ijc.31179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
Glioblastoma is one of the most malignant forms of cancer, for which no effective targeted therapy has been found. Although The Cancer Genome Atlas has provided a list of fusion genes in glioblastoma, their role in progression of glioblastoma remains largely unknown. To search for novel fusion genes, we obtained RNA-seq data from TGS-01 human glioma-initiating cells, and identified a novel fusion gene (HMGA2-EGFR), encoding a protein comprising the N-terminal region of the high-mobility group AT-hook protein 2 (HMGA2) fused to the C-terminal region of epidermal growth factor receptor (EGFR), which retained the transmembrane and kinase domains of the EGFR. This fusion gene product showed transforming potential and a high tumor-forming capacity in cell culture and in vivo. Mechanistically, HMGA2-EGFR constitutively induced a higher level of phosphorylated STAT5B than EGFRvIII, an in-frame exon deletion product of the EGFR gene that is commonly found in primary glioblastoma. Forced expression of HMGA2-EGFR enhanced orthotopic tumor formation of the U87MG human glioma cell line. Furthermore, the EGFR kinase inhibitor erlotinib blocked sphere formation of TGS-01 cells in culture and inhibited tumor formation in vivo. These findings suggest that, in addition to gene amplification and in-frame exon deletion, EGFR signaling can also be activated by gene fusion, suggesting a possible avenue for treatment of glioblastoma.
Collapse
Affiliation(s)
- Akiyoshi Komuro
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Biochemistry, Kindai University Faculty of Medicine, Osaka, Japan
| | - Erna Raja
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Caname Iwata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manabu Soda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunobu Isogaya
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiko Yuki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masato Morikawa
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Suzuki
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Melissa Ranjit
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Okada
- Department of Biochemistry, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Autocrine BMP-4 Signaling Is a Therapeutic Target in Colorectal Cancer. Cancer Res 2017; 77:4026-4038. [DOI: 10.1158/0008-5472.can-17-0112] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/05/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
|
39
|
Bone morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells. Oncogene 2017; 36:4963-4974. [PMID: 28459464 DOI: 10.1038/onc.2017.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic protein (BMP) signaling exerts antitumor activities in glioblastoma; however, its precise mechanisms remain to be elucidated. Here, we demonstrated that the BMP type I receptor ALK-2 (encoded by the ACVR1 gene) has crucial roles in apoptosis induction of patient-derived glioma-initiating cells (GICs), TGS-01 and TGS-04. We also characterized a BMP target gene, Distal-less homeobox 2 (DLX2), and found that DLX2 promoted apoptosis and neural differentiation of GICs. The tumor-suppressive effects of ALK-2 and DLX2 were further confirmed in a mouse orthotopic transplantation model. Interestingly, valproic acid (VPA), an anti-epileptic compound, induced BMP2, BMP4, ACVR1 and DLX2 mRNA expression with a concomitant increase in phosphorylation of Smad1/5. Consistently, we showed that treatment with VPA induced apoptosis of GICs, whereas silencing of ALK-2 or DLX2 expression partially suppressed it. Our study thus reveals BMP-mediated inhibitory mechanisms for glioblastoma, which explains, at least in part, the therapeutic effects of VPA.
Collapse
|
40
|
Pan Y, Shu X, Sun L, Yu L, Sun L, Yang Z, Ran Y. miR‑196a‑5p modulates gastric cancer stem cell characteristics by targeting Smad4. Int J Oncol 2017; 50:1965-1976. [PMID: 28440445 PMCID: PMC5435324 DOI: 10.3892/ijo.2017.3965] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/05/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are undifferentiated cancer cells with a high tumorigenic activity, the ability to undergo self-renewal, and a multilineage differentiation potential. Clinical evidence suggests that CSCs in a tumor mass are the cellular determinants to promote cancer invasion and metastasis. MicroRNAs (miRNAs) have emerged as important modulators of cancer stem cell characteristics. Unveiling the candidate miRNAs that regulate CSCs may provide novel therapeutic targets against cancer. We analyzed the miRNA expression profiles regulating the cancer stem-like cell characteristics in gastric cancer. Gastric cancer stem cells (GCSCs) were sorted using the stem cell marker CD44 by fluorescence-activated cell sorting. Functional studies revealed that CD44(+) cells formed more sphere colonies and showed higher invasiveness than CD44(−) cells. miRNA microarray analysis revealed that miR-196a-5p was significantly upregulated in CD44(+) cells than CD44(−) cells. Suppression of miR-196a-5p led to decreased colony formation and invasion of GCSCs. miR-196a-5p decreased the expression of Smad4 by targeting 3′-UTR of the mRNA. The expression of Smad4 in gastric cancer tissues was correlated with differentiation state of tumors, TNM stage and depth of invasion. The stimulation of epithelial-mesenchymal transition (EMT) by miR-196a-5p in cancer stem-like cells was abolished by overexpression of Smad4. Collectively, these data demonstrate that miR-196a-5p has a key role in EMT and invasion by targeting Smad4 in GCSCs. miR-196a-5p may serve as a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Yunzhi Pan
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 100021, P.R. China
| | - Xiong Shu
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 100021, P.R. China
| | - Lichao Sun
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 100021, P.R. China
| | - Long Yu
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 100021, P.R. China
| | - Lixin Sun
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 100021, P.R. China
| | - Zhihua Yang
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 100021, P.R. China
| | - Yuliang Ran
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 100021, P.R. China
| |
Collapse
|
41
|
Candelaria PV, Rampoldi A, Harbuzariu A, Gonzalez-Perez RR. Leptin signaling and cancer chemoresistance: Perspectives. World J Clin Oncol 2017; 8:106-119. [PMID: 28439492 PMCID: PMC5385432 DOI: 10.5306/wjco.v8.i2.106] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/20/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity is a major health problem and currently is endemic around the world. Obesity is a risk factor for several different types of cancer, significantly promoting cancer incidence, progression, poor prognosis and resistance to anti-cancer therapies. The study of this resistance is critical as development of chemoresistance is a serious drawback for the successful and effective drug-based treatments of cancer. There is increasing evidence that augmented adiposity can impact on chemotherapeutic treatment of cancer and the development of resistance to these treatments, particularly through one of its signature mediators, the adipokine leptin. Leptin is a pro-inflammatory, pro-angiogenic and pro-tumorigenic adipokine that has been implicated in many cancers promoting processes such as angiogenesis, metastasis, tumorigenesis and survival/resistance to apoptosis. Several possible mechanisms that could potentially be developed by cancer cells to elicit drug resistance have been suggested in the literature. Here, we summarize and discuss the current state of the literature on the role of obesity and leptin on chemoresistance, particularly as it relates to breast and pancreatic cancers. We focus on the role of leptin and its significance in possibly driving these proposed chemoresistance mechanisms, and examine its effects on cancer cell survival signals and expansion of the cancer stem cell sub-populations.
Collapse
|
42
|
Abstract
Pancreatic cancer (PC) behaves very differently in comparison with other malignancies. Its incidence has been increasing continuously; mortality has not decreased, the diagnosis is frequently late, radical surgery is performed only in 15-20% of patients, and chemotherapy is only palliative. PC occurs in three different forms. Sporadic PC accounts for 90% of all PCs. Its most frequent form is the pancreatic ductal adenocarcinoma. The remaining 10% constitute two minority groups: familial PC (7%) and PC as a manifestation of a genetic cancer syndrome (3%). PCs are preceded by a precancerous lesion (precursor). At present, six different precursors are known. They have different histomorphological characteristics and malignant potential. The recognition and correct interpretation of individual precursors influences adequate clinical decision-making. The publication surveys the present knowledge of individual precursors and their role in the early pancreatic carcinogenesis.
Collapse
|
43
|
Gnanamony M, Gondi CS. Chemoresistance in pancreatic cancer: Emerging concepts. Oncol Lett 2017; 13:2507-2513. [PMID: 28454427 DOI: 10.3892/ol.2017.5777] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal types of cancer in the world. The incidence of pancreatic cancer increases each year with no significant decrease in mortality. Pancreatic cancer is a complex disease, and this complexity is partly attributed to late diagnosis, an aggressive phenotype, environmental factors and lack of effective treatment options. Surgical resection followed by adjuvant chemotherapy is the treatment of choice for early stage cancer, whereas gemcitabine is the standard first line therapy for patients with advanced stage disease. Treatment regimens comprising folinic acid, 5-fluorouracil, irinotecan, oxaliplatin and nab-paclitaxel have demonstrated modest effects in improving median survival rates. A number of other chemotherapeutics are currently undergoing clinical trials as components of combination therapies with gemcitabine. An increasing number of novel molecular targets and cellular pathways are being identified, which highlights the complexity of this disease. The development of chemoresistance to gemcitabine is multifactorial and there exists an interplay between pancreatic cancer cells, the tumor microenvironment and cancer stem cells. These components appear to be governed by a complex network of non-coding RNAs such as micro RNAs and long non-coding RNAs. In the present study, studies describing previous research on the understanding of the factors associated with the development of chemoresistance to gemcitabine in pancreatic cancer are reviewed. A comprehensive understanding of the multiple pathways of chemoresistance is key to develop next generation therapeutics to pancreatic cancer.
Collapse
Affiliation(s)
- Manu Gnanamony
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Christopher S Gondi
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.,Department of Surgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.,Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| |
Collapse
|
44
|
Zheng L, Jiao W, Song H, Qu H, Li D, Mei H, Chen Y, Yang F, Li H, Huang K, Tong Q. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell Death Dis 2016; 7:e2382. [PMID: 27685626 PMCID: PMC5059886 DOI: 10.1038/cddis.2016.293] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 12/25/2022]
Abstract
Previous studies have indicated that as the only mammalian endo-β-D-glucuronidase, heparanase (HPSE) is up-regulated and associated with poor prognosis in gastric cancer, while the underlying mechanisms still remain to be determined. Herein, through integrative analysis of public datasets, we found microRNA-558 (miR-558) and SMAD family member 4 (Smad4) as the crucial transcription regulators of HPSE expression in gastric cancer, with their adjacent target sites within the promoter of HPSE. We identified that endogenous miR-558 activated the transcription and expression of HPSE in gastric cancer cell lines. In contrast, Smad4 suppressed the nascent transcription and expression of HPSE via directly binding to its promoter. Mechanistically, miR-558 recognized its complementary site within HPSE promoter to decrease the binding of Smad4 in an Argonaute 1-dependent manner. Ectopic expression or knockdown experiments indicated that miR-558 promoted the in vitro and in vivo tumorigenesis and aggressiveness of gastric cancer cell lines via attenuating Smad4-mediated repression of HPSE expression. In clinical gastric cancer specimens, up-regulation of miR-558 and down-regulation of Smad4 were positively correlated with HPSE expression. Kaplan–Meier survival analysis revealed that miR-558 and Smad4 were associated with unfavourable and favourable outcome of gastric cancer patients, respectively. Therefore, these findings demonstrate that miR-558 facilitates the progression of gastric cancer through directly targeting the HPSE promoter to attenuate Smad4-mediated repression of HPSE expression.
Collapse
Affiliation(s)
- Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Huajie Song
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Hongxia Qu
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Dan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Hong Mei
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Feng Yang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Huanhuan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Qiangsong Tong
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China.,Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| |
Collapse
|
45
|
Vasilaki E, Morikawa M, Koinuma D, Mizutani A, Hirano Y, Ehata S, Sundqvist A, Kawasaki N, Cedervall J, Olsson AK, Aburatani H, Moustakas A, Miyazono K, Heldin CH. Ras and TGF-β signaling enhance cancer progression by promoting the ΔNp63 transcriptional program. Sci Signal 2016; 9:ra84. [PMID: 27555661 DOI: 10.1126/scisignal.aag3232] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The p53 family of transcription factors includes p63, which is a master regulator of gene expression in epithelial cells. Determining whether p63 is tumor-suppressive or tumorigenic is complicated by isoform-specific and cellular context-dependent protein associations, as well as antagonism from mutant p53. ΔNp63 is an amino-terminal-truncated isoform, that is, the predominant isoform expressed in cancer cells of epithelial origin. In HaCaT keratinocytes, which have mutant p53 and ΔNp63, we found that mutant p53 antagonized ΔNp63 transcriptional activity but that activation of Ras or transforming growth factor-β (TGF-β) signaling pathways reduced the abundance of mutant p53 and strengthened target gene binding and activity of ΔNp63. Among the products of ΔNp63-induced genes was dual-specificity phosphatase 6 (DUSP6), which promoted the degradation of mutant p53, likely by dephosphorylating p53. Knocking down all forms of p63 or DUSP6 and DUSP7 (DUSP6/7) inhibited the basal or TGF-β-induced or epidermal growth factor (which activates Ras)-induced migration and invasion in cultures of p53-mutant breast cancer and squamous skin cancer cells. Alternatively, overexpressing ΔNp63 in the breast cancer cells increased their capacity to colonize various tissues upon intracardiac injection in mice, and this was inhibited by knocking down DUSP6/7 in these ΔNp63-overexpressing cells. High abundance of ΔNp63 in various tumors correlated with poor prognosis in patients, and this correlation was stronger in patients whose tumors also had a mutation in the gene encoding p53. Thus, oncogenic Ras and TGF-β signaling stimulate cancer progression through activation of the ΔNp63 transcriptional program.
Collapse
Affiliation(s)
- Eleftheria Vasilaki
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Masato Morikawa
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Anna Mizutani
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yudai Hirano
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Anders Sundqvist
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Natsumi Kawasaki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jessica Cedervall
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Aristidis Moustakas
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden. Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Kohei Miyazono
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden. Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Carl-Henrik Heldin
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, Biomedical Center, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
46
|
Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb Perspect Biol 2016; 8:8/5/a021873. [PMID: 27141051 DOI: 10.1101/cshperspect.a021873] [Citation(s) in RCA: 952] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transforming growth factor-β (TGF-β) is the prototype of the TGF-β family of growth and differentiation factors, which is encoded by 33 genes in mammals and comprises homo- and heterodimers. This review introduces the reader to the TGF-β family with its complexity of names and biological activities. It also introduces TGF-β as the best-studied factor among the TGF-β family proteins, with its diversity of roles in the control of cell proliferation and differentiation, wound healing and immune system, and its key roles in pathology, for example, skeletal diseases, fibrosis, and cancer.
Collapse
Affiliation(s)
- Masato Morikawa
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Rik Derynck
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
47
|
Regel I, Hausmann S, Benitz S, Esposito I, Kleeff J. Pathobiology of pancreatic cancer: implications on therapy. Expert Rev Anticancer Ther 2015; 16:219-27. [PMID: 26652651 DOI: 10.1586/14737140.2016.1129276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the concept of tumor heterogeneity was established several decades ago, the interest in this topic is still unbroken. With the identification of inter- and intratumoral genomic rearrangements and the detection of cancer stem cells (CSCs) through phenotypic variations of cancer cells there are increasing options for pancreatic cancer therapy. Indeed, some pre-clinical studies have shown promising results in the treatment of drug-resistant CSCs, whereby a few strategies were already tested in clinical trials. Basically, CSCs are influenced by the tumor microenvironment and an epigenetic reprogramming to gain stem cell-like characteristics. Targeting options inhibiting the epithelial-mesenchymal crosstalk or promoting epigenetic-driven differentiation of CSCs to a less aggressive phenotype raised the possibilities of further therapeutic applications, which will be discussed in this review.
Collapse
Affiliation(s)
- Ivonne Regel
- a Institute of Pathology , Heinrich-Heine-University , Duesseldorf , Germany
| | - Simone Hausmann
- b Department of Surgery , Technical University , Munich , Germany
| | - Simone Benitz
- b Department of Surgery , Technical University , Munich , Germany
| | - Irene Esposito
- a Institute of Pathology , Heinrich-Heine-University , Duesseldorf , Germany
| | - Jörg Kleeff
- c Department of Surgery , The Royal Liverpool and Broadgreen University Hospitals , Liverpool , UK.,d Department of Surgery , Heinrich-Heine-University , Duesseldorf , Germany
| |
Collapse
|
48
|
Rodriguez-Torres M, Allan AL. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis 2015; 33:97-113. [PMID: 26445849 PMCID: PMC4740561 DOI: 10.1007/s10585-015-9755-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022]
Abstract
There is accumulating evidence indicating that aldehyde dehydrogenase (ALDH) activity selects for cancer cells with increased aggressiveness, capacity for sustained proliferation, and plasticity in primary tumors. However, emerging data also suggests an important mechanistic role for the ALDH family of isoenzymes in the metastatic activity of tumor cells. Recent studies indicate that ALDH correlates with either increased or decreased metastatic capacity in a cellular context-dependent manner. Importantly, it appears that different ALDH isoforms support increased metastatic capacity in different tumor types. This review assesses the potential of ALDH as biological marker and mechanistic mediator of metastasis in solid tumors. In many malignancies, most notably in breast cancer, ALDH activity and expression appears to be a promising marker and potential therapeutic target for treating metastasis in the clinical setting.
Collapse
Affiliation(s)
- Mauricio Rodriguez-Torres
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Lawson Health Research Institute, London, ON, Canada. .,London Regional Cancer Program, Room A4-132, 790 Commissioners Road East, London, ON, N6A 4L6, Canada.
| |
Collapse
|
49
|
EZH2 promotes progression of small cell lung cancer by suppressing the TGF-β-Smad-ASCL1 pathway. Cell Discov 2015; 1:15026. [PMID: 27462425 PMCID: PMC4860843 DOI: 10.1038/celldisc.2015.26] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/03/2015] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-β (TGF-β) induces apoptosis in many types of cancer cells and acts as a tumor suppressor. We performed a functional analysis of TGF-β signaling to identify a molecular mechanism that regulated survival in small cell lung cancer cells. Here, we found low expression of TGF-β type II receptor (TβRII) in most small cell lung cancer cells and tissues compared to normal lung epithelial cells and normal lung tissues, respectively. When wild-type TβRII was overexpressed in small cell lung cancer cells, TGF-β suppressed cell growth in vitro and tumor formation in vivo through induction of apoptosis. Components of polycomb repressive complex 2, including enhancer of zeste 2 (EZH2), were highly expressed in small cell lung cancer cells; this led to epigenetic silencing of TβRII expression and suppression of TGF-β-mediated apoptosis. Achaete-scute family bHLH transcription factor 1 (ASCL1; also known as ASH1), a Smad-dependent target of TGF-β, was found to induce survival in small cell lung cancer cells. Thus, EZH2 promoted small cell lung cancer progression by suppressing the TGF-β-Smad-ASCL1 pathway.
Collapse
|
50
|
Xu X, Chai S, Wang P, Zhang C, Yang Y, Yang Y, Wang K. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett 2015; 369:50-7. [PMID: 26319899 DOI: 10.1016/j.canlet.2015.08.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 01/03/2023]
Abstract
Aldehyde dehydrogenases (ALDHs), as essential regulators of aldehyde metabolism in the human body, protect organisms from damage induced by active aldehydes. Given their roles in different cancer types, ALDHs have been evaluated as potential prognostic markers of cancer. ALDHs exhibit high activity in cancer stem cells (CSCs) and may serve as markers of CSCs. Moreover, studies indicated that ALDHs and their regulated retinoic acid, reactive oxygen species and reactive aldehydes metabolism were strongly related with various properties of CSCs. Besides, recent research evidences have demonstrated the transcriptional and post-translational regulation of ALDH expression and activation in CSCs. Thus, this review focuses on the function and regulation of ALDHs in CSCs, particularly ALDH1A1 and ALDH1A3.
Collapse
Affiliation(s)
- Xia Xu
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shoujie Chai
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Pingli Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chenchen Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yiming Yang
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Yang
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Kai Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|