1
|
Heywood WE, Searle J, Collis R, Doykov I, Ashworth M, Sebire N, Bamber A, Gautel M, Eaton S, Coats CJ, Elliott PM, Mills K. A Proof of Principle 2D Spatial Proteome Mapping Analysis Reveals Distinct Regional Differences in the Cardiac Proteome. Life (Basel) 2024; 14:970. [PMID: 39202712 PMCID: PMC11355120 DOI: 10.3390/life14080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Proteomics studies often explore phenotypic differences between whole organs and systems. Within the heart, more subtle variation exists. To date, differences in the underlying proteome are only described between whole cardiac chambers. This study, using the bovine heart as a model, investigates inter-regional differences and assesses the feasibility of measuring detailed, cross-tissue variance in the cardiac proteome. Using a bovine heart, we created a two-dimensional section through a plane going through two chambers. This plane was further sectioned into 4 × 4 mm cubes and analysed using label-free proteomics. We identified three distinct proteomes. When mapped to the extracted sections, the proteomes corresponded largely to the outer wall of the right ventricle and secondly to the outer wall of the left ventricle, right atrial appendage, tricuspid and mitral valves, modulator band, and parts of the left atrium. The third separate proteome corresponded to the inner walls of the left and right ventricles, septum, and left atrial appendage. Differential protein abundancies indicated differences in energy metabolism between regions. Data analyses of the mitochondrial proteins revealed a variable pattern of abundances of complexes I-V between the proteomes, indicating differences in the bioenergetics of the different cardiac sub-proteomes. Mapping of disease-associated proteins interestingly showed desmoglein-2, for which defects in this protein are known to cause Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy, which was present predominantly in the outer wall of the left ventricle. This study highlights that organs can have variable proteomes that do not necessarily correspond to anatomical features.
Collapse
Affiliation(s)
- Wendy E. Heywood
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Jon Searle
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Richard Collis
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
| | - Ivan Doykov
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Michael Ashworth
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Neil Sebire
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Andrew Bamber
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College, London WC2E 2LS, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Caroline J. Coats
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
| | - Perry M. Elliott
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
- Barts Heart Centre, and the Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, West Smithfield, London EC1A 7BE, UK
| | - Kevin Mills
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| |
Collapse
|
2
|
Kumari M, Hasija Y, Trivedi R. Acute and sub-acute metabolic change in different brain regions induced by moderate blunt traumatic brain injury. Neuroreport 2024; 35:75-80. [PMID: 38064354 DOI: 10.1097/wnr.0000000000001982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The objective of the study was to observe the effect of moderate closed-head injury on hippocampal, thalamic, and striatal tissue metabolism with time. Closed head injury is responsible for metabolic changes. These changes can be permanent or temporary, depending on the injury's impact. For the experiment, 20 rats were randomly divided into four groups, each containing five animals. Animals were subjected to injury using a modified Marmarou's weight drop device; hippocampal, thalamic, and striatal tissue samples were collected after 1 day, 3 days, and 7 days of injury. NMR spectra were acquired following sample processing. Changes in myo-inositol, creatine, glutamate, succinate, lactate, and N-acetyl aspartic acid in hippocampal tissues were observed at day 3 PI. The tyrosine level in the hippocampus was altered at day 7 PI. While thalamic and striatal tissue samples showed altered levels of branched-chain amino acids and myo-inositol at day 1PI. Taurine, gamma amino butyric acid (GABA), choline, and alpha keto-glutarate levels were found to be significantly altered in striatal tissues at days 1 and 3PI. Acetate and GABA levels were altered in the thalamus on day 1 PI. The choline level in the thalamus was found to alter at all-time points after injury. The alteration in these metabolites may be due to the alteration in their respective pathways. Neurotransmitter and energy metabolism pathways were found to be altered in all three brain regions after TBI. This study may help better understand the effect of injury on the metabolic balance of a specific brain region and recovery.
Collapse
Affiliation(s)
- Megha Kumari
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO
| |
Collapse
|
3
|
Jang A, Petrova B, Cheong TC, Zawadzki ME, Jones JK, Culhane AJ, Shipley FB, Chiarle R, Wong ET, Kanarek N, Lehtinen MK. Choroid plexus-CSF-targeted antioxidant therapy protects the brain from toxicity of cancer chemotherapy. Neuron 2022; 110:3288-3301.e8. [PMID: 36070751 PMCID: PMC9588748 DOI: 10.1016/j.neuron.2022.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
For many cancer patients, chemotherapy produces untreatable life-long neurologic effects termed chemotherapy-related cognitive impairment (CRCI). We discovered that the chemotherapy methotrexate (MTX) adversely affects oxidative metabolism of non-cancerous choroid plexus (ChP) cells and the cerebrospinal fluid (CSF). We used a ChP-targeted adeno-associated viral (AAV) vector approach in mice to augment CSF levels of the secreted antioxidant SOD3. AAV-SOD3 gene therapy increased oxidative defense capacity of the CSF and prevented MTX-induced lipid peroxidation in the hippocampus. Furthermore, this gene therapy prevented anxiety and deficits in short-term learning and memory caused by MTX. MTX-induced oxidative damage to cultured human cortical neurons and analyses of CSF samples from MTX-treated lymphoma patients demonstrated that MTX diminishes antioxidant capacity of patient CSF. Collectively, our findings motivate the advancement of ChP- and CSF-targeted anti-oxidative prophylactic measures to relieve CRCI.
Collapse
Affiliation(s)
- Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Taek-Chin Cheong
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Miriam E Zawadzki
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Harvard, MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Jill K Jones
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard, MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Culhane
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Eric T Wong
- Brain Tumor Center & Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Garcia P, Jürgens‐Wemheuer W, Uriarte Huarte O, Michelucci A, Masuch A, Brioschi S, Weihofen A, Koncina E, Coowar D, Heurtaux T, Glaab E, Balling R, Sousa C, Kaoma T, Nicot N, Pfander T, Schulz‐Schaeffer W, Allouche A, Fischer N, Biber K, Kleine‐Borgmann F, Mittelbronn M, Ostaszewski M, Schmit KJ, Buttini M. Neurodegeneration and neuroinflammation are linked, but independent of alpha‐synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease. Glia 2022; 70:935-960. [PMID: 35092321 PMCID: PMC9305192 DOI: 10.1002/glia.24149] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α‐synuclein. Alpha‐synuclein (α‐syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α‐syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α‐syn induced by striatal injection of α‐syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α‐syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α‐syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α‐syn inclusion formation is not the major driver in the early phases of PD‐like neurodegeneration, but that microglia, activated by diffusible, oligomeric α‐syn, may play a key role in this process. Our findings uncover new features of α‐syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α‐syn spreading.
Collapse
Affiliation(s)
- Pierre Garcia
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Wiebke Jürgens‐Wemheuer
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Institute of Neuropathology Saarland University Clinic (UKS) Homburg Germany
| | - Oihane Uriarte Huarte
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Alessandro Michelucci
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Annette Masuch
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | - Simone Brioschi
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | | | - Eric Koncina
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Djalil Coowar
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Carole Sousa
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Tony Kaoma
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Nathalie Nicot
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
| | - Tatjana Pfander
- Institute of Neuropathology Saarland University Clinic (UKS) Homburg Germany
| | | | | | | | - Knut Biber
- Department of Psychiatry University of Freiburg Medical Center Freiburg Germany
| | - Felix Kleine‐Borgmann
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
- Department of Cancer Research Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Science and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Faculty of Science, Technology and Medicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Kristopher J. Schmit
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
- Luxembourg Center of Neuropathology Dudelange Luxembourg
| |
Collapse
|
5
|
Thomas MH, Gui Y, Garcia P, Karout M, Gomez Ramos B, Jaeger C, Michelucci A, Gaigneaux A, Kollmus H, Centeno A, Schughart K, Balling R, Mittelbronn M, Nadeau JH, Sauter T, Williams RW, Sinkkonen L, Buttini M. Quantitative trait locus mapping identifies a locus linked to striatal dopamine and points to collagen IV alpha-6 chain as a novel regulator of striatal axonal branching in mice. GENES BRAIN AND BEHAVIOR 2021; 20:e12769. [PMID: 34453370 DOI: 10.1111/gbb.12769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Abstract
Dopaminergic neurons (DA neurons) are controlled by multiple factors, many involved in neurological disease. Parkinson's disease motor symptoms are caused by the demise of nigral DA neurons, leading to loss of striatal dopamine (DA). Here, we measured DA concentration in the dorsal striatum of 32 members of Collaborative Cross (CC) family and their eight founder strains. Striatal DA varied greatly in founders, and differences were highly heritable in the inbred CC progeny. We identified a locus, containing 164 genes, linked to DA concentration in the dorsal striatum on chromosome X. We used RNAseq profiling of the ventral midbrain of two founders with substantial difference in striatal DA-C56BL/6 J and A/J-to highlight potential protein-coding candidates modulating this trait. Among the five differentially expressed genes within the locus, we found that the gene coding for the collagen IV alpha 6 chain (Col4a6) was expressed nine times less in A/J than in C57BL/6J. Using single cell RNA-seq data from developing human midbrain, we found that COL4A6 is highly expressed in radial glia-like cells and neuronal progenitors, indicating a role in neuronal development. Collagen IV alpha-6 chain (COL4A6) controls axogenesis in simple model organisms. Consistent with these findings, A/J mice had less striatal axonal branching than C57BL/6J mice. We tentatively conclude that DA concentration and axonal branching in dorsal striatum are modulated by COL4A6, possibly during development. Our study shows that genetic mapping based on an easily measured Central Nervous System (CNS) trait, using the CC population, combined with follow-up observations, can parse heritability of such a trait, and nominate novel functions for commonly expressed proteins.
Collapse
Affiliation(s)
- Mélanie H Thomas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch/Alzette, Luxembourg.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg
| | - Yujuan Gui
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch/Alzette, Luxembourg.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg.,National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Mona Karout
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch/Alzette, Luxembourg
| | - Borja Gomez Ramos
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch/Alzette, Luxembourg.,Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Christian Jaeger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch/Alzette, Luxembourg
| | - Alessandro Michelucci
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch/Alzette, Luxembourg.,Neuro-Immunology Group, Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Arthur Centeno
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch/Alzette, Luxembourg
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch/Alzette, Luxembourg.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg.,Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg.,National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg.,Neuro-Immunology Group, Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Joseph H Nadeau
- Pacific Northwest Research Institute, Seattle, Washington, USA.,Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Thomas Sauter
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch/Alzette, Luxembourg.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg
| |
Collapse
|
6
|
"Omics" in traumatic brain injury: novel approaches to a complex disease. Acta Neurochir (Wien) 2021; 163:2581-2594. [PMID: 34273044 PMCID: PMC8357753 DOI: 10.1007/s00701-021-04928-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/23/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND To date, there is neither any pharmacological treatment with efficacy in traumatic brain injury (TBI) nor any method to halt the disease progress. This is due to an incomplete understanding of the vast complexity of the biological cascades and failure to appreciate the diversity of secondary injury mechanisms in TBI. In recent years, techniques for high-throughput characterization and quantification of biological molecules that include genomics, proteomics, and metabolomics have evolved and referred to as omics. METHODS In this narrative review, we highlight how omics technology can be applied to potentiate diagnostics and prognostication as well as to advance our understanding of injury mechanisms in TBI. RESULTS The omics platforms provide possibilities to study function, dynamics, and alterations of molecular pathways of normal and TBI disease states. Through advanced bioinformatics, large datasets of molecular information from small biological samples can be analyzed in detail and provide valuable knowledge of pathophysiological mechanisms, to include in prognostic modeling when connected to clinically relevant data. In such a complex disease as TBI, omics enables broad categories of studies from gene compositions associated with susceptibility to secondary injury or poor outcome, to potential alterations in metabolites following TBI. CONCLUSION The field of omics in TBI research is rapidly evolving. The recent data and novel methods reviewed herein may form the basis for improved precision medicine approaches, development of pharmacological approaches, and individualization of therapeutic efforts by implementing mathematical "big data" predictive modeling in the near future.
Collapse
|
7
|
In vivo toxicometabolomics reveals multi-organ and urine metabolic changes in mice upon acute exposure to human-relevant doses of 3,4-methylenedioxypyrovalerone (MDPV). Arch Toxicol 2020; 95:509-527. [PMID: 33215236 DOI: 10.1007/s00204-020-02949-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023]
Abstract
3,4-Methylenedioxypyrovalerone (MDPV) is consumed worldwide, despite its potential to cause toxicity in several organs and even death. There is a recognized need to clarify the biological pathways through which MDPV elicits general and target-organ toxicity. In this work, a comprehensive untargeted GC-MS-based metabolomics analysis was performed, aiming to detect metabolic changes in putative target organs (brain, heart, kidneys and liver) but also in urine of mice after acute exposure to human-relevant doses of MDPV. Male CD-1 mice received binge intraperitoneal administrations of saline or MDPV (2.5 mg/kg or 5 mg/kg) every 2 h, for a total of three injections. Twenty-four hours after the first administration, target organs, urine and blood samples were collected for metabolomics, biochemical and histological analysis. Hepatic and renal tissues of MDPV-treated mice showed moderate histopathological changes but no significant differences were found in plasma and tissue biochemical markers of organ injury. In contrast, the multivariate analysis significantly discriminated the organs and urine of MDPV-treated mice from the control (except for the lowest dose in the brain), allowing the identification of a panoply of metabolites. Those levels were significantly deviated in relation to physiological conditions and showed an organ specific response towards the drug. Kidneys and liver showed the greatest metabolic changes. Metabolites related with energetic metabolism, antioxidant defenses and inflammatory response were significantly changed in the liver of MDPV-dosed animals, while the kidneys seem to have developed an adaptive response against oxidative stress caused by MDPV. On the other hand, the dysregulation of metabolites that contribute to metabolic acidosis was also observed in this organ. The heart showed an increase of fatty acid biosynthesis, possibly as an adaptation to maintain the cardiac energy homeostasis. In the brain, changes in 3-hydroxybutyric acid levels may reflect the activation of a neurotoxic pathway. However, the increase in metabolites with neuroprotective properties seems to counteract this change. Metabolic profiling of urine from MDPV-treated mice suggested that glutathione-dependent antioxidant pathways may be particularly involved in the compensatory mechanism to counteract oxidative stress induced by MDPV. Overall, this study reports, for the first time, the metabolic profile of liver, kidneys, heart, brain, and urine of MDPV-dosed mice, providing unique insights into the biological pathways of toxicity. Our findings also underline the value of toxicometabolomics as a robust and sensitive tool for detecting adaptive/toxic cellular responses upon exposure to a physiologically relevant dose of a toxic agent, earlier than conventional toxicity tests.
Collapse
|
8
|
Integrative Analysis of Circulating Metabolite Profiles and Magnetic Resonance Imaging Metrics in Patients with Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21041395. [PMID: 32092929 PMCID: PMC7073036 DOI: 10.3390/ijms21041395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022] Open
Abstract
Recent evidence suggests that patients with traumatic brain injuries (TBIs) have a distinct circulating metabolic profile. However, it is unclear if this metabolomic profile corresponds to changes in brain morphology as observed by magnetic resonance imaging (MRI). The aim of this study was to explore how circulating serum metabolites, following TBI, relate to structural MRI (sMRI) findings. Serum samples were collected upon admission to the emergency department from patients suffering from acute TBI and metabolites were measured using mass spectrometry-based metabolomics. Most of these patients sustained a mild TBI. In the same patients, sMRIs were taken and volumetric data were extracted (138 metrics). From a pool of 203 eligible screened patients, 96 met the inclusion criteria for this study. Metabolites were summarized as eight clusters and sMRI data were reduced to 15 independent components (ICs). Partial correlation analysis showed that four metabolite clusters had significant associations with specific ICs, reflecting both the grey and white matter brain injury. Multiple machine learning approaches were then applied in order to investigate if circulating metabolites could distinguish between positive and negative sMRI findings. A logistic regression model was developed, comprised of two metabolic predictors (erythronic acid and myo-inositol), which, together with neurofilament light polypeptide (NF-L), discriminated positive and negative sMRI findings with an area under the curve of the receiver-operating characteristic of 0.85 (specificity = 0.89, sensitivity = 0.65). The results of this study show that metabolomic analysis of blood samples upon admission, either alone or in combination with protein biomarkers, can provide valuable information about the impact of TBI on brain structural changes.
Collapse
|
9
|
Metabolomics reveals highly regional specificity of cerebral sexual dimorphism in mice. Prog Neurobiol 2020; 184:101698. [DOI: 10.1016/j.pneurobio.2019.101698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/25/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022]
|
10
|
Banoei MM, Casault C, Metwaly SM, Winston BW. Metabolomics and Biomarker Discovery in Traumatic Brain Injury. J Neurotrauma 2019; 35:1831-1848. [PMID: 29587568 DOI: 10.1089/neu.2017.5326] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and mortality worldwide. The TBI pathogenesis can induce broad pathophysiological consequences and clinical outcomes attributed to the complexity of the brain. Thus, the diagnosis and prognosis are important issues for the management of mild, moderate, and severe forms of TBI. Metabolomics of readily accessible biofluids is a promising tool for establishing more useful and reliable biomarkers of TBI than using clinical findings alone. Metabolites are an integral part of all biochemical and pathophysiological pathways. Metabolomic processes respond to the internal and external stimuli resulting in an alteration of metabolite concentrations. Current high-throughput and highly sensitive analytical tools are capable of detecting and quantifying small concentrations of metabolites, allowing one to measure metabolite alterations after a pathological event when compared to a normal state or a different pathological process. Further, these metabolic biomarkers could be used for the assessment of injury severity, discovery of mechanisms of injury, and defining structural damage in the brain in TBI. Metabolic biomarkers can also be used for the prediction of outcome, monitoring treatment response, in the assessment of or prognosis of post-injury recovery, and potentially in the use of neuroplasticity procedures. Metabolomics can also enhance our understanding of the pathophysiological mechanisms of TBI, both in primary and secondary injury. Thus, this review presents the promising application of metabolomics for the assessment of TBI as a stand-alone platform or in association with proteomics in the clinical setting.
Collapse
Affiliation(s)
| | - Colin Casault
- 1 Department of Critical Care Medicine, University of Calgary , Alberta, Canada
| | | | - Brent W Winston
- 2 Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary , Calgary, Alberta, Canada
| |
Collapse
|
11
|
Li RS, Fukumori R, Takeda T, Song Y, Morimoto S, Kikura-Hanajiri R, Yamaguchi T, Watanabe K, Aritake K, Tanaka Y, Yamada H, Yamamoto T, Ishii Y. Elevation of endocannabinoids in the brain by synthetic cannabinoid JWH-018: mechanism and effect on learning and memory. Sci Rep 2019; 9:9621. [PMID: 31270353 PMCID: PMC6610139 DOI: 10.1038/s41598-019-45969-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
The impairment of learning and memory is a well-documented effect of both natural and synthetic cannabinoids. In the present study, we aimed to investigate the effect of acute administration of JWH-018, a synthetic cannabinoid, on the hippocampal metabolome to assess biochemical changes in vivo. JWH-018 elevated levels of the endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The increase of endocannabinoid levels in response to JWH-018 could be inhibited by co-administration of AM251, a CB1 receptor antagonist. Biochemical analyses revealed that this was the result of suppression of two hydrolases involved in endocannabinoid degradation (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL]). Additionally, we showed that JWH-018 causes a reduction in the levels of brain-derived neurotrophic factor (BDNF), which is known to modulate synaptic plasticity and adaptive processes underlying learning and memory. The decrease of BDNF following JWH-018 treatment was also rescued by co-administration of AM251. As both endocannabinoids and BDNF have been shown to modulate learning and memory in the hippocampus, the alteration of their levels in response to JWH-018 may explain the contribution of synthetic cannabinoids to impairment of memory.
Collapse
Affiliation(s)
- Ren-Shi Li
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ryo Fukumori
- Department of Pharmacotherapeutics and Neuropsychopharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yingxia Song
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Morimoto
- Division of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ruri Kikura-Hanajiri
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences (NIHS), 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-city, Kanagawa, 210-9501, Japan
| | - Taku Yamaguchi
- Department of Pharmacotherapeutics and Neuropsychopharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Kazuhito Watanabe
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku Fukuoka, 815-8511, Japan
| | - Kousuke Aritake
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku Fukuoka, 815-8511, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tsuneyuki Yamamoto
- Department of Pharmacotherapeutics and Neuropsychopharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
12
|
Virel A, Dudka I, Laterveer R, Af Bjerkén S. 1H NMR profiling of the 6-OHDA parkinsonian rat brain reveals metabolic alterations and signs of recovery after N-acetylcysteine treatment. Mol Cell Neurosci 2019; 98:131-139. [PMID: 31200101 DOI: 10.1016/j.mcn.2019.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 11/30/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease caused by degeneration of dopamine neurons in the substantia nigra. The origin and causes of dopamine neurodegeneration in Parkinson's disease are not well understood but oxidative stress may play an important role in its onset. Much effort has been dedicated to find biomarkers indicative of oxidative stress and neurodegenerative processes in parkinsonian brains. By using proton nuclear magnetic resonance (1H NMR) to identify and quantify key metabolites, it is now possible to elucidate the metabolic pathways affected by pathological conditions like neurodegeneration. The metabolic disturbances in the 6-hydroxydopamine (6-OHDA) hemiparkinsonian rat model were monitored and the nature and size of these metabolic alterations were analyzed. The results indicate that a unilateral injection of 6-OHDA into the striatum causes metabolic changes that not only affect the injected hemisphere but also the contralateral, non-lesioned side. We could clearly identify specific metabolic pathways that were affected, which were mostly related with oxidative stress and neurotransmission. In addition, a partial metabolic recovery by carrying out an antioxidant treatment with N-acetylcysteine (NAC) was observable.
Collapse
Affiliation(s)
- Ana Virel
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.
| | - Ilona Dudka
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Rutger Laterveer
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Sara Af Bjerkén
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Department of Clinical Sciences, Neuroscience, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Zetterberg H, Winblad B, Bernick C, Yaffe K, Majdan M, Johansson G, Newcombe V, Nyberg L, Sharp D, Tenovuo O, Blennow K. Head trauma in sports - clinical characteristics, epidemiology and biomarkers. J Intern Med 2019; 285:624-634. [PMID: 30481401 DOI: 10.1111/joim.12863] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traumatic brain injury (TBI) is clinically divided into a spectrum of severities, with mild TBI being the least severe form and a frequent occurrence in contact sports, such as ice hockey, American football, rugby, horse riding and boxing. Mild TBI is caused by blunt nonpenetrating head trauma that causes movement of the brain and stretching and tearing of axons, with diffuse axonal injury being a central pathogenic mechanism. Mild TBI is in principle synonymous with concussion; both have similar criteria in which the most important elements are acute alteration or loss of consciousness and/or post-traumatic amnesia following head trauma and no apparent brain changes on standard neuroimaging. Symptoms in mild TBI are highly variable and there are no validated imaging or fluid biomarkers to determine whether or not a patient with a normal computerized tomography scan of the brain has neuronal damage. Mild TBI typically resolves within a few weeks but 10-15% of concussion patients develop postconcussive syndrome. Repetitive mild TBI, which is frequent in contact sports, is a risk factor for a complicated recovery process. This overview paper discusses the relationships between repetitive head impacts in contact sports, mild TBI and chronic neurological symptoms. What are these conditions, how common are they, how are they linked and can they be objectified using imaging or fluid-based biomarkers? It gives an update on the current state of research on these questions with a specific focus on clinical characteristics, epidemiology and biomarkers.
Collapse
Affiliation(s)
- H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - B Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - C Bernick
- Neurological Institute, Cleveland Clinic, Las Vegas, NV, USA
| | - K Yaffe
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA.,San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - M Majdan
- Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
| | - G Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - V Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrookes Hospital, Cambridge, Cambs, UK
| | - L Nyberg
- Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - D Sharp
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - O Tenovuo
- Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| | - K Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
14
|
McGuire JL, DePasquale EAK, Watanabe M, Anwar F, Ngwenya LB, Atluri G, Romick-Rosendale LE, McCullumsmith RE, Evanson NK. Chronic Dysregulation of Cortical and Subcortical Metabolism After Experimental Traumatic Brain Injury. Mol Neurobiol 2019; 56:2908-2921. [PMID: 30069831 PMCID: PMC7584385 DOI: 10.1007/s12035-018-1276-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/23/2018] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. Although chronic disability is common after TBI, effective treatments remain elusive and chronic TBI pathophysiology is not well understood. Early after TBI, brain metabolism is disrupted due to unregulated ion release, mitochondrial damage, and interruption of molecular trafficking. This metabolic disruption causes at least part of the TBI pathology. However, it is not clear how persistent or pervasive metabolic injury is at later stages of injury. Using untargeted 1H-NMR metabolomics, we examined ex vivo hippocampus, striatum, thalamus, frontal cortex, and brainstem tissue in a rat lateral fluid percussion model of chronic brain injury. We found altered tissue concentrations of metabolites in the hippocampus and thalamus consistent with dysregulation of energy metabolism and excitatory neurotransmission. Furthermore, differential correlation analysis provided additional evidence of metabolic dysregulation, most notably in brainstem and frontal cortex, suggesting that metabolic consequences of injury are persistent and widespread. Interestingly, the patterns of network changes were region-specific. The individual metabolic signatures after injury in different structures of the brain at rest may reflect different compensatory mechanisms engaged to meet variable metabolic demands across brain regions.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Erica A K DePasquale
- Graduate Program in Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Miki Watanabe
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Fatima Anwar
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, 45267, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Gowtham Atluri
- Graduate Program in Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45267, USA
| | | | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Nathan K Evanson
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Division of Pediatric Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
15
|
Gerin I, Bury M, Baldin F, Graff J, Van Schaftingen E, Bommer GT. Phosphoglycolate has profound metabolic effects but most likely no role in a metabolic DNA response in cancer cell lines. Biochem J 2019; 476:629-643. [PMID: 30670572 PMCID: PMC6380167 DOI: 10.1042/bcj20180435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
Repair of a certain type of oxidative DNA damage leads to the release of phosphoglycolate, which is an inhibitor of triose phosphate isomerase and is predicted to indirectly inhibit phosphoglycerate mutase activity. Thus, we hypothesized that phosphoglycolate might play a role in a metabolic DNA damage response. Here, we determined how phosphoglycolate is formed in cells, elucidated its effects on cellular metabolism and tested whether DNA damage repair might release sufficient phosphoglycolate to provoke metabolic effects. Phosphoglycolate concentrations were below 5 µM in wild-type U2OS and HCT116 cells and remained unchanged when we inactivated phosphoglycolate phosphatase (PGP), the enzyme that is believed to dephosphorylate phosphoglycolate. Treatment of PGP knockout cell lines with glycolate caused an up to 500-fold increase in phosphoglycolate concentrations, which resulted largely from a side activity of pyruvate kinase. This increase was much higher than in glycolate-treated wild-type cells and was accompanied by metabolite changes consistent with an inhibition of phosphoglycerate mutase, most likely due to the removal of the priming phosphorylation of this enzyme. Surprisingly, we found that phosphoglycolate also inhibits succinate dehydrogenase with a Ki value of <10 µM. Thus, phosphoglycolate can lead to profound metabolic disturbances. In contrast, phosphoglycolate concentrations were not significantly changed when we treated PGP knockout cells with Bleomycin or ionizing radiation, which are known to lead to the release of phosphoglycolate by causing DNA damage. Thus, phosphoglycolate concentrations due to DNA damage are too low to cause major metabolic changes in HCT116 and U2OS cells.
Collapse
Affiliation(s)
- Isabelle Gerin
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Marina Bury
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Francesca Baldin
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Julie Graff
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Emile Van Schaftingen
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| | - Guido T Bommer
- De Duve Institute and WELBIO, UCLouvain, Avenue Hippocrate 75, 1200 Bruxelles, Belgium
| |
Collapse
|
16
|
Maoz BM, Herland A, FitzGerald EA, Grevesse T, Vidoudez C, Pacheco AR, Sheehy SP, Park TE, Dauth S, Mannix R, Budnik N, Shores K, Cho A, Nawroth JC, Segrè D, Budnik B, Ingber DE, Parker KK. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol 2018; 36:865-874. [PMID: 30125269 PMCID: PMC9254231 DOI: 10.1038/nbt.4226] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/20/2018] [Indexed: 12/30/2022]
Abstract
The neurovascular unit (NVU) regulates metabolic homeostasis as well as drug pharmacokinetics and pharmacodynamics in the central nervous system. Metabolic fluxes and conversions over the NVU rely on interactions between brain microvascular endothelium, perivascular pericytes, astrocytes and neurons, making it difficult to identify the contributions of each cell type. Here we model the human NVU using microfluidic organ chips, allowing analysis of the roles of individual cell types in NVU functions. Three coupled chips model influx across the blood-brain barrier (BBB), the brain parenchymal compartment and efflux across the BBB. We used this linked system to mimic the effect of intravascular administration of the psychoactive drug methamphetamine and to identify previously unknown metabolic coupling between the BBB and neurons. Thus, the NVU system offers an in vitro approach for probing transport, efficacy, mechanism of action and toxicity of neuroactive drugs.
Collapse
Affiliation(s)
- Ben M Maoz
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Herland
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Edward A FitzGerald
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Thomas Grevesse
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry Facility, Harvard University, Cambridge, Massachusetts, USA
| | - Alan R Pacheco
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
- Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Sean P Sheehy
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Tae-Eun Park
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Stephanie Dauth
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Robert Mannix
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nikita Budnik
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Kevin Shores
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Alexander Cho
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Janna C Nawroth
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Daniel Segrè
- Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biology, Department of Biomedical Engineering, Department of Physics, Boston University, Boston, Massachusetts, USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Crabtree GW, Gogos JA. Role of Endogenous Metabolite Alterations in Neuropsychiatric Disease. ACS Chem Neurosci 2018; 9:2101-2113. [PMID: 30044078 DOI: 10.1021/acschemneuro.8b00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The potential role in neuropsychiatric disease risk arising from alterations and derangements of endogenous small-molecule metabolites remains understudied. Alterations of endogenous metabolite concentrations can arise in multiple ways. Marked derangements of single endogenous small-molecule metabolites are found in a large group of rare genetic human diseases termed "inborn errors of metabolism", many of which are associated with prominent neuropsychiatric symptomology. Whether such metabolites act neuroactively to directly lead to distinct neural dysfunction has been frequently hypothesized but rarely demonstrated unequivocally. Here we discuss this disease concept in the context of our recent findings demonstrating that neural dysfunction arising from accumulation of the schizophrenia-associated metabolite l-proline is due to its structural mimicry of the neurotransmitter GABA that leads to alterations in GABA-ergic short-term synaptic plasticity. For cases in which a similar direct action upon neurotransmitter binding sites is suspected, we lay out a systematic approach that can be extended to assessing the potential disruptive action of such candidate disease metabolites. To address the potentially important and broader role in neuropsychiatric disease, we also consider whether the more subtle yet more ubiquitous variations in endogenous metabolites arising from natural allelic variation may likewise contribute to disease risk but in a more complex and nuanced manner.
Collapse
Affiliation(s)
- Gregg W. Crabtree
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York 10032, United States
- Zuckerman Mind Brain Behavior Institute, New York, New York 10025, United States
| | - Joseph A. Gogos
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York 10032, United States
- Zuckerman Mind Brain Behavior Institute, New York, New York 10025, United States
- Department of Neuroscience, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
18
|
Geiszler PC, Ugun-Klusek A, Lawler K, Pardon MC, Yuchun D, Bai L, Daykin CA, Auer DP, Bedford L. Dynamic metabolic patterns tracking neurodegeneration and gliosis following 26S proteasome dysfunction in mouse forebrain neurons. Sci Rep 2018; 8:4833. [PMID: 29555943 PMCID: PMC5859111 DOI: 10.1038/s41598-018-23155-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/02/2018] [Indexed: 01/23/2023] Open
Abstract
Metabolite profiling is an important tool that may better capture the multiple features of neurodegeneration. With the considerable parallels between mouse and human metabolism, the use of metabolomics in mouse models with neurodegenerative pathology provides mechanistic insight and ready translation into aspects of human disease. Using 400 MHz nuclear magnetic resonance spectroscopy we have carried out a temporal region-specific investigation of the metabolome of neuron-specific 26S proteasome knockout mice characterised by progressive neurodegeneration and Lewy-like inclusion formation in the forebrain. An early significant decrease in N-acetyl aspartate revealed evidence of neuronal dysfunction before cell death that may be associated with changes in brain neuroenergetics, underpinning the use of this metabolite to track neuronal health. Importantly, we show early and extensive activation of astrocytes and microglia in response to targeted neuronal dysfunction in this context, but only late changes in myo-inositol; the best established glial cell marker in magnetic resonance spectroscopy studies, supporting recent evidence that additional early neuroinflammatory markers are needed. Our results extend the limited understanding of metabolite changes associated with gliosis and provide evidence that changes in glutamate homeostasis and lactate may correlate with astrocyte activation and have biomarker potential for tracking neuroinflammation.
Collapse
Affiliation(s)
- Philippine C Geiszler
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK.,School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Aslihan Ugun-Klusek
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Karen Lawler
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Ding Yuchun
- School of Computing, University of Newcastle, Newcastle, UK
| | - Li Bai
- School of Computer Sciences, University of Nottingham, Nottingham, UK
| | - Clare A Daykin
- School of Pharmacy, University of Nottingham, Nottingham, UK.,Metaboconsult UK, Heanor, Derbyshire, UK
| | - Dorothee P Auer
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK. .,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Lynn Bedford
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
19
|
Shah P, Muller EEL, Lebrun LA, Wampach L, Wilmes P. Sequential Isolation of DNA, RNA, Protein, and Metabolite Fractions from Murine Organs and Intestinal Contents for Integrated Omics of Host-Microbiota Interactions. Methods Mol Biol 2018; 1841:279-291. [PMID: 30259493 DOI: 10.1007/978-1-4939-8695-8_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The gastrointestinal microbiome plays a central role in health and disease. Imbalances in the microbiome, also referred to as dysbiosis, have recently been associated with a number of human idiopathic diseases ranging from metabolic to neurodegenerative. However, to causally link specific microorganisms or dysbiotic communities with tissue-specific and/or systemic disease-associated phenotypes, systematic in vivo studies are fundamental. Gnotobiotic mouse models have proven to be particularly useful for the elucidation of microbiota-associated characteristics as they provide a means to conduct targeted perturbations followed by analyses of induced localized and systemic effects. Here, we describe a methodology in the framework of systems biology which allows the comprehensive isolation of high quality biomolecular fractions (DNA, RNA, proteins and metabolites) from limited and/or heterogeneous sample material derived from murine brain, liver, and colon tissues, as well as from intestinal contents (fecal pellets and fecal masses). The obtained biomolecular fractions are compatible with current high-throughput genomic, transcriptomic, proteomic, and metabolomic analyses. The resulting data fulfills the premise of systematic measurements and allows the detailed study of tissue-specific and/or systemic effects of host-microbiota interactions in relation to health and disease.
Collapse
Affiliation(s)
- Pranjul Shah
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Emilie E L Muller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laura A Lebrun
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
20
|
Brown AG, Tulina NM, Barila GO, Hester MS, Elovitz MA. Exposure to intrauterine inflammation alters metabolomic profiles in the amniotic fluid, fetal and neonatal brain in the mouse. PLoS One 2017; 12:e0186656. [PMID: 29049352 PMCID: PMC5648237 DOI: 10.1371/journal.pone.0186656] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Exposure to prenatal inflammation is associated with diverse adverse neurobehavioral outcomes in exposed offspring. The mechanism by which inflammation negatively impacts the developing brain is poorly understood. Metabolomic profiling provides an opportunity to identify specific metabolites, and novel pathways, which may reveal mechanisms by which exposure to intrauterine inflammation promotes fetal and neonatal brain injury. Therefore, we investigated whether exposure to intrauterine inflammation altered the metabolome of the amniotic fluid, fetal and neonatal brain. Additionally, we explored whether changes in the metabolomic profile from exposure to prenatal inflammation occurs in a sex-specific manner in the neonatal brain. METHODS CD-1, timed pregnant mice received an intrauterine injection of lipopolysaccharide (50 μg/dam) or saline on embryonic day 15. Six and 48 hours later mice were sacrificed and amniotic fluid, and fetal brains were collected (n = 8/group). Postnatal brains were collected on day of life 1 (n = 6/group/sex). Global biochemical profiles were determined using ultra performance liquid chromatography/tandem mass spectrometry (Metabolon Inc.). Statistical analyses were performed by comparing samples from lipopolysaccharide and saline treated animals at each time point. For the P1 brains, analyses were stratified by sex. RESULTS/CONCLUSIONS Exposure to intrauterine inflammation induced unique, temporally regulated changes in the metabolic profiles of amniotic fluid, fetal brain and postnatal brain. Six hours after exposure to intrauterine inflammation, the amniotic fluid and the fetal brain metabolomes were dramatically altered with significant enhancements of amino acid and purine metabolites. The amniotic fluid had enhanced levels of several members of the (hypo) xanthine pathway and this compound was validated as a potential biomarker. By 48 hours, the number of altered biochemicals in both the fetal brain and the amniotic fluid had declined, yet unique profiles existed. Neonatal pups exposed to intrauterine inflammation have significant alterations in their lipid metabolites, in particular, fatty acids. These sex-specific metabolic changes within the newborn brain offer an explanation regarding the sexual dimorphism of certain psychiatric and neurobehavioral disorders associated with exposure to prenatal inflammation.
Collapse
Affiliation(s)
- Amy G. Brown
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Natalia M. Tulina
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guillermo O. Barila
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael S. Hester
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michal A. Elovitz
- Maternal Child Health Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
21
|
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157:49-78. [PMID: 28322920 PMCID: PMC5603356 DOI: 10.1016/j.pneurobio.2017.03.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.
Collapse
Affiliation(s)
- Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
22
|
Lokhande S, Patra BN, Ray A. A link between chromatin condensation mechanisms and Huntington's disease: connecting the dots. MOLECULAR BIOSYSTEMS 2016; 12:3515-3529. [PMID: 27714015 DOI: 10.1039/c6mb00598e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Huntington's disease is a rare neurodegenerative disorder whose complex pathophysiology exhibits system-wide changes in the body, with striking and debilitating clinical features targeting the central nervous system. Among the various molecular functions affected in this disease, mitochondrial dysfunction and transcriptional dysregulation are some of the most studied aspects of this disease. However, there is evidence of the involvement of a mutant Huntingtin protein in the processes of DNA damage, chromosome condensation and DNA repair. This review attempts to briefly recapitulate the clinical features, model systems used to study the disease, major molecular processes affected, and, more importantly, examines recent evidence for the involvement of the mutant Huntingtin protein in the processes regulating chromosome condensation, leading to DNA damage response and neuronal death.
Collapse
Affiliation(s)
- Sonali Lokhande
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | - Biranchi N Patra
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| | - Animesh Ray
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA 91711, USA.
| |
Collapse
|
23
|
Jäger C, Hiller K, Buttini M. Metabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography‐Mass Spectrometry. ACTA ACUST UNITED AC 2016; 6:333-342. [DOI: 10.1002/cpmo.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belvaux Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belvaux Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belvaux Luxembourg
| |
Collapse
|
24
|
A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast. Nat Chem Biol 2016; 12:601-7. [PMID: 27294321 DOI: 10.1038/nchembio.2104] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 03/28/2016] [Indexed: 11/08/2022]
Abstract
Metabolic enzymes are very specific. However, most of them show weak side activities toward compounds that are structurally related to their physiological substrates, thereby producing side products that may be toxic. In some cases, 'metabolite repair enzymes' eliminating side products have been identified. We show that mammalian glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase, two core glycolytic enzymes, produce 4-phosphoerythronate and 2-phospho-L-lactate, respectively. 4-Phosphoerythronate strongly inhibits an enzyme of the pentose phosphate pathway, whereas 2-phospho-L-lactate inhibits the enzyme producing the glycolytic activator fructose 2,6-bisphosphate. We discovered that a single, widely conserved enzyme, known as phosphoglycolate phosphatase (PGP) in mammals, dephosphorylates both 4-phosphoerythronate and 2-phospho-L-lactate, thereby preventing a block in the pentose phosphate pathway and glycolysis. Its yeast ortholog, Pho13, similarly dephosphorylates 4-phosphoerythronate and 2-phosphoglycolate, a side product of pyruvate kinase. Our work illustrates how metabolite repair enzymes can make up for the limited specificity of metabolic enzymes and permit high flux in central metabolic pathways.
Collapse
|
25
|
Zheng X, Chen T, Zhao A, Wang X, Xie G, Huang F, Liu J, Zhao Q, Wang S, Wang C, Zhou M, Panee J, He Z, Jia W. The Brain Metabolome of Male Rats across the Lifespan. Sci Rep 2016; 6:24125. [PMID: 27063670 PMCID: PMC4827083 DOI: 10.1038/srep24125] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/16/2016] [Indexed: 12/14/2022] Open
Abstract
Comprehensive and accurate characterization of brain metabolome is fundamental to brain science, but has been hindered by technical limitations. We profiled the brain metabolome in male Wistar rats at different ages (day 1 to week 111) using high-sensitivity and high-resolution mass spectrometry. Totally 380 metabolites were identified and 232 of them were quantitated. Compared with anatomical regions, age had a greater effect on variations in the brain metabolome. Lipids, fatty acids and amino acids accounted for the largest proportions of the brain metabolome, and their concentrations varied across the lifespan. The levels of polyunsaturated fatty acids were higher in infancy (week 1 to week 3) compared with later ages, and the ratio of omega-6 to omega-3 fatty acids increased in the aged brain (week 56 to week 111). Importantly, a panel of 20 bile acids were quantitatively measured, most of which have not previously been documented in the brain metabolome. This study extends the breadth of the mammalian brain metabolome as well as our knowledge of functional brain development, both of which are critically important to move the brain science forward.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu 96813, USA
| | - Fengjie Huang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Jiajian Liu
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Qing Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Shouli Wang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chongchong Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingmei Zhou
- Center for Chinese Medical Therapy and Systems Biology, E-Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Panee
- University of Hawaii Cancer Center, Honolulu 96813, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center, Children’s Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, Honolulu 96813, USA
- Center for Chinese Medical Therapy and Systems Biology, E-Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|