1
|
Fankhauser RG, Johnson DB, Moslehi JJ, Balko JM. Preclinical mouse models of immune checkpoint inhibitor-associated myocarditis. NATURE CARDIOVASCULAR RESEARCH 2025; 4:526-538. [PMID: 40335724 DOI: 10.1038/s44161-025-00640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/10/2025] [Indexed: 05/09/2025]
Abstract
In this Review, we present a comprehensive analysis of preclinical models used to study immune checkpoint inhibitor-associated myocarditis (hereafter ICI-myocarditis), a potentially lethal immune-related adverse event. We begin by providing an overview of immune checkpoint inhibitors, highlighting how their efficacy in cancer treatment is counterbalanced by their predisposition to cause immune-related adverse events. Next, we draw from human data to identify disease features that an effective mouse model should ideally mimic. After that, we present a critical evaluation of a wide variety of existing mouse models including genetic, pharmacological and humanized models. We summarize insights gathered about the underlying mechanisms of ICI-myocarditis and the role of mouse models in these discoveries. We conclude with a perspective on the future of preclinical models, highlighting potential model improvements and research directions that could strengthen our understanding of ICI-myocarditis, ultimately improving patient outcomes.
Collapse
Grants
- 5R01HL156021-04 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 5R01HL155990-04 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 5R01HL141466-05 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NIH P01 HL141084 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NIH R01 HL160688 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 5R01CA227481-05 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- 5P30CA068485-29 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- T32GM007347 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- 25PRE1375723 American Heart Association (American Heart Association, Inc.)
Collapse
Affiliation(s)
- Reilly G Fankhauser
- Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Javid J Moslehi
- Section of Cardio-Oncology and Immunology, Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Justin M Balko
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Ma X, Gao HJ, Ge HZ, Zhang Q, Bu BT. Interleukin-6 trans-signalling regulates monocyte chemoattractant protein-1 production in immune-mediated necrotizing myopathy. Rheumatology (Oxford) 2025; 64:849-859. [PMID: 38391023 DOI: 10.1093/rheumatology/keae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/06/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE Immune-mediated necrotizing myopathy (IMNM) is pathologically characterized by diffuse myofibre necrosis and regeneration, myophagocytosis and a sparse inflammatory infiltrate. Monocyte chemoattractant protein-1 (MCP-1) is a key chemokine that regulates monocyte/macrophage infiltration into injured tissues. IL-6 signalling in the induction of MCP-1 expression has not been investigated in IMNM. METHODS MCP-1 expression in muscle specimens was assessed using immunohistochemistry and Reverse transcription quantitative polymerase chain reaction (RT-qPCR). Levels of multiple serological cytokines were evaluated using the electrochemiluminescence-based immunoassays. Flow cytometry, RT-qPCR, enzyme-linked immunosorbent assay, western blot, dual-luciferase reporter assays and chromatin immunoprecipitation qPCR were performed to explore the effects of IL-6 signalling on MCP-1 production in human myoblasts. RESULTS MCP-1 was scattered and was positively expressed within myofibres and a few inflammatory cells in the muscles of patients with IMNM. Sarcoplasmic MCP-1 expression significantly correlated with myonecrosis, myoregeneration and inflammatory infiltration. Serum MCP-1, IL-6 and the soluble form of the IL-6 receptor (sIL-6R) were elevated in patients with IMNM compared with controls. Serological MCP-1 levels were significantly associated with serum IL-6 expression and clinical disease severity in IMNM patients. The IL-6/sIL-6R complex induced MCP-1 expression via the signal transducer and activator of transcription 3 (STAT3) pathway in human myoblasts. Mechanistically, phospho-STAT3 was enriched in the MCP-1 promoter region and promoted the transcription. CONCLUSION IL-6 trans-signalling may contribute to the immunopathogenesis of IMNM by augmenting inflammation through regulation of MCP-1 expression in IMNM.
Collapse
Affiliation(s)
- Xue Ma
- Department of Neurology, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Jie Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Zhen Ge
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Nunes AM, Ramirez MM, Garcia-Collazo E, Jones TI, Jones PL. Muscle eosinophilia is a hallmark of chronic disease in facioscapulohumeral muscular dystrophy. Hum Mol Genet 2024; 33:872-883. [PMID: 38340007 PMCID: PMC11070135 DOI: 10.1093/hmg/ddae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive myopathy caused by the aberrant increased expression of the DUX4 retrogene in skeletal muscle cells. The DUX4 gene encodes a transcription factor that functions in zygotic genome activation and then is silenced in most adult somatic tissues. DUX4 expression in FSHD disrupts normal muscle cell function; however, the downstream pathogenic mechanisms are still unclear. Histologically, FSHD affected muscles show a characteristic dystrophic phenotype that is often accompanied by a pronounced immune cell infiltration, but the role of the immune system in FSHD is not understood. Previously, we used ACTA1;FLExDUX4 FSHD-like mouse models varying in severity as discovery tools to identify increased Interleukin 6 and microRNA-206 levels as serum biomarkers for FSHD disease severity. In this study, we use the ACTA1;FLExDUX4 chronic FSHD-like mouse model to provide insight into the immune response to DUX4 expression in skeletal muscles. We demonstrate that these FSHD-like muscles are enriched with the chemoattractant eotaxin and the cytotoxic eosinophil peroxidase, and exhibit muscle eosinophilia. We further identified muscle fibers with positive staining for eosinophil peroxidase in human FSHD muscle. Our data supports that skeletal muscle eosinophilia is a hallmark of FSHD pathology.
Collapse
Affiliation(s)
- Andreia M Nunes
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Monique M Ramirez
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Enrique Garcia-Collazo
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Takako Iida Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| |
Collapse
|
4
|
Jeong HN, Lee TG, Park HJ, Yang Y, Oh SH, Kang SW, Choi YC. Transcriptome analysis of skeletal muscle in dermatomyositis, polymyositis, and dysferlinopathy, using a bioinformatics approach. Front Neurol 2023; 14:1328547. [PMID: 38125829 PMCID: PMC10731051 DOI: 10.3389/fneur.2023.1328547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Background Polymyositis (PM) and dermatomyositis (DM) are two distinct subgroups of idiopathic inflammatory myopathies. Dysferlinopathy, caused by a dysferlin gene mutation, usually presents in late adolescence with muscle weakness, degenerative muscle changes are often accompanied by inflammatory infiltrates, often resulting in a misdiagnosis as polymyositis. Objective To identify differential biological pathways and hub genes related to polymyositis, dermatomyositis and dysferlinopathy using bioinformatics analysis for understanding the pathomechanisms and providing guidance for therapy development. Methods We analyzed intramuscular ribonucleic acid (RNA) sequencing data from seven dermatomyositis, eight polymyositis, eight dysferlinopathy and five control subjects. Differentially expressed genes (DEGs) were identified by using DESeq2. Enrichment analyses were performed to understand the functions and enriched pathways of DEGs. A protein-protein interaction (PPI) network was constructed, and clarified the gene cluster using the molecular complex detection tool (MCODE) analysis to identify hub genes. Results A total of 1,048, 179 and 3,807 DEGs were detected in DM, PM and dysferlinopathy, respectively. Enrichment analyses revealed that upregulated DEGs were involved in type 1 interferon (IFN1) signaling pathway in DM, antigen processing and presentation of peptide antigen in PM, and cellular response to stimuli in dysferlinopathy. The PPI network and MCODE cluster identified 23 genes related to type 1 interferon signaling pathway in DM, 4 genes (PDIA3, HLA-C, B2M, and TAP1) related to MHC class 1 formation and quality control in PM, and 7 genes (HSPA9, RPTOR, MTOR, LAMTOR1, LAMTOR5, ATP6V0D1, and ATP6V0B) related to cellular response to stress in dysferliniopathy. Conclusion Overexpression of genes related to the IFN1 signaling pathway and major histocompatibility complex (MHC) class I formation was identified in DM and PM, respectively. In dysferlinopathy, overexpression of HSPA9 and the mTORC1 signaling pathway genes was detected.
Collapse
Affiliation(s)
- Ha-Neul Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taek Gyu Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Hyung Jun Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Yang
- Research Institute of Women's Disease, Sookmyumg Women's University, Seoul, Republic of Korea
| | - Seung-Hun Oh
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam-si, Republic of Korea
| | - Seong-Woong Kang
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Lukyanenko V, Muriel J, Garman D, Breydo L, Bloch RJ. Elevated Ca 2+ at the triad junction underlies dysregulation of Ca 2+ signaling in dysferlin-null skeletal muscle. Front Physiol 2022; 13:1032447. [PMID: 36406982 PMCID: PMC9669649 DOI: 10.3389/fphys.2022.1032447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Dysferlin-null A/J myofibers generate abnormal Ca2+ transients that are slightly reduced in amplitude compared to controls. These are further reduced in amplitude by hypoosmotic shock and often appear as Ca2+ waves (Lukyanenko et al., J. Physiol., 2017). Ca2+ waves are typically associated with Ca2+-induced Ca2+ release, or CICR, which can be myopathic. We tested the ability of a permeable Ca2+ chelator, BAPTA-AM, to inhibit CICR in injured dysferlin-null fibers and found that 10-50 nM BAPTA-AM suppressed all Ca2+ waves. The same concentrations of BAPTA-AM increased the amplitude of the Ca2+ transient in A/J fibers to wild type levels and protected transients against the loss of amplitude after hypoosmotic shock, as also seen in wild type fibers. Incubation with 10 nM BAPTA-AM led to intracellular BAPTA concentrations of ∼60 nM, as estimated with its fluorescent analog, Fluo-4AM. This should be sufficient to restore intracellular Ca2+ to levels seen in wild type muscle. Fluo-4AM was ∼10-fold less effective than BAPTA-AM, however, consistent with its lower affinity for Ca2+. EGTA, which has an affinity for Ca2+ similar to BAPTA, but with much slower kinetics of binding, was even less potent when introduced as the -AM derivative. By contrast, a dysferlin variant with GCaMP6fu in place of its C2A domain accumulated at triad junctions, like wild type dysferlin, and suppressed all abnormal Ca2+ signaling. GCaMP6fu introduced as a Venus chimera did not accumulate at junctions and failed to suppress abnormal Ca2+ signaling. Our results suggest that leak of Ca2+ into the triad junctional cleft underlies dysregulation of Ca2+ signaling in dysferlin-null myofibers, and that dysferlin's C2A domain suppresses abnormal Ca2+ signaling and protects muscle against injury by binding Ca2+ in the cleft.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joaquin Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel Garman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, United States
| | - Leonid Breydo
- Formulation Development, Regeneron Pharmaceuticals, Tarrytown, NY, United States
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Cardiac troponin T and autoimmunity in skeletal muscle aging. GeroScience 2022; 44:2025-2045. [PMID: 35034279 PMCID: PMC9616986 DOI: 10.1007/s11357-022-00513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
Age-related muscle mass and strength decline (sarcopenia) impairs the performance of daily living activities and can lead to mobility disability/limitation in older adults. Biological pathways in muscle that lead to mobility problems have not been fully elucidated. Immunoglobulin G (IgG) infiltration in muscle is a known marker of increased fiber membrane permeability and damage vulnerability, but whether this translates to impaired function is unknown. Here, we report that IgG1 and IgG4 are abundantly present in the skeletal muscle (vastus lateralis) of ~ 50% (11 out of 23) of older adults (> 65 years) examined. Skeletal muscle IgG1 was inversely correlated with physical performance (400 m walk time: r = 0.74, p = 0.005; SPPB score: r = - 0.73, p = 0.006) and muscle strength (r = - 0.6, p = 0.05). In a murine model, IgG was found to be higher in both muscle and blood of older, versus younger, C57BL/6 mice. Older mice with a higher level of muscle IgG had lower motor activity. IgG in mouse muscle co-localized with cardiac troponin T (cTnT) and markers of complement activation and apoptosis/necroptosis. Skeletal muscle-inducible cTnT knockin mice also showed elevated IgG in muscle and an accelerated muscle degeneration and motor activity decline with age. Most importantly, anti-cTnT autoantibodies were detected in the blood of cTnT knockin mice, old mice, and older humans. Our findings suggest a novel cTnT-mediated autoimmune response may be an indicator of sarcopenia.
Collapse
|
7
|
Improved Electrical Stimulation-Based Exercise Model to Induce Mice Tibialis Anterior Muscle Hypertrophy and Function. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Efficient and suitable animal models directed to skeletal muscle hypertrophy are highly needed; nevertheless, the currently available models have limitations, such as restricted hypertrophy outcome and prolonged protocols; thus, additional research is required. In this study, we developed an improved muscle training protocol for mice by directly stimulating the tibialis anterior (TA) muscle motor point using electrical stimulation. C57BL/6 adult male mice were separated into four groups: CTR (control groups for one and two weeks), ES1 (electrical stimulation for one week), and ES2 (electrical stimulation for two weeks). Following muscle training, TA was taken for further examination. The results demonstrated a steady increase in the fiber cross-sectional area as a result of muscle training (ES1, 14.6% and ES2, 28.9%, p < 0.0001). Two weeks of muscle training enhanced muscle mass and maximal tetanic force by 18 (p = 0.0205) and 30%, respectively (p = 0.0260). To assess the tissue remodeling response in this model, we evaluated satellite cell activity and observed an increase in the number of Pax-7-positive nuclei after one and two weeks of muscle training (both >2-fold, p < 0.0001). In addition, we observed an increase in the number of positive nuclei for MyoD after two weeks (2.6-fold, p = 0.0057) without fiber damage. Accordingly, phosphorylation of mTOR and p70 increased following two weeks of muscle training (17%, p = 0.0215 and 66%, p = 0.0364, respectively). The results indicate that this muscle training strategy is appropriate for promoting quick and intense hypertrophy.
Collapse
|
8
|
Gros M, Nunes AM, Daoudlarian D, Pini J, Martinuzzi E, Barbosa S, Ramirez M, Puma A, Villa L, Cavalli M, Grecu N, Garcia J, Siciliano G, Solé G, Juntas-Morales R, Jones PL, Jones T, Glaichenhaus N, Sacconi S. Identification of Serum Interleukin 6 Levels as a Disease Severity Biomarker in Facioscapulohumeral Muscular Dystrophy. J Neuromuscul Dis 2021; 9:83-93. [PMID: 34459413 PMCID: PMC8842759 DOI: 10.3233/jnd-210711] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common myopathies in adults, displaying a progressive, frequently asymmetric involvement of a typical muscles' pattern. FSHD is associated with epigenetic derepression of the polymorphic D4Z4 repeat on chromosome 4q, leading to DUX4 retrogene toxic expression in skeletal muscles. Identifying biomarkers that correlate with disease severity would facilitate clinical management and assess potential FSHD therapeutics' efficacy. OBJECTIVES This study purpose was to analyze serum cytokines to identify potential biomarkers in a large cohort of adult patients with FSHD. METHODS We retrospectively measured the levels of 20 pro-inflammatory and regulatory cytokines in sera from 100 genetically confirmed adult FSHD1 patients. Associations between cytokine concentrations and various clinical scores were investigated. We then measured serum and muscle interleukin 6 (IL-6) levels in a validated FSHD-like mouse model, ranging in severity and DUX4 expression. RESULTS IL-6 was identified as the only cytokine with a concentration correlating with several clinical severity and functional scores, including Clinical Severity Score, Manual Muscle Testing sum score, Brooke and Vignos scores. Further, FSHD patients displayed overall IL-6 levels more than twice high as control, and patients with milder phenotypes exhibited lower IL-6 serum concentration than those with severe muscular weakness. Lastly, an FSHD-like mouse model analysis confirmed that IL-6 levels positively correlate with disease severity and DUX4 expression. CONCLUSIONS Serum IL-6, therefore, shows promise as a serum biomarker of FSHD severity in a large cohort of FSHD1 adult patients.
Collapse
Affiliation(s)
- Marilyn Gros
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Andreia M Nunes
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Douglas Daoudlarian
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Jonathan Pini
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Emanuela Martinuzzi
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Susana Barbosa
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Monique Ramirez
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Angela Puma
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Luisa Villa
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Michele Cavalli
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Nicolae Grecu
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Jérémy Garcia
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Département de rééducation, Pôle Neurosciences Rhumatologie, 30 Voie Romaine, Nice, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guilhem Solé
- Centre Hospitalier Universitaire de Bordeaux, Service de Neurologie, Place Amélie Raba-Léon, Bordeaux, France
| | - Raul Juntas-Morales
- Centre Hospitalier Universitaire de Montpellier, Hôpital Gui de Chauliac, 80 Avenue Augustin Fliche, Montpellier, France
| | - Peter L Jones
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Takako Jones
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Nicolas Glaichenhaus
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Sabrina Sacconi
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France.,Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institute for Research on Cancer and Aging of Nice, 28 Avenue de Valombrose, Nice, France.,Fédération Hospitalo-Universitaire Oncoage, CHU Nice, Université Côte d'Azur (UCA), Nice, France
| |
Collapse
|
9
|
Xuan W, Khan M, Ashraf M. Pluripotent stem cell-induced skeletal muscle progenitor cells with givinostat promote myoangiogenesis and restore dystrophin in injured Duchenne dystrophic muscle. Stem Cell Res Ther 2021; 12:131. [PMID: 33579366 PMCID: PMC7881535 DOI: 10.1186/s13287-021-02174-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is caused by mutations of the gene that encodes the protein dystrophin. A loss of dystrophin leads to severe and progressive muscle wasting in both skeletal and heart muscles. Human induced pluripotent stem cells (hiPSCs) and their derivatives offer important opportunities to treat a number of diseases. Here, we investigated whether givinostat (Givi), a histone deacetylase inhibitor, with muscle differentiation properties could reprogram hiPSCs into muscle progenitor cells (MPC) for DMD treatment. Methods MPC were generated from hiPSCs by treatment with CHIR99021 and givinostat called Givi-MPC or with CHIR99021 and fibroblast growth factor as control-MPC. The proliferation and migration capacity were investigated by CCK-8, colony, and migration assays. Engraftment, pathological changes, and restoration of dystrophin were evaluated by in vivo transplantation of MPC. Conditioned medium from cultured MPC was collected and analyzed for extracellular vesicles (EVs). Results Givi-MPC exhibited superior proliferation and migration capacity compared to control-MPC. Givi-MPC produced less reactive oxygen species (ROS) after oxidative stress and insignificant expression of IL6 after TNF-α stimulation. Upon transplantation in cardiotoxin (CTX)-injured hind limb of Mdx/SCID mice, the Givi-MPC showed robust engraftment and restored dystrophin in the treated muscle than in those treated with control-MPC or human myoblasts. Givi-MPC significantly limited infiltration of inflammatory cells and reduced muscle necrosis and fibrosis. Additionally, Givi-MPC seeded the stem cell pool in the treated muscle. Moreover, EVs released from Givi-MPC were enriched in several miRNAs related to myoangiogenesis including miR-181a, miR-17, miR-210 and miR-107, and miR-19b compared with EVs from human myoblasts. Conclusions It is concluded that hiPSCs reprogrammed into MPC by givinostat possessing anti-oxidative, anti-inflammatory, and muscle gene-promoting properties effectively repaired injured muscle and restored dystrophin in the injured muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02174-3.
Collapse
Affiliation(s)
- Wanling Xuan
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB-3712, Augusta, GA, 30912, USA.,Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB-3712, Augusta, GA, 30912, USA
| | - Mahmood Khan
- Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Muhammad Ashraf
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB-3712, Augusta, GA, 30912, USA. .,Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB-3712, Augusta, GA, 30912, USA.
| |
Collapse
|
10
|
Himori K, Ashida Y, Tatebayashi D, Abe M, Saito Y, Chikenji T, Westerblad H, Andersson DC, Yamada T. Eccentric Resistance Training Ameliorates Muscle Weakness in a Mouse Model of Idiopathic Inflammatory Myopathies. Arthritis Rheumatol 2020; 73:848-857. [PMID: 33191613 DOI: 10.1002/art.41594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE High-force eccentric contractions (ECCs) have traditionally been excluded from rehabilitation programs that include patients with idiopathic inflammatory myopathies (IIMs) due to unverified fear of causing muscle damage and inflammation. In an IIM animal model that used mice with experimental autoimmune myositis (EAM), we undertook this study to investigate whether ECC training can safely and effectively be used to counteract muscle weakness in IIM. METHODS EAM was induced in BALB/c mice by immunization with 3 injections of myosin emulsified in Freund's complete adjuvant. Controls (n = 12) and mice with EAM (n = 12) were exposed to either an acute bout of 100 ECCs or 4 weeks of ECC training (20 ECCs every other day). To induce ECCs, plantar flexor muscles were electrically stimulated while the ankle was forcibly dorsiflexed. RESULTS Less cell damage, as assessed by Evans blue dye uptake, was observed in the muscles of mice with EAM, compared to controls, after an acute bout of 100 ECCs (P < 0.05). Maximum Ca2+ -activated force was decreased in skinned gastrocnemius muscle fibers from mice with EAM, and this was accompanied by increased expression of endoplasmic reticulum (ER) stress proteins, including Gsp78 and Gsp94 (P < 0.05). ECC training prevented the decrease in force and the increase in ER stress proteins and also enhanced the expression and myofibrillar binding of small heat-shock proteins (HSPs) (P < 0.05), which can stabilize myofibrillar structure and function. CONCLUSION ECC training protected against the reduction in myofibrillar force-generating capacity in an IIM mouse model, and this occurred via inhibition of ER stress responses and small HSP-mediated myofibrillar stabilization.
Collapse
Affiliation(s)
- Koichi Himori
- Sapporo Medical University, Sapporo, Japan, and the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yuki Ashida
- Sapporo Medical University, Sapporo, Japan, and the Japan Society for the Promotion of Science, Tokyo, Japan
| | | | - Masami Abe
- Sapporo Medical University, Sapporo, Japan
| | - Yuki Saito
- Sapporo Medical University, Sapporo, Japan
| | - Takako Chikenji
- Sapporo Medical University and Hokkaido University, Sapporo, Japan
| | | | - Daniel C Andersson
- Karolinska Institutet, Stockholm, Sweden, and Karolinska University Hospital, Solna, Sweden
| | | |
Collapse
|
11
|
Tam WY, Cheung KK. Phenotypic characteristics of commonly used inbred mouse strains. J Mol Med (Berl) 2020; 98:1215-1234. [PMID: 32712726 DOI: 10.1007/s00109-020-01953-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
The laboratory mouse is the most commonly used mammalian model for biomedical research. An enormous number of mouse models, such as gene knockout, knockin, and overexpression transgenic mice, have been created over the years. A common practice to maintain a genetically modified mouse line is backcrossing with standard inbred mice over several generations. However, the choice of inbred mouse for backcrossing is critical to phenotypic characterization because phenotypic variabilities are often observed between mice with different genetic backgrounds. In this review, the major features of commonly used inbred mouse lines are discussed. The aim is to provide information for appropriate selection of inbred mouse lines for genetic and behavioral studies.
Collapse
Affiliation(s)
- Wing Yip Tam
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
12
|
Begam M, Roche R, Hass JJ, Basel CA, Blackmer JM, Konja JT, Samojedny AL, Collier AF, Galen SS, Roche JA. The effects of concentric and eccentric training in murine models of dysferlin-associated muscular dystrophy. Muscle Nerve 2020; 62:393-403. [PMID: 32363622 DOI: 10.1002/mus.26906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Dysferlin-deficient murine muscle sustains severe damage after repeated eccentric contractions. METHODS With a robotic dynamometer, we studied the response of dysferlin-sufficient and dysferlin-deficient mice to 12 weeks of concentrically or eccentrically biased contractions. We also studied whether concentric contractions before or after eccentric contractions reduced muscle damage in dysferlin-deficient mice. RESULTS After 12 weeks of concentric training, there was no net gain in contractile force in dysferlin-sufficient or dysferlin-deficient mice, whereas eccentric training produced a net gain in force in both mouse strains. However, eccentric training induced more muscle damage in dysferlin-deficient vs dysferlin-sufficient mice. Although concentric training produced minimal muscle damage in dysferlin-deficient mice, it still led to a prominent increase in centrally nucleated fibers. Previous exposure to concentric contractions conferred slight protection on dysferlin-deficient muscle against damage from subsequent injurious eccentric contractions. DISCUSSION Concentric contractions may help dysferlin-deficient muscle derive the benefits of exercise without inducing damage.
Collapse
Affiliation(s)
- Morium Begam
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Renuka Roche
- Occupational Therapy Program, College of Health and Human Services, Eastern Michigan University, Ypsilanti, Michigan
| | - Joshua J Hass
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Chantel A Basel
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Jacob M Blackmer
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Jasmine T Konja
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Amber L Samojedny
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Alyssa F Collier
- Rehabilitation Department, Emory University Hospital, Atlanta, Georgia
| | - Sujay S Galen
- Department of Physical Therapy, Byrdine F. Lewis College of Nursing & Health Professions, Georgia State University, Atlanta, Georgia
| | - Joseph A Roche
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
13
|
Abstract
Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development.
Collapse
|
14
|
Wang J, Khodabukus A, Rao L, Vandusen K, Abutaleb N, Bursac N. Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials 2019; 221:119416. [PMID: 31419653 DOI: 10.1016/j.biomaterials.2019.119416] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
Skeletal muscle is the largest organ of human body with several important roles in everyday movement and metabolic homeostasis. The limited ability of small animal models of muscle disease to accurately predict drug efficacy and toxicity in humans has prompted the development in vitro models of human skeletal muscle that fatefully recapitulate cell and tissue level functions and drug responses. We first review methods for development of three-dimensional engineered muscle tissues and organ-on-a-chip microphysiological systems and discuss their potential utility in drug discovery research and development of new regenerative therapies. Furthermore, we describe strategies to increase the functional maturation of engineered muscle, and motivate the importance of incorporating multiple tissue types on the same chip to model organ cross-talk and generate more predictive drug development platforms. Finally, we review the ability of available in vitro systems to model diseases such as type II diabetes, Duchenne muscular dystrophy, Pompe disease, and dysferlinopathy.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Keith Vandusen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nadia Abutaleb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
15
|
Mueller AL, O'Neill A, Jones TI, Llach A, Rojas LA, Sakellariou P, Stadler G, Wright WE, Eyerman D, Jones PL, Bloch RJ. Muscle xenografts reproduce key molecular features of facioscapulohumeral muscular dystrophy. Exp Neurol 2019; 320:113011. [PMID: 31306642 DOI: 10.1016/j.expneurol.2019.113011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/07/2022]
Abstract
Aberrant expression of DUX4, a gene unique to humans and primates, causes Facioscapulohumeral Muscular Dystrophy-1 (FSHD), yet the pathogenic mechanism is unknown. As transgenic overexpression models have largely failed to replicate the genetic changes seen in FSHD, many studies of endogenously expressed DUX4 have been limited to patient biopsies and myogenic cell cultures, which never fully differentiate into mature muscle fibers. We have developed a method to xenograft immortalized human muscle precursor cells from patients with FSHD and first-degree relative controls into the tibialis anterior muscle compartment of immunodeficient mice, generating human muscle xenografts. We report that FSHD cells mature into organized and innervated human muscle fibers with minimal contamination of murine myonuclei. They also reconstitute the satellite cell niche within the xenografts. FSHD xenografts express DUX4 and DUX4 downstream targets, retain the 4q35 epigenetic signature of their original donors, and express a novel protein biomarker of FSHD, SLC34A2. Ours is the first scalable, mature in vivo human model of FSHD. It should be useful for studies of the pathogenic mechanism of the disease as well as for testing therapeutic strategies targeting DUX4 expression.
Collapse
Affiliation(s)
- Amber L Mueller
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America
| | - Andrea O'Neill
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America
| | - Takako I Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, United States of America
| | - Anna Llach
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America
| | - Luis Alejandro Rojas
- Fulcrum Therapeutics, 26 Landsdowne St., Cambridge, MA 02139, United States of America
| | - Paraskevi Sakellariou
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America; FAME Laboratory Department of Exercise Science, University of Thessaly, Karies, Trikala 42100, Greece
| | - Guido Stadler
- Department of Cell Biology, UT Southwestern Medical Center Dallas, TX 75390, United States of America
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center Dallas, TX 75390, United States of America
| | - David Eyerman
- Fulcrum Therapeutics, 26 Landsdowne St., Cambridge, MA 02139, United States of America
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, United States of America
| | - Robert J Bloch
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America.
| |
Collapse
|
16
|
Kokubu Y, Nagino T, Sasa K, Oikawa T, Miyake K, Kume A, Fukuda M, Fuse H, Tozawa R, Sakurai H. Phenotypic Drug Screening for Dysferlinopathy Using Patient-Derived Induced Pluripotent Stem Cells. Stem Cells Transl Med 2019; 8:1017-1029. [PMID: 31250983 PMCID: PMC6766604 DOI: 10.1002/sctm.18-0280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Dysferlinopathy is a progressive muscle disorder that includes limb‐girdle muscular dystrophy type 2B and Miyoshi myopathy (MM). It is caused by mutations in the dysferlin (DYSF) gene, whose function is to reseal the muscular membrane. Treatment with proteasome inhibitor MG‐132 has been shown to increase misfolded dysferlin in fibroblasts, allowing them to recover their membrane resealing function. Here, we developed a screening system based on myocytes from MM patient‐derived induced pluripotent stem cells. According to the screening, nocodazole was found to effectively increase the level of dysferlin in cells, which, in turn, enhanced membrane resealing following injury by laser irradiation. Moreover, the increase was due to microtubule disorganization and involved autophagy rather than the proteasome degradation pathway. These findings suggest that increasing the amount of misfolded dysferlin using small molecules could represent an effective future clinical treatment for dysferlinopathy. stem cells translational medicine2019;8:1017–1029
Collapse
Affiliation(s)
- Yuko Kokubu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tomoko Nagino
- Regenerative Medicine Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Katsunori Sasa
- Regenerative Medicine Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tatsuo Oikawa
- Regenerative Medicine Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Katsuya Miyake
- Center for Basic Medical Research, Narita Campus, International University of Health and Welfare, Narita City, Chiba, Japan
| | - Akiko Kume
- Regenerative Medicine Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Mikiko Fukuda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hiromitsu Fuse
- Regenerative Medicine Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Ryuichi Tozawa
- Regenerative Medicine Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Spyrou L, Brisard S, Danas K. Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization. J Mech Behav Biomed Mater 2019; 92:97-117. [DOI: 10.1016/j.jmbbm.2018.12.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/17/2018] [Accepted: 12/21/2018] [Indexed: 02/03/2023]
|
18
|
Sloboda DD, Brown LA, Brooks SV. Myeloid Cell Responses to Contraction-induced Injury Differ in Muscles of Young and Old Mice. J Gerontol A Biol Sci Med Sci 2018; 73:1581-1590. [PMID: 29684112 PMCID: PMC6230214 DOI: 10.1093/gerona/gly086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Indexed: 12/24/2022] Open
Abstract
Myeloid cells play a critical role in regulating muscle degeneration and regeneration. Thus, alterations with aging in the myeloid cell response to muscle damage may affect the progression of the injury in old animals. We hypothesized that neutrophil levels remain elevated and that macrophage accumulation is reduced or delayed in injured muscles of old compared with young animals. Muscles of young and old mice were injured with lengthening contractions and analyzed 2 or 5 days later. Regardless of age, neutrophil (Gr-1+) and macrophage (CD68+) content increased dramatically by Day 2. Between 2 and 5 days, macrophages increased further, whereas neutrophils declined to a level that in old muscles was not different from uninjured controls. M2 macrophages (CD163+) also increased between 2 and 5 days, reaching higher levels in muscles of old mice than in young mice. Although no evidence of persisting neutrophils or reduced M2 accumulation in old muscle was found, total macrophage accumulation was lower in old mice. Furthermore, messenger RNA levels showed age-related changes in macrophage-associated genes that may indicate alterations in myeloid cell function. Overall, differences between muscles of old and young mice in the inflammatory response through the early stages of injury may contribute to defects in muscle regeneration.
Collapse
Affiliation(s)
- Darcée D Sloboda
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Lemuel A Brown
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor
| | - Susan V Brooks
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor
| |
Collapse
|
19
|
Abstract
Alternative splicing (AS) is a fundamental regulatory process in all higher eukaryotes. However, AS landscapes for a number of animals, including goats, have not been explored to date. Here, we sequenced 60 samples representing 5 tissues from 4 developmental stages in triplicate using RNA-seq to elucidate the goat AS landscape. In total, 14,521 genes underwent AS (AS genes), accounting for 85.53% of intron-containing genes (16,697). Among these AS genes, 6,342 were differentially expressed in different tissues. Of the AS events identified, retained introns were most prevalent (37.04% of total AS events). Functional enrichment analysis of differential and specific AS genes indicated goat AS mainly involved in organ function and development. Particularly, AS genes identified in leg muscle were associated with the “regulation of skeletal muscle tissue development” GO term. Given genes were associated with this term, four of which (NRG4, IP6K3, AMPD1, and DYSF) might play crucial roles in skeletal muscle development. Further investigation indicated these five genes, harbored 13 ASs, spliced exclusively in leg muscle, likely played a role in goat leg muscle development. These results provide novel insights into goat AS landscapes and a valuable resource for investigation of goat transcriptome complexity and gene regulation.
Collapse
|
20
|
Abstract
The immune response to acute muscle damage is important for normal repair. However, in chronic diseases such as many muscular dystrophies, the immune response can amplify pathology and play a major role in determining disease severity. Muscular dystrophies are inheritable diseases that vary tremendously in severity, but share the progressive loss of muscle mass and function that can be debilitating and lethal. Mutations in diverse genes cause muscular dystrophy, including genes that encode proteins that maintain membrane strength, participate in membrane repair, or are components of the extracellular matrix or the nuclear envelope. In this article, we explore the hypothesis that an important feature of many muscular dystrophies is an immune response adapted to acute, infrequent muscle damage that is misapplied in the context of chronic injury. We discuss the involvement of the immune system in the most common muscular dystrophy, Duchenne muscular dystrophy, and show that the immune system influences muscle death and fibrosis as disease progresses. We then present information on immune cell function in other muscular dystrophies and show that for many muscular dystrophies, release of cytosolic proteins into the extracellular space may provide an initial signal, leading to an immune response that is typically dominated by macrophages, neutrophils, helper T-lymphocytes, and cytotoxic T-lymphocytes. Although those features are similar in many muscular dystrophies, each muscular dystrophy shows distinguishing features in the magnitude and type of inflammatory response. These differences indicate that there are disease-specific immunomodulatory molecules that determine response to muscle cell damage caused by diverse genetic mutations. © 2018 American Physiological Society. Compr Physiol 8:1313-1356, 2018.
Collapse
Affiliation(s)
- James G. Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Steven S. Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| |
Collapse
|
21
|
Begam M, Roche JA. Damaged muscle fibers might masquerade as hybrid fibers - a cautionary note on immunophenotyping mouse muscle with mouse monoclonal antibodies. Eur J Histochem 2018; 62. [PMID: 30043594 PMCID: PMC6060487 DOI: 10.4081/ejh.2018.2896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/06/2018] [Indexed: 11/24/2022] Open
Abstract
We report that, labeling mouse muscle tissue, with mouse monoclonal antibodies specific to slow or fast myosin heavy chain (sMyHC and fMyHC, respectively), can lead to artefactual labeling of damaged muscle fibers, as hybrid fibers (sMyHC+ and fMyHC+). We demonstrate that, such erroneous immunophenotyping of muscle may be avoided, by performing colabeling or serialsection- labeling, to identify damaged fibers. The quadriceps femorismuscle group (QF) in 7-month-old, male, C57BL/6J mice had: 1.21±0.21%, 98.34±1.06%, 0.07±0.01%, and 0.53±0.85% fibers, that were, sMyHC+, fMyHC+, hybrid, and damaged, respectively. All fibers in the tibialis anterior muscle (TA) of 3-month-old, male, C57BL/6J mice were fMyHC+; and at 3 days after injurious eccentric contractions, there was no fiber-type shift, but ~ 18% fibers were damaged.
Collapse
Affiliation(s)
- Morium Begam
- Wayne State University, Department of Health Care Sciences.
| | | |
Collapse
|
22
|
Urao N, Mirza RE, Corbiere TF, Hollander Z, Borchers CH, Koh TJ. Thrombospondin-1 and disease progression in dysferlinopathy. Hum Mol Genet 2018; 26:4951-4960. [PMID: 29206970 DOI: 10.1093/hmg/ddx378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 01/30/2023] Open
Abstract
The purpose of this study was to determine whether thrombospondin (TSP)-1 promotes macrophage activity and disease progression in dysferlinopathy. First, we found that levels of TSP-1 are elevated in blood of non-ambulant dysferlinopathy patients compared with ambulant patients and healthy controls, supporting the idea that TSP-1 levels are correlated with disease progression. We then crossed dysferlinopathic BlaJ mice with TSP-1 knockout mice and assessed disease progression longitudinally with magnetic resonance imaging (MRI). In these mice, deletion of TSP-1 ameliorated loss in volume and mass of the moderately affected gluteal muscle but not of the severely affected psoas muscle. T2 MRI parameters revealed that loss of TSP-1 modestly inhibited inflammation only in gluteal muscle of male mice. Histological assessment indicated that deletion of TSP-1 reduced inflammatory cell infiltration of muscle fibers, but only early in disease progression. In addition, flow cytometry analysis revealed that, in males, TSP-1 knockout reduced macrophage infiltration and phagocytic activity, which is consistent with TSP-1-enhanced phagocytosis and pro-inflammatory cytokine induction in cultured macrophages. In summary, TSP-1 appears to play an accessory role in modulating Mp activity in BlaJ mice in a gender, age and muscle-dependent manner, but is unlikely a primary driver of disease progression of dysferlinopathy.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rita E Mirza
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Thomas F Corbiere
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zsuzsanna Hollander
- PROOF Center of Excellence, Vancouver, BC, Canada.,UBC James Hogg Research Centre, Vancouver, BC, Canada
| | - Christoph H Borchers
- University of Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA.,Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
23
|
Begam M, Collier AF, Mueller AL, Roche R, Galen SS, Roche JA. Diltiazem improves contractile properties of skeletal muscle in dysferlin-deficient BLAJ mice, but does not reduce contraction-induced muscle damage. Physiol Rep 2018; 6:e13727. [PMID: 29890050 PMCID: PMC5995314 DOI: 10.14814/phy2.13727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
B6.A-Dysfprmd /GeneJ (BLAJ) mice model human limb-girdle muscular dystrophy 2B (LGMD2B), which is linked to mutations in the dysferlin (DYSF) gene. We tested the hypothesis that, the calcium ion (Ca2+ ) channel blocker diltiazem (DTZ), reduces contraction-induced skeletal muscle damage, in BLAJ mice. We randomly assigned mice (N = 12; 3-4 month old males) to one of two groups - DTZ (N = 6) or vehicle (VEH, distilled water, N = 6). We conditioned mice with either DTZ or VEH for 1 week, after which, their tibialis anterior (TA) muscles were tested for contractile torque and susceptibility to injury from forced eccentric contractions. We continued dosing with DTZ or VEH for 3 days following eccentric contractions, and then studied torque recovery and muscle damage. We analyzed contractile torque before eccentric contractions, immediately after eccentric contractions, and at 3 days after eccentric contractions; and counted damaged fibers in the injured and uninjured TA muscles. We found that DTZ improved contractile torque before and immediately after forced eccentric contractions, but did not reduce delayed-onset muscle damage that was observed at 3 days after eccentric contractions.
Collapse
Affiliation(s)
- Morium Begam
- Physical Therapy ProgramDepartment of Health Care SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Alyssa F. Collier
- Program in Physical TherapyWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Amber L. Mueller
- Program in Molecular MedicineUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Renuka Roche
- Eastern Michigan University School of Health SciencesYpsilantiMichigan
| | - Sujay S. Galen
- Physical Therapy ProgramDepartment of Health Care SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| | - Joseph A. Roche
- Physical Therapy ProgramDepartment of Health Care SciencesEugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichigan
| |
Collapse
|
24
|
Collier AF, Gumerson J, Lehtimäki K, Puoliväli J, Jones JW, Kane MA, Manne S, O'Neill A, Windish HP, Ahtoniemi T, Williams BA, Albrecht DE, Bloch RJ. Effect of Ibuprofen on Skeletal Muscle of Dysferlin-Null Mice. J Pharmacol Exp Ther 2018; 364:409-419. [PMID: 29284661 PMCID: PMC5801553 DOI: 10.1124/jpet.117.244244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022] Open
Abstract
Ibuprofen, a nonsteroidal anti-inflammatory drug, and nitric oxide (NO) donors have been reported to reduce the severity of muscular dystrophies in mice associated with the absence of dystrophin or α-sarcoglycan, but their effects on mice that are dystrophic due to the absence of dysferlin have not been examined. We have tested ibuprofen, as well as isosorbide dinitrate (ISDN), a NO donor, to learn whether used alone or together they protect dysferlin-null muscle in A/J mice from large strain injury (LSI) induced by a series of high strain lengthening contractions. Mice were maintained on chow containing ibuprofen and ISDN for 4 weeks. They were then subjected to LSI and maintained on the drugs for 3 additional days. We measured loss of torque immediately following injury and at day 3 postinjury, fiber necrosis, and macrophage infiltration at day 3 postinjury, and serum levels of the drugs at the time of euthanasia. Loss of torque immediately after injury was not altered by the drugs. However, the torque on day 3 postinjury significantly decreased as a function of ibuprofen concentration in the serum (range, 0.67-8.2 µg/ml), independent of ISDN. The effects of ISDN on torque loss at day 3 postinjury were not significant. In long-term studies of dysferlinopathic BlAJ mice, lower doses of ibuprofen had no effects on muscle morphology, but reduced treadmill running by 40%. Our results indicate that ibuprofen can have deleterious effects on dysferlin-null muscle and suggest that its use at pharmacological doses should be avoided by individuals with dysferlinopathies.
Collapse
Affiliation(s)
- Alyssa F Collier
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Jessica Gumerson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Kimmo Lehtimäki
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Jukka Puoliväli
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Jace W Jones
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Maureen A Kane
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Sankeerth Manne
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Andrea O'Neill
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Hillarie P Windish
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Toni Ahtoniemi
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Bradley A Williams
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Douglas E Albrecht
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland (A.F.C., J.G., S.M., A.O'N., R.J.B.); Charles River Laboratories, Kuopio, Finland (K.L., J.P., T.A.); Mass Spectrometry Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (M.A.K., J.W.J.); and Jain Foundation, Seattle, Washington (H.P.W., B.A.W., D.E.A.)
| |
Collapse
|
25
|
Lukyanenko V, Muriel JM, Bloch RJ. Coupling of excitation to Ca 2+ release is modulated by dysferlin. J Physiol 2017; 595:5191-5207. [PMID: 28568606 DOI: 10.1113/jp274515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Dysferlin, the protein missing in limb girdle muscular dystrophy 2B and Miyoshi myopathy, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients against loss after osmotic shock injury (OSI). Local expression of dysferlin in dysferlin-null myofibres increases transient amplitude to control levels and protects them from loss after OSI. Inhibitors of ryanodine receptors (RyR1) and L-type Ca2+ channels protect voltage-induced Ca2+ transients from loss; thus both proteins play a role in injury in dysferlin's absence. Effects of Ca2+ -free medium and S107, which inhibits SR Ca2+ leak, suggest the SR as the primary source of Ca2+ responsible for the loss of the Ca2+ transient upon injury. Ca2+ waves were induced by OSI and suppressed by exogenous dysferlin. We conclude that dysferlin prevents injury-induced SR Ca2+ leak. ABSTRACT Dysferlin concentrates in the transverse tubules of skeletal muscle and stabilizes Ca2+ transients when muscle fibres are subjected to osmotic shock injury (OSI). We show here that voltage-induced Ca2+ transients elicited in dysferlin-null A/J myofibres were smaller than control A/WySnJ fibres. Regional expression of Venus-dysferlin chimeras in A/J fibres restored the full amplitude of the Ca2+ transients and protected against OSI. We also show that drugs that target ryanodine receptors (RyR1: dantrolene, tetracaine, S107) and L-type Ca2+ channels (LTCCs: nifedipine, verapamil, diltiazem) prevented the decrease in Ca2+ transients in A/J fibres following OSI. Diltiazem specifically increased transients by ∼20% in uninjured A/J fibres, restoring them to control values. The fact that both RyR1s and LTCCs were involved in OSI-induced damage suggests that damage is mediated by increased Ca2+ leak from the sarcoplasmic reticulum (SR) through the RyR1. Congruent with this, injured A/J fibres produced Ca2+ sparks and Ca2+ waves. S107 (a stabilizer of RyR1-FK506 binding protein coupling that reduces Ca2+ leak) or local expression of Venus-dysferlin prevented OSI-induced Ca2+ waves. Our data suggest that dysferlin modulates SR Ca2+ release in skeletal muscle, and that in its absence OSI causes increased RyR1-mediated Ca2+ leak from the SR into the cytoplasm.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joaquin M Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Baek JH, Many GM, Evesson FJ, Kelley VR. Dysferlinopathy Promotes an Intramuscle Expansion of Macrophages with a Cyto-Destructive Phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1245-1257. [PMID: 28412297 DOI: 10.1016/j.ajpath.2017.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/14/2017] [Indexed: 01/05/2023]
Abstract
Dysferlinopathies are a group of muscular dystrophies resulting from a genetic deficiency in Dysf. Macrophages, highly plastic cells that mediate tissue repair and destruction, are prominent within dystrophic skeletal muscles of dysferlinopathy patients. We hypothesized that Dysf-deficient muscle promotes recruitment, proliferation, and skewing of macrophages toward a cyto-destructive phenotype in dysferlinopathy. To track macrophage dynamics in dysferlinopathy, we adoptively transferred enhanced green fluorescent protein-labeled monocytes into Dysf-deficient BLA/J mice with age-related (2 to 10 months) muscle disease and Dysf-intact (C57BL/6 [B6]) mice. We detected an age- and disease-related increase in monocyte recruitment into Dysf-deficient muscles. Moreover, macrophages recruited into muscle proliferated locally and were skewed toward a cyto-destructive phenotype. By comparing Dysf-deficient and -intact monocytes, our data showed that Dysf in muscle, but not in macrophages, mediate intramuscle macrophage recruitment and proliferation. To further elucidate macrophage mechanisms related to dysferlinopathy, we investigated in vitro macrophage-myogenic cell interactions and found that Dysf-deficient muscle i) promotes macrophage proliferation, ii) skews macrophages toward a cyto-destructive phenotype, and iii) is more vulnerable to macrophage-mediated apoptosis. Taken together, our data suggest that the loss of Dysf expression in muscle, not macrophages, promotes the intramuscle expansion of cyto-destructive macrophages likely to contribute to dysferlinopathy. Identifying pathways within the Dysf-deficient muscle milieu that regulate cyto-destructive macrophages will potentially uncover therapeutic strategies for dysferlinopathies.
Collapse
Affiliation(s)
- Jea-Hyun Baek
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gina M Many
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Frances J Evesson
- Department of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Vicki R Kelley
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
27
|
Begam M, Abro VM, Mueller AL, Roche JA. Sodium 4-phenylbutyrate reduces myofiber damage in a mouse model of Duchenne muscular dystrophy. Appl Physiol Nutr Metab 2016; 41:1108-1111. [PMID: 27628198 DOI: 10.1139/apnm-2016-0173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We performed a placebo-controlled pre-clinical study to determine if sodium 4-phenylbutyrate (4PB) can reduce contraction-induced myofiber damage in the mdx mouse model of Duchenne muscular dystrophy (DMD). At 72 h post-eccentric contractions, 4PB significantly increased contractile torque and reduced myofiber damage and macrophage infiltration. We conclude that 4PB, which is approved by Health Canada (Pheburane) and the United States Food and Drug Administration (Buphenyl) for urea cycle disorders, might modify disease severity in patients with DMD.
Collapse
Affiliation(s)
- Morium Begam
- a Department of Health Care Sciences, Physical Therapy Program, Wayne State University, 259 Mack Ave., Rm. 4440, Detroit, MI 48201, USA
| | - Valerie M Abro
- a Department of Health Care Sciences, Physical Therapy Program, Wayne State University, 259 Mack Ave., Rm. 4440, Detroit, MI 48201, USA
| | - Amber L Mueller
- b Program in Molecular Medicine, University of Maryland School of Medicine, 685 W. Baltimore St., Rm. 580, Baltimore, MD 21201, USA
| | - Joseph A Roche
- a Department of Health Care Sciences, Physical Therapy Program, Wayne State University, 259 Mack Ave., Rm. 4440, Detroit, MI 48201, USA
| |
Collapse
|
28
|
Cárdenas AM, González-Jamett AM, Cea LA, Bevilacqua JA, Caviedes P. Dysferlin function in skeletal muscle: Possible pathological mechanisms and therapeutical targets in dysferlinopathies. Exp Neurol 2016; 283:246-54. [PMID: 27349407 DOI: 10.1016/j.expneurol.2016.06.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022]
Abstract
Mutations in the dysferlin gene are linked to a group of muscular dystrophies known as dysferlinopathies. These myopathies are characterized by progressive atrophy. Studies in muscle tissue from dysferlinopathy patients or dysferlin-deficient mice point out its importance in membrane repair. However, expression of dysferlin homologous proteins that restore sarcolemma repair function in dysferlinopathy animal models fail to arrest muscle wasting, therefore suggesting that dysferlin plays other critical roles in muscle function. In the present review, we discuss dysferlin functions in the skeletal muscle, as well as pathological mechanisms related to dysferlin mutations. Particular focus is presented related the effect of dysferlin on cell membrane related function, which affect its repair, vesicle trafficking, as well as Ca(2+) homeostasis. Such mechanisms could provide accessible targets for pharmacological therapies.
Collapse
Affiliation(s)
- Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Luis A Cea
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Jorge A Bevilacqua
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clinica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Demonbreun AR, Allen MV, Warner JL, Barefield DY, Krishnan S, Swanson KE, Earley JU, McNally EM. Enhanced Muscular Dystrophy from Loss of Dysferlin Is Accompanied by Impaired Annexin A6 Translocation after Sarcolemmal Disruption. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1610-22. [PMID: 27070822 DOI: 10.1016/j.ajpath.2016.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 02/03/2023]
Abstract
Dysferlin is a membrane-associated protein implicated in membrane resealing; loss of dysferlin leads to muscular dystrophy. We examined the same loss-of-function Dysf mutation in two different mouse strains, 129T2/SvEmsJ (Dysf(129)) and C57BL/6J (Dysf(B6)). Although there are many genetic differences between these two strains, we focused on polymorphisms in Anxa6 because these variants were previously associated with modifying a pathologically distinct form of muscular dystrophy and increased the production of a truncated annexin A6 protein. Dysferlin deficiency in the C57BL/6J background was associated with increased Evan's Blue dye uptake into muscle and increased serum creatine kinase compared to the 129T2/SvEmsJ background. In the C57BL/6J background, dysferlin loss was associated with enhanced pathologic severity, characterized by decreased mean fiber cross-sectional area, increased internalized nuclei, and increased fibrosis, compared to that in Dysf(129) mice. Macrophage infiltrate was also increased in Dysf(B6) muscle. High-resolution imaging of live myofibers demonstrated that fibers from Dysf(B6) mice displayed reduced translocation of full-length annexin A6 to the site of laser-induced sarcolemmal disruption compared to Dysf(129) myofibers, and impaired translocation of annexin A6 associated with impaired resealing of the sarcolemma. These results provide one mechanism by which the C57BL/6J background intensifies dysferlinopathy, giving rise to a more severe form of muscular dystrophy in the Dysf(B6) mouse model through increased membrane leak and inflammation.
Collapse
Affiliation(s)
| | - Madison V Allen
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | - James L Warner
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | - Swathi Krishnan
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Kaitlin E Swanson
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Judy U Earley
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
30
|
Cohen TV, Many GM, Fleming BD, Gnocchi VF, Ghimbovschi S, Mosser DM, Hoffman EP, Partridge TA. Upregulated IL-1β in dysferlin-deficient muscle attenuates regeneration by blunting the response to pro-inflammatory macrophages. Skelet Muscle 2015; 5:24. [PMID: 26251696 PMCID: PMC4527226 DOI: 10.1186/s13395-015-0048-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/16/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Loss-of-function mutations in the dysferlin gene (DYSF) result in a family of muscle disorders known collectively as the dysferlinopathies. Dysferlin-deficient muscle is characterized by inflammatory foci and macrophage infiltration with subsequent decline in muscle function. Whereas macrophages function to remove necrotic tissue in acute injury, their prevalence in chronic myopathy is thought to inhibit resolution of muscle regeneration. Two major classes of macrophages, classical (M1) and alternative (M2a), play distinct roles during the acute injury process. However, their individual roles in chronic myopathy remain unclear and were explored in this study. METHODS To test the roles of the two macrophage phenotypes on regeneration in dysferlin-deficient muscle, we developed an in vitro co-culture model of macrophages and muscle cells. We assayed the co-cultures using ELISA and cytokine arrays to identify secreted factors and performed transcriptome analysis of molecular networks induced in the myoblasts. RESULTS Dysferlin-deficient muscle contained an excess of M1 macrophage markers, compared with WT, and regenerated poorly in response to toxin injury. Co-culturing macrophages with muscle cells showed that M1 macrophages inhibit muscle regeneration whereas M2a macrophages promote it, especially in dysferlin-deficient muscle cells. Examination of soluble factors released in the co-cultures and transcriptome analysis implicated two soluble factors in mediating the effects: IL-1β and IL-4, which during acute injury are secreted from M1 and M2a macrophages, respectively. To test the roles of these two factors in dysferlin-deficient muscle, myoblasts were treated with IL-4, which improved muscle differentiation, or IL-1β, which inhibited it. Importantly, blockade of IL-1β signaling significantly improved differentiation of dysferlin-deficient cells. CONCLUSIONS We propose that the inhibitory effects of M1 macrophages on myogenesis are mediated by IL-1β signals and suppression of the M1-mediated immune response may improve muscle regeneration in dysferlin deficiency. Our studies identify a potential therapeutic approach to promote muscle regeneration in dystrophic muscle.
Collapse
Affiliation(s)
- Tatiana V. Cohen
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
- />Center for Genetic Muscle Disorders, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD 21205 USA
- />Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Gina M. Many
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | - Bryan D. Fleming
- />Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Viola F. Gnocchi
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | - Svetlana Ghimbovschi
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | - David M. Mosser
- />Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| | - Eric P. Hoffman
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
| | - Terence A. Partridge
- />Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010 USA
| |
Collapse
|