1
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
2
|
Hasegawa H, Tanaka T, Kondo M, Teramoto K, Nakayama K, Hwang GW. Blood vessel remodeling in the cerebral cortex induced by binge alcohol intake in mice. Toxicol Res 2023; 39:169-177. [PMID: 36726835 PMCID: PMC9839917 DOI: 10.1007/s43188-022-00164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Ethanol is toxic to the brain and causes various neurological disorders. Although ethanol can directly exert toxicity on neurons, it also acts on other cell types in the central nervous system. Blood vessel endothelial cells interact with, and are affected by blood ethanol. However, the effects of ethanol on the vascular structures of the brain have not been well documented. In this study, we examined the effects of binge levels of ethanol on brain vasculature. Immunostaining analysis indicated structural alterations of blood vessels in the cerebral cortex, which became more tortuous than those in the control mice after ethanol administration. The interaction between the blood vessels and astrocytes decreased, especially in the upper layers of the cerebral cortex. Messenger RNA expression analysis revealed a unique downregulation of Vegfa mRNA encoding vascular endothelial growth factor (VEGF)-A among VEGF, angiopoietin, endothelin family angiogenic and blood vessel remodeling factors. The expression of three proteoglycan core proteins, glypican-5, neurocan, and serglycin, was also altered after ethanol administration. Thus, binge levels of ethanol affect the expression of VEGF-A and blood vessel-supporting proteoglycans, resulting in changes in the vascular structure of the cerebral cortex. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00164-y.
Collapse
Affiliation(s)
- Hiroshi Hasegawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Toshiya Tanaka
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Mari Kondo
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Koji Teramoto
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Kei Nakayama
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-Machi, Higashinada-Ku, Kobe, 6588558 Japan
| | - Gi-Wook Hwang
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi 9818558 Japan
| |
Collapse
|
3
|
Feng X, Zhou R, Jiang Q, Wang Y, Yu C. Analysis of cadmium accumulation in community adults and its correlation with low-grade albuminuria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155210. [PMID: 35421478 DOI: 10.1016/j.scitotenv.2022.155210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/30/2021] [Accepted: 04/08/2022] [Indexed: 05/22/2023]
Abstract
OBJECTIVE To investigate the effects of chronic non-occupational exposure to cadmium (Cd) on renal injury in residents living in the urban areas of China. METHODS In this cross-sectional study, we recruited 1000 participants in Shanghai from August 2015 to August 2017 and collected data on their socio-demographic characteristics, lifetime occupation, and lifestyle factors. The urinary Cd, urinary albumin, urinary creatinine, serum creatinine, urea, and uric acid levels were tested, and 683 participants completed those measurements. RESULTS The median urinary Cd concentration of this study population was 0.77 μg/g. The urinary Cd concentration was significantly higher in the female, older, and lower body mass index populations. There were 148 participants with dominant albuminuria who had higher urinary Cd levels than those without dominant albuminuria (0.98 vs. 0.72 μg/g; P < 0.001). Among participants without dominant albuminuria, there were 134 participants with low-grade albuminuria (13.84 ≤ ACR < 30 mg/g) and 401 participants who had normal urinary albumin excretion (ACR < 13.84 mg/g). Compared with those who had normal urinary albumin excretion, those with low-grade albuminuria had significantly higher urinary Cd levels (0.83 vs. 0.69 μg/g; P < 0.001). Among those without dominant albuminuria, participants in the highest quartile of urinary Cd were more likely to have low-grade albuminuria than those in the lowest quartile (Odd's ratio = 2.98; P < 0.001). Further adjustment for age, sex, and BMI or other potential confounding factors did not change the magnitudes of the associations. Moreover, we conducted multivariable stepwise linear regression analysis within 134 low-grade albuminuria participants and demonstrated that urinary Cd concentration (P < 0.001) were independent determinants of urine albumin after adjusting for relevant confounders. CONCLUSION The urinary Cd levels observed in Chinese urban adults are substantial and associated with an increased risk of low-grade albuminuria. Our findings suggest that potential sources of environmental Cd exposure should be explored, and the associated renal toxicity should be studied in more detail in future.
Collapse
Affiliation(s)
- Xuefang Feng
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.
| | - Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Qian Jiang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Yanan Wang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
4
|
Liu YC, Wierbowski BM, Salic A. Hedgehog pathway modulation by glypican 3-conjugated heparan sulfate. J Cell Sci 2022; 135:274739. [PMID: 35142364 PMCID: PMC8977055 DOI: 10.1242/jcs.259297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Glypicans are a family of cell surface heparan sulfate proteoglycans that play critical roles in multiple cell signaling pathways. Glypicans consist of a globular core, an unstructured stalk modified with sulfated glycosaminoglycan chains, and a glycosylphosphatidylinositol anchor. Though these structural features are conserved, their individual contribution to glypican function remains obscure. Here, we investigate how glypican 3 (GPC3), which is mutated in Simpson-Golabi-Behmel tissue overgrowth syndrome, regulates Hedgehog signaling. We find that GPC3 is necessary for the Hedgehog response, surprisingly controlling a downstream signal transduction step. Purified GPC3 ectodomain rescues signaling when artificially recruited to the surface of GPC3-deficient cells but has dominant-negative activity when unattached. Strikingly, the purified stalk, modified with heparan sulfate but not chondroitin sulfate, is necessary and sufficient for activity. Our results demonstrate a novel function for GPC3-associated heparan sulfate and provide a framework for the functional dissection of glycosaminoglycans by in vivo biochemical complementation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yulu Cherry Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Biology, Hood College, Frederick, MD 21701, USA
| | | | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Ray PE, Li J, Das JR, Yu J. Association of circulating fibroblast growth factor-2 with progression of HIV-chronic kidney diseases in children. Pediatr Nephrol 2021; 36:3933-3944. [PMID: 34125285 PMCID: PMC8602783 DOI: 10.1007/s00467-021-05075-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Children living with HIV frequently show high plasma levels of fibroblast growth factor-2 (FGF-2/bFGF). FGF-2 accelerates the progression of several experimental kidney diseases; however, the role of circulating FGF-2 in childhood HIV-chronic kidney diseases (HIV-CKDs) is unknown. We carried out this study to determine whether high plasma FGF-2 levels were associated with the development of HIV-CKDs in children. METHODS The plasma and urine FGF-2 levels were measured in 84 children (< 12 years of age) living with HIV during the pre-modern antiretroviral era, and followed for at least 3 years to determine the prevalence of proteinuria and HIV-CKDs. We also assessed the distribution of the kidney FGF-2 binding sites by autoradiography and Alcian blue staining, and explored potential mechanisms by which circulating FGF-2 may precipitate HIV-CKDs in cultured kidney epithelial and mononuclear cells derived from children with HIV-CKDs. RESULTS High plasma FGF-2 levels were associated with a high viral load. Thirteen children (~ 15%) developed HIV-CKDs and showed a large reservoir of FGF-2 low-affinity binding sites in the kidney, which can facilitate the recruitment of circulating FGF-2. Children with high plasma and urine FGF-2 levels had 73-fold increased odds (95% CI 9-791) of having HIV-CKDs relative to those with normal FGF-2 values. FGF-2 induced the proliferation and decreased the expression of APOL-1 mRNA in podocytes, and increased the attachment and survival of infected mononuclear cells cultured from children with HIV-CKDs. CONCLUSIONS High plasma FGF-2 levels appear to be an additional risk factor for developing progressive childhood HIV-CKDs.
Collapse
Affiliation(s)
- Patricio E Ray
- Child Health Research Center, Department of Pediatrics, School of Medicine, University of Virginia, Room 2120, MR4 Building, 409 Lane Road, Charlottesville, VA, 22908, USA.
| | - Jinliang Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, USA
| | - Jharna R Das
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, USA
| | - Jing Yu
- Child Health Research Center, Department of Pediatrics, School of Medicine, University of Virginia, Room 2120, MR4 Building, 409 Lane Road, Charlottesville, VA, 22908, USA
| |
Collapse
|
6
|
Deng J, Liu Y, Liu Y, Li W, Nie X. The Multiple Roles of Fibroblast Growth Factor in Diabetic Nephropathy. J Inflamm Res 2021; 14:5273-5290. [PMID: 34703268 PMCID: PMC8524061 DOI: 10.2147/jir.s334996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication in the late stages of diabetes. Currently, the etiology and pathogenesis of DN are not well understood. Even so, available evidence shows its development is associated with metabolism, oxidative stress, cytokine interaction, genetic factors, and renal microvascular disease. Diabetic nephropathy can lead to proteinuria, edema and hypertension, among other complications. In severe cases, it can cause life-threatening complications such as renal failure. Patients with type 1 diabetes, hypertension, high protein intake, and smokers have a higher risk of developing DN. Fibroblast growth factor (FGF) regulates several human processes essential for normal development. Even though FGF has been implicated in the pathological development of DN, the underlying mechanisms are not well understood. This review summarizes the role of FGF in the development of DN. Moreover, the association of FGF with metabolism, inflammation, oxidative stress and fibrosis in the context of DN is discussed. Findings of this review are expected to deepen our understanding of DN and generate ideas for developing effective prevention and treatments for the disease.
Collapse
Affiliation(s)
- Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Key Laboratory of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| |
Collapse
|
7
|
Gheyas AA, Vallejo-Trujillo A, Kebede A, Lozano-Jaramillo M, Dessie T, Smith J, Hanotte O. Integrated Environmental and Genomic Analysis Reveals the Drivers of Local Adaptation in African Indigenous Chickens. Mol Biol Evol 2021; 38:4268-4285. [PMID: 34021753 PMCID: PMC8476150 DOI: 10.1093/molbev/msab156] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breeding for climate resilience is currently an important goal for sustainable livestock production. Local adaptations exhibited by indigenous livestock allow investigating the genetic control of this resilience. Ecological niche modeling (ENM) provides a powerful avenue to identify the main environmental drivers of selection. Here, we applied an integrative approach combining ENM with genome-wide selection signature analyses (XPEHH and Fst) and genotype-environment association (redundancy analysis), with the aim of identifying the genomic signatures of adaptation in African village chickens. By dissecting 34 agro-climatic variables from the ecosystems of 25 Ethiopian village chicken populations, ENM identified six key drivers of environmental challenges: One temperature variable-strongly correlated with elevation, three precipitation variables as proxies for water availability, and two soil/land cover variables as proxies of food availability for foraging chickens. Genome analyses based on whole-genome sequencing (n = 245), identified a few strongly supported genomic regions under selection for environmental challenges related to altitude, temperature, water scarcity, and food availability. These regions harbor several gene clusters including regulatory genes, suggesting a predominantly oligogenic control of environmental adaptation. Few candidate genes detected in relation to heat-stress, indicates likely epigenetic regulation of thermo-tolerance for a domestic species originating from a tropical Asian wild ancestor. These results provide possible explanations for the rapid past adaptation of chickens to diverse African agro-ecologies, while also representing new landmarks for sustainable breeding improvement for climate resilience. We show that the pre-identification of key environmental drivers, followed by genomic investigation, provides a powerful new approach for elucidating adaptation in domestic animals.
Collapse
Affiliation(s)
- Almas A Gheyas
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana Vallejo-Trujillo
- Cells, Organism and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Adebabay Kebede
- LiveGene—CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia
- Amhara Regional Agricultural Research Institute, Bahir Dar, Ethiopia
| | - Maria Lozano-Jaramillo
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Tadelle Dessie
- LiveGene—CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia
| | - Jacqueline Smith
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Olivier Hanotte
- Cells, Organism and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- LiveGene—CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Abstract
Diabetes is a complex disorder responsible for the mortality and morbidity of millions of individuals worldwide. Although many approaches have been used to understand and treat diabetes, the role of proteoglycans, in particular heparan sulfate proteoglycans (HSPGs), has only recently received attention. The HSPGs are heterogeneous, highly negatively charged, and are found in all cells primarily attached to the plasma membrane or present in the extracellular matrix (ECM). HSPGs are involved in development, cell migration, signal transduction, hemostasis, inflammation, and antiviral activity, and regulate cytokines, chemokines, growth factors, and enzymes. Hyperglycemia, accompanying diabetes, increases reactive oxygen species and upregulates the enzyme heparanase that degrades HSPGs or affects the synthesis of the HSPGs altering their structure. The modified HSPGs in the endothelium and ECM in the blood vessel wall contribute to the nephropathy, cardiovascular disease, and retinopathy seen in diabetes. Besides the blood vessel, other cells and tissues in the heart, kidney, and eye are affected by diabetes. Although not well understood, the adipose tissue, intestine, and brain also reveal HSPG changes associated with diabetes. Further, HSPGs are significantly involved in protecting the β cells of the pancreas from autoimmune destruction and could be a focus of prevention of type I diabetes. In some circumstances, HSPGs may contribute to the pathology of the disease. Understanding the role of HSPGs and how they are modified by diabetes may lead to new treatments as well as preventative measures to reduce the morbidity and mortality associated with this complex condition.
Collapse
Affiliation(s)
- Linda M Hiebert
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
9
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Sauriasari R, Safitri DD, Azmi NU. Current updates on protein as biomarkers for diabetic kidney disease: a systematic review. Ther Adv Endocrinol Metab 2021; 12:20420188211049612. [PMID: 34721837 PMCID: PMC8554552 DOI: 10.1177/20420188211049612] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In the past decade, researchers have been focused on discovering protein biomarkers for diabetic kidney disease. This paper aims to search for, analyze, and synthesize current updates regarding the development of these efforts. METHODS We systematically searched the ScienceDirect, SpringerLink, and PubMed databases for observational studies of protein biomarkers in patients with diabetes mellitus. We included studies published between January 2018 and April 2020, that were based on a population of patients with type-1 or type-2 diabetes mellitus aged ⩾18 years, with an observational design such as cross-sectional, case-control, or cohort studies. The dependent variable of the research results was in the form of protein biomarkers from urine, plasma, or serum. RESULTS Following the screening process, 20 research articles with available full text met the inclusion criteria. These could be categorized as glomerular biomarkers (ANGPTL4, beta-2 microglobulin, Smad1, and glypican-5); inflammatory biomarkers (MCP-1 and adiponectin); and tubular biomarkers (NGAL, VDBP, megalin, sKlotho, and KIM-1). The development of a panel of biomarkers showed more promising results than those for a single biomarker in diagnosing diabetic kidney disease. CONCLUSION All the biomarkers discussed in this review showed promising results for predicting diabetic kidney disease because they correlate with albuminuria, eGFR, or both. However, of the 11 protein biomarkers, none have prognostic value beyond albuminuria and eGFR.
Collapse
Affiliation(s)
| | | | - Nuriza Ulul Azmi
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, Indonesia
| |
Collapse
|
11
|
Abstract
The glomerular filtration barrier is a highly specialized capillary wall comprising fenestrated endothelial cells, podocytes, and an intervening basement membrane. In glomerular disease, this barrier loses functional integrity, allowing the passage of macromolecules and cells, and there are associated changes in both cell morphology and the extracellular matrix. Over the past 3 decades, there has been a transformation in our understanding about glomerular disease, fueled by genetic discovery, and this is leading to exciting advances in our knowledge about glomerular biology and pathophysiology. In current clinical practice, a genetic diagnosis already has important implications for management, ranging from estimating the risk of disease recurrence post-transplant to the life-changing advances in the treatment of atypical hemolytic uremic syndrome. Improving our understanding about the mechanistic basis of glomerular disease is required for more effective and personalized therapy options. In this review, we describe genotype and phenotype correlations for genetic disorders of the glomerular filtration barrier, with a particular emphasis on how these gene defects cluster by both their ontology and patterns of glomerular pathology.
Collapse
Affiliation(s)
- Anna S. Li
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Nephrology, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jack F. Ingham
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
12
|
Matsuura R, Hiraishi A, Holzman LB, Hanayama H, Harano K, Nakamura E, Hamasaki Y, Doi K, Nangaku M, Noiri E. SHROOM3, the gene associated with chronic kidney disease, affects the podocyte structure. Sci Rep 2020; 10:21103. [PMID: 33273487 PMCID: PMC7713385 DOI: 10.1038/s41598-020-77952-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 11/15/2020] [Indexed: 01/11/2023] Open
Abstract
Chronic kidney disease is a public health burden and it remains unknown which genetic loci are associated with kidney function in the Japanese population, our genome-wide association study using the Biobank Japan dataset (excluding secondary kidney diseases, such as diabetes mellitus) clearly revealed that almost half of the top 50 single nucleotide polymorphisms associated with estimated glomerular filtration rate are located in the SHROOM3 gene, suggesting that SHROOM3 will be responsible for kidney function. Thus, to confirm this finding, supportive functional analyses were performed on Shroom3 in mice using fullerene-based siRNA delivery, which demonstrated that Shroom3 knockdown led to albuminuria and podocyte foot process effacement. The in vitro experiment shows that knockdown of Shroom3 caused defective formation of lamellipodia in podocyte, which would lead to the disruption of slit diaphragm. These results from the GWAS, in vivo and in vitro experiment were consistent with recent studies reporting that albuminuria leads to impairment of kidney function.
Collapse
Affiliation(s)
- Ryo Matsuura
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsuko Hiraishi
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Division of Genomic Medicine and Disease Prevention, Institute of Medical Science, The University of Tokyo, Shirokanedai, 4-6-1 Minato-ku, Tokyo, 108-8639, Japan
| | - Lawrence B Holzman
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Hiroki Hanayama
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshifumi Hamasaki
- Department of Hemodialysis and Apheresis, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Eisei Noiri
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- National Center Biobank Network, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, 162-8655, Japan.
| |
Collapse
|
13
|
Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in Obesity-Associated Metabolic Dysfunction and Meta-Inflammation. Front Immunol 2020; 11:769. [PMID: 32508807 PMCID: PMC7248225 DOI: 10.3389/fimmu.2020.00769] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Proteoglycans are a specific subset of glycoproteins found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in metabolic homeostasis and meta-inflammation. Over the last decade, new insights have emerged on the mechanism and biological significance of these interactions in the context of diet-induced disorders such as obesity and type-2 diabetes. Complications of energy metabolism drive most diet-induced metabolic disorders, which results in low-grade chronic inflammation, thereby affecting proper function of many vital organs involved in energy homeostasis, such as the brain, liver, kidney, heart and adipose tissue. Here, we discuss how heparan, chondroitin and keratan sulfate proteoglycans modulate obesity-induced metabolic dysfunction and low-grade inflammation that impact the initiation and progression of obesity-associated morbidities.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - G. Michelle Ducasa
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
| | - Philip L. S. M. Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, United States
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
14
|
Kameyama H, Uchimura K, Yamashita T, Kuwabara K, Mizuguchi M, Hung SC, Okuhira K, Masuda T, Kosugi T, Ohgita T, Saito H, Ando Y, Nishitsuji K. The Accumulation of Heparan Sulfate S-Domains in Kidney Transthyretin Deposits Accelerates Fibril Formation and Promotes Cytotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:308-319. [PMID: 30414409 DOI: 10.1016/j.ajpath.2018.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 10/27/2022]
Abstract
The highly sulfated domains of heparan sulfate (HS), alias HS S-domains, are made up of repeated trisulfated disaccharide units [iduronic acid (2S)-glucosamine (NS, 6S)] and are selectively remodeled by extracellular endoglucosamine 6-sulfatases (Sulfs). Although HS S-domains are critical for signal transduction of several growth factors, their roles in amyloidoses are not yet fully understood. Herein, we found HS S-domains in the kidney of a patient with transthyretin amyloidosis. In in vitro assays with cells stably expressing human Sulfs, heparin, a structural analog of HS S-domains, promoted aggregation of transthyretin in an HS S-domain-dependent manner. Interactions of cells with transthyretin fibrils and cytotoxicity of these fibrils also depended on HS S-domains at the cell surface. Furthermore, glypican-5, encoded by the susceptibility gene for nephrotic syndrome GPC5, was found to be accumulated in the transthyretin amyloidosis kidney. Our study, thus, provides a novel insight into the pathologic roles of HS S-domains in amyloidoses, and we propose that enzymatic remodeling of HS chains by Sulfs may offer an effective approach to inhibiting formation and cytotoxicity of amyloid fibrils.
Collapse
Affiliation(s)
- Hirokazu Kameyama
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille 1, Villeneuve d'Ascq, France
| | - Taro Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kaori Kuwabara
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | | | | | - Keiichiro Okuhira
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohiro Masuda
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan; Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
15
|
Okamoto K, Rausch JW, Wakashin H, Fu Y, Chung JY, Dummer PD, Shin MK, Chandra P, Suzuki K, Shrivastav S, Rosenberg AZ, Hewitt SM, Ray PE, Noiri E, Le Grice SFJ, Hoek M, Han Z, Winkler CA, Kopp JB. APOL1 risk allele RNA contributes to renal toxicity by activating protein kinase R. Commun Biol 2018; 1:188. [PMID: 30417125 PMCID: PMC6220249 DOI: 10.1038/s42003-018-0188-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023] Open
Abstract
APOL1 risk alleles associate with chronic kidney disease in African Americans, but the mechanisms remain to be fully understood. We show that APOL1 risk alleles activate protein kinase R (PKR) in cultured cells and transgenic mice. This effect is preserved when a premature stop codon is introduced to APOL1 risk alleles, suggesting that APOL1 RNA but not protein is required for the effect. Podocyte expression of APOL1 risk allele RNA, but not protein, in transgenic mice induces glomerular injury and proteinuria. Structural analysis of the APOL1 RNA shows that the risk variants possess secondary structure serving as a scaffold for tandem PKR binding and activation. These findings provide a mechanism by which APOL1 variants damage podocytes and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Koji Okamoto
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Department of Nephrology, Endocrinology, Hemodialysis & Apheresis, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-8655, Japan
| | - Jason W Rausch
- Reverse Transcriptase Biochemistry Section, Basic Research Program, Frederick National Laboratory for Cancer Research, 1050 Boyle Street, Frederick, MD, 21702, USA
| | - Hidefumi Wakashin
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Yulong Fu
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Joon-Yong Chung
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Patrick D Dummer
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Myung K Shin
- Merck Research Laboratories, Merck and Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Preeti Chandra
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Kosuke Suzuki
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shashi Shrivastav
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD, 21287, USA
| | - Stephen M Hewitt
- Experimental Pathology Lab, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Patricio E Ray
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Eisei Noiri
- Department of Nephrology, Endocrinology, Hemodialysis & Apheresis, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-8655, Japan
| | - Stuart F J Le Grice
- Reverse Transcriptase Biochemistry Section, Basic Research Program, Frederick National Laboratory for Cancer Research, 1050 Boyle Street, Frederick, MD, 21702, USA
| | - Maarten Hoek
- Merck Research Laboratories, Merck and Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ, 07033, USA
| | - Zhe Han
- Children's National Health System, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Cheryl A Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Frederick National Laboratory, 8560 Progress Dr., Frederick, MD, 21702, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|