1
|
Morais RF, Pires R, Jesus T, Lemos R, Duro D, Lima M, Baldeiras I, Oliveira TG, Santana I. Cognitive impairment in neurodegenerative diseases: A trans-diagnostic approach using a lesion-symptom mapping analysis. Neuroscience 2025; 573:214-227. [PMID: 40118165 DOI: 10.1016/j.neuroscience.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Neurodegenerative disorders, such as Alzheimer's disease (AD) and frontotemporal dementia (bvFTD), reflect a spectrum of cognitive impairments unified by cognitive decline. Traditional diagnostic approaches often overlook shared landscapes of these disorders. A transdiagnostic approach, cutting across conventional boundaries, may improve understanding of shared mechanisms. This study uses lesion-symptom mapping (LSM) to identify critical brain structures responsible for cognitive impairments. METHODS Patients diagnosed with Mild Cognitive Impairment (MCI), probable AD, and probable bvFTD were recruited from our memory clinic. Diagnoses were made by a multidisciplinary team using established criteria. Participants underwent detailed medical and neurological examinations, neuroimaging, cerebrospinal fluid analysis, and neuropsychological assessment. MRI scans were processed using FreeSurfer. LSM was used to assess correlations between brain structures and cognitive performance. RESULTS Significant correlations were found between neuropsychological test scores and reduced volume in specific brain regions. The Free and Cued Selective Reminding Test was linked to the right hippocampus and left nucleus accumbens. The Brief Visuospatial Memory Test-Revised correlated with the right hippocampus, left nucleus accumbens, and right middle temporal gyrus. Verbal fluency was linked to the left superior temporal sulcus and left middle temporal gyrus. Digit Span forward correlated with left superior frontal gyrus and left inferior parietal region, while Digit Span backward was linked to the right precuneus. Digit-Symbol Coding was associated with the left inferior parietal region. CONCLUSIONS This study highlights common neural targets in MCI, AD, and bvFTD and their link with cognitive impairment, emphasizing the value of LSM within a transdiagnostic approach to neurodegenerative diseases.
Collapse
Affiliation(s)
- Ricardo Félix Morais
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Neuroradiology Department, ULS São João, Porto, Portugal; Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência (INESC TEC), Porto, Portugal.
| | - Ricardo Pires
- Functional Unit of Neuroradiology, Department of Medical Imaging, ULS d Coimbra, Coimbra, Portugal
| | - Tiago Jesus
- Center Algoritmi, LASI, University of Minho, Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Raquel Lemos
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; ISPA, Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Lisbon, Portugal
| | - Diana Duro
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Neurology Department, ULS de Coimbra, Coimbra, Portugal
| | - Marisa Lima
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Neurology Department, ULS de Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Department of Neuroradiology, Hospital de Braga, ULS Braga, Braga, Portugal
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Neurology Department, ULS de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Shi Y, Feng X, Chung CY. Chronic adulthood exposure to bisphenol A causes behavioral changes via suppressing dopamine transporter trafficking. Sci Rep 2025; 15:13520. [PMID: 40253493 PMCID: PMC12009279 DOI: 10.1038/s41598-025-98084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
Evidence suggests that early life exposure to Bisphenol A (BPA) may impact neurobehavioral development in animals. BPA has been linked to changes in the dopamine level in the brain. However, molecular and cellular details of how BPA exposure causes these behavioral and cognitive outcomes are poorly understood. We examined how BPA affects the behaviors of adult mice and found that BPA induced hyperactivity and abnormal reward feedback in mice exposed at the early adult stage. We hypothesized that BPA might cause hyperactivity in mice by suppressing DAT trafficking. Fluorescence microscopy revealed that YFP-DAT remains in the perinuclear area when treated with BPA, compared to broader distribution throughout the cytoplasm in control cells. Results from MPTP toxicity and APP + uptake assays indicate that the surface expression of DAT was reduced by BPA treatment. Immunofluorescence staining of neurons in the Substantia nigra (SN) area of the mouse brain also revealed that DAT remains in the perinuclear region, indicating lower surface expression of DAT in the SN, playing important roles in reward and movement. We used another in vivo model, C. elegans, expressing GFP-tagged DAT-1 fusion protein and found that exposure to 50 µM BPA induced a significant increase in the frequency of body bends. However, the frequency of body bends was significantly reduced at 100 µM BPA, indicating biphasic effects of BPA. In conclusion, our results suggest that BPA contributes to the alterations of mice and worm behavior by reducing DAT expression on the surface of neurons via blocking of DAT trafficking.
Collapse
Affiliation(s)
- Yu Shi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiaoye Feng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Chang Y Chung
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, 31901, USA.
| |
Collapse
|
3
|
Guo Q, Li ZF, Hu DY, Li PJ, Wu KN, Fan HH, Deng J, Wu HM, Zhang X, Zhu JH. The selenocysteine-containing protein SELENOT maintains dopamine signaling in the midbrain to protect mice from hyperactivity disorder. EMBO J 2025:10.1038/s44318-025-00430-3. [PMID: 40195499 DOI: 10.1038/s44318-025-00430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Dopaminergic neuron dysfunction has been implicated in multiple neurological and psychiatric disorders. SELENOT is a selenocysteine-containing protein of the ER membrane with antioxidant and neuroprotective activities, but its pathophysiological role in dopaminergic neurons remains unclear. In this study we show that male mice with SELENOT-deficient dopaminergic neurons exhibit attention deficit/hyperactivity disorder (ADHD)-like symptoms, including hyperlocomotion, recognition memory deficits, repetitive movements, and impulsivity. Dopamine metabolism, extrasynaptic dopamine levels, spontaneous excitatory postsynaptic currents in the striatum, and electroencephalography theta power are all enhanced in these animals, while dopaminergic neurons in the substantia nigra are slightly reduced but with normal firing and cellular stress levels. Our results also indicate that the expression of dopamine transporter (DAT) is significantly reduced in the absence of SELENOT. Both the development of ADHD-like phenotypes and DAT downregulation are also observed when SELENOT is absent from the whole brain, but not when its conditional knockout is restricted to astrocytes. Mechanistically, we show that SELENOT downregulates DAT expression via interaction with SERCA2 of the ER -but not with IP3R or RYR- to regulate the ER-cytosol Ca2+ flux and, subsequently, the activity of transcription factor NURR1 and the expression levels of DAT. Treatment with amphetamine or methylphenidate, which are commonly used to treat ADHD, reverses the hyperactivity observed in mice with SELENOT-deficient dopaminergic neurons. Our study demonstrates that SELENOT in mouse dopaminergic neurons maintains proper dopamine signaling in the midbrain against the development of ADHD-like behaviors.
Collapse
Affiliation(s)
- Qing Guo
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhao-Feng Li
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Dong-Yan Hu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Pei-Jun Li
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kai-Nian Wu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Hui-Hui Fan
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Jie Deng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hong-Mei Wu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Xiong Zhang
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Jian-Hong Zhu
- Institute of Nutrition and Diseases and Center for Research, School of Public Health, Wenzhou Medical University, Wenzhou, China.
- Department of Neurology and Institute of Geriatric Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Andarawi S, Vodickova L, Uttarilli A, Hanak P, Vodicka P. Defective DNA repair: a putative nexus linking immunological diseases, neurodegenerative disorders, and cancer. Mutagenesis 2025; 40:4-19. [PMID: 39937585 DOI: 10.1093/mutage/geae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
DNA damage is a common event in cells, resulting from both internal and external factors. The maintenance of genomic integrity is vital for cellular function and physiological processes. The inadequate repair of DNA damage results in the genomic instability, which has been associated with the development and progression of various human diseases. Accumulation of DNA damage can lead to multiple diseases, such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and ageing. This comprehensive review delves the impact of alterations in DNA damage response genes (DDR) and tries to elucidate how and to what extent the same traits modulate diverse major human diseases, such as cancer, neurodegenerative diseases, and immunological disorders. DDR is apparently the trait connecting important complex disorders in humans. However, the pathogenesis of the above disorders and diseases are different and lead to divergent consequences. It is important to discover the switch(es) that direct further the pathogenic process either to proliferative, or degenerative diseases. Our understanding of the influence of DNA damage on diverse human disorders may enable the development of the strategies to prevent, diagnose, and treat these diseases. In our article, we analysed publicly available GWAS summary statistics from the NHGRI-EBI GWAS Catalog and identified 12 009 single-nucleotide polymorphisms (SNPs) associated with cancer. Among these, 119 SNPs were found in DDR pathways, exhibiting significant P-values. Additionally, we identified 44 SNPs linked to various cancer types and neurodegenerative diseases (NDDs), including four located in DDR-related genes: ATM, CUX2, and WNT3. Furthermore, 402 SNPs were associated with both cancer and immunological disorders, with two found in the DDR gene RAD51B. This highlights the versatility of the DDR pathway in multifactorial diseases. However, the specific mechanisms that regulate DDR to initiate distinct pathogenic processes remain to be elucidated.
Collapse
Affiliation(s)
- Safaa Andarawi
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anusha Uttarilli
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Petr Hanak
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300 Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| |
Collapse
|
5
|
Pires CS, da Rocha MJ, Presa MH, Zuge NP, Besckow EM, Ledebuhr KNB, Kuntz NEB, Godoi B, Bortolatto CF, Brüning CA. Dopaminergic receptors involvement in the antidepressant-like effect of N-(3-((3-(trifluoromethyl)phenyl)selanyl)prop-2-yn-1-yl) benzamide in mice. Neurosci Lett 2025; 849:138144. [PMID: 39889880 DOI: 10.1016/j.neulet.2025.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Major Depressive Disorder (MDD) directly impacts the lives of countless individuals worldwide, yet its causes remain incompletely understood. However, it is recognized that a deficiency in monoamines, including dopamine, may contribute to this disorder. N-(3-((3-(trifluoromethyl)phenyl)selenyl)prop-2-yn-1-yl) (CF3SePB) is an organoselenium compound that presented antidepressant-like effect in mice related to modulation of serotonergic, but not noradrenergic system. To expand the knowledge about CF3SePB mechanisms of action, this study aimed to evaluate the involvement of dopaminergic system in its antidepressant-like effect. Male Swiss mice were pre-treated with the haloperidol (0.05 mg/kg, i.p., a non-selective D2 receptor antagonist), SCH 23390 (0.01 mg/kg, s.c., a D1 receptor antagonist), and sulpiride (50 mg/kg, i.p., a D2 receptor antagonist) 15 min before CF3SePB (50 mg/kg, i.g.), and after 30 min of CF3SePB administration the forced swimming test (FST) was performed. CF3SePB presented an anti-immobility effect in the FST, demonstrated by increase in the latency to first episode of immobility and reduction of total immobility of mice, and the pre-treatment of mice with haloperidol, SCH 23390 and sulpiride prevented these effects, showing that the antidepressant-like effect of CF3SePB is related to the modulation of the dopaminergic system, specifically the D1 and D2 receptors. In addition, in silico pharmacokinetic profiling of CF3SePB predicted its low likelihood of inducing adverse effects and potential to cross the blood-brain barrier. These results expand the understanding of CF3SePB mechanisms for its antidepressant-like effect, reinforcing the potential of this organonoselenium compound for developing new antidepressants.
Collapse
Affiliation(s)
- Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Narryman Pinto Zuge
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Kauane Nayara Bahr Ledebuhr
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil
| | - Natália Emanuele Biolosor Kuntz
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo, Cerro Largo, RS, Brazil
| | - Benhur Godoi
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo, Cerro Largo, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS 96010-900, Brazil.
| |
Collapse
|
6
|
Clark DN, Brown SV, Xu L, Lee RL, Ragusa JV, Xu Z, Milner JD, Filiano AJ. Prolonged STAT1 signaling in neurons causes hyperactive behavior. Brain Behav Immun 2025; 124:1-8. [PMID: 39542073 PMCID: PMC11745914 DOI: 10.1016/j.bbi.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
The interferon (IFN)-induced STAT1 signaling pathway is a canonical immune pathway that has also been implicated in regulating neuronal activity. The pathway is enriched in brains of individuals with autism spectrum disorder (ASD) and schizophrenia (SZ). Over-activation of the STAT1 pathway causes pathological transcriptional responses, however it is unclear how these responses might translate into behavioral phenotypes. We hypothesized that prolonged STAT1 signaling in neurons would be sufficient to cause behavioral deficits associated with neurodevelopmental disorders. In this study, we developed a novel mouse model with the clinical STAT1 gain-of-function mutation, T385M, in neurons. These mice were hyperactive and displayed neural hypoactivity with less neuron counts in the caudate putamen. Driving the STAT1 gain-of-function mutation exclusively in dopaminergic neurons, which project to the caudate putamen of the dorsal striatum, mimicked some hyperactive behaviors without a reduction of neurons. Moreover, we demonstrated that this phenotype is neuron specific, as mice with prolonged STAT1 signaling in all excitatory or inhibitory neurons or in microglia were not hyperactive. Overall, these findings suggest that STAT1 signaling in neurons is a crucial player in regulating striatal neuron activity and aspects of motor behavior.
Collapse
Affiliation(s)
- Danielle N Clark
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Shelby V Brown
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Rae-Ling Lee
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Joey V Ragusa
- Department of Pathology, Duke University, Durham, NC, USA
| | - Zhenghao Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Joshua D Milner
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Anthony J Filiano
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC, USA; Department of Pathology, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Ijomone OK, Oria RS, Ijomone OM, Aschner M, Bornhorst J. Dopaminergic Perturbation in the Aetiology of Neurodevelopmental Disorders. Mol Neurobiol 2025; 62:2420-2434. [PMID: 39110391 PMCID: PMC11772124 DOI: 10.1007/s12035-024-04418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/01/2024] [Indexed: 01/28/2025]
Abstract
Brain development may be influenced by both genetic and environmental factors, with potential consequences that may last through the lifespan. Alterations during neurogenesis are linked to neurodevelopmental cognitive disorders. Many neurotransmitters and their systems play a vital role in brain development, as most are present prior to synaptogenesis, and they are involved in the aetiology of many neurodevelopmental disorders. For instance, dopamine (DA) receptor expression begins at the early stages of development and matures at adolescence. The long maturation period suggests how important it is for the stabilisation and integration of neural circuits. DA and dopaminergic (DAergic) system perturbations have been implicated in the pathogenesis of several neurological and neuropsychiatric disorders. The DAergic system controls key cognitive and behavioural skills including emotional and motivated behaviour through DA as a neurotransmitter and through the DA neuron projections to major parts of the brain. In this review, we summarise the current understanding of the DAergic system's influence on neurodevelopment and its involvement in the aetiology and progression of major disorders of the developing brain including autism, schizophrenia, attention deficit hyperactivity disorder, down syndrome, and fragile X syndrome.
Collapse
Affiliation(s)
- Olayemi K Ijomone
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany.
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
| | - Rademene Sunday Oria
- Department of Anatomy, University of Cross River State, Okuku Campus, Cross River, Nigeria
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
8
|
Yates JR. Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111107. [PMID: 39098647 PMCID: PMC11409449 DOI: 10.1016/j.pnpbp.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
9
|
Tanada S, Nakagomi T, Nakano-Doi A, Sawano T, Kubo S, Kuramoto Y, Uchida K, Yamahara K, Doe N, Yoshimura S. Human-Brain-Derived Ischemia-Induced Stem Cell Transplantation Is Associated with a Greater Neurological Functional Improvement Compared with Human-Bone Marrow-Derived Mesenchymal Stem Cell Transplantation in Mice After Stroke. Int J Mol Sci 2024; 25:12065. [PMID: 39596134 PMCID: PMC11593343 DOI: 10.3390/ijms252212065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The transplantation of injury/ischemia-induced stem cells (iSCs) extracted from post-stroke human brains can improve the neurological functions of mice after stroke. However, the usefulness of iSCs as an alternative stem cell source remains unclear. The current study aimed to assess the efficacy of iSC and mesenchymal stem cell (MSC) transplantation. In this experiment, equal numbers of human brain-derived iSCs (h-iSCs) (5.0 × 104 cells/μL) and human bone marrow-derived MSCs (h-MSCs) (5.0 × 104 cells/μL) were intracranially transplanted into post-stroke mouse brains after middle cerebral artery occlusion. Results showed that not only h-iSC transplantation but also h-MSC transplantation activated endogenous neural stem/progenitor cells (NSPCs) around the grafted sites and promoted neurological functional improvement. However, mice that received h-iSC transplantation experienced improvement in a higher number of behavioral tasks compared with those that received h-MSC transplantation. To investigate the underlying mechanism, NSPCs extracted from the ischemic areas of post-stroke mouse brains were cocultured with h-iSCs or h-MSCs. After coincubation, NSPCs, h-iSCs, and h-MSCs were selectively collected via fluorescence-activated cell sorting. Next, their traits were analyzed via microarray analysis. The genes related to various neuronal lineages in NSPCs after coincubation with h-iSCs were enriched compared with those in NSPCs after coincubation with h-MSCs. In addition, the gene expression patterns of h-iSCs relative to those of h-MSCs showed that the expression of genes related to synapse formation and neurotransmitter-producing neurons increased more after coincubation with NSPCs. Hence, cell-cell interactions with NSPCs promoted transdifferentiation toward functional neurons predominantly in h-iSCs. In accordance with these findings, immunohistochemistry showed that the number of neuronal networks between NSPCs and h-iSCs was higher than that between NSPCs and h-MSCs. Therefore, compared with h-MSC transplantation, h-iSC transplantation is associated with a higher neurological functional improvement, presumably by more effectively modulating the fates of endogenous NSPCs and grafted h-iSCs themselves.
Collapse
Affiliation(s)
- Shuichi Tanada
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan;
| | - Shuji Kubo
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
| | - Yoji Kuramoto
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Kazutaka Uchida
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Kenichi Yamahara
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
| | - Nobutaka Doe
- Department of Rehabilitation, Hyogo Medical University (Kobe Campus), 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530, Japan;
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| |
Collapse
|
10
|
Deutsch SI, Burket JA, Elikan J, Spiegel DR. Translational Neuroscience Contributes to Understanding Neurodevelopmental Outcomes of Dostoyevsky's "Brothers Karamazov" With Treatment Implications. Clin Neuropharmacol 2024; 47:181-188. [PMID: 39404154 DOI: 10.1097/wnf.0000000000000610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
ABSTRACT Dostoyevsky's novels raise profound ethical, moral, philosophical and theological issues and, as a result, both he and his novels serve as fertile subjects of scholarly inquiry across a variety of academic disciplines. In particular, major characters in "The Brothers Karamazov" lend themselves to classical psychodynamic formulations, such as the influence of adverse childhood experiences on adult social and occupational outcomes, which in the case of Dmitry, the eldest son of Fyodor Pavlovich Karamazov, are considered in exquisitely fine detail. Prosecutor and defense attorney provide differing interpretations of how early traumas, largely due to paternal neglect and abuse, affected Dmitry's adult outcome in the climactic trial over his alleged patricide. The novel also captures an extreme, and perhaps fanciful, description of an Oedipal rivalry between Dmitry and his father for the affection of a love interest leading to tragic and unpredictable consequences for both. The novel has been dissected by scholars across a variety of diverse and seemingly unrelated disciplines and continues to serve as a springboard for collaborative discussion. Re-reading the novel led the authors to wonder if translational developments in clinical neuroscience could further understanding of poor developmental trajectories of the novel's characters, as well as offer therapeutic recommendations for promoting more favorable occupational and social outcomes. Advances in basic neuroscience have been translated into actionable individualized, interdisciplinary, multimodal treatment plans leading to improved functional outcomes for children like Dmitry, Ivan, and Smerdyakov. Translational neuroscience enriches understanding of neurodevelopmental outcomes of characters in Dostoyevsky's novel "The Brothers Karamazov," especially in the context of genetic risk and in utero environmental insults.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Science, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA
| | - Jessica A Burket
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA
| | | | - David R Spiegel
- Department of Psychiatry and Behavioral Science, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA
| |
Collapse
|
11
|
Angireddy R, Karisetty BC, Katsura KA, Díaz A, Murali S, Smith S, Ohl L, Clark K, Kossenkov AV, Bhoj EJ. A Novel Human TBCK- Neuronal Cell Model Results in Severe Neurodegeneration and Partial Rescue with Mitochondrial Fission Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621078. [PMID: 39553985 PMCID: PMC11565812 DOI: 10.1101/2024.10.30.621078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background and Objectives TBCK syndrome is a rare fatal pediatric neurodegenerative disease caused by biallelic loss-of-function mutations in the TBCK gene. Previous studies by our lab and others have implicated mTOR, autophagy, lysosomes, and intracellular mRNA transport, however the exact primary pathologic mechanism is unknown. This gap has prevented the development of targeted therapies. Methods We employed a human neural progenitor cell line (NPC), ReNcell VM, which can differentiate into neurons and astrocytes, to understand the role of TBCK in mTORC1 activity and neuronal autophagy and cellular mechanisms of pathology. We used shRNA technology to knockdown TBCK in ReNcells. Results These data showed that loss of TBCK did not inhibit mTORC1 activity in neither NPC nor neurons. Additionally, analysis of eight patient-derived cells and TBCK knock down HeLa cells showed that mTORC1 inhibition is inconsistent across different patients and cell types. We showed that TBCK knockdown in ReNcells affected NPC differentiation to neurons and astrocytes. Specifically, differentiation defects are coupled to cell cycle defects in NPC and increased cell death during differentiation. RNAseq analysis indicated the downregulation of several different neurodevelopmental and differentiation pathways. We observed a higher number of LC3-positive vesicles in the soma and neurites of TBCK knockdown cells. Further, TBCK knockdown altered mitochondrial dynamics and membrane potential in NPC, neurons and astrocytes. We found partial mitochondrial rescue with the mitochondrial fission inhibitor mdivi-1. Discussion This work outlines a new Human Cell Model for TBCK-related neurodegeneration and the essential role of mitochondrial health and partial rescue with mitochondrial fission inhibitor. This data, along with human neurons and astrocytes, illuminate mechanisms of neurodegeneration and provide a possible novel therapeutic avenue for affected patients.
Collapse
Affiliation(s)
- Rajesh Angireddy
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | | | - Kaitlin A Katsura
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Abdias Díaz
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Svathi Murali
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sarina Smith
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | - Laura Ohl
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Clark
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Elizabeth J.K. Bhoj
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| |
Collapse
|
12
|
Soon CW, Gaurav A, Gautam V, Al-Nema M. Structural insight into the lead identification of a dual inhibitor of PDE1B and PDE10A: Integrating pharmacophore-based virtual screening, molecular docking, and structure-activity-relationship approaches. Heliyon 2024; 10:e38305. [PMID: 39391487 PMCID: PMC11466560 DOI: 10.1016/j.heliyon.2024.e38305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
Schizophrenia is a chronic neuropsychiatric disorder affecting more than 1% of the world's population. Current antipsychotic treatments show inadequacy in mitigating the negative and cognitive symptoms of schizophrenia. In addition, these medications cause undesirable extrapyramidal side effects. According to the studies, inhibition of phosphodiesterase (PDE) 1B and PDE10A simultaneously can alleviate positive, negative, and cognitive symptoms of schizophrenia. Thus, this study aims to identify new dual inhibitors of PDE1B and PDE10A using ligand-based pharmacophore modelling, virtual screening, and molecular docking studies. Accordingly, the generated pharmacophore models of PDE1B and PDE10A comprised hydrogen bond acceptor, aromatic ring, and hydrophobic features. These features were essential for retrieving the active hits from the Universal Natural Product Database in the virtual screening. Additional filters were subsequently employed to identify potential hits that could be developed into central nervous system-active compounds. Hits meeting all the screening criteria were subjected to docking studies with PDE1B and PDE10A. Among these hits, UNPD167314 exhibited significant binding affinities for the target receptors. It occupied the P-clamp and displayed hydrophobic, aromatic, and hydrogen bond interactions with the active site residues of both receptors, thus selected as a lead compound for the design of potent and selective dual inhibitors. The structural modifications of UNPD167314 resulted in the design of 35 novel inhibitors. Out of 35, four compounds exhibited high and comparable binding affinities for both PDE1B and PDE10A, making them promising candidates for further evaluation and optimisation.
Collapse
Affiliation(s)
- Ching Wen Soon
- Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Anand Gaurav
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
- Faculty of Health Sciences, Villa College, Male', 20373, Maldives
| | - Vertika Gautam
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
- Klarity, Westbourne, Bournemouth, BH4 8DT, United Kingdom
| |
Collapse
|
13
|
Birioukova LM, Tsvetaeva DA, Midzyanovskaya IS, Raevsky VV, Sitnikova E. The neuronal density in the rostral pole of substantia nigra pars compacta in Wistar Albino rats from Rijswijk rats: A link to spike-wave seizures. J Biol Methods 2024; 11:e99010022. [PMID: 39544190 PMCID: PMC11557302 DOI: 10.14440/jbm.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 11/17/2024] Open
Abstract
This study aimed to investigate the role of the nigrostriatal dopaminergic system in the modulation of absence epilepsy. Immunochemical analysis of the rostral pole of the substantia nigra pars compacta (SNpc) was conducted on 13 adult male Wistar Albino rats from Rijswijk rats. The rostral pole of the SNpc included the dorsal and lateral parts. The neuronal density in the dorsal part was higher than in the lateral part. The ratio of dopaminergic to non-dopaminergic neurons in the lateral part of the SNpc was 1:1, while in the dorsal part, it was around 1.9:1. All rats exhibited spontaneous spike-wave discharges (SWDs) on their electrocorticograms. SWDs are known to be a hallmark of absence seizures in both human patients and rat models. In this study, we found that the number and duration of SWDs were negatively correlated with dopaminergic and non-dopaminergic neurons only in the lateral part of the SNpc. However, in the dorsal part of the SNpc, no correlations were found between neuronal density and the severity of absence epilepsy. Our findings suggest that the lateral SNpc may be involved in modulating the severity of absence epilepsy in genetically prone subjects. This contributes to a better understanding of the role of the nigrostriatal dopaminergic system in the absence of epilepsy.
Collapse
Affiliation(s)
- Lidia M. Birioukova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Darya A. Tsvetaeva
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Inna S. Midzyanovskaya
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V. Raevsky
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Basso V, Döbrössy MD, Thompson LH, Kirik D, Fuller HR, Gates MA. State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons. BIOLOGY 2024; 13:690. [PMID: 39336117 PMCID: PMC11428604 DOI: 10.3390/biology13090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Basso
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lachlan H Thompson
- Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Monte A Gates
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
15
|
Lomiwes D, Günther CS, Bloor SJ, Trower TM, Ngametua N, Kanon AP, Jensen DA, Lo K, Sawyer G, Walker EG, Hedderley D, Cooney JM. Identification of Sarmentosin as a Key Bioactive from Blackcurrants ( Ribes nigrum) for Inhibiting Platelet Monoamine Oxidase in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16777-16789. [PMID: 39028868 PMCID: PMC11299169 DOI: 10.1021/acs.jafc.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024]
Abstract
Previous clinical studies indicate that monoamine oxidase-B (MAO-B) inhibition by blackcurrants must be predominantly attributed to bioactives other than anthocyanins. In this natural products discovery study, MAO-A/B inhibitory phytochemicals were isolated from blackcurrants, and a double-blind crossover study investigated the efficacy of freeze-dried whole-fruit blackcurrant powder in inhibiting MAO-B compared with blackcurrant juice in healthy adults. Platelet MAO-B inhibition was comparable between powder (89% ± 6) and juice (91% ± 4), and it was positively correlated with MAO-modulated plasma catecholamines, subjective alertness, and reduced mental fatigue, assessed using the Bond-Lader questionnaire. Sarmentosin, a nitrile glycoside, and its hydroxycinnamoyl esters were identified as novel MAO-A/B inhibitors from blackcurrant in vitro, and sarmentosin was demonstrated to inhibit platelet MAO-B activity in vivo. These findings confirm sarmentosin as the primary bioactive for MAO-A/B inhibition in blackcurrants, as well as its bioavailability and stability during freeze-drying, and suggest that consuming blackcurrant powder and juice may positively affect mood in healthy adults.
Collapse
Affiliation(s)
- Dominic Lomiwes
- The
New Zealand Institute for Plant and Food Research Limited, Palmerston North Campus, 23 Batchelar
Road, Fitzherbert, Palmerston North 4410, New Zealand
| | - Catrin S. Günther
- The
New Zealand Institute for Plant and Food Research Limited, Ruakura Campus, Bisley Road, Hamilton 3214, New Zealand
| | - Stephen J. Bloor
- Callaghan
Innovation, 69 Gracefield Road, P.O. Box 31310, Lower
Hutt 5040, New Zealand
| | - Tania M. Trower
- The
New Zealand Institute for Plant and Food Research Limited, Ruakura Campus, Bisley Road, Hamilton 3214, New Zealand
| | - Nayer Ngametua
- The
New Zealand Institute for Plant and Food Research Limited, Palmerston North Campus, 23 Batchelar
Road, Fitzherbert, Palmerston North 4410, New Zealand
| | - Alexander P. Kanon
- The
New Zealand Institute for Plant and Food Research Limited, Palmerston North Campus, 23 Batchelar
Road, Fitzherbert, Palmerston North 4410, New Zealand
| | - Dwayne A. Jensen
- The
New Zealand Institute for Plant and Food Research Limited, Ruakura Campus, Bisley Road, Hamilton 3214, New Zealand
| | - Kim Lo
- The
New Zealand Institute for Plant and Food Research Limited, Auckland Campus, 120 Mount Albert
Road, Sandringham, Auckland 1025, New Zealand
| | - Greg Sawyer
- The
New Zealand Institute for Plant and Food Research Limited, Palmerston North Campus, 23 Batchelar
Road, Fitzherbert, Palmerston North 4410, New Zealand
| | - Edward G. Walker
- The
New Zealand Institute for Plant and Food Research Limited, Auckland Campus, 120 Mount Albert
Road, Sandringham, Auckland 1025, New Zealand
| | - Duncan Hedderley
- The
New Zealand Institute for Plant and Food Research Limited, Palmerston North Campus, 23 Batchelar
Road, Fitzherbert, Palmerston North 4410, New Zealand
| | - Janine M. Cooney
- The
New Zealand Institute for Plant and Food Research Limited, Ruakura Campus, Bisley Road, Hamilton 3214, New Zealand
| |
Collapse
|
16
|
Blum K, Bowirrat A, Sunder K, Thanos PK, Hanna C, Gold MS, Dennen CA, Elman I, Murphy KT, Makale MT. Dopamine Dysregulation in Reward and Autism Spectrum Disorder. Brain Sci 2024; 14:733. [PMID: 39061473 PMCID: PMC11274922 DOI: 10.3390/brainsci14070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is primarily characterized by core deficits in social skills, communication, and cognition and by repetitive stereotyped behaviors. These manifestations are variable between individuals, and ASD pathogenesis is complex, with over a thousand implicated genes, many epigenetic factors, and multiple environmental influences. The mesolimbic dopamine (DA) mediated brain reward system is held to play a key role, but the rapidly expanding literature reveals intricate, nuanced signaling involving a wide array of mesolimbic loci, neurotransmitters and receptor subtypes, and neuronal variants. How altered DA signaling may constitute a downstream convergence of the manifold causal origins of ASD is not well understood. A clear working framework of ASD pathogenesis may help delineate common stages and potential diagnostic and interventional opportunities. Hence, we summarize the known natural history of ASD in the context of emerging data and perspectives to update ASD reward signaling. Then, against this backdrop, we proffer a provisional framework that organizes ASD pathogenesis into successive levels, including (1) genetic and epigenetic changes, (2) disrupted mesolimbic reward signaling pathways, (3) dysregulated neurotransmitter/DA signaling, and finally, (4) altered neurocognitive and social behavior and possible antagonist/agonist based ASD interventions. This subdivision of ASD into a logical progression of potentially addressable parts may help facilitate the rational formulation of diagnostics and targeted treatments.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise Sports, Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
- Sunder Foundation, Palm Springs, CA 92264, USA
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | | | - Panayotis K. Thanos
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Colin Hanna
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19145, USA
| | - Igor Elman
- Department of Psychiatry, Harvard University School of Medicine, Cambridge, MA 02215, USA
| | - Kevin T. Murphy
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Lewis AF, Bohnenkamp R, Myers M, den Ouden DB, Fritz SL, Stewart JC. Effect of positive social comparative feedback on the resting state connectivity of dopaminergic neural pathways: A preliminary investigation. Neurobiol Learn Mem 2024; 212:107930. [PMID: 38692391 DOI: 10.1016/j.nlm.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Positive social comparative feedback is hypothesized to generate a dopamine response in the brain, similar to reward, by enhancing expectancies to support motor skill learning. However, no studies have utilized neuroimaging to examine this hypothesized dopaminergic mechanism. Therefore, the aim of this preliminary study was to investigate the effect of positive social comparative feedback on dopaminergic neural pathways measured by resting state connectivity. Thirty individuals practiced an implicit, motor sequence learning task and were assigned to groups that differed in feedback type. One group received feedback about their actual response time to complete the task (RT ONLY), while the other group received feedback about their response time with positive social comparison (RT + POS). Magnetic resonance imaging was acquired at the beginning and end of repetitive motor practice with feedback to measure practice-dependent changes in resting state brain connectivity. While both groups showed improvements in task performance and increases in performance expectancies, ventral tegmental area and the left nucleus accumbens (mesolimbic dopamine pathway) resting state connectivity increased in the RT + POS group but not in the RT ONLY group. Instead, the RT ONLY group showed increased connectivity between ventral tegmental area and primary motor cortex. Positive social comparative feedback during practice of a motor sequence task may induce a dopaminergic response in the brain along the mesolimbic pathway. However, given that absence of effects on expectancies and motor learning, more robust and individualized approaches may be needed to provide beneficial psychological and behavioral effects.
Collapse
Affiliation(s)
- Allison F Lewis
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Rachel Bohnenkamp
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Makenzie Myers
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Dirk B den Ouden
- University of South Carolina, Department of Communication Sciences and Disorders, Columbia, SC, USA
| | - Stacy L Fritz
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | | |
Collapse
|
18
|
Del-Bel E, Barros-Pereira N, Moraes RPD, Mattos BAD, Alves-Fernandes TA, Abreu LBD, Nascimento GC, Escobar-Espinal D, Pedrazzi JFC, Jacob G, Milan BA, Bálico GG, Antonieto LR. A journey through cannabidiol in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:65-93. [PMID: 39029991 DOI: 10.1016/bs.irn.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Parkinson's disease is a chronic neurodegenerative disorder with no known cure characterized by motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and postural instability. Non-motor symptoms like cognitive impairment, mood disturbances, and sleep disorders often accompany the disease. Pharmacological treatments for these symptoms are limited and frequently induce significant adverse reactions, underscoring the necessity for appropriate treatment options. Cannabidiol is a phytocannabinoid devoid of the euphoric and cognitive effects of tetrahydrocannabinol. The study of cannabidiol's pharmacological effects has increased exponentially in recent years. Preclinical and preliminary clinical studies suggest that cannabidiol holds therapeutic potential for alleviating symptoms of Parkinson's disease, offering neuroprotective, anti-inflammatory, and antioxidant properties. However, knowledge of cannabidiol neuromolecular mechanisms is limited, and its pharmacology, which appears complex, has not yet been fully elucidated. By examining the evidence, this review aims to provide and synthesize scientifically proven evidence for the potential use of cannabidiol as a novel treatment option for Parkinson's disease. We focus on studies that administrated cannabidiol alone. The results of preclinical trials using cannabidiol in models of Parkinson's disease are encouraging. Nevertheless, drawing firm conclusions on the therapeutic efficacy of cannabidiol for patients is challenging. Cannabidiol doses, formulations, outcome measures, and methodologies vary considerably across studies. Though, cannabidiol holds promise as a novel therapeutic option for managing both motor and non-motor symptoms of Parkinson's disease, offering hope for improved quality of life for affected individuals.
Collapse
Affiliation(s)
- Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of Sao Paulo, Ribeirao Preto, SP Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP Brazil.
| | - Nubia Barros-Pereira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Rafaela Ponciano de Moraes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Bianca Andretto de Mattos
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Thaís Antonia Alves-Fernandes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Lorena Borges de Abreu
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Glauce Crivelaro Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Daniela Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - João Francisco Cordeiro Pedrazzi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Gabrielle Jacob
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Bruna A Milan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Gabriela Gonçalves Bálico
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Livia Rodrigues Antonieto
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
19
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
20
|
Reich N, Hölscher C. Cholecystokinin (CCK): a neuromodulator with therapeutic potential in Alzheimer's and Parkinson's disease. Front Neuroendocrinol 2024; 73:101122. [PMID: 38346453 DOI: 10.1016/j.yfrne.2024.101122] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Cholecystokinin (CCK) is a neuropeptide modulating digestion, glucose levels, neurotransmitters and memory. Recent studies suggest that CCK exhibits neuroprotective effects in Alzheimer's disease (AD) and Parkinson's disease (PD). Thus, we review the physiological function and therapeutic potential of CCK. The neuropeptide facilitates hippocampal glutamate release and gates GABAergic basket cell activity, which improves declarative memory acquisition, but inhibits consolidation. Cortical CCK alters recognition memory and enhances audio-visual processing. By stimulating CCK-1 receptors (CCK-1Rs), sulphated CCK-8 elicits dopamine release in the substantia nigra and striatum. In the mesolimbic pathway, CCK release is triggered by dopamine and terminates reward responses via CCK-2Rs. Importantly, activation of hippocampal and nigral CCK-2Rs is neuroprotective by evoking AMPK activation, expression of mitochondrial fusion modulators and autophagy. Other benefits include vagus nerve/CCK-1R-mediated expression of brain-derived neurotrophic factor, intestinal protection and suppression of inflammation. We also discuss caveats and the therapeutic combination of CCK with other peptide hormones.
Collapse
Affiliation(s)
- Niklas Reich
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK; Faculty of Health and Medicine, Biomedical & Life Sciences Division, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Christian Hölscher
- Second associated Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, China; Henan Academy of Innovations in Medical Science, Neurodegeneration research group, Xinzhen, Henan province, China
| |
Collapse
|
21
|
Tsuboi D, Nagai T, Yoshimoto J, Kaibuchi K. Neuromodulator regulation and emotions: insights from the crosstalk of cell signaling. Front Mol Neurosci 2024; 17:1376762. [PMID: 38516040 PMCID: PMC10954900 DOI: 10.3389/fnmol.2024.1376762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The unraveling of the regulatory mechanisms that govern neuronal excitability is a major challenge for neuroscientists worldwide. Neurotransmitters play a critical role in maintaining the balance between excitatory and inhibitory activity in the brain. The balance controls cognitive functions and emotional responses. Glutamate and γ-aminobutyric acid (GABA) are the primary excitatory and inhibitory neurotransmitters of the brain, respectively. Disruptions in the balance between excitatory and inhibitory transmission are implicated in several psychiatric disorders, including anxiety disorders, depression, and schizophrenia. Neuromodulators such as dopamine and acetylcholine control cognition and emotion by regulating the excitatory/inhibitory balance initiated by glutamate and GABA. Dopamine is closely associated with reward-related behaviors, while acetylcholine plays a role in aversive and attentional behaviors. Although the physiological roles of neuromodulators have been extensively studied neuroanatomically and electrophysiologically, few researchers have explored the interplay between neuronal excitability and cell signaling and the resulting impact on emotion regulation. This review provides an in-depth understanding of "cell signaling crosstalk" in the context of neuronal excitability and emotion regulation. It also anticipates that the next generation of neurochemical analyses, facilitated by integrated phosphorylation studies, will shed more light on this topic.
Collapse
Affiliation(s)
- Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
22
|
Khamis H, Cohen O. Coupled action potential and calcium dynamics underlie robust spontaneous firing in dopaminergic neurons. Phys Biol 2024; 21:026005. [PMID: 38382117 DOI: 10.1088/1478-3975/ad2bd4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Dopaminergic neurons are specialized cells in the substantia nigra, tasked with dopamine secretion. This secretion relies on intracellular calcium signaling coupled to neuronal electrical activity. These neurons are known to display spontaneous calcium oscillationsin-vitroandin-vivo, even in synaptic isolation, controlling the basal dopamine levels. Here we outline a kinetic model for the ion exchange across the neuronal plasma membrane. Crucially, we relax the assumption of constant, cytoplasmic sodium and potassium concentration. We show that sodium-potassium dynamics are strongly coupled to calcium dynamics and are essential for the robustness of spontaneous firing frequency. The model predicts several regimes of electrical activity, including tonic and 'burst' oscillations, and predicts the switch between those in response to perturbations. 'Bursting' correlates with increased calcium amplitudes, while maintaining constant average, allowing for a vast change in the calcium signal responsible for dopamine secretion. All the above traits provide the flexibility to create rich action potential dynamics that are crucial for cellular function.
Collapse
Affiliation(s)
- Hadeel Khamis
- Gateway Institute for Brain Research, Fort Lauderdale, FL 33314, United States of America
| | - Ohad Cohen
- Gateway Institute for Brain Research, Fort Lauderdale, FL 33314, United States of America
| |
Collapse
|
23
|
Mann LG, Claassen DO. Mesial temporal dopamine: From biology to behaviour. Eur J Neurosci 2024; 59:1141-1152. [PMID: 38057945 DOI: 10.1111/ejn.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
While colloquially recognized for its role in pleasure, reward, and affect, dopamine is also necessary for proficient action control. Many motor studies focus on dopaminergic transmission along the nigrostriatal pathway, using Parkinson's disease as a model of a dorsal striatal lesion. Less attention to the mesolimbic pathway and its role in motor control has led to an important question related to the limbic-motor network. Indeed, secondary targets of the mesolimbic pathway include the hippocampus and amygdala, and these are linked to the motor cortex through the substantia nigra and thalamus. The modulatory impact of dopamine in the hippocampus and amygdala in humans is a focus of current investigations. This review explores dopaminergic activity in the mesial temporal lobe by summarizing dopaminergic networks and transmission in these regions and examining their role in behaviour and disease.
Collapse
Affiliation(s)
- Leah G Mann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Lee SH, Jung EM. Adverse effects of early-life stress: focus on the rodent neuroendocrine system. Neural Regen Res 2024; 19:336-341. [PMID: 37488887 PMCID: PMC10503627 DOI: 10.4103/1673-5374.377587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
Early-life stress is associated with a high prevalence of mental illnesses such as post-traumatic stress disorders, attention-deficit/hyperactivity disorder, schizophrenia, and anxiety or depressive behavior, which constitute major public health problems. In the early stages of brain development after birth, events such as synaptogenesis, neuron maturation, and glial differentiation occur in a highly orchestrated manner, and external stress can cause adverse long-term effects throughout life. Our body utilizes multifaceted mechanisms, including neuroendocrine and neurotransmitter signaling pathways, to appropriately process external stress. Newborn individuals first exposed to early-life stress deploy neurogenesis as a stress-defense mechanism; however, in adulthood, early-life stress induces apoptosis of mature neurons, activation of immune responses, and reduction of neurotrophic factors, leading to anxiety, depression, and cognitive and memory dysfunction. This process involves the hypothalamus-pituitary-adrenal axis and neurotransmitters secreted by the central nervous system, including norepinephrine, dopamine, and serotonin. The rodent early-life stress model is generally used to experimentally assess the effects of stress during neurodevelopment. This paper reviews the use of the early-life stress model and stress response mechanisms of the body and discusses the experimental results regarding how early-life stress mediates stress-related pathways at a high vulnerability of psychiatric disorder in adulthood.
Collapse
Affiliation(s)
- Seung Hyun Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
25
|
Zhuang Z, Zhou P, Wang J, Lu X, Chen Y. The Characteristics, Mechanisms and Therapeutics: Exploring the Role of Gut Microbiota in Obesity. Diabetes Metab Syndr Obes 2023; 16:3691-3705. [PMID: 38028999 PMCID: PMC10674108 DOI: 10.2147/dmso.s432344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Presently, obesity has emerged as a significant global public health concern due to its escalating prevalence and incidence rates. The gut microbiota, being a crucial environmental factor, has emerged as a key player in the etiology of obesity. Nevertheless, the intricate and specific interactions between obesity and gut microbiota, along with the underlying mechanisms, remain incompletely understood. This review comprehensively summarizes the gut microbiota characteristics in obesity, the mechanisms by which it induces obesity, and explores targeted therapies centered on gut microbiota restoration.
Collapse
Affiliation(s)
- Zequn Zhuang
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Peng Zhou
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Jing Wang
- Jiangnan University Medical Center, Wuxi, People’s Republic of China
| | - Xiaojing Lu
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Yigang Chen
- Department of General Surgery, the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, People’s Republic of China
- Jiangnan University Medical Center, Wuxi, People’s Republic of China
- Wuxi Clinical College, Nantong University, Wuxi, People’s Republic of China
| |
Collapse
|
26
|
Kiani MM, Heidari Beni MH, Aghajan H. Aberrations in temporal dynamics of cognitive processing induced by Parkinson's disease and Levodopa. Sci Rep 2023; 13:20195. [PMID: 37980451 PMCID: PMC10657430 DOI: 10.1038/s41598-023-47410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
The motor symptoms of Parkinson's disease (PD) have been shown to significantly improve by Levodopa. However, despite the widespread adoption of Levodopa as a standard pharmaceutical drug for the treatment of PD, cognitive impairments linked to PD do not show visible improvement with Levodopa treatment. Furthermore, the neuronal and network mechanisms behind the PD-induced cognitive impairments are not clearly understood. In this work, we aim to explain these cognitive impairments, as well as the ones exacerbated by Levodopa, through examining the differential dynamic patterns of the phase-amplitude coupling (PAC) during cognitive functions. EEG data recorded in an auditory oddball task performed by a cohort consisting of controls and a group of PD patients during both on and off periods of Levodopa treatment were analyzed to derive the temporal dynamics of the PAC across the brain. We observed distinguishing patterns in the PAC dynamics, as an indicator of information binding, which can explain the slower cognitive processing associated with PD in the form of a latency in the PAC peak time. Thus, considering the high-level connections between the hippocampus, the posterior and prefrontal cortices established through the dorsal and ventral striatum acting as a modulatory system, we posit that the primary issue with cognitive impairments of PD, as well as Levodopa's cognitive deficit side effects, can be attributed to the changes in temporal dynamics of dopamine release influencing the modulatory function of the striatum.
Collapse
Affiliation(s)
- Mohammad Mahdi Kiani
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Hamid Aghajan
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
27
|
Zhang Z, Shao H, Liu C, Song H, Wu X, Cao D, Zhu M, Fu Y, Wang J, Gao Y. Descending dopaminergic pathway facilitates itch signal processing via activating spinal GRPR + neurons. EMBO Rep 2023; 24:e56098. [PMID: 37522391 PMCID: PMC10561366 DOI: 10.15252/embr.202256098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
A11 dopaminergic neurons regulate somatosensory transduction by projecting from the diencephalon to the spinal cord, but the function of this descending projection in itch remained elusive. Here, we report that dopaminergic projection neurons from the A11 nucleus to the spinal dorsal horn (dopaminergicA11-SDH ) are activated by pruritogens. Inhibition of these neurons alleviates itch-induced scratching behaviors. Furthermore, chemogenetic inhibition of spinal dopamine receptor D1-expressing (DRD1+ ) neurons decreases acute or chronic itch-induced scratching. Mechanistically, spinal DRD1+ neurons are excitatory and mostly co-localize with gastrin-releasing peptide (GRP), an endogenous neuropeptide for itch. In addition, DRD1+ neurons form synapses with GRP receptor-expressing (GRPR+ ) neurons and activate these neurons via AMPA receptor (AMPAR). Finally, spontaneous itch and enhanced acute itch induced by activating spinal DRD1+ neurons are relieved by antagonists against AMPAR and GRPR. Thus, the descending dopaminergic pathway facilitates spinal itch transmission via activating DRD1+ neurons and releasing glutamate and GRP, which directly augments GRPR signaling. Interruption of this descending pathway may be used to treat chronic itch.
Collapse
Affiliation(s)
- Zhi‐Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Han‐Yu Shao
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Chuan Liu
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Hao‐Lin Song
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Xiao‐Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - De‐Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Meixuan Zhu
- University of North Carolina at Chapel HillChapel HillNCUSA
| | - Yuan‐Yuan Fu
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Juan Wang
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Yong‐Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| |
Collapse
|
28
|
Tseng HC, Pan CY. Dopamine Activates the D1R-Zn 2+ Signaling Pathway to Trigger Inflammatory Response in Primary-Cultured Rat Embryonic Cortical Neurons. Cell Mol Neurobiol 2023; 43:3593-3604. [PMID: 37289255 PMCID: PMC11409952 DOI: 10.1007/s10571-023-01367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Neuroinflammation is an early event during the pathogenesis of neurodegenerative disorders. Most studies focus on how the factors derived from pathogens or tissue damage activate the inflammation-pyroptosis cell death pathway. It is unclear whether endogenous neurotransmitters could induce inflammatory responses in neurons. Our previous reports have shown that dopamine-induced elevation of intracellular Zn2+ concentration via the D1-like receptor (D1R) is a prerequisite for autophagy and cell death in primary cultured rat embryonic neurons. Here we further examined that this D1R-Zn2+ signaling initiates the transient inflammatory response leading to cell death in cultured cortical neurons. Pretreating the cultured neurons with Zn2+ chelator and inhibitors against inflammation could enhance the cell viability in neurons treated with dopamine and dihydrexidine, an agonist of D1R. Both dopamine and dihydrexidine greatly enhanced inflammasome formation; a Zn2+ chelator, N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine, suppressed this increment. Dopamine and dihydrexidine increased the expression levels of NOD-like receptor pyrin domain-containing protein 3 and enhanced the maturation of caspase-1, gasdermin D, and IL-1β; these changes were all Zn2+-dependent. Dopamine treatment did not recruit the N-terminal of the gasdermin D to the plasma membrane but enhanced its localization to the autophagosomes. Pretreating the neurons with IL-1β could increase the viability of neurons challenged with dopamine. These results demonstrate a novel D1R-Zn2+ signaling cascade activating neuroinflammation and cell death. Therefore, maintaining a balance between dopamine homeostasis and inflammatory responses is an important therapeutic target for neurodegeneration. Dopamine elicits transient inflammatory responses in cultured cortical neurons via the D1R-Zn2+ signaling pathway. Dopamine elevates [Zn2+]i to induce the formation of inflammasomes, which activates caspase-1, resulting in the maturation of IL-1β and gasdermin D (GSDMD). Therefore, the homeostasis of dopamine and Zn2+ are critical therapeutic targets for inflammation-derived neurodegeneration.
Collapse
Affiliation(s)
- Hui-Chiun Tseng
- Department of Life Science, National Taiwan University, 1 Roosevelt Rd. Sec 4, Taipei, 106, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, 1 Roosevelt Rd. Sec 4, Taipei, 106, Taiwan.
| |
Collapse
|
29
|
Grace AA, Uliana DL. Insights into the Mechanism of Action of Antipsychotic Drugs Derived from Animal Models: Standard of Care versus Novel Targets. Int J Mol Sci 2023; 24:12374. [PMID: 37569748 PMCID: PMC10418544 DOI: 10.3390/ijms241512374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Therapeutic intervention for schizophrenia relies on blockade of dopamine D2 receptors in the associative striatum; however, there is little evidence for baseline overdrive of the dopamine system. Instead, the dopamine system is in a hyper-responsive state due to excessive drive by the hippocampus. This causes more dopamine neurons to be in a spontaneously active, hyper-responsive state. Antipsychotic drugs alleviate this by causing depolarization block, or excessive depolarization-induced dopamine neuron inactivation. Indeed, both first- and second-generation antipsychotic drugs cause depolarization block in the ventral tegmentum to relieve positive symptoms, whereas first-generation drugs also cause depolarization in the nigrostriatal dopamine system to lead to extrapyramidal side effects. However, by blocking dopamine receptors, these drugs are activating multiple synapses downstream from the proposed site of pathology: the loss of inhibitory influence over the hippocampus. An overactive hippocampus not only drives the dopamine-dependent positive symptoms, but via its projections to the amygdala and the neocortex can also drive negative and cognitive symptoms, respectively. On this basis, a novel class of drugs that can reverse schizophrenia at the site of pathology, i.e., the hippocampal overdrive, could be effective in alleviating all three classes of symptoms of schizophrenia while also being better tolerated.
Collapse
Affiliation(s)
- Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | | |
Collapse
|
30
|
Warren CV, Kroll CF, Kopp B. Dopaminergic and norepinephrinergic modulation of endogenous event-related potentials: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 151:105221. [PMID: 37150485 DOI: 10.1016/j.neubiorev.2023.105221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Event-related potentials (ERPs) represent the cortical processing of sensory, motor or cognitive functions invoked by particular events or stimuli. A current theory posits that the catecholaminergic neurotransmitters dopamine (DA) and norepinephrine (NE) modulate a number of endogenous ERPs during various cognitive processes. This manuscript aims to evaluate a leading neurotransmitter hypothesis with a systematic overview and meta-analysis of pharmacologic DA and NE manipulation of specific ERPs in healthy subjects during executive function. Specifically, the frontally-distributed P3a, N2, and Ne/ERN (or error-related negativity) are supposedly modulated primarily by DA, whereas the parietally-distributed P3b is thought to be modulated by NE. Based on preceding research, we refer to this distinction between frontally-distributed DA-sensitive and parietally-distributed NE-sensitive ERP components as the Extended Neurobiological Polich (ENP) hypothesis. Our systematic review and meta-analysis indicate that this distinction is too simplistic and many factors interact with DA and NE to influence these specific ERPs. These may include genetic factors, the specific cognitive processes engaged, or elements of study design, i.e. session or sequence effects or data-analysis strategies.
Collapse
Affiliation(s)
- Claire V Warren
- Charlotte Fresenius Hochschule, Alte Rabenstraße 32, 20148 Hamburg, Germany; Professorship for Clinical Psychology, Helmut-Schmidt University/ Bundeswehr University Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany.
| | - Charlotte F Kroll
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Minderbroedersberg 4-6. P.O. Box 616, Maastricht, MD, 6200, The Netherlands
| | - Bruno Kopp
- Clinic für Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
31
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
32
|
Jiménez-Salvador I, Meade P, Iglesias E, Bayona-Bafaluy P, Ruiz-Pesini E. Developmental origins of Parkinson disease: Improving the rodent models. Ageing Res Rev 2023; 86:101880. [PMID: 36773760 DOI: 10.1016/j.arr.2023.101880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Numerous pesticides are inhibitors of the oxidative phosphorylation system. Oxidative phosphorylation dysfunction adversely affects neurogenesis and often accompanies Parkinson disease. Since brain development occurs mainly in the prenatal period, early exposure to pesticides could alter the development of the nervous system and increase the risk of Parkinson disease. Different rodent models have been used to confirm this hypothesis. However, more precise considerations of the selected strain, the xenobiotic, its mode of administration, and the timing of animal analysis, are necessary to resemble the model to the human clinical condition and obtain more reliable results.
Collapse
Affiliation(s)
- Irene Jiménez-Salvador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain.
| | - Patricia Meade
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain; Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain.
| | - Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|
33
|
Gross JD, Zhou Y, Barak LS, Caron MG. Ghrelin receptor signaling in health and disease: a biased view. Trends Endocrinol Metab 2023; 34:106-118. [PMID: 36567228 PMCID: PMC9852078 DOI: 10.1016/j.tem.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
As allosteric complexes, G-protein-coupled receptors (GPCRs) respond to extracellular stimuli and pleiotropically couple to intracellular transducers to elicit signaling pathway-dependent effects in a process known as biased signaling or functional selectivity. One such GPCR, the ghrelin receptor (GHSR1a), has a crucial role in restoring and maintaining metabolic homeostasis during disrupted energy balance. Thus, pharmacological modulation of GHSR1a bias could offer a promising strategy to treat several metabolism-based disorders. Here, we summarize current evidence supporting GHSR1a functional selectivity in vivo and highlight recent structural data. We propose that precise determinations of GHSR1a molecular pharmacology and pathway-specific physiological effects will enable discovery of GHSR1a drugs with tailored signaling profiles, thereby providing safer and more effective treatments for metabolic diseases.
Collapse
Affiliation(s)
- Joshua D Gross
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Yang Zhou
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Lawrence S Barak
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
34
|
Almeida AS, Nunes F, Marques DM, Machado ACL, Oliveira CB, Porciuncula LO. Sex differences in maternal odor preferences and brain levels of GAP-43 and sonic hedgehog proteins in infant SHR and Wistar Kyoto rats. Behav Brain Res 2023; 436:114102. [DOI: 10.1016/j.bbr.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
|
35
|
Petersen I, Ali MI, Petrovic A, Ytterberg AJ, Staxäng K, Hodik M, Rofo F, Bondza S, Hultqvist G. Multivalent design of the monoclonal SynO2 antibody improves binding strength to soluble α-Synuclein aggregates. MAbs 2023; 15:2256668. [PMID: 37737124 PMCID: PMC10519360 DOI: 10.1080/19420862.2023.2256668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Soluble aggregates are reported to be the most neurotoxic species of α-Synuclein (αSyn) in Parkinson's disease (PD) and hence are a promising target for diagnosis and treatment of PD. However, the predominantly intracellular location of αSyn limits its accessibility, especially for antibody-based molecules and prompts the need for exceptionally strong soluble αSyn aggregate binders to enhance their sensitivity and efficacy for targeting the extracellular αSyn pool. In this study, we have created the multivalent antibodies TetraSynO2 and HexaSynO2, derived from the αSyn oligomer-specific antibody SynO2, to increase avidity binding to soluble αSyn aggregate species through more binding sites in close proximity. The multivalency was achieved through recombinant fusion of single-chain variable fragments of SynO2 to the antibodies' original N-termini. Our ELISA results indicated a 20-fold increased binding strength of the multivalent formats to αSyn aggregates, while binding to αSyn monomers and unspecific binding to amyloid β protofibrils remained low. Kinetic analysis using LigandTracer revealed that only 80% of SynO2 bound bivalently to soluble αSyn aggregates, whereas the proportion of TetraSynO2 and HexaSynO2 binding bi- or multivalently to soluble αSyn aggregates was increased to ~ 95% and 100%, respectively. The overall improved binding strength of TetraSynO2 and HexaSynO2 implies great potential for immunotherapeutic and diagnostic applications with targets of limited accessibility, like extracellular αSyn aggregates. The ability of the multivalent antibodies to bind a wider range of αSyn aggregate species, which are not targetable by conventional bivalent antibodies, thus could allow for an earlier and more effective intervention in the progression of PD.
Collapse
Affiliation(s)
- Inga Petersen
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Alex Petrovic
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Anders Jimmy Ytterberg
- Department of Pharmacy, SciLifeLab Drug Discovery and Development, Uppsala University, Uppsala, Sweden
| | - Karin Staxäng
- TEM Laboratory, BioVis Platform, Uppsala University, Uppsala, Sweden
| | - Monika Hodik
- TEM Laboratory, BioVis Platform, Uppsala University, Uppsala, Sweden
| | - Fadi Rofo
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Sina Bondza
- Ridgeview Instruments AB, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
36
|
Al-Nema M, Gaurav A, Lee MT, Okechukwu P, Nimmanpipug P, Lee VS. Evaluation of the acute oral toxicity and antipsychotic activity of a dual inhibitor of PDE1B and PDE10A in rat model of schizophrenia. PLoS One 2022; 17:e0278216. [PMID: 36454774 PMCID: PMC9714703 DOI: 10.1371/journal.pone.0278216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Phosphodiesterase 1B (PDE1B) and PDE10A are dual-specificity PDEs that hydrolyse both cyclic adenosine monophosphate and cyclic guanosine monophosphate, and are highly expressed in the striatum. Several reports have suggested that PDE10A inhibitors may present a promising approach for the treatment of positive symptoms of schizophrenia, whereas PDE1B inhibitors may present a novel mechanism to modulate cognitive deficits. Previously, we have reported a novel dual inhibitor of PDE1B and PDE10A, compound 2 [(3-fluorophenyl)(2-methyl-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)methanone] which has shown inhibitory activity for human recombinant PDE1B and PDE10A in vitro. In the present study, the safety profile of compound 2 has been evaluated in rats in the acute oral toxicity study, as well as; the antipsychotic-like effects in the rat model of schizophrenia. Compound 2 was tolerated up to 1 g/kg when administered at a single oral dose. Additionally, compound 2 has strongly suppressed ketamine-induced hyperlocomotion, which presented a model for the positive symptoms of schizophrenia. It has also shown an ability to attenuate social isolation induced by chronic administration of ketamine and enhanced recognition memory of rats in the novel object recognition test. Altogether, our results suggest that compound 2 represents a promising therapy for the treatment of the three symptomatic domains of schizophrenia.
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- * E-mail: (AG); (VSL)
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur, Malaysia
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Patrick Okechukwu
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-based Economic and Society (I-ANALY-S-T), Chiang Mai University, Chiang Mai, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (AG); (VSL)
| |
Collapse
|
37
|
Bi F, Xiong J, Han X, Yang C, Li X, Chen G, Guo W, Tian W. Dental follicle cells show potential for treating Parkinson's disease through dopaminergic-neuronogenic differentiation. Hum Cell 2022; 35:1708-1721. [PMID: 36040643 DOI: 10.1007/s13577-022-00774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/20/2022] [Indexed: 11/04/2022]
Abstract
Among all the adult stem cells, odontogenic stem cells inherit the characterization of neurogenic potential of their precursor ones-the cranial crest cells. Dental follicle cells (DFCs), one of the special kind of odontogenic stem cells, are raising interest in applying to regenerative medicine for they possess multi-differentiation potential, relatively free access and ethic-friendly characteristic. Parkinson's disease (PD), as one of the common neurodegenerative disorders, affects about 0.3% of the general population. Stem cell therapies are thought to be effective to treat it. Aiming at tackling ethical-concernings, confined sources and practically applicational limits, we made use of dopaminergic neurongenic differentiation potential of the DFCs and dedicated every effort to applying them as promising cell source for treating PD. Dental follicle cells were cultured from human dental follicle tissues collected from 12 to 18-year-old teenagers' completely impacted third molars. Our data demonstrated that hDFCs were expressing mesenchymal stem cell-associated surface markers, and possessed the ability of osteogenic, adipogenic and neurogenic differentiation in vitro. Additionally, hDFCs formed neuron-like cells in vitro and in vivo, as well as expressing dopaminergic-neuronogenic marker-TH. Moreover, hDFCs survived in the transplanted areas of the Parkinson's disease model of mouse over six weeks post-surgery, and the number of TH-positive DFCs in the DFCs-Grafted group surpassed its counterpart of the MPTP group with statistically significant difference. This study indicated that hDFCs might be a promising source of dopaminergic neurons for functional transplantation, and encouraged further detailed studies on the potential of hDFCs for treating PD.
Collapse
Affiliation(s)
- Fei Bi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
| | - Jie Xiong
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xue Han
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
| | - Chao Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinghan Li
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China.
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China.
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China.
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Padilla-Godínez FJ, Ruiz-Ortega LI, Guerra-Crespo M. Nanomedicine in the Face of Parkinson's Disease: From Drug Delivery Systems to Nanozymes. Cells 2022; 11:3445. [PMID: 36359841 PMCID: PMC9657131 DOI: 10.3390/cells11213445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 01/02/2024] Open
Abstract
The complexity and overall burden of Parkinson's disease (PD) require new pharmacological approaches to counteract the symptomatology while reducing the progressive neurodegeneration of affected dopaminergic neurons. Since the pathophysiological signature of PD is characterized by the loss of physiological levels of dopamine (DA) and the misfolding and aggregation of the alpha-synuclein (α-syn) protein, new proposals seek to restore the lost DA and inhibit the progressive damage derived from pathological α-syn and its impact in terms of oxidative stress. In this line, nanomedicine (the medical application of nanotechnology) has achieved significant advances in the development of nanocarriers capable of transporting and delivering basal state DA in a controlled manner in the tissues of interest, as well as highly selective catalytic nanostructures with enzyme-like properties for the elimination of reactive oxygen species (responsible for oxidative stress) and the proteolysis of misfolded proteins. Although some of these proposals remain in their early stages, the deepening of our knowledge concerning the pathological processes of PD and the advances in nanomedicine could endow for the development of potential treatments for this still incurable condition. Therefore, in this paper, we offer: (i) a brief summary of the most recent findings concerning the physiology of motor regulation and (ii) the molecular neuropathological processes associated with PD, together with (iii) a recapitulation of the current progress in controlled DA release by nanocarriers and (iv) the design of nanozymes, catalytic nanostructures with oxidoreductase-, chaperon, and protease-like properties. Finally, we conclude by describing the prospects and knowledge gaps to overcome and consider as research into nanotherapies for PD continues, especially when clinical translations take place.
Collapse
Affiliation(s)
- Francisco J. Padilla-Godínez
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
| | - Leonardo I. Ruiz-Ortega
- Institute for Physical Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Mexico
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Magdalena Guerra-Crespo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
| |
Collapse
|
39
|
Drouin-Ouellet J, Legault EM, Nilsson F, Pircs K, Bouquety J, Petit F, Shrigley S, Birtele M, Pereira M, Storm P, Sharma Y, Bruzelius A, Vuono R, Kele M, Stoker TB, Ottosson DR, Falk A, Jakobsson J, Barker RA, Parmar M. Age-related pathological impairments in directly reprogrammed dopaminergic neurons derived from patients with idiopathic Parkinson's disease. Stem Cell Reports 2022; 17:2203-2219. [PMID: 36150382 PMCID: PMC9561608 DOI: 10.1016/j.stemcr.2022.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/23/2022] Open
Abstract
We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.
Collapse
Affiliation(s)
| | - Emilie M Legault
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Fredrik Nilsson
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Karolina Pircs
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Julie Bouquety
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Florence Petit
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Shelby Shrigley
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Marcella Birtele
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Maria Pereira
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Petter Storm
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Yogita Sharma
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Andreas Bruzelius
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Romina Vuono
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge CB2 0PY, UK; Medway School of Pharmacy, University of Kent, Chatham Maritime, Chatham ME4 4TB, UK
| | - Malin Kele
- Department of Neuroscience, Karolinska institutet, Stockholm, Sweden
| | - Thomas B Stoker
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge CB2 0PY, UK
| | - Daniella Rylander Ottosson
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska institutet, Stockholm, Sweden
| | - Johan Jakobsson
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden
| | - Roger A Barker
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge CB2 0PY, UK
| | - Malin Parmar
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, Lund University, BMC A11 and B10, S-221 84 Lund, Sweden.
| |
Collapse
|
40
|
Dubey S, Dubey MJ, Ghosh R, Mukherjee D, Pandit A, Benito-León J. Behavioral and psychological symptoms in neurodegenerative dementias: harbinger, follower, or constant collateral? THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022; 58:102. [PMID: 36160603 PMCID: PMC9503106 DOI: 10.1186/s41983-022-00538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative dementias such as the behavioral variant of frontotemporal dementia, Alzheimer's disease, and Parkinson's disease dementia are linked to various behavioral and psychological abnormalities. Whether these abnormalities precede, coincide or follow the onset of cognitive symptoms is still controversial in existing literature, with trajectories available so far dependent on types of dementia. The authors aim to review the different kinds of premorbid behavioral symptoms/personality traits associated with an increased risk of developing specific types of neurodegenerative dementia. Neuroticism has been associated with an increased risk of Alzheimer's disease and late-onset behavioral abnormalities with the behavioral variant of frontotemporal dementia. The presence of obsessive-compulsive spectrum disorders in Parkinson's disease dementia is also not rare. Analyzing this evidence, we propose "behavioral biomarkers" as neuroticism in Alzheimer's disease, late-onset behavioral abnormalities in behavioral variant of frontotemporal dementia, and obsessive-compulsive traits in Parkinson's disease dementia. These noninvasive behavioral biomarkers will be of immense help, particularly in developing countries, and will prevent the need for costlier investigations and aid in therapeutic strategies.
Collapse
Affiliation(s)
- Souvik Dubey
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Mahua Jana Dubey
- Department of Psychiatry, Berhampore Mental Hospital, Murshidabad, India
| | - Ritwik Ghosh
- Department of General Medicine, Burdwan Medical College, and Hospital, Burdwan, West Bengal, India
| | - Debaleena Mukherjee
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Alak Pandit
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
41
|
Digital Addiction and Sleep. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116910. [PMID: 35682491 PMCID: PMC9179985 DOI: 10.3390/ijerph19116910] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/25/2022]
Abstract
In 2020, the World Health Organization formally recognized addiction to digital technology (connected devices) as a worldwide problem, where excessive online activity and internet use lead to inability to manage time, energy, and attention during daytime and produce disturbed sleep patterns or insomnia during nighttime. Recent studies have shown that the problem has increased in magnitude worldwide during the COVID-19 pandemic. The extent to which dysfunctional sleep is a consequence of altered motivation, memory function, mood, diet, and other lifestyle variables or results from excess of blue-light exposure when looking at digital device screens for long hours at day and night is one of many still unresolved questions. This article offers a narrative overview of some of the most recent literature on this topic. The analysis provided offers a conceptual basis for understanding digital addiction as one of the major reasons why people, and adolescents in particular, sleep less and less well in the digital age. It discusses definitions as well as mechanistic model accounts in context. Digital addiction is identified as functionally equivalent to all addictions, characterized by the compulsive, habitual, and uncontrolled use of digital devices and an excessively repeated engagement in a particular online behavior. Once the urge to be online has become uncontrollable, it is always accompanied by severe sleep loss, emotional distress, depression, and memory dysfunction. In extreme cases, it may lead to suicide. The syndrome has been linked to the known chronic effects of all drugs, producing disturbances in cellular and molecular mechanisms of the GABAergic and glutamatergic neurotransmitter systems. Dopamine and serotonin synaptic plasticity, essential for impulse control, memory, and sleep function, are measurably altered. The full spectrum of behavioral symptoms in digital addicts include eating disorders and withdrawal from outdoor and social life. Evidence pointing towards dysfunctional melatonin and vitamin D metabolism in digital addicts should be taken into account for carving out perspectives for treatment. The conclusions offer a holistic account for digital addiction, where sleep deficit is one of the key factors.
Collapse
|
42
|
Emerging Roles of FTO in Neuropsychiatric Disorders. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2677312. [PMID: 35528183 PMCID: PMC9071897 DOI: 10.1155/2022/2677312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
FTO (fat mass and obesity associated) is a recently discovered gene related to obesity and expressed in various tissues of the human body, especially with high expression in the brain. Earlier studies have found that FTO is involved in several biological processes, including brain development and function. In particular, recent studies have found that FTO is a demethylase of N6-methyladenosine (m6A) and it can affect neurological function through the m6A modification of mRNA. At present, a number of studies have shown that FTO is associated with many neuropsychiatric disorders. This paper reviews the discovery, structure, function, and tissue expression of FTO followed by discussing the relationship between FTO and neuropsychiatric diseases. In addition, the potential roles of FTO gene in drug addiction, major depression (MDD), and schizophrenia (SCZ) through regulating m6A modification of dopamine related genes were also highlighted.
Collapse
|
43
|
Chalazonitis A, Rao M, Sulzer D. Similarities and differences between nigral and enteric dopaminergic neurons unravel distinctive involvement in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:50. [PMID: 35459867 PMCID: PMC9033791 DOI: 10.1038/s41531-022-00308-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to the well-known degeneration of midbrain dopaminergic neurons, enteric neurons can also be affected in neurodegenerative disorders such as Parkinson's disease (PD). Dopaminergic neurons have recently been identified in the enteric nervous system (ENS). While ENS dopaminergic neurons have been shown to degenerate in genetic mouse models of PD, analyses of their survival in enteric biopsies of PD patients have provided inconsistent results to date. In this context, this review seeks to highlight the distinctive and shared factors and properties that control the evolution of these two sets of dopaminergic neurons from neuronal precursors to aging neurons. Although their cellular sources and developmental times of origin differ, midbrain and ENS dopaminergic neurons express many transcription factors in common and their respective environments express similar neurotrophic molecules. For example, Foxa2 and Sox6 are expressed by both populations to promote the specification, differentiation, and long-term maintenance of the dopaminergic phenotype. Both populations exhibit sustained patterns of excitability that drive intrinsic vulnerability over time. In disorders such as PD, colon biopsies have revealed aggregation of alpha-synuclein in the submucosal plexus where dopaminergic neurons reside and lack blood barrier protection. Thus, these enteric neurons may be more susceptible to neurotoxic insults and aggregation of α-synuclein that spreads from gut to midbrain. Under sustained stress, inefficient autophagy leads to neurodegeneration, GI motility dysfunction, and PD symptoms. Recent findings suggest that novel neurotrophic factors such as CDNF have the potential to be used as neuroprotective agents to prevent and treat ENS symptoms of PD.
Collapse
Affiliation(s)
- Alcmène Chalazonitis
- Department of Pathology & Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Division of Molecular Therapeutics, New York State Psychiatry Institute, Columbia University, New York, NY, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
44
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
45
|
The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease. Genes (Basel) 2022; 13:genes13030513. [PMID: 35328067 PMCID: PMC8950476 DOI: 10.3390/genes13030513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disease that causes a great clinical burden. However, its exact molecular pathologies are not fully understood. Whilst there are a number of avenues for research into slowing, halting, or reversing PD, one central idea is to enhance the clearance of the proposed aetiological protein, oligomeric α-synuclein. Oligomeric α-synuclein is the main constituent protein in Lewy bodies and neurites and is considered neurotoxic. Multiple E3 ubiquitin-protein ligases, including the NEDD4 (neural precursor cell expressed developmentally downregulated protein 4) family, parkin, SIAH (mammalian homologues of Drosophila seven in absentia), CHIP (carboxy-terminus of Hsc70 interacting protein), and SCFFXBL5 SCF ubiquitin ligase assembled by the S-phase kinase-associated protein (SKP1), cullin-1 (Cul1), a zinc-binding RING finger protein, and the F-box domain/Leucine-rich repeat protein 5-containing protein FBXL5), have been shown to be able to ubiquitinate α-synuclein, influencing its subsequent degradation via the proteasome or lysosome. Here, we explore the link between NEDD4 ligases and PD, which is not only via α-synuclein but further strengthened by several additional substrates and interaction partners. Some members of the NEDD4 family of ligases are thought to crosstalk even with PD-related genes and proteins found to be mutated in familial forms of PD. Mutations in NEDD4 family genes have not been observed in PD patients, most likely because of their essential survival function during development. Following further in vivo studies, it has been thought that NEDD4 ligases may be viable therapeutic targets in PD. NEDD4 family members could clear toxic proteins, enhancing cell survival and slowing disease progression, or might diminish beneficial proteins, reducing cell survival and accelerating disease progression. Here, we review studies to date on the expression and function of NEDD4 ubiquitin ligases in the brain and their possible impact on PD pathology.
Collapse
|
46
|
Role of Nuclear-Receptor-Related 1 in the Synergistic Neuroprotective Effect of Umbilical Cord Blood and Erythropoietin Combination Therapy in Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2022; 23:ijms23052900. [PMID: 35270042 PMCID: PMC8911165 DOI: 10.3390/ijms23052900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/10/2022] Open
Abstract
Neonatal hypoxic–ischemic encephalopathy (HIE) results in neurological impairments; cell-based therapy has been suggested as a therapeutic avenue. Previous research has demonstrated the synergistically potentiated therapeutic efficacy of human umbilical cord blood (UCB) by combining recombinant human erythropoietin (EPO) treatment for recovery from HIE. However, its molecular mechanism is not entirely understood. In the present study, we analyzed the mechanisms underlying the effect of combination treatment with EPO and UCB by transcriptomic analysis, followed by gene enrichment analysis. Mouse HIE model of the neonate was prepared and randomly divided into five groups: sham, HIE, and UCB, EPO, and UCB+EPO treatments after HIE. A total of 376 genes were differentially expressed when |log2FC| ≥ 1-fold change expression values were considered to be differentially expressed between UCB+EPO and HIE. Further assessment through qRT-PCR and gene enrichment analysis confirmed the expression and correlation of its potential target, Nurr1, as an essential gene involved in the synergistic effect of the UCB+EPO combination. The results indicated the remarkable activation of Wnt/β-catenin signaling by reducing the infarct size by UCB+EPO treatment, accompanied by Nurr1 activity. In conclusion, these findings suggest that the regulation of Nurr1 through the Wnt/β-catenin pathway exerts a synergistic neuroprotective effect in UCB and EPO combination treatment.
Collapse
|
47
|
Panayotacopoulou MT, Papageorgiou I, Pagida M, Katsogridaki AE, Chrysanthou-Piterou M, Valous NA, Halama N, Patsouris E, Konstantinidou AE. Microglia Activation in the Midbrain of the Human Neonate: The Effect of Perinatal Hypoxic-Ischemic Injury. J Neuropathol Exp Neurol 2022; 81:208-224. [PMID: 35092294 DOI: 10.1093/jnen/nlab135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perinatal hypoxia-ischemia (PHI) is a major risk factor for the development of neuropsychiatric deficits later in life. We previously reported that after prolonged PHI, the dopaminergic neurons of the human neonate showed a dramatic reduction of tyrosine hydroxylase (TH) in the substantia nigra, without important signs of neuronal degeneration despite the significant reduction in their cell size. Since microglia activation could precede neuronal death, we now investigated 2 microglia activation markers, ionized calcium-binding adapter molecule 1 (Iba1), and the phagocytosis marker Cd68. The highest Iba1 immunoreactivity was found in neonates with neuropathological lesions of severe/abrupt PHI, while the lowest in subjects with moderate/prolonged or older PHI. Subjects with very severe/prolonged or chronic PHI showed an increased Iba1 expression and very activated microglial morphology. Heavy attachment of microglia on TH neurons and remarkable expression of Cd68 were also observed indicating phagocytosis in this group. Females appear to express more Iba1 than males, suggesting a gender difference in microglia maturation and immune reactivity after PHI insult. PHI-induced microglial "priming" during the sensitive for brain development perinatal/neonatal period, in combination with genetic or other epigenetic factors, could predispose the survivors to neuropsychiatric disorders later in life, possibly through a sexually dimorphic way.
Collapse
Affiliation(s)
- Maria T Panayotacopoulou
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Ismini Papageorgiou
- Institute for Diagnostic and Interventional Radiology, University Hospital of Jena, Jena, Germany (IP).,Institute of Radiology, Südharz Hospital Nordhausen, Nordhausen, Germany (IP)
| | - Marianna Pagida
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Alexandra E Katsogridaki
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Margarita Chrysanthou-Piterou
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Nektarios A Valous
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany (NAV)
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Heidelberg, Germany (NH).,Division of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany (NH)
| | - Efstratios Patsouris
- University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP).,1st Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece (EP, AEK)
| | | |
Collapse
|
48
|
Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022; 10:biomedicines10020436. [PMID: 35203645 PMCID: PMC8962300 DOI: 10.3390/biomedicines10020436] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/09/2023] Open
Abstract
Dopamine is a neurotransmitter that plays a critical role both peripherally and centrally in vital functions such as cognition, reward, satiety, voluntary motor movements, pleasure, and motivation. Optimal dopamine bioavailability is essential for normal brain functioning and protection against the development of neurological diseases. Emerging evidence shows that gut microbiota have significant roles in maintaining adequate concentrations of dopamine via intricate, bidirectional communication known as the microbiota-gut-brain axis. The vagus nerve, immune system, hypothalamus–pituitary–adrenal axis, and microbial metabolites serve as important mediators of the reciprocal microbiota-gut-brain signaling. Furthermore, gut microbiota contain intrinsic enzymatic activity that is highly involved in dopamine metabolism, facilitating dopamine synthesis as well as its metabolite breakdown. This review examines the relationship between key genera of gut microbiota such as Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus and their effects on dopamine. The effects of gut dysbiosis on dopamine bioavailability and the subsequent impact on dopamine-related pathological conditions such as Parkinson’s disease are also discussed. Understanding the role of gut microbiota in modulating dopamine activity and bioavailability both in the periphery and in the central nervous system can help identify new therapeutic targets as well as optimize available methods to prevent, delay, or restore dopaminergic deficits in neurologic and metabolic disorders.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Armin Aghazarian
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Anthony Nazaryan
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
- Correspondence:
| |
Collapse
|
49
|
Pakarinen E, Lindholm P, Saarma M, Lindahl M. CDNF and MANF regulate ER stress in a tissue-specific manner. Cell Mol Life Sci 2022; 79:124. [PMID: 35129674 PMCID: PMC8821067 DOI: 10.1007/s00018-022-04157-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
Abstract
Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) display cytoprotective effects in animal models of neurodegenerative diseases. These endoplasmic reticulum (ER)-resident proteins belong to the same protein family and function as ER stress regulators. The relationship between CDNF and MANF function, as well as their capability for functional compensation, is unknown. We aimed to investigate these questions by generating mice lacking both CDNF and MANF. Results showed that CDNF-deficient Manf−/− mice presented the same phenotypes of growth defect and diabetes as Manf−/− mice. In the muscle, CDNF deficiency resulted in increased activation of unfolded protein response (UPR), which was aggravated when MANF was ablated. In the brain, the combined loss of CDNF and MANF did not exacerbate UPR activation caused by the loss of MANF alone. Consequently, CDNF and MANF deficiency in the brain did not cause degeneration of dopamine neurons. In conclusion, CDNF and MANF present functional redundancy in the muscle, but not in the other tissues examined here. Thus, they regulate the UPR in a tissue-specific manner.
Collapse
Affiliation(s)
- Emmi Pakarinen
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, 00014, Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, 00014, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, 00014, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
50
|
Spathopoulou A, Edenhofer F, Fellner L. Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models. Front Neurol 2022; 12:786835. [PMID: 35145469 PMCID: PMC8821105 DOI: 10.3389/fneur.2021.786835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder characterized by motor and non-motor symptoms. To date, no specific treatment to halt disease progression is available, only medication to alleviate symptoms can be prescribed. The main pathological hallmark of PD is the development of neuronal inclusions, positive for α-synuclein (α-syn), which are termed Lewy bodies (LBs) or Lewy neurites. However, the cause of the inclusion formation and the loss of neurons remain largely elusive. Various genetic determinants were reported to be involved in PD etiology, including SNCA, DJ-1, PRKN, PINK1, LRRK2, and GBA. Comprehensive insights into pathophysiology of PD critically depend on appropriate models. However, conventional model organisms fall short to faithfully recapitulate some features of this complex disease and as a matter-of-fact access to physiological tissue is limiting. The development of disease models replicating PD that are close to human physiology and dynamic enough to analyze the underlying molecular mechanisms of disease initiation and progression, as well as the generation of new treatment options, is an important and overdue step. Recently, the establishment of induced pluripotent stem cell (iPSC)-derived neural models, particularly from genetic PD-variants, developed into a promising strategy to investigate the molecular mechanisms regarding formation of inclusions and neurodegeneration. As these iPSC-derived neurons can be generated from accessible biopsied samples of PD patients, they carry pathological alterations and enable the possibility to analyze the differences compared to healthy neurons. This review focuses on iPSC models carrying genetic PD-variants of α-syn that will be especially helpful in elucidating the pathophysiological mechanisms of PD. Furthermore, we discuss how iPSC models can be instrumental in identifying cellular targets, potentially leading to the development of new therapeutic treatments. We will outline the enormous potential, but also discuss the limitations of iPSC-based α-syn models.
Collapse
|